Home | History | Annotate | Download | only in linux
      1 /*
      2  * Performance events:
      3  *
      4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx (at) linutronix.de>
      5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
      6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
      7  *
      8  * Data type definitions, declarations, prototypes.
      9  *
     10  *    Started by: Thomas Gleixner and Ingo Molnar
     11  *
     12  * For licencing details see kernel-base/COPYING
     13  */
     14 #ifndef _UAPI_LINUX_PERF_EVENT_H
     15 #define _UAPI_LINUX_PERF_EVENT_H
     16 
     17 #include <linux/types.h>
     18 #include <linux/ioctl.h>
     19 #include <asm/byteorder.h>
     20 
     21 /*
     22  * User-space ABI bits:
     23  */
     24 
     25 /*
     26  * attr.type
     27  */
     28 enum perf_type_id {
     29 	PERF_TYPE_HARDWARE			= 0,
     30 	PERF_TYPE_SOFTWARE			= 1,
     31 	PERF_TYPE_TRACEPOINT			= 2,
     32 	PERF_TYPE_HW_CACHE			= 3,
     33 	PERF_TYPE_RAW				= 4,
     34 	PERF_TYPE_BREAKPOINT			= 5,
     35 
     36 	PERF_TYPE_MAX,				/* non-ABI */
     37 };
     38 
     39 /*
     40  * Generalized performance event event_id types, used by the
     41  * attr.event_id parameter of the sys_perf_event_open()
     42  * syscall:
     43  */
     44 enum perf_hw_id {
     45 	/*
     46 	 * Common hardware events, generalized by the kernel:
     47 	 */
     48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
     49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
     50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
     51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
     52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
     53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
     54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
     55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
     56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
     57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
     58 
     59 	PERF_COUNT_HW_MAX,			/* non-ABI */
     60 };
     61 
     62 /*
     63  * Generalized hardware cache events:
     64  *
     65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
     66  *       { read, write, prefetch } x
     67  *       { accesses, misses }
     68  */
     69 enum perf_hw_cache_id {
     70 	PERF_COUNT_HW_CACHE_L1D			= 0,
     71 	PERF_COUNT_HW_CACHE_L1I			= 1,
     72 	PERF_COUNT_HW_CACHE_LL			= 2,
     73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
     74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
     75 	PERF_COUNT_HW_CACHE_BPU			= 5,
     76 	PERF_COUNT_HW_CACHE_NODE		= 6,
     77 
     78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
     79 };
     80 
     81 enum perf_hw_cache_op_id {
     82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
     83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
     84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
     85 
     86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
     87 };
     88 
     89 enum perf_hw_cache_op_result_id {
     90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
     91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
     92 
     93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
     94 };
     95 
     96 /*
     97  * Special "software" events provided by the kernel, even if the hardware
     98  * does not support performance events. These events measure various
     99  * physical and sw events of the kernel (and allow the profiling of them as
    100  * well):
    101  */
    102 enum perf_sw_ids {
    103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
    104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
    105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
    106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
    107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
    108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
    109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
    110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
    111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
    112 	PERF_COUNT_SW_DUMMY			= 9,
    113 
    114 	PERF_COUNT_SW_MAX,			/* non-ABI */
    115 };
    116 
    117 /*
    118  * Bits that can be set in attr.sample_type to request information
    119  * in the overflow packets.
