Home | History | Annotate | Download | only in lib
      1 /********************************************************************
      2  *                                                                  *
      3  * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
      4  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
      5  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
      6  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
      7  *                                                                  *
      8  * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
      9  * by the Xiph.Org Foundation http://www.xiph.org/                  *
     10  *                                                                  *
     11  ********************************************************************
     12 
     13   function: LSP (also called LSF) conversion routines
     14   last mod: $Id: lsp.c 16227 2009-07-08 06:58:46Z xiphmont $
     15 
     16   The LSP generation code is taken (with minimal modification and a
     17   few bugfixes) from "On the Computation of the LSP Frequencies" by
     18   Joseph Rothweiler (see http://www.rothweiler.us for contact info).
     19   The paper is available at:
     20 
     21   http://www.myown1.com/joe/lsf
     22 
     23  ********************************************************************/
     24 
     25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
     26    an iterative root polisher (CACM algorithm 283).  It *is* possible
     27    to confuse this algorithm into not converging; that should only
     28    happen with absurdly closely spaced roots (very sharp peaks in the
     29    LPC f response) which in turn should be impossible in our use of
     30    the code.  If this *does* happen anyway, it's a bug in the floor
     31    finder; find the cause of the confusion (probably a single bin
     32    spike or accidental near-float-limit resolution problems) and
     33    correct it. */
     34 
     35 #include <math.h>
     36 #include <string.h>
     37 #include <stdlib.h>
     38 #include "lsp.h"
     39 #include "os.h"
     40 #include "misc.h"
     41 #include "lookup.h"
     42 #include "scales.h"
     43 
     44 /* three possible LSP to f curve functions; the exact computation
     45    (float), a lookup based float implementation, and an integer
     46    implementation.  The float lookup is likely the optimal choice on
     47    any machine with an FPU.  The integer implementation is *not* fixed
     48    point (due to the need for a large dynamic range and thus a
     49    seperately tracked exponent) and thus much more complex than the
     50    relatively simple float implementations. It's mostly for future
     51    work on a fully fixed point implementation for processors like the
     52    ARM family. */
     53 
     54 /* define either of these (preferably FLOAT_LOOKUP) to have faster
     55    but less precise implementation. */
     56 #undef FLOAT_LOOKUP
     57 #undef INT_LOOKUP
     58 
     59 #ifdef FLOAT_LOOKUP
     60 #include "lookup.c" /* catch this in the build system; we #include for
     61                        compilers (like gcc) that can't inline across
     62                        modules */
     63 
     64 /* side effect: changes *lsp to cosines of lsp */
     65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
     66                             float amp,float ampoffset){
     67   int i;
     68   float wdel=M_PI/ln;
     69   vorbis_fpu_control fpu;
     70 
     71   vorbis_fpu_setround(&fpu);
     72   for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
     73 
     74   i=0;
     75   while(i<n){
     76     int k=map[i];
     77     int qexp;
     78     float p=.7071067812f;
     79     float q=.7071067812f;
     80     float w=vorbis_coslook(wdel*k);
     81     float *ftmp=lsp;
     82     int c=m>>1;
     83 
     84     do{
     85       q*=ftmp[0]-w;
     86       p*=ftmp[1]-w;
     87       ftmp+=2;
     88     }while(--c);
     89 
     90     if(m&1){
     91       /* odd order filter; slightly assymetric */
     92       /* the last coefficient */
     93       q*=ftmp[0]-w;
     94       q*=q;
     95       p*=p*(1.f-w*w);
     96     }else{
     97       /* even order filter; still symmetric */
     98       q*=q*(1.f+w);
     99       p*=p*(1.f-w);
    100     }
    101 
    102     q=frexp(p+q,&qexp);
    103     q=vorbis_fromdBlook(amp*
    104                         vorbis_invsqlook(q)*
    105                         vorbis_invsq2explook(qexp+m)-
    106                         ampoffset);
    107 
    108     do{
    109       curve[i++]*=q;
    110     }while(map[i]==k);
    111   }
    112   vorbis_fpu_restore(fpu);
    113 }
    114 
    115 #else
    116 
    117 #ifdef INT_LOOKUP
    118 #include "lookup.c" /* catch this in the build system; we #include for
    119                        compilers (like gcc) that can't inline across
    120                        modules */
    121 
    122 static const int MLOOP_1[64]={
    123    0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
    124   14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
    125   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
    126   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
    127 };
    128 
    129 static const int MLOOP_2[64]={
