1 /*********************************************************************** 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. 3 Redistribution and use in source and binary forms, with or without 4 modification, are permitted provided that the following conditions 5 are met: 6 - Redistributions of source code must retain the above copyright notice, 7 this list of conditions and the following disclaimer. 8 - Redistributions in binary form must reproduce the above copyright 9 notice, this list of conditions and the following disclaimer in the 10 documentation and/or other materials provided with the distribution. 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the 12 names of specific contributors, may be used to endorse or promote 13 products derived from this software without specific prior written 14 permission. 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 POSSIBILITY OF SUCH DAMAGE. 26 ***********************************************************************/ 27 28 #ifdef HAVE_CONFIG_H 29 #include "config.h" 30 #endif 31 32 #include "SigProc_FIX.h" 33 #include "resampler_private.h" 34 #include "stack_alloc.h" 35 36 static OPUS_INLINE opus_int16 *silk_resampler_private_down_FIR_INTERPOL( 37 opus_int16 *out, 38 opus_int32 *buf, 39 const opus_int16 *FIR_Coefs, 40 opus_int FIR_Order, 41 opus_int FIR_Fracs, 42 opus_int32 max_index_Q16, 43 opus_int32 index_increment_Q16 44 ) 45 { 46 opus_int32 index_Q16, res_Q6; 47 opus_int32 *buf_ptr; 48 opus_int32 interpol_ind; 49 const opus_int16 *interpol_ptr; 50 51 switch( FIR_Order ) { 52 case RESAMPLER_DOWN_ORDER_FIR0: 53 for( index_Q16 = 0; index_Q16 < max_index_Q16; index_Q16 += index_increment_Q16 ) { 54 /* Integer part gives pointer to buffered input */ 55 buf_ptr = buf + silk_RSHIFT( index_Q16, 16 ); 56 57 /* Fractional part gives interpolation coefficients */ 58 interpol_ind = silk_SMULWB( index_Q16 & 0xFFFF, FIR_Fracs ); 59 60 /* Inner product */ 61 interpol_ptr = &FIR_Coefs[ RESAMPLER_DOWN_ORDER_FIR0 / 2 * interpol_ind ]; 62 res_Q6 = silk_SMULWB( buf_ptr[ 0 ], interpol_ptr[ 0 ] ); 63 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 1 ], interpol_ptr[ 1 ] ); 64 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 2 ], interpol_ptr[ 2 ] ); 65 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 3 ], interpol_ptr[ 3 ] ); 66 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 4 ], interpol_ptr[ 4 ] ); 67 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 5 ], interpol_ptr[ 5 ] ); 68 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 6 ], interpol_ptr[ 6 ] ); 69 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 7 ], interpol_ptr[ 7 ] ); 70 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 8 ], interpol_ptr[ 8 ] ); 71 interpol_ptr = &FIR_Coefs[ RESAMPLER_DOWN_ORDER_FIR0 / 2 * ( FIR_Fracs - 1 - interpol_ind ) ]; 72 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 17 ], interpol_ptr[ 0 ] ); 73 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 16 ], interpol_ptr[ 1 ] ); 74 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 15 ], interpol_ptr[ 2 ] ); 75 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 14 ], interpol_ptr[ 3 ] ); 76 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 13 ], interpol_ptr[ 4 ] ); 77 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 12 ], interpol_ptr[ 5 ] ); 78 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 11 ], interpol_ptr[ 6 ] ); 79 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 10 ], interpol_ptr[ 7 ] ); 80 res_Q6 = silk_SMLAWB( res_Q6, buf_ptr[ 9 ], interpol_ptr[ 8 ] ); 81 82 /* Scale down, saturate and store in output array */ 83 *out++ = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( res_Q6, 6 ) ); 84 } 85 break; 86 case RESAMPLER_DOWN_ORDER_FIR1: 87 for( index_Q16 = 0; index_Q16 < max_index_Q16; index_Q16 += index_increment_Q16 ) { 88 /* Integer part gives pointer to buffered input */ 89 buf_ptr = buf + silk_RSHIFT( index_Q16, 16 ); 90 91 /* Inner product */ 92 res_Q6 = silk_SMULWB( silk_ADD32( buf_ptr[ 0 ], buf_ptr[ 23 ] ), FIR_Coefs[ 0 ] ); 93 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 1 ], buf_ptr[ 22 ] ), FIR_Coefs[ 1 ] ); 94 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 2 ], buf_ptr[ 21 ] ), FIR_Coefs[ 2 ] ); 95 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 3 ], buf_ptr[ 20 ] ), FIR_Coefs[ 3 ] ); 96 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 4 ], buf_ptr[ 19 ] ), FIR_Coefs[ 4 ] ); 97 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 5 ], buf_ptr[ 18 ] ), FIR_Coefs[ 5 ] ); 98 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 6 ], buf_ptr[ 17 ] ), FIR_Coefs[ 6 ] ); 99 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 