Home | History | Annotate | Download | only in jpeg
      1 /*
      2  * jchuff.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy encoding routines.
      9  *
     10  * Much of the complexity here has to do with supporting output suspension.
     11  * If the data destination module demands suspension, we want to be able to
     12  * back up to the start of the current MCU.  To do this, we copy state
     13  * variables into local working storage, and update them back to the
     14  * permanent JPEG objects only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
     21 
     22 
     23 /* Expanded entropy encoder object for Huffman encoding.
     24  *
     25  * The savable_state subrecord contains fields that change within an MCU,
     26  * but must not be updated permanently until we complete the MCU.
     27  */
     28 
     29 typedef struct {
     30   INT32 put_buffer;		/* current bit-accumulation buffer */
     31   int put_bits;			/* # of bits now in it */
     32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     33 } savable_state;
     34 
     35 /* This macro is to work around compilers with missing or broken
     36  * structure assignment.  You'll need to fix this code if you have
     37  * such a compiler and you change MAX_COMPS_IN_SCAN.
     38  */
     39 
     40 #ifndef NO_STRUCT_ASSIGN
     41 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     42 #else
     43 #if MAX_COMPS_IN_SCAN == 4
     44 #define ASSIGN_STATE(dest,src)  \
     45 	((dest).put_buffer = (src).put_buffer, \
     46 	 (dest).put_bits = (src).put_bits, \
     47 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
     48 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     49 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     50 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     51 #endif
     52 #endif
     53 
     54 
     55 typedef struct {
     56   struct jpeg_entropy_encoder pub; /* public fields */
     57 
     58   savable_state saved;		/* Bit buffer & DC state at start of MCU */
     59 
     60   /* These fields are NOT loaded into local working state. */
     61   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     62   int next_restart_num;		/* next restart number to write (0-7) */
     63 
     64   /* Pointers to derived tables (these workspaces have image lifespan) */
     65   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     66   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     67 
     68 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
     69   long * dc_count_ptrs[NUM_HUFF_TBLS];
     70   long * ac_count_ptrs[NUM_HUFF_TBLS];
     71 #endif
     72 } huff_entropy_encoder;
     73 
     74 typedef huff_entropy_encoder * huff_entropy_ptr;
     75 
     76 /* Working state while writing an MCU.
     77  * This struct contains all the fields that are needed by subroutines.
     78  */
     79 
     80 typedef struct {
     81   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     82   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     83   savable_state cur;		/* Current bit buffer & DC state */
     84   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
     85 } working_state;
     86 
     87 
     88 /* Forward declarations */
     89 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
     90 					JBLOCKROW *MCU_data));
     91 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
     92 #ifdef ENTROPY_OPT_SUPPORTED
     93 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
     94 					  JBLOCKROW *MCU_data));
     95 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
     96 #endif
     97 
     98 
     99 /*
    100  * Initialize for a Huffman-compressed scan.
    101  * If gather_statistics is TRUE, we do not output anything during the scan,
    102  * just count the Huffman symbols used and generate Huffman code tables.
    103  */
    104 
    105 METHODDEF(void)
    106 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
    107 {
    108   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    109   int ci, dctbl, actbl;
    110   jpeg_component_info * compptr;
    111 
    112   if (gather_statistics) {
    113 #ifdef ENTROPY_OPT_SUPPORTED
    114     entropy->pub.encode_mcu = encode_mcu_gather;
    115     entropy->pub.finish_pass = finish_pass_gather;
    116 #else
    117     ERREXIT(cinfo, JERR_NOT_COMPILED);
    118 #endif
    119   } else {
    120     entropy->pub.encode_mcu = encode_mcu_huff;
    121     entropy->pub.finish_pass = finish_pass_huff;
    122   }
    123 
    124   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    125     compptr = cinfo->cur_comp_info[ci];
    126     dctbl = compptr->dc_tbl_no;
    127     actbl = compptr->ac_tbl_no;
    128     if (gather_statistics) {
    129 #ifdef ENTROPY_OPT_SUPPORTED
    130       /* Check for invalid table indexes */
    131       /* (make_c_derived_tbl does this in the other path) */
    132       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
    133 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
    134       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
    135 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
    136       /* Allocate and zero the statistics tables */
    137       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    138       if (entropy->dc_count_ptrs[dctbl] == NULL)
    139 	entropy->dc_count_ptrs[dctbl] = (long *)
    140 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    141 				      257 * SIZEOF(long));
    142       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
    143       if (entropy->ac_count_ptrs[actbl] == NULL)
    144 	entropy->ac_count_ptrs[actbl] = (long *)
    145 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    146 				      257 * SIZEOF(long));
    147       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
    148 #endif
    149     } else {
    150       /* Compute derived values for Huffman tables */
    151       /* We may do this more than once for a table, but it's not expensive */
    152       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
    153 			      & entropy->dc_derived_tbls[dctbl]);
    154       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
    155 			      & entropy->ac_derived_tbls[actbl]);
    156     }
    157     /* Initialize DC predictions to 0 */
    158     entropy->saved.last_dc_val[ci] = 0;
    159   }
    160 
    161   /* Initialize bit buffer to empty */
    162   entropy->saved.put_buffer = 0;
    163   entropy->saved.put_bits = 0;
    164 
    165   /* Initialize restart stuff */
    166   entropy->restarts_to_go = cinfo->restart_interval;
    167   entropy->next_restart_num = 0;
    168 }
    169 
    170 
    171 /*
    172  * Compute the derived values for a Huffman table.
