Home | History | Annotate | Download | only in lib
      1 /*
      2   Red Black Trees
      3   (C) 1999  Andrea Arcangeli <andrea (at) suse.de>
      4   (C) 2002  David Woodhouse <dwmw2 (at) infradead.org>
      5   (C) 2012  Michel Lespinasse <walken (at) google.com>
      6 
      7   This program is free software; you can redistribute it and/or modify
      8   it under the terms of the GNU General Public License as published by
      9   the Free Software Foundation; either version 2 of the License, or
     10   (at your option) any later version.
     11 
     12   This program is distributed in the hope that it will be useful,
     13   but WITHOUT ANY WARRANTY; without even the implied warranty of
     14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15   GNU General Public License for more details.
     16 
     17   You should have received a copy of the GNU General Public License
     18   along with this program; if not, write to the Free Software
     19   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     20 
     21   linux/lib/rbtree.c
     22 */
     23 
     24 #include <linux/rbtree_augmented.h>
     25 #include <linux/export.h>
     26 
     27 /*
     28  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
     29  *
     30  *  1) A node is either red or black
     31  *  2) The root is black
     32  *  3) All leaves (NULL) are black
     33  *  4) Both children of every red node are black
     34  *  5) Every simple path from root to leaves contains the same number
     35  *     of black nodes.
     36  *
     37  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
     38  *  consecutive red nodes in a path and every red node is therefore followed by
     39  *  a black. So if B is the number of black nodes on every simple path (as per
     40  *  5), then the longest possible path due to 4 is 2B.
     41  *
     42  *  We shall indicate color with case, where black nodes are uppercase and red
     43  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
     44  *  parentheses and have some accompanying text comment.
     45  */
     46 
     47 static inline void rb_set_black(struct rb_node *rb)
     48 {
     49 	rb->__rb_parent_color |= RB_BLACK;
     50 }
     51 
     52 static inline struct rb_node *rb_red_parent(struct rb_node *red)
     53 {
     54 	return (struct rb_node *)red->__rb_parent_color;
     55 }
     56 
     57 /*
     58  * Helper function for rotations:
     59  * - old's parent and color get assigned to new
     60  * - old gets assigned new as a parent and 'color' as a color.
     61  */
     62 static inline void
     63 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
     64 			struct rb_root *root, int color)
     65 {
     66 	struct rb_node *parent = rb_parent(old);
     67 	new->__rb_parent_color = old->__rb_parent_color;
     68 	rb_set_parent_color(old, new, color);
     69 	__rb_change_child(old, new, parent, root);
     70 }
     71 
     72 static __always_inline void
     73 __rb_insert(struct rb_node *node, struct rb_root *root,
     74 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
     75 {
     76 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
     77 
     78 	while (true) {
     79 		/*
     80 		 * Loop invariant: node is red
     81 		 *
     82 		 * If there is a black parent, we are done.
     83 		 * Otherwise, take some corrective action as we don't
     84 		 * want a red root or two consecutive red nodes.
     85 		 */
     86 		if (!parent) {
     87 			rb_set_parent_color(node, NULL, RB_BLACK);
     88 			break;
     89 		} else if (rb_is_black(parent))
     90 			break;
     91 
     92 		gparent = rb_red_parent(parent);
     93 
     94 		tmp = gparent->rb_right;
     95 		if (parent != tmp) {	/* parent == gparent->rb_left */
     96 			if (tmp && rb_is_red(tmp)) {
     97 				/*
     98 				 * Case 1 - color flips
     99 				 *
    100 				 *       G            g
    101 				 *      / \          / \
    102 				 *     p   u  -->   P   U
    103 				 *    /            /
    104 				 *   n            N
    105 				 *
    106 				 * However, since g's parent might be red, and
    107 				 * 4) does not allow this, we need to recurse
    108 				 * at g.
