Home | History | Annotate | Download | only in initial
      1 #include "llvm/Analysis/Passes.h"
      2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      3 #include "llvm/ExecutionEngine/MCJIT.h"
      4 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
      5 #include "llvm/IR/DataLayout.h"
      6 #include "llvm/IR/DerivedTypes.h"
      7 #include "llvm/IR/IRBuilder.h"
      8 #include "llvm/IR/LLVMContext.h"
      9 #include "llvm/IR/Module.h"
     10 #include "llvm/IR/Verifier.h"
     11 #include "llvm/PassManager.h"
     12 #include "llvm/Support/TargetSelect.h"
     13 #include "llvm/Transforms/Scalar.h"
     14 #include <cctype>
     15 #include <cstdio>
     16 #include <map>
     17 #include <string>
     18 #include <vector>
     19 using namespace llvm;
     20 
     21 //===----------------------------------------------------------------------===//
     22 // Lexer
     23 //===----------------------------------------------------------------------===//
     24 
     25 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     26 // of these for known things.
     27 enum Token {
     28   tok_eof = -1,
     29 
     30   // commands
     31   tok_def = -2, tok_extern = -3,
     32 
     33   // primary
     34   tok_identifier = -4, tok_number = -5,
     35 
     36   // control
     37   tok_if = -6, tok_then = -7, tok_else = -8,
     38   tok_for = -9, tok_in = -10,
     39 
     40   // operators
     41   tok_binary = -11, tok_unary = -12,
     42 
     43   // var definition
     44   tok_var = -13
     45 };
     46 
     47 static std::string IdentifierStr;  // Filled in if tok_identifier
     48 static double NumVal;              // Filled in if tok_number
     49 
     50 /// gettok - Return the next token from standard input.
     51 static int gettok() {
     52   static int LastChar = ' ';
     53 
     54   // Skip any whitespace.
     55   while (isspace(LastChar))
     56     LastChar = getchar();
     57 
     58   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
     59     IdentifierStr = LastChar;
     60     while (isalnum((LastChar = getchar())))
     61       IdentifierStr += LastChar;
     62 
     63     if (IdentifierStr == "def") return tok_def;
     64     if (IdentifierStr == "extern") return tok_extern;
     65     if (IdentifierStr == "if") return tok_if;
     66     if (IdentifierStr == "then") return tok_then;
     67     if (IdentifierStr == "else") return tok_else;
     68     if (IdentifierStr == "for") return tok_for;
     69     if (IdentifierStr == "in") return tok_in;
     70     if (IdentifierStr == "binary") return tok_binary;
     71     if (IdentifierStr == "unary") return tok_unary;
     72     if (IdentifierStr == "var") return tok_var;
     73     return tok_identifier;
     74   }
     75 
     76   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
     77     std::string NumStr;
     78     do {
     79       NumStr += LastChar;
     80       LastChar = getchar();
     81     } while (isdigit(LastChar) || LastChar == '.');
     82 
     83     NumVal = strtod(NumStr.c_str(), 0);
     84     return tok_number;
     85   }
     86 
     87   if (LastChar == '#') {
     88     // Comment until end of line.
     89     do LastChar = getchar();
     90     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
     91 
     92     if (LastChar != EOF)
     93       return gettok();
     94   }
     95 
     96   // Check for end of file.  Don't eat the EOF.
     97   if (LastChar == EOF)
     98     return tok_eof;
     99 
    100   // Otherwise, just return the character as its ascii value.
    101   int ThisChar = LastChar;
    102   LastChar = getchar();
    103   return ThisChar;
    104 }
    105 
    106 //===----------------------------------------------------------------------===//
    107 // Abstract Syntax Tree (aka Parse Tree)
    108 //===----------------------------------------------------------------------===//
    109 
    110 /// ExprAST - Base class for all expression nodes.
    111 class ExprAST {
    112 public:
    113   virtual ~ExprAST() {}
    114   virtual Value *Codegen() = 0;
    115 };
    116 
    117 /// NumberExprAST - Expression class for numeric literals like "1.0".