    120  */
    121 enum perf_event_sample_format {
    122 	PERF_SAMPLE_IP				= 1U << 0,
    123 	PERF_SAMPLE_TID				= 1U << 1,
    124 	PERF_SAMPLE_TIME			= 1U << 2,
    125 	PERF_SAMPLE_ADDR			= 1U << 3,
    126 	PERF_SAMPLE_READ			= 1U << 4,
    127 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
    128 	PERF_SAMPLE_ID				= 1U << 6,
    129 	PERF_SAMPLE_CPU				= 1U << 7,
    130 	PERF_SAMPLE_PERIOD			= 1U << 8,
    131 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
    132 	PERF_SAMPLE_RAW				= 1U << 10,
    133 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
    134 	PERF_SAMPLE_REGS_USER			= 1U << 12,
    135 	PERF_SAMPLE_STACK_USER			= 1U << 13,
    136 	PERF_SAMPLE_WEIGHT			= 1U << 14,
    137 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
    138 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
    139 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
    140 
    141 	PERF_SAMPLE_MAX = 1U << 18,		/* non-ABI */
    142 };
    143 
    144 /*
    145  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
    146  *
    147  * If the user does not pass priv level information via branch_sample_type,
    148  * the kernel uses the event's priv level. Branch and event priv levels do
    149  * not have to match. Branch priv level is checked for permissions.
    150  *
    151  * The branch types can be combined, however BRANCH_ANY covers all types
    152  * of branches and therefore it supersedes all the other types.
    153  */
    154 enum perf_branch_sample_type {
    155 	PERF_SAMPLE_BRANCH_USER		= 1U << 0, /* user branches */
    156 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << 1, /* kernel branches */
    157 	PERF_SAMPLE_BRANCH_HV		= 1U << 2, /* hypervisor branches */
    158 
    159 	PERF_SAMPLE_BRANCH_ANY		= 1U << 3, /* any branch types */
    160 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << 4, /* any call branch */
    161 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << 5, /* any return branch */
    162 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << 6, /* indirect calls */
    163 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << 7, /* transaction aborts */
    164 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << 8, /* in transaction */
    165 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << 9, /* not in transaction */
    166 
    167 	PERF_SAMPLE_BRANCH_MAX		= 1U << 10, /* non-ABI */
    168 };
    169 
    170 #define PERF_SAMPLE_BRANCH_PLM_ALL \
    171 	(PERF_SAMPLE_BRANCH_USER|\
    172 	 PERF_SAMPLE_BRANCH_KERNEL|\
    173 	 PERF_SAMPLE_BRANCH_HV)
    174 
    175 /*
    176  * Values to determine ABI of the registers dump.
    177  */
    178 enum perf_sample_regs_abi {
    179 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
    180 	PERF_SAMPLE_REGS_ABI_32		= 1,
    181 	PERF_SAMPLE_REGS_ABI_64		= 2,
    182 };
    183 
    184 /*
    185  * Values for the memory transaction event qualifier, mostly for
    186  * abort events. Multiple bits can be set.
    187  */
    188 enum {
    189 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
    190 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
    191 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
    192 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
    193 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
    194 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
    195 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
    196 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
    197 
    198 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
    199 
    200 	/* bits 32..63 are reserved for the abort code */
    201 
    202 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
    203 	PERF_TXN_ABORT_SHIFT = 32,
    204 };
    205 
    206 /*
    207  * The format of the data returned by read() on a perf event fd,
    208  * as specified by attr.read_format:
    209  *
    210  * struct read_format {
    211  *	{ u64		value;
    212  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    213  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    214  *	  { u64		id;           } && PERF_FORMAT_ID
    215  *	} && !PERF_FORMAT_GROUP
    216  *
    217  *	{ u64		nr;
    218  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    219  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    220  *	  { u64		value;
    221  *	    { u64	id;           } && PERF_FORMAT_ID
    222  *	  }		cntr[nr];
    223  *	} && PERF_FORMAT_GROUP
    224  * };
    225  */
    226 enum perf_event_read_format {
    227 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
    228 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
    229 	PERF_FORMAT_ID				= 1U << 2,
    230 	PERF_FORMAT_GROUP			= 1U << 3,
    231 
    232 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
    233 };
    234 
    235 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
    236 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
    237 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
    238 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
    239 					/* add: sample_stack_user */
    240 
    241 /*
    242  * Hardware event_id to monitor via a performance monitoring event:
    243  */
    244 struct perf_event_attr {
    245 
    246 	/*
    247 	 * Major type: hardware/software/tracepoint/etc.