    109 				 */
    110 				rb_set_parent_color(tmp, gparent, RB_BLACK);
    111 				rb_set_parent_color(parent, gparent, RB_BLACK);
    112 				node = gparent;
    113 				parent = rb_parent(node);
    114 				rb_set_parent_color(node, parent, RB_RED);
    115 				continue;
    116 			}
    117 
    118 			tmp = parent->rb_right;
    119 			if (node == tmp) {
    120 				/*
    121 				 * Case 2 - left rotate at parent
    122 				 *
    123 				 *      G             G
    124 				 *     / \           / \
    125 				 *    p   U  -->    n   U
    126 				 *     \           /
    127 				 *      n         p
    128 				 *
    129 				 * This still leaves us in violation of 4), the
    130 				 * continuation into Case 3 will fix that.
    131 				 */
    132 				parent->rb_right = tmp = node->rb_left;
    133 				node->rb_left = parent;
    134 				if (tmp)
    135 					rb_set_parent_color(tmp, parent,
    136 							    RB_BLACK);
    137 				rb_set_parent_color(parent, node, RB_RED);
    138 				augment_rotate(parent, node);
    139 				parent = node;
    140 				tmp = node->rb_right;
    141 			}
    142 
    143 			/*
    144 			 * Case 3 - right rotate at gparent
    145 			 *
    146 			 *        G           P
    147 			 *       / \         / \
    148 			 *      p   U  -->  n   g
    149 			 *     /                 \
    150 			 *    n                   U
    151 			 */
    152 			gparent->rb_left = tmp;  /* == parent->rb_right */
    153 			parent->rb_right = gparent;
    154 			if (tmp)
    155 				rb_set_parent_color(tmp, gparent, RB_BLACK);
    156 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
    157 			augment_rotate(gparent, parent);
    158 			break;
    159 		} else {
    160 			tmp = gparent->rb_left;
    161 			if (tmp && rb_is_red(tmp)) {
    162 				/* Case 1 - color flips */
    163 				rb_set_parent_color(tmp, gparent, RB_BLACK);
    164 				rb_set_parent_color(parent, gparent, RB_BLACK);
    165 				node = gparent;
    166 				parent = rb_parent(node);
    167 				rb_set_parent_color(node, parent, RB_RED);
    168 				continue;
    169 			}
    170 
    171 			tmp = parent->rb_left;
    172 			if (node == tmp) {
    173 				/* Case 2 - right rotate at parent */
    174 				parent->rb_left = tmp = node->rb_right;
    175 				node->rb_right = parent;
    176 				if (tmp)
    177 					rb_set_parent_color(tmp, parent,
    178 							    RB_BLACK);
    179 				rb_set_parent_color(parent, node, RB_RED);
    180 				augment_rotate(parent, node);
    181 				parent = node;
    182 				tmp = node->rb_left;
    183 			}
    184 
    185 			/* Case 3 - left rotate at gparent */
    186 			gparent->rb_right = tmp;  /* == parent->rb_left */
    187 			parent->rb_left = gparent;
    188 			if (tmp)
    189 				rb_set_parent_color(tmp, gparent, RB_BLACK);
    190 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
    191 			augment_rotate(gparent, parent);
    192 			break;
    193 		}
    194 	}
    195 }
    196 
    197 /*
    198  * Inline version for rb_erase() use - we want to be able to inline
    199  * and eliminate the dummy_rotate callback there
    200  */
    201 static __always_inline void
    202 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
    203 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
    204 {
    205 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
    206 
    207 	while (true) {
    208 		/*
    209 		 * Loop invariants:
    210 		 * - node is black (or NULL on first iteration)
    211 		 * - node is not the root (parent is not NULL)
    212 		 * - All leaf paths going through parent and node have a
    213 		 *   black node count that is 1 lower than other leaf paths.
