Home | History | Annotate | Download | only in docs
      1 =======================
      2 Writing an LLVM Backend
      3 =======================
      4 
      5 .. toctree::
      6    :hidden:
      7 
      8    HowToUseInstrMappings
      9 
     10 .. contents::
     11    :local:
     12 
     13 Introduction
     14 ============
     15 
     16 This document describes techniques for writing compiler backends that convert
     17 the LLVM Intermediate Representation (IR) to code for a specified machine or
     18 other languages.  Code intended for a specific machine can take the form of
     19 either assembly code or binary code (usable for a JIT compiler).
     20 
     21 The backend of LLVM features a target-independent code generator that may
     22 create output for several types of target CPUs --- including X86, PowerPC,
     23 ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
     24 of the Cell processor or GPUs to support the execution of compute kernels.
     25 
     26 The document focuses on existing examples found in subdirectories of
     27 ``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
     28 focuses on the example of creating a static compiler (one that emits text
     29 assembly) for a SPARC target, because SPARC has fairly standard
     30 characteristics, such as a RISC instruction set and straightforward calling
     31 conventions.
     32 
     33 Audience
     34 --------
     35 
     36 The audience for this document is anyone who needs to write an LLVM backend to
     37 generate code for a specific hardware or software target.
     38 
     39 Prerequisite Reading
     40 --------------------
     41 
     42 These essential documents must be read before reading this document:
     43 
     44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
     45   the LLVM assembly language.
     46 
     47 * :doc:`CodeGenerator` --- a guide to the components (classes and code
     48   generation algorithms) for translating the LLVM internal representation into
     49   machine code for a specified target.  Pay particular attention to the
     50   descriptions of code generation stages: Instruction Selection, Scheduling and
     51   Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
     52   Insertion, Late Machine Code Optimizations, and Code Emission.
     53 
     54 * :doc:`TableGen/index` --- a document that describes the TableGen
     55   (``tblgen``) application that manages domain-specific information to support
     56   LLVM code generation.  TableGen processes input from a target description
     57   file (``.td`` suffix) and generates C++ code that can be used for code
     58   generation.
     59 
     60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
     61   are several ``SelectionDAG`` processing steps.
     62 
     63 To follow the SPARC examples in this document, have a copy of `The SPARC
     64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
     65 reference.  For details about the ARM instruction set, refer to the `ARM
     66 Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
     67 the GNU Assembler format (``GAS``), see `Using As
     68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
     69 assembly printer.  "Using As" contains a list of target machine dependent
     70 features.
     71 
     72 Basic Steps
     73 -----------
     74 
     75 To write a compiler backend for LLVM that converts the LLVM IR to code for a
     76 specified target (machine or other language), follow these steps:
     77 
     78 * Create a subclass of the ``TargetMachine`` class that describes
     79   characteristics of your target machine.  Copy existing examples of specific
     80   ``TargetMachine`` class and header files; for example, start with
     81   ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
     82   names for your target.  Similarly, change code that references "``Sparc``" to
     83   reference your target.
     84 
     85 * Describe the register set of the target.  Use TableGen to generate code for
     86   register definition, register aliases, and register classes from a
     87   target-specific ``RegisterInfo.td`` input file.  You should also write
     88   additional code for a subclass of the ``TargetRegisterInfo`` class that
     89   represents the class register file data used for register allocation and also
     90   describes the interactions between registers.
     91 
     92 * Describe the instruction set of the target.  Use TableGen to generate code
     93   for target-specific instructions from target-specific versions of
     94   ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
     95   additional code for a subclass of the ``TargetInstrInfo`` class to represent
     96   machine instructions supported by the target machine.
     97 
     98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic
     99   Graph (DAG) representation of instructions to native target-specific
    100   instructions.  Use TableGen to generate code that matches patterns and
    101   selects instructions based on additional information in a target-specific
    102   version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
    103   where ``XXX`` identifies the specific target, to perform pattern matching and
    104   DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
    105   to replace or remove operations and data types that are not supported
    106   natively in a SelectionDAG.
    107 
    108 * Write code for an assembly printer that converts LLVM IR to a GAS format for
    109   your target machine.  You should add assembly strings to the instructions
    110   defined in your target-specific version of ``TargetInstrInfo.td``.  You
    111   should also write code for a subclass of ``AsmPrinter`` that performs the
    112   LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
    113 
    114 * Optionally, add support for subtargets (i.e., variants with different
    115   capabilities).  You should also write code for a subclass of the
    116   ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
    117   ``-mattr=`` command-line options.
    118 
    119 * Optionally, add JIT support and create a machine code emitter (subclass of
    120   ``TargetJITInfo``) that is used to emit binary code directly into memory.
    121 
    122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
    123 implement them later.  Initially, you may not know which private members that
    124 the class will need and which components will need to be subclassed.
    125 
    126 Preliminaries
    127 -------------
    128 
    129 To actually create your compiler backend, you need to create and modify a few
    130 files.  The absolute minimum is discussed here.  But to actually use the LLVM
    131 target-independent code generator, you must perform the steps described in the
    132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
    133 
    134 First, you should create a subdirectory under ``lib/Target`` to hold all the
    135 files related to your target.  If your target is called "Dummy", create the
    136 directory ``lib/Target/Dummy``.
    137 
    138 In this new directory, create a ``Makefile``.  It is easiest to copy a
    139 ``Makefile`` of another target and modify it.  It should at least contain the
    140 ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
    141 ``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
    142 example, see the MIPS target).  Alternatively, you can split the library into
    143 ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
    144 implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
    145 PowerPC target).
    146 
    147 Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
    148 any other naming scheme will confuse ``llvm-config`` and produce a lot of
    149 (seemingly unrelated) linker errors when linking ``llc``.
    150 
    151 To make your target actually do something, you need to implement a subclass of
    152 ``TargetMachine``.  This implementation should typically be in the file
    153 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
    154 directory will be built and should work.  To use LLVM's target independent code
    155 generator, you should do what all current machine backends do: create a
    156 subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
    157 subclass of ``TargetMachine``.)
    158 
    159 To get LLVM to actually build and link your target, you need to add it to the
    160 ``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
    161 know about your target when parsing the ``--enable-targets`` option.  Search
    162 the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
    163 there (some creativity required), and then reconfigure.  Alternatively, you can
    164 change ``autotools/configure.ac`` and regenerate configure by running
    165 ``./autoconf/AutoRegen.sh``.
    166 
    167 Target Machine
    168 ==============
    169 
    170 ``LLVMTargetMachine`` is designed as a base class for targets implemented with
    171 the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
    172 should be specialized by a concrete target class that implements the various
    173 virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
    174 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
    175 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
    176 numerous command-line options.
    177 
    178 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
    179 by copying an existing ``TargetMachine`` class and header.  You should name the
    180 files that you create to reflect your specific target.  For instance, for the
    181 SPARC target, name the files ``SparcTargetMachine.h`` and
    182 ``SparcTargetMachine.cpp``.
    183 
    184 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
    185 have access methods to obtain objects that represent target components.  These
    186 methods are named ``get*Info``, and are intended to obtain the instruction set
    187 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
    188 (``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
    189 implement the ``getDataLayout`` method to access an object with target-specific
    190 data characteristics, such as data type size and alignment requirements.
    191 
    192 For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
    193 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
    194 simply return a class member.
    195 
    196 .. code-block:: c++
    197 
    198   namespace llvm {
    199 
    200   class Module;
    201 
    202   class SparcTargetMachine : public LLVMTargetMachine {
    203     const DataLayout DataLayout;       // Calculates type size & alignment
    204     SparcSubtarget Subtarget;
    205     SparcInstrInfo InstrInfo;
    206     TargetFrameInfo FrameInfo;
    207 
    208   protected:
    209     virtual const TargetAsmInfo *createTargetAsmInfo() const;
    210 
    211   public:
    212     SparcTargetMachine(const Module &M, const std::string &FS);
    213 
    214     virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
    215     virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
    216     virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
    217     virtual const TargetRegisterInfo *getRegisterInfo() const {
    218       return &InstrInfo.getRegisterInfo();
    219     }
    220     virtual const DataLayout *getDataLayout() const { return &DataLayout; }
    221     static unsigned getModuleMatchQuality(const Module &M);
    222 
    223     // Pass Pipeline Configuration
    224     virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
    225     virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
    226   };
    227 
    228   } // end namespace llvm
    229 
    230 * ``getInstrInfo()``
    231 * ``getRegisterInfo()``
    232 * ``getFrameInfo()``
    233 * ``getDataLayout()``
    234 * ``getSubtargetImpl()``
    235 
    236 For some targets, you also need to support the following methods:
    237 
    238 * ``getTargetLowering()``
    239 * ``getJITInfo()``
    240 
    241 Some architectures, such as GPUs, do not support jumping to an arbitrary
    242 program location and implement branching using masked execution and loop using
    243 special instructions around the loop body. In order to avoid CFG modifications
    244 that introduce irreducible control flow not handled by such hardware, a target
    245 must call `setRequiresStructuredCFG(true)` when being initialized.