    248 	 */
    249 	__u32			type;
    250 
    251 	/*
    252 	 * Size of the attr structure, for fwd/bwd compat.
    253 	 */
    254 	__u32			size;
    255 
    256 	/*
    257 	 * Type specific configuration information.
    258 	 */
    259 	__u64			config;
    260 
    261 	union {
    262 		__u64		sample_period;
    263 		__u64		sample_freq;
    264 	};
    265 
    266 	__u64			sample_type;
    267 	__u64			read_format;
    268 
    269 	__u64			disabled       :  1, /* off by default        */
    270 				inherit	       :  1, /* children inherit it   */
    271 				pinned	       :  1, /* must always be on PMU */
    272 				exclusive      :  1, /* only group on PMU     */
    273 				exclude_user   :  1, /* don't count user      */
    274 				exclude_kernel :  1, /* ditto kernel          */
    275 				exclude_hv     :  1, /* ditto hypervisor      */
    276 				exclude_idle   :  1, /* don't count when idle */
    277 				mmap           :  1, /* include mmap data     */
    278 				comm	       :  1, /* include comm data     */
    279 				freq           :  1, /* use freq, not period  */
    280 				inherit_stat   :  1, /* per task counts       */
    281 				enable_on_exec :  1, /* next exec enables     */
    282 				task           :  1, /* trace fork/exit       */
    283 				watermark      :  1, /* wakeup_watermark      */
    284 				/*
    285 				 * precise_ip:
    286 				 *
    287 				 *  0 - SAMPLE_IP can have arbitrary skid
    288 				 *  1 - SAMPLE_IP must have constant skid
    289 				 *  2 - SAMPLE_IP requested to have 0 skid
    290 				 *  3 - SAMPLE_IP must have 0 skid
    291 				 *
    292 				 *  See also PERF_RECORD_MISC_EXACT_IP
    293 				 */
    294 				precise_ip     :  2, /* skid constraint       */
    295 				mmap_data      :  1, /* non-exec mmap data    */
    296 				sample_id_all  :  1, /* sample_type all events */
    297 
    298 				exclude_host   :  1, /* don't count in host   */
    299 				exclude_guest  :  1, /* don't count in guest  */
    300 
    301 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
    302 				exclude_callchain_user   : 1, /* exclude user callchains */
    303 				mmap2          :  1, /* include mmap with inode data     */
    304 
    305 				__reserved_1   : 40;
    306 
    307 	union {
    308 		__u32		wakeup_events;	  /* wakeup every n events */
    309 		__u32		wakeup_watermark; /* bytes before wakeup   */
    310 	};
    311 
    312 	__u32			bp_type;
    313 	union {
    314 		__u64		bp_addr;
    315 		__u64		config1; /* extension of config */
    316 	};
    317 	union {
    318 		__u64		bp_len;
    319 		__u64		config2; /* extension of config1 */
    320 	};
    321 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
    322 
    323 	/*
    324 	 * Defines set of user regs to dump on samples.
    325 	 * See asm/perf_regs.h for details.
    326 	 */
    327 	__u64	sample_regs_user;
    328 
    329 	/*
    330 	 * Defines size of the user stack to dump on samples.
    331 	 */
    332 	__u32	sample_stack_user;
    333 
    334 	/* Align to u64. */
    335 	__u32	__reserved_2;
    336 };
    337 
    338 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
    339 
    340 /*
    341  * Ioctls that can be done on a perf event fd:
    342  */
    343 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
    344 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
    345 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
    346 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
    347 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
    348 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
    349 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
    350 #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
    351 
    352 enum perf_event_ioc_flags {
    353 	PERF_IOC_FLAG_GROUP		= 1U << 0,
    354 };
    355 
    356 /*
    357  * Structure of the page that can be mapped via mmap
    358  */
    359 struct perf_event_mmap_page {
    360 	__u32	version;		/* version number of this structure */
    361 	__u32	compat_version;		/* lowest version this is compat with */
    362 
    363 	/*
    364 	 * Bits needed to read the hw events in user-space.