    214 		 */
    215 		sibling = parent->rb_right;
    216 		if (node != sibling) {	/* node == parent->rb_left */
    217 			if (rb_is_red(sibling)) {
    218 				/*
    219 				 * Case 1 - left rotate at parent
    220 				 *
    221 				 *     P               S
    222 				 *    / \             / \
    223 				 *   N   s    -->    p   Sr
    224 				 *      / \         / \
    225 				 *     Sl  Sr      N   Sl
    226 				 */
    227 				parent->rb_right = tmp1 = sibling->rb_left;
    228 				sibling->rb_left = parent;
    229 				rb_set_parent_color(tmp1, parent, RB_BLACK);
    230 				__rb_rotate_set_parents(parent, sibling, root,
    231 							RB_RED);
    232 				augment_rotate(parent, sibling);
    233 				sibling = tmp1;
    234 			}
    235 			tmp1 = sibling->rb_right;
    236 			if (!tmp1 || rb_is_black(tmp1)) {
    237 				tmp2 = sibling->rb_left;
    238 				if (!tmp2 || rb_is_black(tmp2)) {
    239 					/*
    240 					 * Case 2 - sibling color flip
    241 					 * (p could be either color here)
    242 					 *
    243 					 *    (p)           (p)
    244 					 *    / \           / \
    245 					 *   N   S    -->  N   s
    246 					 *      / \           / \
    247 					 *     Sl  Sr        Sl  Sr
    248 					 *
    249 					 * This leaves us violating 5) which
    250 					 * can be fixed by flipping p to black
    251 					 * if it was red, or by recursing at p.
    252 					 * p is red when coming from Case 1.
    253 					 */
    254 					rb_set_parent_color(sibling, parent,
    255 							    RB_RED);
    256 					if (rb_is_red(parent))
    257 						rb_set_black(parent);
    258 					else {
    259 						node = parent;
    260 						parent = rb_parent(node);
    261 						if (parent)
    262 							continue;
    263 					}
    264 					break;
    265 				}
    266 				/*
    267 				 * Case 3 - right rotate at sibling
    268 				 * (p could be either color here)
    269 				 *
    270 				 *   (p)           (p)
    271 				 *   / \           / \
    272 				 *  N   S    -->  N   Sl
    273 				 *     / \             \
    274 				 *    sl  Sr            s
    275 				 *                       \
    276 				 *                        Sr
    277 				 */
    278 				sibling->rb_left = tmp1 = tmp2->rb_right;
    279 				tmp2->rb_right = sibling;
    280 				parent->rb_right = tmp2;
    281 				if (tmp1)
    282 					rb_set_parent_color(tmp1, sibling,
    283 							    RB_BLACK);
    284 				augment_rotate(sibling, tmp2);
    285 				tmp1 = sibling;
    286 				sibling = tmp2;
    287 			}
    288 			/*
    289 			 * Case 4 - left rotate at parent + color flips
    290 			 * (p and sl could be either color here.
    291 			 *  After rotation, p becomes black, s acquires
    292 			 *  p's color, and sl keeps its color)
    293 			 *
    294 			 *      (p)             (s)
    295 			 *      / \             / \
    296 			 *     N   S     -->   P   Sr
    297 			 *        / \         / \
    298 			 *      (sl) sr      N  (sl)
    299 			 */
    300 			parent->rb_right = tmp2 = sibling->rb_left;
    301 			sibling->rb_left = parent;
    302 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
    303 			if (tmp2)
    304 				rb_set_parent(tmp2, parent);
    305 			__rb_rotate_set_parents(parent, sibling, root,
    306 						RB_BLACK);
    307 			augment_rotate(parent, sibling);
    308 			break;
    309 		} else {
    310 			sibling = parent->rb_left;
    311 			if (rb_is_red(sibling)) {
    312 				/* Case 1 - right rotate at parent */
    313 				parent->rb_left = tmp1 = sibling->rb_right;
    314 				sibling->rb_right = parent;
    315 				rb_set_parent_color(tmp1, parent, RB_BLACK);
    316 				__rb_rotate_set_parents(parent, sibling, root,
    317 							RB_RED);
    318 				augment_rotate(parent, sibling);
    319 				sibling = tmp1;
    320 			}
    321 			tmp1 = sibling->rb_left;
    322 			if (!tmp1 || rb_is_black(tmp1)) {
    323 				tmp2 = sibling->rb_right;
    324 				if (!tmp2 || rb_is_black(tmp2)) {
    325 					/* Case 2 - sibling color flip */