    246 
    247 In addition, the ``XXXTargetMachine`` constructor should specify a
    248 ``TargetDescription`` string that determines the data layout for the target
    249 machine, including characteristics such as pointer size, alignment, and
    250 endianness.  For example, the constructor for ``SparcTargetMachine`` contains
    251 the following:
    252 
    253 .. code-block:: c++
    254 
    255   SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
    256     : DataLayout("E-p:32:32-f128:128:128"),
    257       Subtarget(M, FS), InstrInfo(Subtarget),
    258       FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
    259   }
    260 
    261 Hyphens separate portions of the ``TargetDescription`` string.
    262 
    263 * An upper-case "``E``" in the string indicates a big-endian target data model.
    264   A lower-case "``e``" indicates little-endian.
    265 
    266 * "``p:``" is followed by pointer information: size, ABI alignment, and
    267   preferred alignment.  If only two figures follow "``p:``", then the first
    268   value is pointer size, and the second value is both ABI and preferred
    269   alignment.
    270 
    271 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
    272   "``a``" (corresponding to integer, floating point, vector, or aggregate).
    273   "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
    274   alignment. "``f``" is followed by three values: the first indicates the size
    275   of a long double, then ABI alignment, and then ABI preferred alignment.
    276 
    277 Target Registration
    278 ===================
    279 
    280 You must also register your target with the ``TargetRegistry``, which is what
    281 other LLVM tools use to be able to lookup and use your target at runtime.  The
    282 ``TargetRegistry`` can be used directly, but for most targets there are helper
    283 templates which should take care of the work for you.
    284 
    285 All targets should declare a global ``Target`` object which is used to
    286 represent the target during registration.  Then, in the target's ``TargetInfo``
    287 library, the target should define that object and use the ``RegisterTarget``
    288 template to register the target.  For example, the Sparc registration code
    289 looks like this:
    290 
    291 .. code-block:: c++
    292 
    293   Target llvm::TheSparcTarget;
    294 
    295   extern "C" void LLVMInitializeSparcTargetInfo() {
    296     RegisterTarget<Triple::sparc, /*HasJIT=*/false>
    297       X(TheSparcTarget, "sparc", "Sparc");
    298   }
    299 
    300 This allows the ``TargetRegistry`` to look up the target by name or by target
    301 triple.  In addition, most targets will also register additional features which
    302 are available in separate libraries.  These registration steps are separate,
    303 because some clients may wish to only link in some parts of the target --- the
    304 JIT code generator does not require the use of the assembler printer, for
    305 example.  Here is an example of registering the Sparc assembly printer:
    306 
    307 .. code-block:: c++
    308 
    309   extern "C" void LLVMInitializeSparcAsmPrinter() {
    310     RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
    311   }
    312 
    313 For more information, see "`llvm/Target/TargetRegistry.h
    314 </doxygen/TargetRegistry_8h-source.html>`_".
    315 
    316 Register Set and Register Classes
    317 =================================
    318 
    319 You should describe a concrete target-specific class that represents the
    320 register file of a target machine.  This class is called ``XXXRegisterInfo``
    321 (where ``XXX`` identifies the target) and represents the class register file
    322 data that is used for register allocation.  It also describes the interactions
    323 between registers.
    324 
    325 You also need to define register classes to categorize related registers.  A
    326 register class should be added for groups of registers that are all treated the
    327 same way for some instruction.  Typical examples are register classes for
    328 integer, floating-point, or vector registers.  A register allocator allows an
    329 instruction to use any register in a specified register class to perform the
    330 instruction in a similar manner.  Register classes allocate virtual registers
    331 to instructions from these sets, and register classes let the
    332 target-independent register allocator automatically choose the actual
    333 registers.
    334 
    335 Much of the code for registers, including register definition, register
    336 aliases, and register classes, is generated by TableGen from
    337 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
    338 and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
    339 implementation of ``XXXRegisterInfo`` requires hand-coding.
    340 
    341 Defining a Register
    342 -------------------
    343 
    344 The ``XXXRegisterInfo.td`` file typically starts with register definitions for
    345 a target machine.  The ``Register`` class (specified in ``Target.td``) is used
    346 to define an object for each register.  The specified string ``n`` becomes the
    347 ``Name`` of the register.  The basic ``Register`` object does not have any
    348 subregisters and does not specify any aliases.
    349 
    350 .. code-block:: llvm
    351 
    352   class Register<string n> {
    353     string Namespace = "";
    354     string AsmName = n;
    355     string Name = n;
    356     int SpillSize = 0;
    357     int SpillAlignment = 0;
    358     list<Register> Aliases = [];
    359     list<Register> SubRegs = [];
    360     list<int> DwarfNumbers = [];
    361   }
    362 
    363 For example, in the ``X86RegisterInfo.td`` file, there are register definitions
    364 that utilize the ``Register`` class, such as:
    365 
    366 .. code-block:: llvm
    367 
    368   def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
    369 
    370 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
    371 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
    372 register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
    373 representing 3 different modes: the first element is for X86-64, the second for
    374 exception handling (EH) on X86-32, and the third is generic. -1 is a special
    375 Dwarf number that indicates the gcc number is undefined, and -2 indicates the
    376 register number is invalid for this mode.
    377 
    378 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
    379 generates this code in the ``X86GenRegisterInfo.inc`` file:
    380 
    381 .. code-block:: c++
    382 
    383   static const unsigned GR8[] = { X86::AL, ... };
    384 
    385   const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
    386 
    387   const TargetRegisterDesc RegisterDescriptors[] = {
    388     ...
    389   { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
    390 
    391 From the register info file, TableGen generates a ``TargetRegisterDesc`` object
    392 for each register.  ``TargetRegisterDesc`` is defined in
    393 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
    394 
    395 .. code-block:: c++
    396 
    397   struct TargetRegisterDesc {
    398     const char     *AsmName;      // Assembly language name for the register
    399     const char     *Name;         // Printable name for the reg (for debugging)
    400     const unsigned *AliasSet;     // Register Alias Set
    401     const unsigned *SubRegs;      // Sub-register set
    402     const unsigned *ImmSubRegs;   // Immediate sub-register set
    403     const unsigned *SuperRegs;    // Super-register set
    404   };
    405 
    406 TableGen uses the entire target description file (``.td``) to determine text
    407 names for the register (in the ``AsmName`` and ``Name`` fields of
    408 ``TargetRegisterDesc``) and the relationships of other registers to the defined
    409 register (in the other ``TargetRegisterDesc`` fields).  In this example, other
    410 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
    411 aliases for one another, so TableGen generates a null-terminated array
    412 (``AL_AliasSet``) for this register alias set.
    413 
    414 The ``Register`` class is commonly used as a base class for more complex
    415 classes.  In ``Target.td``, the ``Register`` class is the base for the
    416 ``RegisterWithSubRegs`` class that is used to define registers that need to
    417 specify subregisters in the ``SubRegs`` list, as shown here:
    418 
    419 .. code-block:: llvm
    420 
    421   class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    422     let SubRegs = subregs;
    423   }
    424 
    425 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
    426 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
    427 and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
    428 feature common to these subclasses.  Note the use of "``let``" expressions to
    429 override values that are initially defined in a superclass (such as ``SubRegs``
    430 field in the ``Rd`` class).
    431 
    432 .. code-block:: llvm
    433 
    434   class SparcReg<string n> : Register<n> {
    435     field bits<5> Num;
    436     let Namespace = "SP";
    437   }
    438   // Ri - 32-bit integer registers
    439   class Ri<bits<5> num, string n> :
    440   SparcReg<n> {
    441     let Num = num;
    442   }
    443   // Rf - 32-bit floating-point registers
    444   class Rf<bits<5> num, string n> :
    445   SparcReg<n> {
    446     let Num = num;
    447   }
    448   // Rd - Slots in the FP register file for 64-bit floating-point values.
    449   class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
    450     let Num = num;
    451     let SubRegs = subregs;
    452   }
    453 
    454 In the ``SparcRegisterInfo.td`` file, there are register definitions that
    455 utilize these subclasses of ``Register``, such as:
    456 
    457 .. code-block:: llvm
    458 
    459   def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
    460   def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
    461   ...
    462   def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
    463   def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
    464   ...
    465   def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
    466   def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
    467 
    468 The last two registers shown above (``D0`` and ``D1``) are double-precision
    469 floating-point registers that are aliases for pairs of single-precision
    470 floating-point sub-registers.  In addition to aliases, the sub-register and
    471 super-register relationships of the defined register are in fields of a
    472 register's ``TargetRegisterDesc``.