7 ], buf_ptr[ 16 ] ), FIR_Coefs[ 7 ] ); 100 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 8 ], buf_ptr[ 15 ] ), FIR_Coefs[ 8 ] ); 101 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 9 ], buf_ptr[ 14 ] ), FIR_Coefs[ 9 ] ); 102 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 10 ], buf_ptr[ 13 ] ), FIR_Coefs[ 10 ] ); 103 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 11 ], buf_ptr[ 12 ] ), FIR_Coefs[ 11 ] ); 104 105 /* Scale down, saturate and store in output array */ 106 *out++ = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( res_Q6, 6 ) ); 107 } 108 break; 109 case RESAMPLER_DOWN_ORDER_FIR2: 110 for( index_Q16 = 0; index_Q16 < max_index_Q16; index_Q16 += index_increment_Q16 ) { 111 /* Integer part gives pointer to buffered input */ 112 buf_ptr = buf + silk_RSHIFT( index_Q16, 16 ); 113 114 /* Inner product */ 115 res_Q6 = silk_SMULWB( silk_ADD32( buf_ptr[ 0 ], buf_ptr[ 35 ] ), FIR_Coefs[ 0 ] ); 116 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 1 ], buf_ptr[ 34 ] ), FIR_Coefs[ 1 ] ); 117 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 2 ], buf_ptr[ 33 ] ), FIR_Coefs[ 2 ] ); 118 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 3 ], buf_ptr[ 32 ] ), FIR_Coefs[ 3 ] ); 119 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 4 ], buf_ptr[ 31 ] ), FIR_Coefs[ 4 ] ); 120 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 5 ], buf_ptr[ 30 ] ), FIR_Coefs[ 5 ] ); 121 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 6 ], buf_ptr[ 29 ] ), FIR_Coefs[ 6 ] ); 122 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 7 ], buf_ptr[ 28 ] ), FIR_Coefs[ 7 ] ); 123 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 8 ], buf_ptr[ 27 ] ), FIR_Coefs[ 8 ] ); 124 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 9 ], buf_ptr[ 26 ] ), FIR_Coefs[ 9 ] ); 125 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 10 ], buf_ptr[ 25 ] ), FIR_Coefs[ 10 ] ); 126 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 11 ], buf_ptr[ 24 ] ), FIR_Coefs[ 11 ] ); 127 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 12 ], buf_ptr[ 23 ] ), FIR_Coefs[ 12 ] ); 128 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 13 ], buf_ptr[ 22 ] ), FIR_Coefs[ 13 ] ); 129 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 14 ], buf_ptr[ 21 ] ), FIR_Coefs[ 14 ] ); 130 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 15 ], buf_ptr[ 20 ] ), FIR_Coefs[ 15 ] ); 131 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 16 ], buf_ptr[ 19 ] ), FIR_Coefs[ 16 ] ); 132 res_Q6 = silk_SMLAWB( res_Q6, silk_ADD32( buf_ptr[ 17 ], buf_ptr[ 18 ] ), FIR_Coefs[ 17 ] ); 133 134 /* Scale down, saturate and store in output array */ 135 *out++ = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( res_Q6, 6 ) ); 136 } 137 break; 138 default: 139 silk_assert( 0 ); 140 } 141 return out; 142 } 143 144 /* Resample with a 2nd order AR filter followed by FIR interpolation */ 145 void silk_resampler_private_down_FIR( 146 void *SS, /* I/O Resampler state */ 147 opus_int16 out[], /* O Output signal */ 148 const opus_int16 in[], /* I Input signal */ 149 opus_int32 inLen /* I Number of input samples */ 150 ) 151 { 152 silk_resampler_state_struct *S = (silk_resampler_state_struct *)SS; 153 opus_int32 nSamplesIn; 154 opus_int32 max_index_Q16, index_increment_Q16; 155 VARDECL( opus_int32, buf ); 156 const opus_int16 *FIR_Coefs; 157 SAVE_STACK; 158 159 ALLOC( buf, S->batchSize + S->FIR_Order, opus_int32 ); 160 161 /* Copy buffered samples to start of buffer */ 162 silk_memcpy( buf, S->sFIR.i32, S->FIR_Order * sizeof( opus_int32 ) ); 163 164 FIR_Coefs = &S->Coefs[ 2 ]; 165 166 /* Iterate over blocks of frameSizeIn input samples */ 167 index_increment_Q16 = S->invRatio_Q16; 168 while( 1 ) { 169 nSamplesIn = silk_min( inLen, S->batchSize ); 170 171 /* Second-order AR filter (output in Q8) */ 172 silk_resampler_private_AR2( S->sIIR, &buf[ S->FIR_Order ], in, S->Coefs, nSamplesIn ); 173 174 max_index_Q16 = silk_LSHIFT32( nSamplesIn, 16 ); 175 176 /* Interpolate filtered signal */ 177 out = silk_resampler_private_down_FIR_INTERPOL( out, buf, FIR_Coefs, S->FIR_Order, 178 S->FIR_Fracs, max_index_Q16, index_increment_Q16 ); 179 180 in += nSamplesIn; 181 inLen -= nSamplesIn; 182 183 if( inLen > 1 ) { 184 /* More iterations to do; copy last part of filtered signal to beginning of buffer */ 185 silk_memcpy( buf, &buf[ nSamplesIn ], S->FIR_Order * sizeof( opus_int32 ) ); 186 } else { 187 break; 188 } 189 } 190 191 /* Copy last part of filtered signal to the state for the next call */ 192 silk_memcpy( S->sFIR.i32, &buf[ nSamplesIn ], S->FIR_Order * sizeof( opus_int32 ) ); 193 RESTORE_STACK; 194 } 195