    365 	 *
    366 	 *   u32 seq, time_mult, time_shift, idx, width;
    367 	 *   u64 count, enabled, running;
    368 	 *   u64 cyc, time_offset;
    369 	 *   s64 pmc = 0;
    370 	 *
    371 	 *   do {
    372 	 *     seq = pc->lock;
    373 	 *     barrier()
    374 	 *
    375 	 *     enabled = pc->time_enabled;
    376 	 *     running = pc->time_running;
    377 	 *
    378 	 *     if (pc->cap_usr_time && enabled != running) {
    379 	 *       cyc = rdtsc();
    380 	 *       time_offset = pc->time_offset;
    381 	 *       time_mult   = pc->time_mult;
    382 	 *       time_shift  = pc->time_shift;
    383 	 *     }
    384 	 *
    385 	 *     idx = pc->index;
    386 	 *     count = pc->offset;
    387 	 *     if (pc->cap_usr_rdpmc && idx) {
    388 	 *       width = pc->pmc_width;
    389 	 *       pmc = rdpmc(idx - 1);
    390 	 *     }
    391 	 *
    392 	 *     barrier();
    393 	 *   } while (pc->lock != seq);
    394 	 *
    395 	 * NOTE: for obvious reason this only works on self-monitoring
    396 	 *       processes.
    397 	 */
    398 	__u32	lock;			/* seqlock for synchronization */
    399 	__u32	index;			/* hardware event identifier */
    400 	__s64	offset;			/* add to hardware event value */
    401 	__u64	time_enabled;		/* time event active */
    402 	__u64	time_running;		/* time event on cpu */
    403 	union {
    404 		__u64	capabilities;
    405 		struct {
    406 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
    407 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
    408 
    409 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
    410 				cap_user_time		: 1, /* The time_* fields are used */
    411 				cap_user_time_zero	: 1, /* The time_zero field is used */
    412 				cap_____res		: 59;
    413 		};
    414 	};
    415 
    416 	/*
    417 	 * If cap_usr_rdpmc this field provides the bit-width of the value
    418 	 * read using the rdpmc() or equivalent instruction. This can be used
    419 	 * to sign extend the result like:
    420 	 *
    421 	 *   pmc <<= 64 - width;
    422 	 *   pmc >>= 64 - width; // signed shift right
    423 	 *   count += pmc;
    424 	 */
    425 	__u16	pmc_width;
    426 
    427 	/*
    428 	 * If cap_usr_time the below fields can be used to compute the time
    429 	 * delta since time_enabled (in ns) using rdtsc or similar.
    430 	 *
    431 	 *   u64 quot, rem;
    432 	 *   u64 delta;
    433 	 *
    434 	 *   quot = (cyc >> time_shift);
    435 	 *   rem = cyc & ((1 << time_shift) - 1);
    436 	 *   delta = time_offset + quot * time_mult +
    437 	 *              ((rem * time_mult) >> time_shift);
    438 	 *
    439 	 * Where time_offset,time_mult,time_shift and cyc are read in the
    440 	 * seqcount loop described above. This delta can then be added to
    441 	 * enabled and possible running (if idx), improving the scaling:
    442 	 *
    443 	 *   enabled += delta;
    444 	 *   if (idx)
    445 	 *     running += delta;
    446 	 *
    447 	 *   quot = count / running;
    448 	 *   rem  = count % running;
    449 	 *   count = quot * enabled + (rem * enabled) / running;
    450 	 */
    451 	__u16	time_shift;
    452 	__u32	time_mult;
    453 	__u64	time_offset;
    454 	/*
    455 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
    456 	 * from sample timestamps.