    326 					rb_set_parent_color(sibling, parent,
    327 							    RB_RED);
    328 					if (rb_is_red(parent))
    329 						rb_set_black(parent);
    330 					else {
    331 						node = parent;
    332 						parent = rb_parent(node);
    333 						if (parent)
    334 							continue;
    335 					}
    336 					break;
    337 				}
    338 				/* Case 3 - right rotate at sibling */
    339 				sibling->rb_right = tmp1 = tmp2->rb_left;
    340 				tmp2->rb_left = sibling;
    341 				parent->rb_left = tmp2;
    342 				if (tmp1)
    343 					rb_set_parent_color(tmp1, sibling,
    344 							    RB_BLACK);
    345 				augment_rotate(sibling, tmp2);
    346 				tmp1 = sibling;
    347 				sibling = tmp2;
    348 			}
    349 			/* Case 4 - left rotate at parent + color flips */
    350 			parent->rb_left = tmp2 = sibling->rb_right;
    351 			sibling->rb_right = parent;
    352 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
    353 			if (tmp2)
    354 				rb_set_parent(tmp2, parent);
    355 			__rb_rotate_set_parents(parent, sibling, root,
    356 						RB_BLACK);
    357 			augment_rotate(parent, sibling);
    358 			break;
    359 		}
    360 	}
    361 }
    362 
    363 /* Non-inline version for rb_erase_augmented() use */
    364 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
    365 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
    366 {
    367 	____rb_erase_color(parent, root, augment_rotate);
    368 }
    369 EXPORT_SYMBOL(__rb_erase_color);
    370 
    371 /*
    372  * Non-augmented rbtree manipulation functions.
    373  *
    374  * We use dummy augmented callbacks here, and have the compiler optimize them
    375  * out of the rb_insert_color() and rb_erase() function definitions.
    376  */
    377 
    378 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
    379 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
    380 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
    381 
    382 static const struct rb_augment_callbacks dummy_callbacks = {
    383 	dummy_propagate, dummy_copy, dummy_rotate
    384 };
    385 
    386 void rb_insert_color(struct rb_node *node, struct rb_root *root)
    387 {
    388 	__rb_insert(node, root, dummy_rotate);
    389 }
    390 EXPORT_SYMBOL(rb_insert_color);
    391 
    392 void rb_erase(struct rb_node *node, struct rb_root *root)
    393 {
    394 	struct rb_node *rebalance;
    395 	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
    396 	if (rebalance)
    397 		____rb_erase_color(rebalance, root, dummy_rotate);
    398 }
    399 EXPORT_SYMBOL(rb_erase);
    400 
    401 /*
    402  * Augmented rbtree manipulation functions.
    403  *
    404  * This instantiates the same __always_inline functions as in the non-augmented
    405  * case, but this time with user-defined callbacks.
    406  */
    407 
    408 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
    409 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
    410 {
    411 	__rb_insert(node, root, augment_rotate);
    412 }
    413 EXPORT_SYMBOL(__rb_insert_augmented);
    414 
    415 /*
    416  * This function returns the first node (in sort order) of the tree.
    417  */
    418 struct rb_node *rb_first(const struct rb_root *root)
    419 {
    420 	struct rb_node	*n;
    421 
    422 	n = root->rb_node;
    423 	if (!n)
    424 		return NULL;
    425 	while (n->rb_left)
    426 		n = n->rb_left;
    427 	return n;
    428 }
    429 EXPORT_SYMBOL(rb_first);
    430 
    431 struct rb_node *rb_last(const struct rb_root *root)
    432 {
    433 	struct rb_node	*n;
    434 
    435 	n = root->rb_node;
    436 	if (!n)
    437 		return NULL;
    438 	while (n->rb_right)
    439 		n = n->rb_right;
    440 	return n;
    441 }
    442 EXPORT_SYMBOL(rb_last);
    443 
    444 struct rb_node *rb_next(const struct rb_node *node)
    445 {
    446 	struct rb_node *parent;
    447 
    448 	if (RB_EMPTY_NODE(node))
    449 		return NULL;
    450 
    451 	/*
    452 	 * If we have a right-hand child, go down and then left as far
    453 	 * as we can.