    173  * This routine also performs some validation checks on the table.
    174  *
    175  * Note this is also used by jcphuff.c.
    176  */
    177 
    178 GLOBAL(void)
    179 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    180 			 c_derived_tbl ** pdtbl)
    181 {
    182   JHUFF_TBL *htbl;
    183   c_derived_tbl *dtbl;
    184   int p, i, l, lastp, si, maxsymbol;
    185   char huffsize[257];
    186   unsigned int huffcode[257];
    187   unsigned int code;
    188 
    189   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    190    * paralleling the order of the symbols themselves in htbl->huffval[].
    191    */
    192 
    193   /* Find the input Huffman table */
    194   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    195     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    196   htbl =
    197     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    198   if (htbl == NULL)
    199     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    200 
    201   /* Allocate a workspace if we haven't already done so. */
    202   if (*pdtbl == NULL)
    203     *pdtbl = (c_derived_tbl *)
    204       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    205 				  SIZEOF(c_derived_tbl));
    206   dtbl = *pdtbl;
    207 
    208   /* Figure C.1: make table of Huffman code length for each symbol */
    209 
    210   p = 0;
    211   for (l = 1; l <= 16; l++) {
    212     i = (int) htbl->bits[l];
    213     if (i < 0 || p + i > 256)	/* protect against table overrun */
    214       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    215     while (i--)
    216       huffsize[p++] = (char) l;
    217   }
    218   huffsize[p] = 0;
    219   lastp = p;
    220 
    221   /* Figure C.2: generate the codes themselves */
    222   /* We also validate that the counts represent a legal Huffman code tree. */
    223 
    224   code = 0;
    225   si = huffsize[0];
    226   p = 0;
    227   while (huffsize[p]) {
    228     while (((int) huffsize[p]) == si) {
    229       huffcode[p++] = code;
    230       code++;
    231     }
    232     /* code is now 1 more than the last code used for codelength si; but
    233      * it must still fit in si bits, since no code is allowed to be all ones.
    234      */
    235     if (((INT32) code) >= (((INT32) 1) << si))
    236       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    237     code <<= 1;
    238     si++;
    239   }
    240 
    241   /* Figure C.3: generate encoding tables */
    242   /* These are code and size indexed by symbol value */
    243 
    244   /* Set all codeless symbols to have code length 0;
    245    * this lets us detect duplicate VAL entries here, and later
    246    * allows emit_bits to detect any attempt to emit such symbols.
    247    */
    248   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
    249 
    250   /* This is also a convenient place to check for out-of-range
    251    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    252    * but only 0..15 for DC.  (We could constrain them further
    253    * based on data depth and mode, but this seems enough.)