    473 
    474 Defining a Register Class
    475 -------------------------
    476 
    477 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
    478 object that represents a group of related registers and also defines the
    479 default allocation order of the registers.  A target description file
    480 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
    481 using the following class:
    482 
    483 .. code-block:: llvm
    484 
    485   class RegisterClass<string namespace,
    486   list<ValueType> regTypes, int alignment, dag regList> {
    487     string Namespace = namespace;
    488     list<ValueType> RegTypes = regTypes;
    489     int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
    490     int Alignment = alignment;
    491 
    492     // CopyCost is the cost of copying a value between two registers
    493     // default value 1 means a single instruction
    494     // A negative value means copying is extremely expensive or impossible
    495     int CopyCost = 1;
    496     dag MemberList = regList;
    497 
    498     // for register classes that are subregisters of this class
    499     list<RegisterClass> SubRegClassList = [];
    500 
    501     code MethodProtos = [{}];  // to insert arbitrary code
    502     code MethodBodies = [{}];
    503   }
    504 
    505 To define a ``RegisterClass``, use the following 4 arguments:
    506 
    507 * The first argument of the definition is the name of the namespace.
    508 
    509 * The second argument is a list of ``ValueType`` register type values that are
    510   defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
    511   integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
    512   floating-point types (``f32``, ``f64``), and vector types (for example,
    513   ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
    514   must have the same ``ValueType``, but some registers may store vector data in
    515   different configurations.  For example a register that can process a 128-bit
    516   vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
    517   32-bit integers, and so on.
    518 
    519 * The third argument of the ``RegisterClass`` definition specifies the
    520   alignment required of the registers when they are stored or loaded to
    521   memory.
    522 
    523 * The final argument, ``regList``, specifies which registers are in this class.
    524   If an alternative allocation order method is not specified, then ``regList``
    525   also defines the order of allocation used by the register allocator.  Besides
    526   simply listing registers with ``(add R0, R1, ...)``, more advanced set
    527   operators are available.  See ``include/llvm/Target/Target.td`` for more
    528   information.
    529 
    530 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
    531 ``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
    532 first argument defines the namespace with the string "``SP``".  ``FPRegs``
    533 defines a group of 32 single-precision floating-point registers (``F0`` to
    534 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
    535 (``D0-D15``).
    536 
    537 .. code-block:: llvm
    538 
    539   // F0, F1, F2, ..., F31
    540   def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
    541 
    542   def DFPRegs : RegisterClass<"SP", [f64], 64,
    543                               (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
    544                                    D9, D10, D11, D12, D13, D14, D15)>;
    545 
    546   def IntRegs : RegisterClass<"SP", [i32], 32,
    547       (add L0, L1, L2, L3, L4, L5, L6, L7,
    548            I0, I1, I2, I3, I4, I5,
    549            O0, O1, O2, O3, O4, O5, O7,
    550            G1,
    551            // Non-allocatable regs:
    552            G2, G3, G4,
    553            O6,        // stack ptr
    554            I6,        // frame ptr
    555            I7,        // return address
    556            G0,        // constant zero
    557            G5, G6, G7 // reserved for kernel
    558       )>;
    559 
    560 Using ``SparcRegisterInfo.td`` with TableGen generates several output files
    561 that are intended for inclusion in other source code that you write.
    562 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
    563 be included in the header file for the implementation of the SPARC register
    564 implementation that you write (``SparcRegisterInfo.h``).  In
    565 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called
    566 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
    567 specifies types, based upon the defined register classes: ``DFPRegsClass``,
    568 ``FPRegsClass``, and ``IntRegsClass``.
    569 
    570 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
    571 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
    572 implementation.  The code below shows only the generated integer registers and
    573 associated register classes.  The order of registers in ``IntRegs`` reflects
    574 the order in the definition of ``IntRegs`` in the target description file.
    575 
    576 .. code-block:: c++
    577 
    578   // IntRegs Register Class...
    579   static const unsigned IntRegs[] = {
    580     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
    581     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
    582     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
    583     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
    584     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
    585     SP::G6, SP::G7,
    586   };
    587 
    588   // IntRegsVTs Register Class Value Types...
    589   static const MVT::ValueType IntRegsVTs[] = {
    590     MVT::i32, MVT::Other
    591   };
    592 
    593   namespace SP {   // Register class instances
    594     DFPRegsClass    DFPRegsRegClass;
    595     FPRegsClass     FPRegsRegClass;
    596     IntRegsClass    IntRegsRegClass;
    597   ...
    598     // IntRegs Sub-register Classess...
    599     static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
    600       NULL
    601     };
    602   ...
    603     // IntRegs Super-register Classess...
    604     static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
    605       NULL
    606     };
    607   ...
    608     // IntRegs Register Class sub-classes...
    609     static const TargetRegisterClass* const IntRegsSubclasses [] = {
    610       NULL
    611     };
    612   ...
    613     // IntRegs Register Class super-classes...
    614     static const TargetRegisterClass* const IntRegsSuperclasses [] = {
    615       NULL
    616     };
    617 
    618     IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
    619       IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
    620       IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
    621   }
    622 
    623 The register allocators will avoid using reserved registers, and callee saved
    624 registers are not used until all the volatile registers have been used.  That
    625 is usually good enough, but in some cases it may be necessary to provide custom
    626 allocation orders.
    627 
    628 Implement a subclass of ``TargetRegisterInfo``
    629 ----------------------------------------------
    630 
    631 The final step is to hand code portions of ``XXXRegisterInfo``, which
    632 implements the interface described in ``TargetRegisterInfo.h`` (see
    633 :ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
    634 ``false``, unless overridden.  Here is a list of functions that are overridden
    635 for the SPARC implementation in ``SparcRegisterInfo.cpp``:
    636 
    637 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
    638   order of the desired callee-save stack frame offset.
    639 
    640 * ``getReservedRegs`` --- Returns a bitset indexed by physical register
    641   numbers, indicating if a particular register is unavailable.
    642 
    643 * ``hasFP`` --- Return a Boolean indicating if a function should have a
    644   dedicated frame pointer register.
    645 
    646 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
    647   instructions are used, this can be called to eliminate them.
    648 
    649 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
    650   instructions that may use them.
    651 
    652 * ``emitPrologue`` --- Insert prologue code into the function.
    653 
    654 * ``emitEpilogue`` --- Insert epilogue code into the function.
    655 
    656 .. _instruction-set:
    657 
    658 Instruction Set
    659 ===============
    660 
    661 During the early stages of code generation, the LLVM IR code is converted to a
    662 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
    663 containing target instructions.  An ``SDNode`` has an opcode, operands, type
    664 requirements, and operation properties.  For example, is an operation
    665 commutative, does an operation load from memory.  The various operation node
    666 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
    667 (values of the ``NodeType`` enum in the ``ISD`` namespace).
    668 
    669 TableGen uses the following target description (``.td``) input files to
    670 generate much of the code for instruction definition:
    671 
    672 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
    673   other fundamental classes are defined.
    674 
    675 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
    676   generators, contains ``SDTC*`` classes (selection DAG type constraint),
    677   definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
    678   ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
    679   ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
    680 
    681 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
    682   instructions.
    683 
    684 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
    685   condition codes, and instructions of an instruction set.  For architecture
    686   modifications, a different file name may be used.  For example, for Pentium
    687   with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
    688   MMX, this file is ``X86InstrMMX.td``.
    689 
    690 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
    691 the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
    692 its contents are only directly important for subtargets.
    693 
    694 You should describe a concrete target-specific class ``XXXInstrInfo`` that
    695 represents machine instructions supported by a target machine.
    696 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
    697 which describes one instruction.  An instruction descriptor defines:
    698 
    699 * Opcode mnemonic
    700 * Number of operands
    701 * List of implicit register definitions and uses
    702 * Target-independent properties (such as memory access, is commutable)
    703 * Target-specific flags
    704 
    705 The Instruction class (defined in ``Target.td``) is mostly used as a base for
    706 more complex instruction classes.
    707 
    708 .. code-block:: llvm
    709 
    710   class Instruction {
    711     string Namespace = "";
    712     dag OutOperandList;    // A dag containing the MI def operand list.
    713     dag InOperandList;     // A dag containing the MI use operand list.
    714     string AsmString = ""; // The .s format to print the instruction with.
    715     list<dag> Pattern;     // Set to the DAG pattern for this instruction.
    716     list<Register> Uses = [];
    717     list<Register> Defs = [];
    718     list<Predicate> Predicates = [];  // predicates turned into isel match code
    719     ... remainder not shown for space ...
    720   }
    721 
    722 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
    723 target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
    724 instruction objects should represent instructions from the architecture manual
    725 of the target machine (such as the SPARC Architecture Manual for the SPARC
    726 target).