    457 	 *
    458 	 *   time = timestamp - time_zero;
    459 	 *   quot = time / time_mult;
    460 	 *   rem  = time % time_mult;
    461 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
    462 	 *
    463 	 * And vice versa:
    464 	 *
    465 	 *   quot = cyc >> time_shift;
    466 	 *   rem  = cyc & ((1 << time_shift) - 1);
    467 	 *   timestamp = time_zero + quot * time_mult +
    468 	 *               ((rem * time_mult) >> time_shift);
    469 	 */
    470 	__u64	time_zero;
    471 	__u32	size;			/* Header size up to __reserved[] fields. */
    472 
    473 		/*
    474 		 * Hole for extension of the self monitor capabilities
    475 		 */
    476 
    477 	__u8	__reserved[118*8+4];	/* align to 1k. */
    478 
    479 	/*
    480 	 * Control data for the mmap() data buffer.
    481 	 *
    482 	 * User-space reading the @data_head value should issue an smp_rmb(),
    483 	 * after reading this value.
    484 	 *
    485 	 * When the mapping is PROT_WRITE the @data_tail value should be
    486 	 * written by userspace to reflect the last read data, after issueing
    487 	 * an smp_mb() to separate the data read from the ->data_tail store.
    488 	 * In this case the kernel will not over-write unread data.
    489 	 *
    490 	 * See perf_output_put_handle() for the data ordering.
    491 	 */
    492 	__u64   data_head;		/* head in the data section */
    493 	__u64	data_tail;		/* user-space written tail */
    494 };
    495 
    496 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
    497 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
    498 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
    499 #define PERF_RECORD_MISC_USER			(2 << 0)
    500 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
    501 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
    502 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
    503 
    504 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
    505 /*
    506  * Indicates that the content of PERF_SAMPLE_IP points to
    507  * the actual instruction that triggered the event. See also
    508  * perf_event_attr::precise_ip.
    509  */
    510 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
    511 /*
    512  * Reserve the last bit to indicate some extended misc field
    513  */
    514 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
    515 
    516 struct perf_event_header {
    517 	__u32	type;
    518 	__u16	misc;
    519 	__u16	size;
    520 };
    521 
    522 enum perf_event_type {
    523 
    524 	/*
    525 	 * If perf_event_attr.sample_id_all is set then all event types will
    526 	 * have the sample_type selected fields related to where/when
    527 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
    528 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
    529 	 * just after the perf_event_header and the fields already present for
    530 	 * the existing fields, i.e. at the end of the payload. That way a newer
    531 	 * perf.data file will be supported by older perf tools, with these new
    532 	 * optional fields being ignored.
    533 	 *
    534 	 * struct sample_id {
    535 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
    536 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
    537 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
    538 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    539 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    540 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    541 	 * } && perf_event_attr::sample_id_all
    542 	 *
    543 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
    544 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
    545 	 * relative to header.size.
    546 	 */
    547 
    548 	/*
    549 	 * The MMAP events record the PROT_EXEC mappings so that we can
    550 	 * correlate userspace IPs to code. They have the following structure:
    551 	 *
    552 	 * struct {
    553 	 *	struct perf_event_header	header;
    554 	 *
    555 	 *	u32				pid, tid;
    556 	 *	u64				addr;
    557 	 *	u64				len;
    558 	 *	u64				pgoff;
    559 	 *	char				filename[];
    560 	 * 	struct sample_id		sample_id;
    561 	 * };
    562 	 */
    563 	PERF_RECORD_MMAP			= 1,
    564 
    565 	/*
    566 	 * struct {
    567 	 *	struct perf_event_header	header;
    568 	 *	u64				id;
    569 	 *	u64				lost;