    254    */
    255   maxsymbol = isDC ? 15 : 255;
    256 
    257   for (p = 0; p < lastp; p++) {
    258     i = htbl->huffval[p];
    259     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    260       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    261     dtbl->ehufco[i] = huffcode[p];
    262     dtbl->ehufsi[i] = huffsize[p];
    263   }
    264 }
    265 
    266 
    267 /* Outputting bytes to the file */
    268 
    269 /* Emit a byte, taking 'action' if must suspend. */
    270 #define emit_byte(state,val,action)  \
    271 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
    272 	  if (--(state)->free_in_buffer == 0)  \
    273 	    if (! dump_buffer(state))  \
    274 	      { action; } }
    275 
    276 
    277 LOCAL(boolean)
    278 dump_buffer (working_state * state)
    279 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    280 {
    281   struct jpeg_destination_mgr * dest = state->cinfo->dest;
    282 
    283   if (! (*dest->empty_output_buffer) (state->cinfo))
    284     return FALSE;
    285   /* After a successful buffer dump, must reset buffer pointers */
    286   state->next_output_byte = dest->next_output_byte;
    287   state->free_in_buffer = dest->free_in_buffer;
    288   return TRUE;
    289 }
    290 
    291 
    292 /* Outputting bits to the file */
    293 
    294 /* Only the right 24 bits of put_buffer are used; the valid bits are
    295  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    296  * in one call, and we never retain more than 7 bits in put_buffer
    297  * between calls, so 24 bits are sufficient.
    298  */
    299 
    300 INLINE
    301 LOCAL(boolean)
    302 emit_bits (working_state * state, unsigned int code, int size)
    303 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
    304 {
    305   /* This routine is heavily used, so it's worth coding tightly. */
    306   register INT32 put_buffer = (INT32) code;
    307   register int put_bits = state->cur.put_bits;
    308 
    309   /* if size is 0, caller used an invalid Huffman table entry */
    310   if (size == 0)
    311     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
    312 
    313   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    314 
    315   put_bits += size;		/* new number of bits in buffer */
    316 
    317   put_buffer <<= 24 - put_bits; /* align incoming bits */
    318 
    319   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
    320 
    321   while (put_bits >= 8) {
    322     int c = (int) ((put_buffer >> 16) & 0xFF);
    323 
    324     emit_byte(state, c, return FALSE);
    325     if (c == 0xFF) {		/* need to stuff a zero byte? */
    326       emit_byte(state, 0, return FALSE);
    327     }
    328     put_buffer <<= 8;
    329     put_bits -= 8;
    330   }
    331 
    332   state->cur.put_buffer = put_buffer; /* update state variables */
    333   state->cur.put_bits = put_bits;
    334 
    335   return TRUE;
    336 }
    337 
    338 
    339 LOCAL(boolean)
    340 flush_bits (working_state * state)
    341 {
    342   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
    343     return FALSE;
    344   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
    345   state->cur.put_bits = 0;
    346   return TRUE;
    347 }
    348 
    349 
    350 /* Encode a single block's worth of coefficients */
    351 
    352 LOCAL(boolean)
    353 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
    354 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
    355 {
    356   register int temp, temp2;
    357   register int nbits;
    358   register int k, r, i;
    359 
    360   /* Encode the DC coefficient difference per section F.1.2.1 */
    361 
    362   temp = temp2 = block[0] - last_dc_val;
    363 
    364   if (temp < 0) {
    365     temp = -temp;		/* temp is abs value of input */
    366     /* For a negative input, want temp2 = bitwise complement of abs(input) */
    367     /* This code assumes we are on a two's complement machine */
    368     temp2--;
    369   }
    370 
    371   /* Find the number of bits needed for the magnitude of the coefficient */
    372   nbits = 0;
    373   while (temp) {
    374     nbits++;
    375     temp >>= 1;
    376   }
    377   /* Check for out-of-range coefficient values.
    378    * Since we're encoding a difference, the range limit is twice as much.