    727 
    728 A single instruction from the architecture manual is often modeled as multiple
    729 target instructions, depending upon its operands.  For example, a manual might
    730 describe an add instruction that takes a register or an immediate operand.  An
    731 LLVM target could model this with two instructions named ``ADDri`` and
    732 ``ADDrr``.
    733 
    734 You should define a class for each instruction category and define each opcode
    735 as a subclass of the category with appropriate parameters such as the fixed
    736 binary encoding of opcodes and extended opcodes.  You should map the register
    737 bits to the bits of the instruction in which they are encoded (for the JIT).
    738 Also you should specify how the instruction should be printed when the
    739 automatic assembly printer is used.
    740 
    741 As is described in the SPARC Architecture Manual, Version 8, there are three
    742 major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
    743 instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
    744 bits of a register) instructions.  Format 3 is for other instructions.
    745 
    746 Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
    747 ``InstSP`` is a base class for other instruction classes.  Additional base
    748 classes are specified for more precise formats: for example in
    749 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
    750 branches.  There are three other base classes: ``F3_1`` for register/register
    751 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
    752 floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
    753 ``Pseudo`` for synthetic SPARC instructions.
    754 
    755 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions
    756 for the SPARC target.  In ``SparcInstrInfo.td``, the following target
    757 description file entry, ``LDrr``, defines the Load Integer instruction for a
    758 Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
    759 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
    760 category of operation.  The second parameter (``000000``\ :sub:`2`) is the
    761 specific operation value for ``LD``/Load Word.  The third parameter is the
    762 output destination, which is a register operand and defined in the ``Register``
    763 target description file (``IntRegs``).
    764 
    765 .. code-block:: llvm
    766 
    767   def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
    768                    "ld [$addr], $dst",
    769                    [(set i32:$dst, (load ADDRrr:$addr))]>;
    770 
    771 The fourth parameter is the input source, which uses the address operand
    772 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
    773 
    774 .. code-block:: llvm
    775 
    776   def MEMrr : Operand<i32> {
    777     let PrintMethod = "printMemOperand";
    778     let MIOperandInfo = (ops IntRegs, IntRegs);
    779   }
    780 
    781 The fifth parameter is a string that is used by the assembly printer and can be
    782 left as an empty string until the assembly printer interface is implemented.
    783 The sixth and final parameter is the pattern used to match the instruction
    784 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
    785 This parameter is detailed in the next section, :ref:`instruction-selector`.
    786 
    787 Instruction class definitions are not overloaded for different operand types,
    788 so separate versions of instructions are needed for register, memory, or
    789 immediate value operands.  For example, to perform a Load Integer instruction
    790 for a Word from an immediate operand to a register, the following instruction
    791 class is defined:
    792 
    793 .. code-block:: llvm
    794 
    795   def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
    796                    "ld [$addr], $dst",
    797                    [(set i32:$dst, (load ADDRri:$addr))]>;
    798 
    799 Writing these definitions for so many similar instructions can involve a lot of
    800 cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
    801 creation of templates to define several instruction classes at once (using the
    802 ``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
    803 pattern ``F3_12`` is defined to create 2 instruction classes each time
    804 ``F3_12`` is invoked:
    805 
    806 .. code-block:: llvm
    807 
    808   multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    809     def rr  : F3_1 <2, Op3Val,
    810                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    811                    !strconcat(OpcStr, " $b, $c, $dst"),
    812                    [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
    813     def ri  : F3_2 <2, Op3Val,
    814                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    815                    !strconcat(OpcStr, " $b, $c, $dst"),
    816                    [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
    817   }
    818 
    819 So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
    820 instructions, as seen below, it creates four instruction objects: ``XORrr``,
    821 ``XORri``, ``ADDrr``, and ``ADDri``.
    822 
    823 .. code-block:: llvm
    824 
    825   defm XOR   : F3_12<"xor", 0b000011, xor>;
    826   defm ADD   : F3_12<"add", 0b000000, add>;
    827 
    828 ``SparcInstrInfo.td`` also includes definitions for condition codes that are
    829 referenced by branch instructions.  The following definitions in
    830 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
    831 For example, the 10\ :sup:`th` bit represents the "greater than" condition for
    832 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
    833 floats.
    834 
    835 .. code-block:: llvm
    836 
    837   def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    838   def ICC_E   : ICC_VAL< 1>;  // Equal
    839   def ICC_G   : ICC_VAL<10>;  // Greater
    840   ...
    841   def FCC_U   : FCC_VAL<23>;  // Unordered
    842   def FCC_G   : FCC_VAL<22>;  // Greater
    843   def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    844   ...
    845 
    846 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
    847 condition codes.  Care must be taken to ensure the values in ``Sparc.h``
    848 correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
    849 ``SPCC::FCC_U = 23`` and so on.)
    850 
    851 Instruction Operand Mapping
    852 ---------------------------
    853 
    854 The code generator backend maps instruction operands to fields in the
    855 instruction.  Operands are assigned to unbound fields in the instruction in the
    856 order they are defined.  Fields are bound when they are assigned a value.  For
    857 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
    858 format instruction having three operands.
    859 
    860 .. code-block:: llvm
    861 
    862   def XNORrr  : F3_1<2, 0b000111,
    863                      (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    864                      "xnor $b, $c, $dst",
    865                      [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
    866 
    867 The instruction templates in ``SparcInstrFormats.td`` show the base class for
    868 ``F3_1`` is ``InstSP``.
    869 
    870 .. code-block:: llvm
    871 
    872   class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
    873     field bits<32> Inst;
    874     let Namespace = "SP";
    875     bits<2> op;
    876     let Inst{31-30} = op;
    877     dag OutOperandList = outs;
    878     dag InOperandList = ins;
    879     let AsmString   = asmstr;
    880     let Pattern = pattern;
    881   }
    882 
    883 ``InstSP`` leaves the ``op`` field unbound.
    884 
    885 .. code-block:: llvm
    886 
    887   class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
    888       : InstSP<outs, ins, asmstr, pattern> {
    889     bits<5> rd;
    890     bits<6> op3;
    891     bits<5> rs1;
    892     let op{1} = 1;   // Op = 2 or 3
    893     let Inst{29-25} = rd;
    894     let Inst{24-19} = op3;
    895     let Inst{18-14} = rs1;
    896   }
    897 
    898 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
    899 fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
    900 ``rs1`` fields.
    901 
    902 .. code-block:: llvm
    903 
    904   class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
    905              string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
    906     bits<8> asi = 0; // asi not currently used
    907     bits<5> rs2;
    908     let op         = opVal;
    909     let op3        = op3val;
    910     let Inst{13}   = 0;     // i field = 0
    911     let Inst{12-5} = asi;   // address space identifier
    912     let Inst{4-0}  = rs2;
    913   }
    914 
    915 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
    916 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
    917 fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
    918 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
    919 
    920 Instruction Operand Name Mapping
    921 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    922 
    923 TableGen will also generate a function called getNamedOperandIdx() which
    924 can be used to look up an operand's index in a MachineInstr based on its
    925 TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
    926 TableGen definition will add all of its operands to an enumeration in the
    927 llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
    928 table, which can be queried using getNamedOperandIdx()
    929 
    930 .. code-block:: llvm
    931 
    932   int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
    933   int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
    934   int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
    935   int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
    936 
    937   ...
    938 
    939 The entries in the OpName enum are taken verbatim from the TableGen definitions,
    940 so operands with lowercase names will have lower case entries in the enum.
    941 
    942 To include the getNamedOperandIdx() function in your backend, you will need
    943 to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
    944 For example:
    945 
    946 XXXInstrInfo.cpp:
    947 
    948 .. code-block:: c++ 
    949 
    950   #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
    951   #include "XXXGenInstrInfo.inc"
    952 
    953 XXXInstrInfo.h:
    954 
    955 .. code-block:: c++
    956 
    957   #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
    958   #include "XXXGenInstrInfo.inc"
    959 
    960   namespace XXX {
    961     int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
    962   } // End namespace XXX
    963 
    964 Instruction Operand Types
    965 ^^^^^^^^^^^^^^^^^^^^^^^^^
    966 
    967 TableGen will also generate an enumeration consisting of all named Operand
    968 types defined in the backend, in the llvm::XXX::OpTypes namespace.
    969 Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
    970 are defined for all targets in ``include/llvm/Target/Target.td``, and are
    971 available in each Target's OpTypes enum.  Also, only named Operand types appear
    972 in the enumeration: anonymous types are ignored.
    973 For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
    974 instances of the TableGen ``Operand`` class, which represent branch target
    975 operands:
    976 
    977 .. code-block:: llvm
    978 
    979   def brtarget : Operand<OtherVT>;
    980   def brtarget8 : Operand<OtherVT>;
    981 
    982 This results in:
    983 
    984 .. code-block:: c++
    985 
    986   namespace X86 {
    987   namespace OpTypes {
    988   enum OperandType {
    989     ...