    118 class NumberExprAST : public ExprAST {
    119   double Val;
    120 public:
    121   NumberExprAST(double val) : Val(val) {}
    122   virtual Value *Codegen();
    123 };
    124 
    125 /// VariableExprAST - Expression class for referencing a variable, like "a".
    126 class VariableExprAST : public ExprAST {
    127   std::string Name;
    128 public:
    129   VariableExprAST(const std::string &name) : Name(name) {}
    130   const std::string &getName() const { return Name; }
    131   virtual Value *Codegen();
    132 };
    133 
    134 /// UnaryExprAST - Expression class for a unary operator.
    135 class UnaryExprAST : public ExprAST {
    136   char Opcode;
    137   ExprAST *Operand;
    138 public:
    139   UnaryExprAST(char opcode, ExprAST *operand)
    140     : Opcode(opcode), Operand(operand) {}
    141   virtual Value *Codegen();
    142 };
    143 
    144 /// BinaryExprAST - Expression class for a binary operator.
    145 class BinaryExprAST : public ExprAST {
    146   char Op;
    147   ExprAST *LHS, *RHS;
    148 public:
    149   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    150     : Op(op), LHS(lhs), RHS(rhs) {}
    151   virtual Value *Codegen();
    152 };
    153 
    154 /// CallExprAST - Expression class for function calls.
    155 class CallExprAST : public ExprAST {
    156   std::string Callee;
    157   std::vector<ExprAST*> Args;
    158 public:
    159   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    160     : Callee(callee), Args(args) {}
    161   virtual Value *Codegen();
    162 };
    163 
    164 /// IfExprAST - Expression class for if/then/else.
    165 class IfExprAST : public ExprAST {
    166   ExprAST *Cond, *Then, *Else;
    167 public:
    168   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    169   : Cond(cond), Then(then), Else(_else) {}
    170   virtual Value *Codegen();
    171 };
    172 
    173 /// ForExprAST - Expression class for for/in.
    174 class ForExprAST : public ExprAST {
    175   std::string VarName;
    176   ExprAST *Start, *End, *Step, *Body;
    177 public:
    178   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    179              ExprAST *step, ExprAST *body)
    180     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    181   virtual Value *Codegen();
    182 };
    183 
    184 /// VarExprAST - Expression class for var/in
    185 class VarExprAST : public ExprAST {
    186   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    187   ExprAST *Body;
    188 public:
    189   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    190              ExprAST *body)
    191   : VarNames(varnames), Body(body) {}
    192 
    193   virtual Value *Codegen();
    194 };
    195 
    196 /// PrototypeAST - This class represents the "prototype" for a function,
    197 /// which captures its argument names as well as if it is an operator.
    198 class PrototypeAST {
    199   std::string Name;
    200   std::vector<std::string> Args;
    201   bool isOperator;
    202   unsigned Precedence;  // Precedence if a binary op.
    203 public:
    204   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    205                bool isoperator = false, unsigned prec = 0)
    206   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    207 
    208   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    209   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    210 
    211   char getOperatorName() const {
    212     assert(isUnaryOp() || isBinaryOp());
    213     return Name[Name.size()-1];
    214   }
    215 
    216   unsigned getBinaryPrecedence() const { return Precedence; }
    217 
    218   Function *Codegen();
    219 
    220   void CreateArgumentAllocas(Function *F);
    221 };
    222 
    223 /// FunctionAST - This class represents a function definition itself.
    224 class FunctionAST {
    225   PrototypeAST *Proto;
    226   ExprAST *Body;
    227 public:
    228   FunctionAST(PrototypeAST *proto, ExprAST *body)
    229     : Proto(proto), Body(body) {}
    230 
    231   Function *Codegen();
    232 };
    233 
    234 //===----------------------------------------------------------------------===//
    235 // Parser
    236 //===----------------------------------------------------------------------===//
    237 
    238 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    239 /// token the parser is looking at.  getNextToken reads another token from the
    240 /// lexer and updates CurTok with its results.