    379    */
    380   if (nbits > MAX_COEF_BITS+1)
    381     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    382 
    383   /* Emit the Huffman-coded symbol for the number of bits */
    384   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
    385     return FALSE;
    386 
    387   /* Emit that number of bits of the value, if positive, */
    388   /* or the complement of its magnitude, if negative. */
    389   if (nbits)			/* emit_bits rejects calls with size 0 */
    390     if (! emit_bits(state, (unsigned int) temp2, nbits))
    391       return FALSE;
    392 
    393   /* Encode the AC coefficients per section F.1.2.2 */
    394 
    395   r = 0;			/* r = run length of zeros */
    396 
    397   for (k = 1; k < DCTSIZE2; k++) {
    398     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    399       r++;
    400     } else {
    401       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    402       while (r > 15) {
    403 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
    404 	  return FALSE;
    405 	r -= 16;
    406       }
    407 
    408       temp2 = temp;
    409       if (temp < 0) {
    410 	temp = -temp;		/* temp is abs value of input */
    411 	/* This code assumes we are on a two's complement machine */
    412 	temp2--;
    413       }
    414 
    415       /* Find the number of bits needed for the magnitude of the coefficient */
    416       nbits = 1;		/* there must be at least one 1 bit */
    417       while ((temp >>= 1))
    418 	nbits++;
    419       /* Check for out-of-range coefficient values */
    420       if (nbits > MAX_COEF_BITS)
    421 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    422 
    423       /* Emit Huffman symbol for run length / number of bits */
    424       i = (r << 4) + nbits;
    425       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
    426 	return FALSE;
    427 
    428       /* Emit that number of bits of the value, if positive, */
    429       /* or the complement of its magnitude, if negative. */
    430       if (! emit_bits(state, (unsigned int) temp2, nbits))
    431 	return FALSE;
    432 
    433       r = 0;
    434     }
    435   }
    436 
    437   /* If the last coef(s) were zero, emit an end-of-block code */
    438   if (r > 0)
    439     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
    440       return FALSE;
    441 
    442   return TRUE;
    443 }
    444 
    445 
    446 /*
    447  * Emit a restart marker & resynchronize predictions.
    448  */
    449 
    450 LOCAL(boolean)
    451 emit_restart (working_state * state, int restart_num)
    452 {
    453   int ci;
    454 
    455   if (! flush_bits(state))
    456     return FALSE;
    457 
    458   emit_byte(state, 0xFF, return FALSE);
    459   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
    460 
    461   /* Re-initialize DC predictions to 0 */
    462   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    463     state->cur.last_dc_val[ci] = 0;
    464 
    465   /* The restart counter is not updated until we successfully write the MCU. */
    466 
    467   return TRUE;
    468 }
    469 
    470 
    471 /*
    472  * Encode and output one MCU's worth of Huffman-compressed coefficients.
    473  */
    474 
    475 METHODDEF(boolean)
    476 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    477 {
    478   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    479   working_state state;
    480   int blkn, ci;
    481   jpeg_component_info * compptr;
    482 
    483   /* Load up working state */
    484   state.next_output_byte = cinfo->dest->next_output_byte;
    485   state.free_in_buffer = cinfo->dest->free_in_buffer;
    486   ASSIGN_STATE(state.cur, entropy->saved);
    487   state.cinfo = cinfo;
    488 
    489   /* Emit restart marker if needed */
    490   if (cinfo->restart_interval) {
    491     if (entropy->restarts_to_go == 0)
    492       if (! emit_restart(&state, entropy->next_restart_num))
    493 	return FALSE;
    494   }
    495 
    496   /* Encode the MCU data blocks */
    497   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    498     ci = cinfo->MCU_membership[blkn];
    499     compptr = cinfo->cur_comp_info[ci];
    500     if (! encode_one_block(&state,
    501 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
    502 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
    503 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    504       return FALSE;
    505     /* Update last_dc_val */
    506     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    507   }
    508 
    509   /* Completed MCU, so update state */
    510   cinfo->dest->next_output_byte = state.next_output_byte;
    511   cinfo->dest->free_in_buffer = state.free_in_buffer;
    512   ASSIGN_STATE(entropy->saved, state.cur);
    513 
    514   /* Update restart-interval state too */
    515   if (cinfo->restart_interval) {
    516     if (entropy->restarts_to_go == 0) {
    517       entropy->restarts_to_go = cinfo->restart_interval;
    518       entropy->next_restart_num++;
    519       entropy->next_restart_num &= 7;
    520     }
    521     entropy->restarts_to_go--;
    522   }
    523 
    524   return TRUE;
    525 }
    526 
    527 
    528 /*
    529  * Finish up at the end of a Huffman-compressed scan.