    990     brtarget,
    991     brtarget8,
    992     ...
    993     i32imm,
    994     i64imm,
    995     ...
    996     OPERAND_TYPE_LIST_END
    997   } // End namespace OpTypes
    998   } // End namespace X86
    999 
   1000 In typical TableGen fashion, to use the enum, you will need to define a
   1001 preprocessor macro:
   1002 
   1003 .. code-block:: c++
   1004 
   1005   #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
   1006   #include "XXXGenInstrInfo.inc"
   1007 
   1008 
   1009 Instruction Scheduling
   1010 ----------------------
   1011 
   1012 Instruction itineraries can be queried using MCDesc::getSchedClass(). The
   1013 value can be named by an enumemation in llvm::XXX::Sched namespace generated
   1014 by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
   1015 the same as provided in XXXSchedule.td plus a default NoItinerary class.
   1016 
   1017 Instruction Relation Mapping
   1018 ----------------------------
   1019 
   1020 This TableGen feature is used to relate instructions with each other.  It is
   1021 particularly useful when you have multiple instruction formats and need to
   1022 switch between them after instruction selection.  This entire feature is driven
   1023 by relation models which can be defined in ``XXXInstrInfo.td`` files
   1024 according to the target-specific instruction set.  Relation models are defined
   1025 using ``InstrMapping`` class as a base.  TableGen parses all the models
   1026 and generates instruction relation maps using the specified information.
   1027 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
   1028 along with the functions to query them.  For the detailed information on how to
   1029 use this feature, please refer to :doc:`HowToUseInstrMappings`.
   1030 
   1031 Implement a subclass of ``TargetInstrInfo``
   1032 -------------------------------------------
   1033 
   1034 The final step is to hand code portions of ``XXXInstrInfo``, which implements
   1035 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
   1036 These functions return ``0`` or a Boolean or they assert, unless overridden.
   1037 Here's a list of functions that are overridden for the SPARC implementation in
   1038 ``SparcInstrInfo.cpp``:
   1039 
   1040 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
   1041   load from a stack slot, return the register number of the destination and the
   1042   ``FrameIndex`` of the stack slot.
   1043 
   1044 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
   1045   store to a stack slot, return the register number of the destination and the
   1046   ``FrameIndex`` of the stack slot.
   1047 
   1048 * ``copyPhysReg`` --- Copy values between a pair of physical registers.
   1049 
   1050 * ``storeRegToStackSlot`` --- Store a register value to a stack slot.
   1051 
   1052 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
   1053 
   1054 * ``storeRegToAddr`` --- Store a register value to memory.
   1055 
   1056 * ``loadRegFromAddr`` --- Load a register value from memory.
   1057 
   1058 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
   1059   store instruction for the specified operand(s).
   1060 
   1061 Branch Folding and If Conversion
   1062 --------------------------------
   1063 
   1064 Performance can be improved by combining instructions or by eliminating
   1065 instructions that are never reached.  The ``AnalyzeBranch`` method in
   1066 ``XXXInstrInfo`` may be implemented to examine conditional instructions and
   1067 remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
   1068 machine basic block (MBB) for opportunities for improvement, such as branch
   1069 folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
   1070 function passes (see the source files ``BranchFolding.cpp`` and
   1071 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
   1072 to improve the control flow graph that represents the instructions.
   1073 
   1074 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
   1075 examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
   1076 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
   1077 shown below.
   1078 
   1079 ``AnalyzeBranch`` returns a Boolean value and takes four parameters:
   1080 
   1081 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
   1082 
   1083 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
   1084   conditional branch that evaluates to true, ``TBB`` is the destination.
   1085 
   1086 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
   1087   false, ``FBB`` is returned as the destination.
   1088 
   1089 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
   1090   condition for a conditional branch.
   1091 
   1092 In the simplest case, if a block ends without a branch, then it falls through
   1093 to the successor block.  No destination blocks are specified for either ``TBB``
   1094 or ``FBB``, so both parameters return ``NULL``.  The start of the
   1095 ``AnalyzeBranch`` (see code below for the ARM target) shows the function
   1096 parameters and the code for the simplest case.
   1097 
   1098 .. code-block:: c++
   1099 
   1100   bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   1101                                    MachineBasicBlock *&TBB,
   1102                                    MachineBasicBlock *&FBB,
   1103                                    std::vector<MachineOperand> &Cond) const
   1104   {
   1105     MachineBasicBlock::iterator I = MBB.end();
   1106     if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
   1107       return false;
   1108 
   1109 If a block ends with a single unconditional branch instruction, then
   1110 ``AnalyzeBranch`` (shown below) should return the destination of that branch in
   1111 the ``TBB`` parameter.
   1112 
   1113 .. code-block:: c++
   1114 
   1115     if (LastOpc == ARM::B || LastOpc == ARM::tB) {
   1116       TBB = LastInst->getOperand(0).getMBB();
   1117       return false;
   1118     }
   1119 
   1120 If a block ends with two unconditional branches, then the second branch is
   1121 never reached.  In that situation, as shown below, remove the last branch
   1122 instruction and return the penultimate branch in the ``TBB`` parameter.
   1123 
   1124 .. code-block:: c++
   1125 
   1126     if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
   1127         (LastOpc == ARM::B || LastOpc == ARM::tB)) {
   1128       TBB = SecondLastInst->getOperand(0).getMBB();
   1129       I = LastInst;
   1130       I->eraseFromParent();
   1131       return false;
   1132     }
   1133 
   1134 A block may end with a single conditional branch instruction that falls through
   1135 to successor block if the condition evaluates to false.  In that case,
   1136 ``AnalyzeBranch`` (shown below) should return the destination of that
   1137 conditional branch in the ``TBB`` parameter and a list of operands in the
   1138 ``Cond`` parameter to evaluate the condition.
   1139 
   1140 .. code-block:: c++
   1141 
   1142     if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
   1143       // Block ends with fall-through condbranch.
   1144       TBB = LastInst->getOperand(0).getMBB();
   1145       Cond.push_back(LastInst->getOperand(1));
   1146       Cond.push_back(LastInst->getOperand(2));
   1147       return false;
   1148     }
   1149 
   1150 If a block ends with both a conditional branch and an ensuing unconditional
   1151 branch, then ``AnalyzeBranch`` (shown below) should return the conditional
   1152 branch destination (assuming it corresponds to a conditional evaluation of
   1153 "``true``") in the ``TBB`` parameter and the unconditional branch destination
   1154 in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
   1155 list of operands to evaluate the condition should be returned in the ``Cond``
   1156 parameter.
   1157 
   1158 .. code-block:: c++
   1159 
   1160     unsigned SecondLastOpc = SecondLastInst->getOpcode();
   1161 
   1162     if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
   1163         (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
   1164       TBB =  SecondLastInst->getOperand(0).getMBB();
   1165       Cond.push_back(SecondLastInst->getOperand(1));
   1166       Cond.push_back(SecondLastInst->getOperand(2));
   1167       FBB = LastInst->getOperand(0).getMBB();
   1168       return false;
   1169     }
   1170 
   1171 For the last two cases (ending with a single conditional branch or ending with
   1172 one conditional and one unconditional branch), the operands returned in the
   1173 ``Cond`` parameter can be passed to methods of other instructions to create new
   1174 branches or perform other operations.  An implementation of ``AnalyzeBranch``
   1175 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
   1176 subsequent operations.
   1177 
   1178 ``AnalyzeBranch`` should return false indicating success in most circumstances.
   1179 ``AnalyzeBranch`` should only return true when the method is stumped about what
   1180 to do, for example, if a block has three terminating branches.
   1181 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot
   1182 handle, such as an indirect branch.
   1183 
   1184 .. _instruction-selector:
   1185 
   1186 Instruction Selector
   1187 ====================
   1188 
   1189 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
   1190 the ``SelectionDAG`` ideally represent native target instructions.  During code
   1191 generation, instruction selection passes are performed to convert non-native
   1192 DAG instructions into native target-specific instructions.  The pass described
   1193 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
   1194 instruction selection.  Optionally, a pass may be defined (in
   1195 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
   1196 instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
   1197 operations and data types not supported natively (legalizes) in a
   1198 ``SelectionDAG``.
   1199 
   1200 TableGen generates code for instruction selection using the following target
   1201 description input files:
   1202 
   1203 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
   1204   target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
   1205   included in ``XXXISelDAGToDAG.cpp``.
   1206 
   1207 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions
   1208   for the target architecture, and it generates ``XXXGenCallingConv.inc``,
   1209   which is included in ``XXXISelLowering.cpp``.