    570 	 * 	struct sample_id		sample_id;
    571 	 * };
    572 	 */
    573 	PERF_RECORD_LOST			= 2,
    574 
    575 	/*
    576 	 * struct {
    577 	 *	struct perf_event_header	header;
    578 	 *
    579 	 *	u32				pid, tid;
    580 	 *	char				comm[];
    581 	 * 	struct sample_id		sample_id;
    582 	 * };
    583 	 */
    584 	PERF_RECORD_COMM			= 3,
    585 
    586 	/*
    587 	 * struct {
    588 	 *	struct perf_event_header	header;
    589 	 *	u32				pid, ppid;
    590 	 *	u32				tid, ptid;
    591 	 *	u64				time;
    592 	 * 	struct sample_id		sample_id;
    593 	 * };
    594 	 */
    595 	PERF_RECORD_EXIT			= 4,
    596 
    597 	/*
    598 	 * struct {
    599 	 *	struct perf_event_header	header;
    600 	 *	u64				time;
    601 	 *	u64				id;
    602 	 *	u64				stream_id;
    603 	 * 	struct sample_id		sample_id;
    604 	 * };
    605 	 */
    606 	PERF_RECORD_THROTTLE			= 5,
    607 	PERF_RECORD_UNTHROTTLE			= 6,
    608 
    609 	/*
    610 	 * struct {
    611 	 *	struct perf_event_header	header;
    612 	 *	u32				pid, ppid;
    613 	 *	u32				tid, ptid;
    614 	 *	u64				time;
    615 	 * 	struct sample_id		sample_id;
    616 	 * };
    617 	 */
    618 	PERF_RECORD_FORK			= 7,
    619 
    620 	/*
    621 	 * struct {
    622 	 *	struct perf_event_header	header;
    623 	 *	u32				pid, tid;
    624 	 *
    625 	 *	struct read_format		values;
    626 	 * 	struct sample_id		sample_id;
    627 	 * };
    628 	 */
    629 	PERF_RECORD_READ			= 8,
    630 
    631 	/*
    632 	 * struct {
    633 	 *	struct perf_event_header	header;
    634 	 *
    635 	 *	#
    636 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
    637 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
    638 	 *	# is fixed relative to header.
    639 	 *	#
    640 	 *
    641 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    642 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
    643 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
    644 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
    645 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
    646 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
    647 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    648 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    649 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
    650 	 *
    651 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
    652 	 *
    653 	 *	{ u64			nr,
    654 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
    655 	 *
    656 	 *	#
    657 	 *	# The RAW record below is opaque data wrt the ABI
    658 	 *	#
    659 	 *	# That is, the ABI doesn't make any promises wrt to
    660 	 *	# the stability of its content, it may vary depending
    661 	 *	# on event, hardware, kernel version and phase of
    662 	 *	# the moon.
    663 	 *	#
    664 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
    665 	 *	#
    666 	 *
    667 	 *	{ u32			size;
    668 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
    669 	 *
    670 	 *	{ u64                   nr;
    671 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
    672 	 *
    673 	 * 	{ u64			abi; # enum perf_sample_regs_abi
    674 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
    675 	 *
    676 	 * 	{ u64			size;
    677 	 * 	  char			data[size];
    678 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
    679 	 *
    680 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
    681 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
    682 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
    683 	 * };
    684 	 */
    685 	PERF_RECORD_SAMPLE			= 9,
    686 
    687 	/*
    688 	 * The MMAP2 records are an augmented version of MMAP, they add
    689 	 * maj, min, ino numbers to be used to uniquely identify each mapping
    690 	 *
    691 	 * struct {
    692 	 *	struct perf_event_header	header;
    693 	 *
    694 	 *	u32				pid, tid;
    695 	 *	u64				addr;
    696 	 *	u64				len;
    697 	 *	u64				pgoff;
    698 	 *	u32				maj;
    699 	 *	u32				min;
    700 	 *	u64				ino;
    701 	 *	u64				ino_generation;
    702 	 *	char				filename[];
    703 	 * 	struct sample_id		sample_id;
    704 	 * };
    705 	 */
    706 	PERF_RECORD_MMAP2			= 10,
    707 
    708 	PERF_RECORD_MAX,			/* non-ABI */
    709 };
    710 
    711 #define PERF_MAX_STACK_DEPTH		127
    712 