    530  */
    531 
    532 METHODDEF(void)
    533 finish_pass_huff (j_compress_ptr cinfo)
    534 {
    535   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    536   working_state state;
    537 
    538   /* Load up working state ... flush_bits needs it */
    539   state.next_output_byte = cinfo->dest->next_output_byte;
    540   state.free_in_buffer = cinfo->dest->free_in_buffer;
    541   ASSIGN_STATE(state.cur, entropy->saved);
    542   state.cinfo = cinfo;
    543 
    544   /* Flush out the last data */
    545   if (! flush_bits(&state))
    546     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    547 
    548   /* Update state */
    549   cinfo->dest->next_output_byte = state.next_output_byte;
    550   cinfo->dest->free_in_buffer = state.free_in_buffer;
    551   ASSIGN_STATE(entropy->saved, state.cur);
    552 }
    553 
    554 
    555 /*
    556  * Huffman coding optimization.
    557  *
    558  * We first scan the supplied data and count the number of uses of each symbol
    559  * that is to be Huffman-coded. (This process MUST agree with the code above.)
    560  * Then we build a Huffman coding tree for the observed counts.
    561  * Symbols which are not needed at all for the particular image are not
    562  * assigned any code, which saves space in the DHT marker as well as in
    563  * the compressed data.
    564  */
    565 
    566 #ifdef ENTROPY_OPT_SUPPORTED
    567 
    568 
    569 /* Process a single block's worth of coefficients */
    570 
    571 LOCAL(void)
    572 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
    573 		 long dc_counts[], long ac_counts[])
    574 {
    575   register int temp;
    576   register int nbits;
    577   register int k, r;
    578 
    579   /* Encode the DC coefficient difference per section F.1.2.1 */
    580 
    581   temp = block[0] - last_dc_val;
    582   if (temp < 0)
    583     temp = -temp;
    584 
    585   /* Find the number of bits needed for the magnitude of the coefficient */
    586   nbits = 0;
    587   while (temp) {
    588     nbits++;
    589     temp >>= 1;
    590   }
    591   /* Check for out-of-range coefficient values.
    592    * Since we're encoding a difference, the range limit is twice as much.
    593    */
    594   if (nbits > MAX_COEF_BITS+1)
    595     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    596 
    597   /* Count the Huffman symbol for the number of bits */
    598   dc_counts[nbits]++;
    599 
    600   /* Encode the AC coefficients per section F.1.2.2 */
    601 
    602   r = 0;			/* r = run length of zeros */
    603 
    604   for (k = 1; k < DCTSIZE2; k++) {
    605     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    606       r++;
    607     } else {
    608       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    609       while (r > 15) {
    610 	ac_counts[0xF0]++;
    611 	r -= 16;
    612       }
    613 
    614       /* Find the number of bits needed for the magnitude of the coefficient */
    615       if (temp < 0)
    616 	temp = -temp;
    617 
    618       /* Find the number of bits needed for the magnitude of the coefficient */
    619       nbits = 1;		/* there must be at least one 1 bit */
    620       while ((temp >>= 1))
    621 	nbits++;
    622       /* Check for out-of-range coefficient values */
    623       if (nbits > MAX_COEF_BITS)
    624 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    625 
    626       /* Count Huffman symbol for run length / number of bits */
    627       ac_counts[(r << 4) + nbits]++;
    628 
    629       r = 0;
    630     }
    631   }
    632 
    633   /* If the last coef(s) were zero, emit an end-of-block code */
    634   if (r > 0)
    635     ac_counts[0]++;
    636 }
    637 
    638 
    639 /*
    640  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
    641  * No data is actually output, so no suspension return is possible.
    642  */
    643 
    644 METHODDEF(boolean)
    645 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    646 {
    647   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    648   int blkn, ci;
    649   jpeg_component_info * compptr;
    650 
    651   /* Take care of restart intervals if needed */
    652   if (cinfo->restart_interval) {
    653     if (entropy->restarts_to_go == 0) {
    654       /* Re-initialize DC predictions to 0 */
    655       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    656 	entropy->saved.last_dc_val[ci] = 0;
    657       /* Update restart state */
    658       entropy->restarts_to_go = cinfo->restart_interval;
    659     }
    660     entropy->restarts_to_go--;
    661   }
    662 
    663   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    664     ci = cinfo->MCU_membership[blkn];
    665     compptr = cinfo->cur_comp_info[ci];
    666     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
    667 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
    668 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    669     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
    670   }
    671 
    672   return TRUE;
    673 }
    674 
    675 
    676 /*
    677  * Generate the best Huffman code table for the given counts, fill htbl.