   1210 
   1211 The implementation of an instruction selection pass must include a header that
   1212 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
   1213 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
   1214 selection pass into the queue of passes to run.
   1215 
   1216 The LLVM static compiler (``llc``) is an excellent tool for visualizing the
   1217 contents of DAGs.  To display the ``SelectionDAG`` before or after specific
   1218 processing phases, use the command line options for ``llc``, described at
   1219 :ref:`SelectionDAG-Process`.
   1220 
   1221 To describe instruction selector behavior, you should add patterns for lowering
   1222 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
   1223 definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
   1224 this entry defines a register store operation, and the last parameter describes
   1225 a pattern with the store DAG operator.
   1226 
   1227 .. code-block:: llvm
   1228 
   1229   def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
   1230                    "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
   1231 
   1232 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
   1233 
   1234 .. code-block:: llvm
   1235 
   1236   def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
   1237 
   1238 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
   1239 defined in an implementation of the Instructor Selector (such as
   1240 ``SparcISelDAGToDAG.cpp``).
   1241 
   1242 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
   1243 below:
   1244 
   1245 .. code-block:: llvm
   1246 
   1247   def store : PatFrag<(ops node:$val, node:$ptr),
   1248                       (st node:$val, node:$ptr), [{
   1249     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
   1250       return !ST->isTruncatingStore() &&
   1251              ST->getAddressingMode() == ISD::UNINDEXED;
   1252     return false;
   1253   }]>;
   1254 
   1255 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
   1256 ``SelectCode`` method that is used to call the appropriate processing method
   1257 for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
   1258 for the ``ISD::STORE`` opcode.
   1259 
   1260 .. code-block:: c++
   1261 
   1262   SDNode *SelectCode(SDValue N) {
   1263     ...
   1264     MVT::ValueType NVT = N.getNode()->getValueType(0);
   1265     switch (N.getOpcode()) {
   1266     case ISD::STORE: {
   1267       switch (NVT) {
   1268       default:
   1269         return Select_ISD_STORE(N);
   1270         break;
   1271       }
   1272       break;
   1273     }
   1274     ...
   1275 
   1276 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
   1277 code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
   1278 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
   1279 instruction.
   1280 
   1281 .. code-block:: c++
   1282 
   1283   SDNode *Select_ISD_STORE(const SDValue &N) {
   1284     SDValue Chain = N.getOperand(0);
   1285     if (Predicate_store(N.getNode())) {
   1286       SDValue N1 = N.getOperand(1);
   1287       SDValue N2 = N.getOperand(2);
   1288       SDValue CPTmp0;
   1289       SDValue CPTmp1;
   1290 
   1291       // Pattern: (st:void i32:i32:$src,
   1292       //           ADDRrr:i32:$addr)<<P:Predicate_store>>
   1293       // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
   1294       // Pattern complexity = 13  cost = 1  size = 0
   1295       if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
   1296           N1.getNode()->getValueType(0) == MVT::i32 &&
   1297           N2.getNode()->getValueType(0) == MVT::i32) {
   1298         return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
   1299       }
   1300   ...
   1301 
   1302 The SelectionDAG Legalize Phase
   1303 -------------------------------
   1304 
   1305 The Legalize phase converts a DAG to use types and operations that are natively
   1306 supported by the target.  For natively unsupported types and operations, you
   1307 need to add code to the target-specific ``XXXTargetLowering`` implementation to
   1308 convert unsupported types and operations to supported ones.
   1309 
   1310 In the constructor for the ``XXXTargetLowering`` class, first use the
   1311 ``addRegisterClass`` method to specify which types are supported and which
   1312 register classes are associated with them.  The code for the register classes
   1313 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
   1314 ``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
   1315 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
   1316 starts with the following code:
   1317 
   1318 .. code-block:: c++
   1319 
   1320   addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
   1321   addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
   1322   addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
   1323 
   1324 You should examine the node types in the ``ISD`` namespace
   1325 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
   1326 the target natively supports.  For operations that do **not** have native
   1327 support, add a callback to the constructor for the ``XXXTargetLowering`` class,
   1328 so the instruction selection process knows what to do.  The ``TargetLowering``
   1329 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
   1330 
   1331 * ``setOperationAction`` --- General operation.
   1332 * ``setLoadExtAction`` --- Load with extension.
   1333 * ``setTruncStoreAction`` --- Truncating store.
   1334 * ``setIndexedLoadAction`` --- Indexed load.
   1335 * ``setIndexedStoreAction`` --- Indexed store.
   1336 * ``setConvertAction`` --- Type conversion.
   1337 * ``setCondCodeAction`` --- Support for a given condition code.
   1338 
   1339 Note: on older releases, ``setLoadXAction`` is used instead of
   1340 ``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
   1341 be supported.  Examine your release to see what methods are specifically
   1342 supported.
   1343 
   1344 These callbacks are used to determine that an operation does or does not work
   1345 with a specified type (or types).  And in all cases, the third parameter is a
   1346 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
   1347 ``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
   1348 ``LegalAction`` values.
   1349 
   1350 Promote
   1351 ^^^^^^^
   1352 
   1353 For an operation without native support for a given type, the specified type
   1354 may be promoted to a larger type that is supported.  For example, SPARC does
   1355 not support a sign-extending load for Boolean values (``i1`` type), so in
   1356 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
   1357 ``i1`` type values to a large type before loading.
   1358 
   1359 .. code-block:: c++
   1360 
   1361   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
   1362 
   1363 Expand
   1364 ^^^^^^
   1365 
   1366 For a type without native support, a value may need to be broken down further,
   1367 rather than promoted.  For an operation without native support, a combination
   1368 of other operations may be used to similar effect.  In SPARC, the
   1369 floating-point sine and cosine trig operations are supported by expansion to
   1370 other operations, as indicated by the third parameter, ``Expand``, to
   1371 ``setOperationAction``:
   1372 
   1373 .. code-block:: c++
   1374 
   1375   setOperationAction(ISD::FSIN, MVT::f32, Expand);
   1376   setOperationAction(ISD::FCOS, MVT::f32, Expand);
   1377 
   1378 Custom
   1379 ^^^^^^
   1380 
   1381 For some operations, simple type promotion or operation expansion may be
   1382 insufficient.  In some cases, a special intrinsic function must be implemented.
   1383 
   1384 For example, a constant value may require special treatment, or an operation
   1385 may require spilling and restoring registers in the stack and working with
   1386 register allocators.
   1387 
   1388 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
   1389 from a floating point value to a signed integer, first the
   1390 ``setOperationAction`` should be called with ``Custom`` as the third parameter:
   1391 
   1392 .. code-block:: c++
   1393 
   1394   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
   1395 
   1396 In the ``LowerOperation`` method, for each ``Custom`` operation, a case
   1397 statement should be added to indicate what function to call.  In the following
   1398 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
   1399 
   1400 .. code-block:: c++
   1401 
   1402   SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
   1403     switch (Op.getOpcode()) {
   1404     case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
   1405     ...
   1406     }
   1407   }
   1408 
   1409 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
   1410 convert the floating-point value to an integer.
   1411 
   1412 .. code-block:: c++
   1413 
   1414   static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
   1415     assert(Op.getValueType() == MVT::i32);
   1416     Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
   1417     return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
   1418   }
   1419 
   1420 Legal
   1421 ^^^^^
   1422 
   1423 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
   1424 **is** natively supported.  ``Legal`` represents the default condition, so it
   1425 is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
   1426 operation to count the bits set in an integer) is natively supported only for
   1427 SPARC v9.  The following code enables the ``Expand`` conversion technique for
   1428 non-v9 SPARC implementations.
   1429 
   1430 .. code-block:: c++
   1431 
   1432   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
   1433   ...
   1434   if (TM.getSubtarget<SparcSubtarget>().isV9())
   1435     setOperationAction(ISD::CTPOP, MVT::i32, Legal);
   1436 
   1437 Calling Conventions
   1438 -------------------
   1439 
   1440 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
   1441 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
   1442 ``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
   1443 file ``XXXGenCallingConv.td`` and generate the header file
   1444 ``XXXGenCallingConv.inc``, which is typically included in
   1445 ``XXXISelLowering.cpp``.  You can use the interfaces in
   1446 ``TargetCallingConv.td`` to specify:
   1447 
   1448 * The order of parameter allocation.
   1449 
   1450 * Where parameters and return values are placed (that is, on the stack or in
   1451   registers).
   1452 
   1453 * Which registers may be used.
   1454 
   1455 * Whether the caller or callee unwinds the stack.
   1456 
   1457 The following example demonstrates the use of the ``CCIfType`` and
   1458 ``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
   1459 if the current argument is of type ``f32`` or ``f64``), then the action is
   1460 performed.  In this case, the ``CCAssignToReg`` action assigns the argument
   1461 value to the first available register: either ``R0`` or ``R1``.