    130   0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
    131   8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
    132   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
    133   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
    134 };
    135 
    136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
    137 
    138 
    139 /* side effect: changes *lsp to cosines of lsp */
    140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
    141                             float amp,float ampoffset){
    142 
    143   /* 0 <= m < 256 */
    144 
    145   /* set up for using all int later */
    146   int i;
    147   int ampoffseti=rint(ampoffset*4096.f);
    148   int ampi=rint(amp*16.f);
    149   long *ilsp=alloca(m*sizeof(*ilsp));
    150   for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
    151 
    152   i=0;
    153   while(i<n){
    154     int j,k=map[i];
    155     unsigned long pi=46341; /* 2**-.5 in 0.16 */
    156     unsigned long qi=46341;
    157     int qexp=0,shift;
    158     long wi=vorbis_coslook_i(k*65536/ln);
    159 
    160     qi*=labs(ilsp[0]-wi);
    161     pi*=labs(ilsp[1]-wi);
    162 
    163     for(j=3;j<m;j+=2){
    164       if(!(shift=MLOOP_1[(pi|qi)>>25]))
    165         if(!(shift=MLOOP_2[(pi|qi)>>19]))
    166           shift=MLOOP_3[(pi|qi)>>16];
    167       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
    168       pi=(pi>>shift)*labs(ilsp[j]-wi);
    169       qexp+=shift;
    170     }
    171     if(!(shift=MLOOP_1[(pi|qi)>>25]))
    172       if(!(shift=MLOOP_2[(pi|qi)>>19]))
    173         shift=MLOOP_3[(pi|qi)>>16];
    174 
    175     /* pi,qi normalized collectively, both tracked using qexp */
    176 
    177     if(m&1){
    178       /* odd order filter; slightly assymetric */
    179       /* the last coefficient */
    180       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
    181       pi=(pi>>shift)<<14;
    182       qexp+=shift;
    183 
    184       if(!(shift=MLOOP_1[(pi|qi)>>25]))
    185         if(!(shift=MLOOP_2[(pi|qi)>>19]))
    186           shift=MLOOP_3[(pi|qi)>>16];
    187 
    188       pi>>=shift;
    189       qi>>=shift;
    190       qexp+=shift-14*((m+1)>>1);
    191 
    192       pi=((pi*pi)>>16);
    193       qi=((qi*qi)>>16);
    194       qexp=qexp*2+m;
    195 
    196       pi*=(1<<14)-((wi*wi)>>14);
    197       qi+=pi>>14;
    198 
    199     }else{
    200       /* even order filter; still symmetric */
    201 
    202       /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
    203          worth tracking step by step */
    204 
    205       pi>>=shift;
    206       qi>>=shift;
    207       qexp+=shift-7*m;
    208 
    209       pi=((pi*pi)>>16);
    210       qi=((qi*qi)>>16);
    211       qexp=qexp*2+m;
    212 
    213       pi*=(1<<14)-wi;
    214       qi*=(1<<14)+wi;
    215       qi=(qi+pi)>>14;
    216 
    217     }
    218 
    219 
    220     /* we've let the normalization drift because it wasn't important;
    221        however, for the lookup, things must be normalized again.  We
    222        need at most one right shift or a number of left shifts */
    223 
    224     if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
    225       qi>>=1; qexp++;
    226     }else
    227       while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
    228         qi<<=1; qexp--;
    229       }
    230 
    231     amp=vorbis_fromdBlook_i(ampi*                     /*  n.4         */
    232                             vorbis_invsqlook_i(qi,qexp)-
    233                                                       /*  m.8, m+n<=8 */
    234                             ampoffseti);              /*  8.12[0]     */
    235 
    236     curve[i]*=amp;
    237     while(map[++i]==k)curve[i]*=amp;
    238   }
    239 }
    240 
    241 #else
    242 
    243 /* old, nonoptimized but simple version for any poor sap who needs to
    244    figure out what the hell this code does, or wants the other
    245    fraction of a dB precision */
    246 
    247 /* side effect: changes *lsp to cosines of lsp */
    248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
    249                             float amp,float ampoffset){
    250   int i;
    251   float wdel=M_PI/ln;
    252   for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
    253 
    254   i=0;
    255   while(i<n){
    256     int j,k=map[i];
    257     float p=.5f;
    258     float q=.5f;
    259     float w=2.f*cos(wdel*k);
    260     for(j=1;j<m;j+=2){
    261       q *= w-lsp[j-1];
    262       p *= w-lsp[j];
    263     }
    264     if(j==m){
    265       /* odd order filter; slightly assymetric */
    266       /* the last coefficient */
    267       q*=w-lsp[j-1];
    268       p*=p*(4.f-w*w);
    269       q*=q;
    270     }else{
    271       /* even order filter; still symmetric */
    272       p*=p*(2.f-w);
    273       q*=q*(2.f+w);
    274     }
    275 
    276     q=fromdB(amp/sqrt(p+q)-ampoffset);
    277 
    278     curve[i]*=q;
    279     while(map[++i]==k)curve[i]*=q;
    280   }
    281 }
    282 
    283 #endif
    284 #endif
    285 
    286 static void cheby(float *g, int ord) {
    287   int i, j;
    288 
    289   g[0] *= .5f;
    290   for(i=2; i<= ord; i++) {
    291     for(j=ord; j >= i; j--) {
    292       g[j-2] -= g[j];