    678  * Note this is also used by jcphuff.c.
    679  *
    680  * The JPEG standard requires that no symbol be assigned a codeword of all
    681  * one bits (so that padding bits added at the end of a compressed segment
    682  * can't look like a valid code).  Because of the canonical ordering of
    683  * codewords, this just means that there must be an unused slot in the
    684  * longest codeword length category.  Section K.2 of the JPEG spec suggests
    685  * reserving such a slot by pretending that symbol 256 is a valid symbol
    686  * with count 1.  In theory that's not optimal; giving it count zero but
    687  * including it in the symbol set anyway should give a better Huffman code.
    688  * But the theoretically better code actually seems to come out worse in
    689  * practice, because it produces more all-ones bytes (which incur stuffed
    690  * zero bytes in the final file).  In any case the difference is tiny.
    691  *
    692  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
    693  * If some symbols have a very small but nonzero probability, the Huffman tree
    694  * must be adjusted to meet the code length restriction.  We currently use
    695  * the adjustment method suggested in JPEG section K.2.  This method is *not*
    696  * optimal; it may not choose the best possible limited-length code.  But
    697  * typically only very-low-frequency symbols will be given less-than-optimal
    698  * lengths, so the code is almost optimal.  Experimental comparisons against
    699  * an optimal limited-length-code algorithm indicate that the difference is
    700  * microscopic --- usually less than a hundredth of a percent of total size.
    701  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
    702  */
    703 
    704 GLOBAL(void)
    705 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
    706 {
    707 #define MAX_CLEN 32		/* assumed maximum initial code length */
    708   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
    709   int codesize[257];		/* codesize[k] = code length of symbol k */
    710   int others[257];		/* next symbol in current branch of tree */
    711   int c1, c2;
    712   int p, i, j;
    713   long v;
    714 
    715   /* This algorithm is explained in section K.2 of the JPEG standard */
    716 
    717   MEMZERO(bits, SIZEOF(bits));
    718   MEMZERO(codesize, SIZEOF(codesize));
    719   for (i = 0; i < 257; i++)
    720     others[i] = -1;		/* init links to empty */
    721 
    722   freq[256] = 1;		/* make sure 256 has a nonzero count */
    723   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
    724    * that no real symbol is given code-value of all ones, because 256
    725    * will be placed last in the largest codeword category.
    726    */
    727 
    728   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
    729 
    730   for (;;) {
    731     /* Find the smallest nonzero frequency, set c1 = its symbol */
    732     /* In case of ties, take the larger symbol number */
    733     c1 = -1;
    734     v = 1000000000L;
    735     for (i = 0; i <= 256; i++) {
    736       if (freq[i] && freq[i] <= v) {
    737 	v = freq[i];
    738 	c1 = i;
    739       }
    740     }
    741 
    742     /* Find the next smallest nonzero frequency, set c2 = its symbol */
    743     /* In case of ties, take the larger symbol number */
    744     c2 = -1;
    745     v = 1000000000L;
    746     for (i = 0; i <= 256; i++) {
    747       if (freq[i] && freq[i] <= v && i != c1) {
    748 	v = freq[i];
    749 	c2 = i;
    750       }
    751     }
    752 
    753     /* Done if we've merged everything into one frequency */
    754     if (c2 < 0)
    755       break;
    756 
    757     /* Else merge the two counts/trees */
    758     freq[c1] += freq[c2];
    759     freq[c2] = 0;
    760 
    761     /* Increment the codesize of everything in c1's tree branch */
    762     codesize[c1]++;
    763     while (others[c1] >= 0) {
    764       c1 = others[c1];
    765       codesize[c1]++;
    766     }
    767 
    768     others[c1] = c2;		/* chain c2 onto c1's tree branch */
    769 
    770     /* Increment the codesize of everything in c2's tree branch */
    771     codesize[c2]++;
    772     while (others[c2] >= 0) {
    773       c2 = others[c2];
    774       codesize[c2]++;
    775     }
    776   }
    777 
    778   /* Now count the number of symbols of each code length */
    779   for (i = 0; i <= 256; i++) {
    780     if (codesize[i]) {
    781       /* The JPEG standard seems to think that this can't happen, */
    782       /* but I'm paranoid... */
    783       if (codesize[i] > MAX_CLEN)
    784 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
    785 
    786       bits[codesize[i]]++;
    787     }
    788   }
    789 
    790   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
    791    * Huffman procedure assigned any such lengths, we must adjust the coding.