   1462 
   1463 .. code-block:: llvm
   1464 
   1465   CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
   1466 
   1467 ``SparcCallingConv.td`` contains definitions for a target-specific return-value
   1468 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
   1469 (``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
   1470 which registers are used for specified scalar return types.  A single-precision
   1471 float is returned to register ``F0``, and a double-precision float goes to
   1472 register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
   1473 
   1474 .. code-block:: llvm
   1475 
   1476   def RetCC_Sparc32 : CallingConv<[
   1477     CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
   1478     CCIfType<[f32], CCAssignToReg<[F0]>>,
   1479     CCIfType<[f64], CCAssignToReg<[D0]>>
   1480   ]>;
   1481 
   1482 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
   1483 ``CCAssignToStack``, which assigns the value to a stack slot with the specified
   1484 size and alignment.  In the example below, the first parameter, 4, indicates
   1485 the size of the slot, and the second parameter, also 4, indicates the stack
   1486 alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
   1487 size is used; if alignment is zero, then the ABI alignment is used.)
   1488 
   1489 .. code-block:: llvm
   1490 
   1491   def CC_Sparc32 : CallingConv<[
   1492     // All arguments get passed in integer registers if there is space.
   1493     CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
   1494     CCAssignToStack<4, 4>
   1495   ]>;
   1496 
   1497 ``CCDelegateTo`` is another commonly used interface, which tries to find a
   1498 specified sub-calling convention, and, if a match is found, it is invoked.  In
   1499 the following example (in ``X86CallingConv.td``), the definition of
   1500 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
   1501 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
   1502 invoked.
   1503 
   1504 .. code-block:: llvm
   1505 
   1506   def RetCC_X86_32_C : CallingConv<[
   1507     CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
   1508     CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
   1509     CCDelegateTo<RetCC_X86Common>
   1510   ]>;
   1511 
   1512 ``CCIfCC`` is an interface that attempts to match the given name to the current
   1513 calling convention.  If the name identifies the current calling convention,
   1514 then a specified action is invoked.  In the following example (in
   1515 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
   1516 ``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
   1517 use, then ``RetCC_X86_32_SSE`` is invoked.
   1518 
   1519 .. code-block:: llvm
   1520 
   1521   def RetCC_X86_32 : CallingConv<[
   1522     CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
   1523     CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
   1524     CCDelegateTo<RetCC_X86_32_C>
   1525   ]>;
   1526 
   1527 Other calling convention interfaces include:
   1528 
   1529 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
   1530 
   1531 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
   1532   attribute, then apply the action.
   1533 
   1534 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
   1535   attribute, then apply the action.
   1536 
   1537 * ``CCIfNotVarArg <action>`` --- If the current function does not take a
   1538   variable number of arguments, apply the action.
   1539 
   1540 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
   1541   ``CCAssignToReg``, but with a shadow list of registers.
   1542 
   1543 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
   1544   minimum specified size and alignment.
   1545 
   1546 * ``CCPromoteToType <type>`` --- Promote the current value to the specified
   1547   type.
   1548 
   1549 * ``CallingConv <[actions]>`` --- Define each calling convention that is
   1550   supported.
   1551 
   1552 Assembly Printer
   1553 ================
   1554 
   1555 During the code emission stage, the code generator may utilize an LLVM pass to
   1556 produce assembly output.  To do this, you want to implement the code for a
   1557 printer that converts LLVM IR to a GAS-format assembly language for your target
   1558 machine, using the following steps:
   1559 
   1560 * Define all the assembly strings for your target, adding them to the
   1561   instructions defined in the ``XXXInstrInfo.td`` file.  (See
   1562   :ref:`instruction-set`.)  TableGen will produce an output file
   1563   (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
   1564   method for the ``XXXAsmPrinter`` class.
   1565 
   1566 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
   1567   the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
   1568 
   1569 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
   1570   ``TargetAsmInfo`` properties and sometimes new implementations for methods.
   1571 
   1572 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
   1573   performs the LLVM-to-assembly conversion.
   1574 
   1575 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
   1576 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
   1577 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
   1578 replacement values that override the default values in ``TargetAsmInfo.cpp``.
   1579 For example in ``SparcTargetAsmInfo.cpp``:
   1580 
   1581 .. code-block:: c++
   1582 
   1583   SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
   1584     Data16bitsDirective = "\t.half\t";
   1585     Data32bitsDirective = "\t.word\t";
   1586     Data64bitsDirective = 0;  // .xword is only supported by V9.
   1587     ZeroDirective = "\t.skip\t";
   1588     CommentString = "!";
   1589     ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
   1590   }
   1591 
   1592 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
   1593 where the target specific ``TargetAsmInfo`` class uses an overridden methods:
   1594 ``ExpandInlineAsm``.
   1595 
   1596 A target-specific implementation of ``AsmPrinter`` is written in
   1597 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
   1598 the LLVM to printable assembly.  The implementation must include the following
   1599 headers that have declarations for the ``AsmPrinter`` and
   1600 ``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
   1601 ``FunctionPass``.
   1602 
   1603 .. code-block:: c++
   1604 
   1605   #include "llvm/CodeGen/AsmPrinter.h"
   1606   #include "llvm/CodeGen/MachineFunctionPass.h"
   1607 
   1608 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
   1609 up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
   1610 instantiated to process variable names.
   1611 
   1612 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
   1613 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
   1614 ``MachineFunctionPass``, the ``runOnFunction`` method invokes
   1615 ``runOnMachineFunction``.  Target-specific implementations of
   1616 ``runOnMachineFunction`` differ, but generally do the following to process each
   1617 machine function:
   1618 
   1619 * Call ``SetupMachineFunction`` to perform initialization.
   1620 
   1621 * Call ``EmitConstantPool`` to print out (to the output stream) constants which
   1622   have been spilled to memory.
   1623 
   1624 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current
   1625   function.
   1626 
   1627 * Print out the label for the current function.
   1628 
   1629 * Print out the code for the function, including basic block labels and the
   1630   assembly for the instruction (using ``printInstruction``)
   1631 
   1632 The ``XXXAsmPrinter`` implementation must also include the code generated by
   1633 TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
   1634 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
   1635 method that may call these methods:
   1636 
   1637 * ``printOperand``
   1638 * ``printMemOperand``
   1639 * ``printCCOperand`` (for conditional statements)
   1640 * ``printDataDirective``
   1641 * ``printDeclare``
   1642 * ``printImplicitDef``
   1643 * ``printInlineAsm``
   1644 
   1645 The implementations of ``printDeclare``, ``printImplicitDef``,
   1646 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
   1647 adequate for printing assembly and do not need to be overridden.
   1648 
   1649 The ``printOperand`` method is implemented with a long ``switch``/``case``
   1650 statement for the type of operand: register, immediate, basic block, external
   1651 symbol, global address, constant pool index, or jump table index.  For an
   1652 instruction with a memory address operand, the ``printMemOperand`` method
   1653 should be implemented to generate the proper output.  Similarly,
   1654 ``printCCOperand`` should be used to print a conditional operand.
   1655 
   1656 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
   1657 called to shut down the assembly printer.  During ``doFinalization``, global
   1658 variables and constants are printed to output.
   1659 
   1660 Subtarget Support
   1661 =================
   1662 
   1663 Subtarget support is used to inform the code generation process of instruction
   1664 set variations for a given chip set.  For example, the LLVM SPARC
   1665 implementation provided covers three major versions of the SPARC microprocessor
   1666 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
   1667 64-bit architecture), and the UltraSPARC architecture.  V8 has 16
   1668 double-precision floating-point registers that are also usable as either 32
   1669 single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
   1670 V9 has 32 double-precision floating-point registers that are also usable as 16
   1671 quad-precision registers, but cannot be used as single-precision registers.
   1672 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
   1673 extensions.
   1674 
   1675 If subtarget support is needed, you should implement a target-specific
   1676 ``XXXSubtarget`` class for your architecture.  This class should process the
   1677 command-line options ``-mcpu=`` and ``-mattr=``.
   1678 
   1679 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
   1680 generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
   1681 ``SubtargetFeature`` interface is defined.  The first 4 string parameters of
   1682 the ``SubtargetFeature`` interface are a feature name, an attribute set by the
   1683 feature, the value of the attribute, and a description of the feature.  (The
   1684 fifth parameter is a list of features whose presence is implied, and its
   1685 default value is an empty array.)
   1686 
   1687 .. code-block:: llvm
   1688 
   1689   class SubtargetFeature<string n, string a, string v, string d,
   1690                          list<SubtargetFeature> i = []> {
   1691     string Name = n;
   1692     string Attribute = a;
   1693     string Value = v;
   1694     string Desc = d;
   1695     list<SubtargetFeature> Implies = i;
   1696   }
   1697 
   1698 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
   1699 following features.