    293       g[j] += g[j];
    294     }
    295   }
    296 }
    297 
    298 static int comp(const void *a,const void *b){
    299   return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
    300 }
    301 
    302 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
    303    but there are root sets for which it gets into limit cycles
    304    (exacerbated by zero suppression) and fails.  We can't afford to
    305    fail, even if the failure is 1 in 100,000,000, so we now use
    306    Laguerre and later polish with Newton-Raphson (which can then
    307    afford to fail) */
    308 
    309 #define EPSILON 10e-7
    310 static int Laguerre_With_Deflation(float *a,int ord,float *r){
    311   int i,m;
    312   double lastdelta=0.f;
    313   double *defl=alloca(sizeof(*defl)*(ord+1));
    314   for(i=0;i<=ord;i++)defl[i]=a[i];
    315 
    316   for(m=ord;m>0;m--){
    317     double new=0.f,delta;
    318 
    319     /* iterate a root */
    320     while(1){
    321       double p=defl[m],pp=0.f,ppp=0.f,denom;
    322 
    323       /* eval the polynomial and its first two derivatives */
    324       for(i=m;i>0;i--){
    325         ppp = new*ppp + pp;
    326         pp  = new*pp  + p;
    327         p   = new*p   + defl[i-1];
    328       }
    329 
    330       /* Laguerre's method */
    331       denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
    332       if(denom<0)
    333         return(-1);  /* complex root!  The LPC generator handed us a bad filter */
    334 
    335       if(pp>0){
    336         denom = pp + sqrt(denom);
    337         if(denom<EPSILON)denom=EPSILON;
    338       }else{
    339         denom = pp - sqrt(denom);
    340         if(denom>-(EPSILON))denom=-(EPSILON);
    341       }
    342 
    343       delta  = m*p/denom;
    344       new   -= delta;
    345 
    346       if(delta<0.f)delta*=-1;
    347 
    348       if(fabs(delta/new)<10e-12)break;
    349       lastdelta=delta;
    350     }
    351 
    352     r[m-1]=new;
    353 
    354     /* forward deflation */
    355 
    356     for(i=m;i>0;i--)
    357       defl[i-1]+=new*defl[i];
    358     defl++;
    359 
    360   }
    361   return(0);
    362 }
    363 
    364 
    365 /* for spit-and-polish only */
    366 static int Newton_Raphson(float *a,int ord,float *r){
    367   int i, k, count=0;
    368   double error=1.f;
    369   double *root=alloca(ord*sizeof(*root));
    370 
    371   for(i=0; i<ord;i++) root[i] = r[i];
    372 
    373   while(error>1e-20){
    374     error=0;
    375 
    376     for(i=0; i<ord; i++) { /* Update each point. */
    377       double pp=0.,delta;
    378       double rooti=root[i];
    379       double p=a[ord];
    380       for(k=ord-1; k>= 0; k--) {
    381 
    382         pp= pp* rooti + p;
    383         p = p * rooti + a[k];
    384       }
    385 
    386       delta = p/pp;
    387       root[i] -= delta;
    388       error+= delta*delta;
    389     }
    390 
    391     if(count>40)return(-1);
    392 
    393     count++;
    394   }
    395 
    396   /* Replaced the original bubble sort with a real sort.  With your
    397      help, we can eliminate the bubble sort in our lifetime. --Monty */
    398 
    399   for(i=0; i<ord;i++) r[i] = root[i];
    400   return(0);
    401 }
    402 
    403 
    404 /* Convert lpc coefficients to lsp coefficients */
    405 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
    406   int order2=(m+1)>>1;
    407   int g1_order,g2_order;
    408   float *g1=alloca(sizeof(*g1)*(order2+1));
    409   float *g2=alloca(sizeof(*g2)*(order2+1));
    410   float *g1r=alloca(sizeof(*g1r)*(order2+1));
    411   float *g2r=alloca(sizeof(*g2r)*(order2+1));
    412   int i;
    413 
    414   /* even and odd are slightly different base cases */
    415   g1_order=(m+1)>>1;
    416   g2_order=(m)  >>1;
    417 
    418   /* Compute the lengths of the x polynomials. */
    419   /* Compute the first half of K & R F1 & F2 polynomials. */
    420   /* Compute half of the symmetric and antisymmetric polynomials. */
    421   /* Remove the roots at +1 and -1. */
    422 
    423   g1[g1_order] = 1.f;
    424   for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
    425   g2[g2_order] = 1.f;
    426   for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
    427 
    428   if(g1_order>g2_order){
    429     for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
    430   }else{
    431     for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
    432     for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
    433   }
    434 
    435   /* Convert into polynomials in cos(alpha) */
    436   cheby(g1,g1_order);
    437   cheby(g2,g2_order);
    438 
    439   /* Find the roots of the 2 even polynomials.*/
    440   if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
    441      Laguerre_With_Deflation(g2,g2_order,g2r))
    442     return(-1);
    443 
    444   Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
    445   Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
    446 
    447   qsort(g1r,g1_order,sizeof(*g1r),comp);
    448   qsort(g2r,g2_order,sizeof(*g2r),comp);
    449 
    450   for(i=0;i<g1_order;i++)
    451     lsp[i*2] = acos(g1r[i]);
    452 
    453   for(i=0;i<g2_order;i++)
    454     lsp[i*2+1] = acos(g2r[i]);
    455   return(0);
    456 }
    457