    241 static int CurTok;
    242 static int getNextToken() {
    243   return CurTok = gettok();
    244 }
    245 
    246 /// BinopPrecedence - This holds the precedence for each binary operator that is
    247 /// defined.
    248 static std::map<char, int> BinopPrecedence;
    249 
    250 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    251 static int GetTokPrecedence() {
    252   if (!isascii(CurTok))
    253     return -1;
    254 
    255   // Make sure it's a declared binop.
    256   int TokPrec = BinopPrecedence[CurTok];
    257   if (TokPrec <= 0) return -1;
    258   return TokPrec;
    259 }
    260 
    261 /// Error* - These are little helper functions for error handling.
    262 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    263 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    264 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    265 
    266 static ExprAST *ParseExpression();
    267 
    268 /// identifierexpr
    269 ///   ::= identifier
    270 ///   ::= identifier '(' expression* ')'
    271 static ExprAST *ParseIdentifierExpr() {
    272   std::string IdName = IdentifierStr;
    273 
    274   getNextToken();  // eat identifier.
    275 
    276   if (CurTok != '(') // Simple variable ref.
    277     return new VariableExprAST(IdName);
    278 
    279   // Call.
    280   getNextToken();  // eat (
    281   std::vector<ExprAST*> Args;
    282   if (CurTok != ')') {
    283     while (1) {
    284       ExprAST *Arg = ParseExpression();
    285       if (!Arg) return 0;
    286       Args.push_back(Arg);
    287 
    288       if (CurTok == ')') break;
    289 
    290       if (CurTok != ',')
    291         return Error("Expected ')' or ',' in argument list");
    292       getNextToken();
    293     }
    294   }
    295 
    296   // Eat the ')'.
    297   getNextToken();
    298 
    299   return new CallExprAST(IdName, Args);
    300 }
    301 
    302 /// numberexpr ::= number
    303 static ExprAST *ParseNumberExpr() {
    304   ExprAST *Result = new NumberExprAST(NumVal);
    305   getNextToken(); // consume the number
    306   return Result;
    307 }
    308 
    309 /// parenexpr ::= '(' expression ')'
    310 static ExprAST *ParseParenExpr() {
    311   getNextToken();  // eat (.
    312   ExprAST *V = ParseExpression();
    313   if (!V) return 0;
    314 
    315   if (CurTok != ')')
    316     return Error("expected ')'");
    317   getNextToken();  // eat ).
    318   return V;
    319 }
    320 
    321 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    322 static ExprAST *ParseIfExpr() {
    323   getNextToken();  // eat the if.
    324 
    325   // condition.
    326   ExprAST *Cond = ParseExpression();
    327   if (!Cond) return 0;
    328 
    329   if (CurTok != tok_then)
    330     return Error("expected then");
    331   getNextToken();  // eat the then
    332 
    333   ExprAST *Then = ParseExpression();
    334   if (Then == 0) return 0;
    335 
    336   if (CurTok != tok_else)
    337     return Error("expected else");
    338 
    339   getNextToken();
    340 
    341   ExprAST *Else = ParseExpression();
    342   if (!Else) return 0;
    343 
    344   return new IfExprAST(Cond, Then, Else);
    345 }
    346 
    347 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    348 static ExprAST *ParseForExpr() {
    349   getNextToken();  // eat the for.
    350 
    351   if (CurTok != tok_identifier)
    352     return Error("expected identifier after for");
    353 
    354   std::string IdName = IdentifierStr;
    355   getNextToken();  // eat identifier.
    356 
    357   if (CurTok != '=')
    358     return Error("expected '=' after for");
    359   getNextToken();  // eat '='.
    360 
    361 
    362   ExprAST *Start = ParseExpression();
    363   if (Start == 0) return 0;
    364   if (CurTok != ',')
    365     return Error("expected ',' after for start value");
    366   getNextToken();
    367 
    368   ExprAST *End = ParseExpression();
    369   if (End == 0) return 0;
    370 
    371   // The step value is optional.