   1700 
   1701 .. code-block:: llvm
   1702 
   1703   def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
   1704                        "Enable SPARC-V9 instructions">;
   1705   def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
   1706                        "V8DeprecatedInsts", "true",
   1707                        "Enable deprecated V8 instructions in V9 mode">;
   1708   def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
   1709                        "Enable UltraSPARC Visual Instruction Set extensions">;
   1710 
   1711 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
   1712 define particular SPARC processor subtypes that may have the previously
   1713 described features.
   1714 
   1715 .. code-block:: llvm
   1716 
   1717   class Proc<string Name, list<SubtargetFeature> Features>
   1718     : Processor<Name, NoItineraries, Features>;
   1719 
   1720   def : Proc<"generic",         []>;
   1721   def : Proc<"v8",              []>;
   1722   def : Proc<"supersparc",      []>;
   1723   def : Proc<"sparclite",       []>;
   1724   def : Proc<"f934",            []>;
   1725   def : Proc<"hypersparc",      []>;
   1726   def : Proc<"sparclite86x",    []>;
   1727   def : Proc<"sparclet",        []>;
   1728   def : Proc<"tsc701",          []>;
   1729   def : Proc<"v9",              [FeatureV9]>;
   1730   def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
   1731   def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
   1732   def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
   1733 
   1734 From ``Target.td`` and ``Sparc.td`` files, the resulting
   1735 ``SparcGenSubtarget.inc`` specifies enum values to identify the features,
   1736 arrays of constants to represent the CPU features and CPU subtypes, and the
   1737 ``ParseSubtargetFeatures`` method that parses the features string that sets
   1738 specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
   1739 should be included in the ``SparcSubtarget.cpp``.  The target-specific
   1740 implementation of the ``XXXSubtarget`` method should follow this pseudocode:
   1741 
   1742 .. code-block:: c++
   1743 
   1744   XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
   1745     // Set the default features
   1746     // Determine default and user specified characteristics of the CPU
   1747     // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
   1748     // Perform any additional operations
   1749   }
   1750 
   1751 JIT Support
   1752 ===========
   1753 
   1754 The implementation of a target machine optionally includes a Just-In-Time (JIT)
   1755 code generator that emits machine code and auxiliary structures as binary
   1756 output that can be written directly to memory.  To do this, implement JIT code
   1757 generation by performing the following steps:
   1758 
   1759 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
   1760   that transforms target-machine instructions into relocatable machine
   1761   code.
   1762 
   1763 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
   1764   target-specific code-generation activities, such as emitting machine code and
   1765   stubs.
   1766 
   1767 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
   1768   through its ``getJITInfo`` method.
   1769 
   1770 There are several different approaches to writing the JIT support code.  For
   1771 instance, TableGen and target descriptor files may be used for creating a JIT
   1772 code generator, but are not mandatory.  For the Alpha and PowerPC target
   1773 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
   1774 contains the binary coding of machine instructions and the
   1775 ``getBinaryCodeForInstr`` method to access those codes.  Other JIT
   1776 implementations do not.
   1777 
   1778 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
   1779 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
   1780 ``MachineCodeEmitter`` class containing code for several callback functions
   1781 that write data (in bytes, words, strings, etc.) to the output stream.
   1782 
   1783 Machine Code Emitter
   1784 --------------------
   1785 
   1786 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
   1787 implemented as a function pass (subclass of ``MachineFunctionPass``).  The
   1788 target-specific implementation of ``runOnMachineFunction`` (invoked by
   1789 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the
   1790 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
   1791 emit binary code.  ``emitInstruction`` is largely implemented with case
   1792 statements on the instruction types defined in ``XXXInstrInfo.h``.  For
   1793 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
   1794 around the following ``switch``/``case`` statements:
   1795 
   1796 .. code-block:: c++
   1797 
   1798   switch (Desc->TSFlags & X86::FormMask) {
   1799   case X86II::Pseudo:  // for not yet implemented instructions
   1800      ...               // or pseudo-instructions
   1801      break;
   1802   case X86II::RawFrm:  // for instructions with a fixed opcode value
   1803      ...
   1804      break;
   1805   case X86II::AddRegFrm: // for instructions that have one register operand
   1806      ...                 // added to their opcode
   1807      break;
   1808   case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
   1809      ...                 // to specify a destination (register)
   1810      break;
   1811   case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
   1812      ...                 // to specify a destination (memory)
   1813      break;
   1814   case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
   1815      ...                 // to specify a source (register)
   1816      break;
   1817   case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
   1818      ...                 // to specify a source (memory)
   1819      break;
   1820   case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
   1821   case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
   1822   case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
   1823   case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
   1824      ...
   1825      break;
   1826   case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
   1827   case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
   1828   case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
   1829   case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
   1830      ...
   1831      break;
   1832   case X86II::MRMInitReg: // for instructions whose source and
   1833      ...                  // destination are the same register
   1834      break;
   1835   }
   1836 
   1837 The implementations of these case statements often first emit the opcode and
   1838 then get the operand(s).  Then depending upon the operand, helper methods may
   1839 be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
   1840 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
   1841 the opcode added to the register operand.  Then an object representing the
   1842 machine operand, ``MO1``, is extracted.  The helper methods such as
   1843 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
   1844 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
   1845 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
   1846 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
   1847 and ``emitJumpTableAddress`` that emit the data into the output stream.)
   1848 
   1849 .. code-block:: c++
   1850 
   1851   case X86II::AddRegFrm:
   1852     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
   1853 
   1854     if (CurOp != NumOps) {
   1855       const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1856       unsigned Size = X86InstrInfo::sizeOfImm(Desc);
   1857       if (MO1.isImmediate())
   1858         emitConstant(MO1.getImm(), Size);
   1859       else {
   1860         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1861           : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1862         if (Opcode == X86::MOV64ri)
   1863           rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
   1864         if (MO1.isGlobalAddress()) {
   1865           bool NeedStub = isa<Function>(MO1.getGlobal());
   1866           bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
   1867           emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1868                             NeedStub, isLazy);
   1869         } else if (MO1.isExternalSymbol())
   1870           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1871         else if (MO1.isConstantPoolIndex())
   1872           emitConstPoolAddress(MO1.getIndex(), rt);
   1873         else if (MO1.isJumpTableIndex())
   1874           emitJumpTableAddress(MO1.getIndex(), rt);
   1875       }
   1876     }
   1877     break;
   1878 
   1879 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
   1880 is a ``RelocationType`` enum that may be used to relocate addresses (for
   1881 example, a global address with a PIC base offset).  The ``RelocationType`` enum
   1882 for that target is defined in the short target-specific ``XXXRelocations.h``
   1883 file.  The ``RelocationType`` is used by the ``relocate`` method defined in
   1884 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
   1885 
   1886 For example, ``X86Relocations.h`` specifies the following relocation types for
   1887 the X86 addresses.  In all four cases, the relocated value is added to the
   1888 value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
   1889 there is an additional initial adjustment.
   1890 
   1891 .. code-block:: c++
   1892 
   1893   enum RelocationType {
   1894     reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
   1895     reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
   1896     reloc_absolute_word = 2, // absolute relocation; no additional adjustment
   1897     reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
   1898   };
   1899 
   1900 Target JIT Info
   1901 ---------------
   1902 
   1903 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
   1904 code-generation activities, such as emitting machine code and stubs.  At
   1905 minimum, a target-specific version of ``XXXJITInfo`` implements the following:
   1906 
   1907 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
   1908   function that is used for compilation.
   1909 
   1910 * ``emitFunctionStub`` --- Returns a native function with a specified address
   1911   for a callback function.
   1912 
   1913 * ``relocate`` --- Changes the addresses of referenced globals, based on
   1914   relocation types.
   1915 
   1916 * Callback function that are wrappers to a function stub that is used when the
   1917   real target is not initially known.
   1918 
   1919 ``getLazyResolverFunction`` is generally trivial to implement.  It makes the
   1920 incoming parameter as the global ``JITCompilerFunction`` and returns the
   1921 callback function that will be used a function wrapper.  For the Alpha target
   1922 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
   1923 simply:
   1924 
   1925 .. code-block:: c++
   1926 
   1927   TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
   1928                                               JITCompilerFn F) {
   1929     JITCompilerFunction = F;
   1930     return AlphaCompilationCallback;
   1931   }
   1932 
   1933 For the X86 target, the ``getLazyResolverFunction`` implementation is a little
   1934 more complicated, because it returns a different callback function for
   1935 processors with SSE instructions and XMM registers.
   1936 
   1937 The callback function initially saves and later restores the callee register
   1938 values, incoming arguments, and frame and return address.  The callback
   1939 function needs low-level access to the registers or stack, so it is typically
   1940 implemented with assembler.
   1941 
   1942