    792    * Here is what the JPEG spec says about how this next bit works:
    793    * Since symbols are paired for the longest Huffman code, the symbols are
    794    * removed from this length category two at a time.  The prefix for the pair
    795    * (which is one bit shorter) is allocated to one of the pair; then,
    796    * skipping the BITS entry for that prefix length, a code word from the next
    797    * shortest nonzero BITS entry is converted into a prefix for two code words
    798    * one bit longer.
    799    */
    800 
    801   for (i = MAX_CLEN; i > 16; i--) {
    802     while (bits[i] > 0) {
    803       j = i - 2;		/* find length of new prefix to be used */
    804       while (bits[j] == 0)
    805 	j--;
    806 
    807       bits[i] -= 2;		/* remove two symbols */
    808       bits[i-1]++;		/* one goes in this length */
    809       bits[j+1] += 2;		/* two new symbols in this length */
    810       bits[j]--;		/* symbol of this length is now a prefix */
    811     }
    812   }
    813 
    814   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
    815   while (bits[i] == 0)		/* find largest codelength still in use */
    816     i--;
    817   bits[i]--;
    818 
    819   /* Return final symbol counts (only for lengths 0..16) */
    820   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
    821 
    822   /* Return a list of the symbols sorted by code length */
    823   /* It's not real clear to me why we don't need to consider the codelength
    824    * changes made above, but the JPEG spec seems to think this works.
    825    */
    826   p = 0;
    827   for (i = 1; i <= MAX_CLEN; i++) {
    828     for (j = 0; j <= 255; j++) {
    829       if (codesize[j] == i) {
    830 	htbl->huffval[p] = (UINT8) j;
    831 	p++;
    832       }
    833     }
    834   }
    835 
    836   /* Set sent_table FALSE so updated table will be written to JPEG file. */
    837   htbl->sent_table = FALSE;
    838 }
    839 
    840 
    841 /*
    842  * Finish up a statistics-gathering pass and create the new Huffman tables.
    843  */
    844 
    845 METHODDEF(void)
    846 finish_pass_gather (j_compress_ptr cinfo)
    847 {
    848   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    849   int ci, dctbl, actbl;
    850   jpeg_component_info * compptr;
    851   JHUFF_TBL **htblptr;
    852   boolean did_dc[NUM_HUFF_TBLS];
    853   boolean did_ac[NUM_HUFF_TBLS];
    854 
    855   /* It's important not to apply jpeg_gen_optimal_table more than once
    856    * per table, because it clobbers the input frequency counts!
    857    */
    858   MEMZERO(did_dc, SIZEOF(did_dc));
    859   MEMZERO(did_ac, SIZEOF(did_ac));
    860 
    861   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    862     compptr = cinfo->cur_comp_info[ci];
    863     dctbl = compptr->dc_tbl_no;
    864     actbl = compptr->ac_tbl_no;
    865     if (! did_dc[dctbl]) {
    866       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
    867       if (*htblptr == NULL)
    868 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    869       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
    870       did_dc[dctbl] = TRUE;
    871     }
    872     if (! did_ac[actbl]) {
    873       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
    874       if (*htblptr == NULL)
    875 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    876       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
    877       did_ac[actbl] = TRUE;
    878     }
    879   }
    880 }
    881 
    882 
    883 #endif /* ENTROPY_OPT_SUPPORTED */
    884 
    885 
    886 /*
    887  * Module initialization routine for Huffman entropy encoding.
    888  */
    889 
    890 GLOBAL(void)
    891 jinit_huff_encoder (j_compress_ptr cinfo)
    892 {
    893   huff_entropy_ptr entropy;
    894   int i;
    895 
    896   entropy = (huff_entropy_ptr)
    897     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    898 				SIZEOF(huff_entropy_encoder));
    899   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    900   entropy->pub.start_pass = start_pass_huff;
    901 
    902   /* Mark tables unallocated */
    903   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    904     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    905 #ifdef ENTROPY_OPT_SUPPORTED
    906     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
    907 #endif
    908   }
    909 }
    910