    454 	 */
    455 	if (node->rb_right) {
    456 		node = node->rb_right;
    457 		while (node->rb_left)
    458 			node=node->rb_left;
    459 		return (struct rb_node *)node;
    460 	}
    461 
    462 	/*
    463 	 * No right-hand children. Everything down and left is smaller than us,
    464 	 * so any 'next' node must be in the general direction of our parent.
    465 	 * Go up the tree; any time the ancestor is a right-hand child of its
    466 	 * parent, keep going up. First time it's a left-hand child of its
    467 	 * parent, said parent is our 'next' node.
    468 	 */
    469 	while ((parent = rb_parent(node)) && node == parent->rb_right)
    470 		node = parent;
    471 
    472 	return parent;
    473 }
    474 EXPORT_SYMBOL(rb_next);
    475 
    476 struct rb_node *rb_prev(const struct rb_node *node)
    477 {
    478 	struct rb_node *parent;
    479 
    480 	if (RB_EMPTY_NODE(node))
    481 		return NULL;
    482 
    483 	/*
    484 	 * If we have a left-hand child, go down and then right as far
    485 	 * as we can.
    486 	 */
    487 	if (node->rb_left) {
    488 		node = node->rb_left;
    489 		while (node->rb_right)
    490 			node=node->rb_right;
    491 		return (struct rb_node *)node;
    492 	}
    493 
    494 	/*
    495 	 * No left-hand children. Go up till we find an ancestor which
    496 	 * is a right-hand child of its parent.
    497 	 */
    498 	while ((parent = rb_parent(node)) && node == parent->rb_left)
    499 		node = parent;
    500 
    501 	return parent;
    502 }
    503 EXPORT_SYMBOL(rb_prev);
    504 
    505 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
    506 		     struct rb_root *root)
    507 {
    508 	struct rb_node *parent = rb_parent(victim);
    509 
    510 	/* Set the surrounding nodes to point to the replacement */
    511 	__rb_change_child(victim, new, parent, root);
    512 	if (victim->rb_left)
    513 		rb_set_parent(victim->rb_left, new);
    514 	if (victim->rb_right)
    515 		rb_set_parent(victim->rb_right, new);
    516 
    517 	/* Copy the pointers/colour from the victim to the replacement */
    518 	*new = *victim;
    519 }
    520 EXPORT_SYMBOL(rb_replace_node);
    521 
    522 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
    523 {
    524 	for (;;) {
    525 		if (node->rb_left)
    526 			node = node->rb_left;
    527 		else if (node->rb_right)
    528 			node = node->rb_right;
    529 		else
    530 			return (struct rb_node *)node;
    531 	}
    532 }
    533 
    534 struct rb_node *rb_next_postorder(const struct rb_node *node)
    535 {
    536 	const struct rb_node *parent;
    537 	if (!node)
    538 		return NULL;
    539 	parent = rb_parent(node);
    540 
    541 	/* If we're sitting on node, we've already seen our children */
    542 	if (parent && node == parent->rb_left && parent->rb_right) {
    543 		/* If we are the parent's left node, go to the parent's right
    544 		 * node then all the way down to the left */
    545 		return rb_left_deepest_node(parent->rb_right);
    546 	} else
    547 		/* Otherwise we are the parent's right node, and the parent
    548 		 * should be next */
    549 		return (struct rb_node *)parent;
    550 }
    551 EXPORT_SYMBOL(rb_next_postorder);
    552 
    553 struct rb_node *rb_first_postorder(const struct rb_root *root)
    554 {
    555 	if (!root->rb_node)
    556 		return NULL;
    557 
    558 	return rb_left_deepest_node(root->rb_node);
    559 }
    560 EXPORT_SYMBOL(rb_first_postorder);
    561