    713 enum perf_callchain_context {
    714 	PERF_CONTEXT_HV			= (__u64)-32,
    715 	PERF_CONTEXT_KERNEL		= (__u64)-128,
    716 	PERF_CONTEXT_USER		= (__u64)-512,
    717 
    718 	PERF_CONTEXT_GUEST		= (__u64)-2048,
    719 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
    720 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
    721 
    722 	PERF_CONTEXT_MAX		= (__u64)-4095,
    723 };
    724 
    725 #define PERF_FLAG_FD_NO_GROUP		(1U << 0)
    726 #define PERF_FLAG_FD_OUTPUT		(1U << 1)
    727 #define PERF_FLAG_PID_CGROUP		(1U << 2) /* pid=cgroup id, per-cpu mode only */
    728 #define PERF_FLAG_FD_CLOEXEC		(1U << 3) /* O_CLOEXEC */
    729 
    730 union perf_mem_data_src {
    731 	__u64 val;
    732 	struct {
    733 		__u64   mem_op:5,	/* type of opcode */
    734 			mem_lvl:14,	/* memory hierarchy level */
    735 			mem_snoop:5,	/* snoop mode */
    736 			mem_lock:2,	/* lock instr */
    737 			mem_dtlb:7,	/* tlb access */
    738 			mem_rsvd:31;
    739 	};
    740 };
    741 
    742 /* type of opcode (load/store/prefetch,code) */
    743 #define PERF_MEM_OP_NA		0x01 /* not available */
    744 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
    745 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
    746 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
    747 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
    748 #define PERF_MEM_OP_SHIFT	0
    749 
    750 /* memory hierarchy (memory level, hit or miss) */
    751 #define PERF_MEM_LVL_NA		0x01  /* not available */
    752 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
    753 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
    754 #define PERF_MEM_LVL_L1		0x08  /* L1 */
    755 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
    756 #define PERF_MEM_LVL_L2		0x20  /* L2 */
    757 #define PERF_MEM_LVL_L3		0x40  /* L3 */
    758 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
    759 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
    760 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
    761 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
    762 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
    763 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
    764 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
    765 #define PERF_MEM_LVL_SHIFT	5
    766 
    767 /* snoop mode */
    768 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
    769 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
    770 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
    771 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
    772 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
    773 #define PERF_MEM_SNOOP_SHIFT	19
    774 
    775 /* locked instruction */
    776 #define PERF_MEM_LOCK_NA	0x01 /* not available */
    777 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
    778 #define PERF_MEM_LOCK_SHIFT	24
    779 
    780 /* TLB access */
    781 #define PERF_MEM_TLB_NA		0x01 /* not available */
    782 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
    783 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
    784 #define PERF_MEM_TLB_L1		0x08 /* L1 */
    785 #define PERF_MEM_TLB_L2		0x10 /* L2 */
    786 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
    787 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
    788 #define PERF_MEM_TLB_SHIFT	26
    789 
    790 #define PERF_MEM_S(a, s) \
    791 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
    792 
    793 /*
    794  * single taken branch record layout:
    795  *
    796  *      from: source instruction (may not always be a branch insn)
    797  *        to: branch target
    798  *   mispred: branch target was mispredicted
    799  * predicted: branch target was predicted
    800  *
    801  * support for mispred, predicted is optional. In case it
    802  * is not supported mispred = predicted = 0.
    803  *
    804  *     in_tx: running in a hardware transaction
    805  *     abort: aborting a hardware transaction
    806  */
    807 struct perf_branch_entry {
    808 	__u64	from;
    809 	__u64	to;
    810 	__u64	mispred:1,  /* target mispredicted */
    811 		predicted:1,/* target predicted */
    812 		in_tx:1,    /* in transaction */
    813 		abort:1,    /* transaction abort */
    814 		reserved:60;
    815 };
    816 
    817 #endif /* _UAPI_LINUX_PERF_EVENT_H */
    818