    372   ExprAST *Step = 0;
    373   if (CurTok == ',') {
    374     getNextToken();
    375     Step = ParseExpression();
    376     if (Step == 0) return 0;
    377   }
    378 
    379   if (CurTok != tok_in)
    380     return Error("expected 'in' after for");
    381   getNextToken();  // eat 'in'.
    382 
    383   ExprAST *Body = ParseExpression();
    384   if (Body == 0) return 0;
    385 
    386   return new ForExprAST(IdName, Start, End, Step, Body);
    387 }
    388 
    389 /// varexpr ::= 'var' identifier ('=' expression)?
    390 //                    (',' identifier ('=' expression)?)* 'in' expression
    391 static ExprAST *ParseVarExpr() {
    392   getNextToken();  // eat the var.
    393 
    394   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    395 
    396   // At least one variable name is required.
    397   if (CurTok != tok_identifier)
    398     return Error("expected identifier after var");
    399 
    400   while (1) {
    401     std::string Name = IdentifierStr;
    402     getNextToken();  // eat identifier.
    403 
    404     // Read the optional initializer.
    405     ExprAST *Init = 0;
    406     if (CurTok == '=') {
    407       getNextToken(); // eat the '='.
    408 
    409       Init = ParseExpression();
    410       if (Init == 0) return 0;
    411     }
    412 
    413     VarNames.push_back(std::make_pair(Name, Init));
    414 
    415     // End of var list, exit loop.
    416     if (CurTok != ',') break;
    417     getNextToken(); // eat the ','.
    418 
    419     if (CurTok != tok_identifier)
    420       return Error("expected identifier list after var");
    421   }
    422 
    423   // At this point, we have to have 'in'.
    424   if (CurTok != tok_in)
    425     return Error("expected 'in' keyword after 'var'");
    426   getNextToken();  // eat 'in'.
    427 
    428   ExprAST *Body = ParseExpression();
    429   if (Body == 0) return 0;
    430 
    431   return new VarExprAST(VarNames, Body);
    432 }
    433 
    434 /// primary
    435 ///   ::= identifierexpr
    436 ///   ::= numberexpr
    437 ///   ::= parenexpr
    438 ///   ::= ifexpr
    439 ///   ::= forexpr
    440 ///   ::= varexpr
    441 static ExprAST *ParsePrimary() {
    442   switch (CurTok) {
    443   default: return Error("unknown token when expecting an expression");
    444   case tok_identifier: return ParseIdentifierExpr();
    445   case tok_number:     return ParseNumberExpr();
    446   case '(':            return ParseParenExpr();
    447   case tok_if:         return ParseIfExpr();
    448   case tok_for:        return ParseForExpr();
    449   case tok_var:        return ParseVarExpr();
    450   }
    451 }
    452 
    453 /// unary
    454 ///   ::= primary
    455 ///   ::= '!' unary
    456 static ExprAST *ParseUnary() {
    457   // If the current token is not an operator, it must be a primary expr.
    458   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    459     return ParsePrimary();
    460 
    461   // If this is a unary operator, read it.
    462   int Opc = CurTok;
    463   getNextToken();
    464   if (ExprAST *Operand = ParseUnary())
    465     return new UnaryExprAST(Opc, Operand);
    466   return 0;
    467 }
    468 
    469 /// binoprhs
    470 ///   ::= ('+' unary)*
    471 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    472   // If this is a binop, find its precedence.
    473   while (1) {
    474     int TokPrec = GetTokPrecedence();
    475 
    476     // If this is a binop that binds at least as tightly as the current binop,
    477     // consume it, otherwise we are done.
    478     if (TokPrec < ExprPrec)
    479       return LHS;
    480 
    481     // Okay, we know this is a binop.
    482     int BinOp = CurTok;
    483     getNextToken();  // eat binop
    484 
    485     // Parse the unary expression after the binary operator.
    486     ExprAST *RHS = ParseUnary();
    487     if (!RHS) return 0;
    488 
    489     // If BinOp binds less tightly with RHS than the operator after RHS, let
    490     // the pending operator take RHS as its LHS.
    491     int NextPrec = GetTokPrecedence();
    492     if (TokPrec < NextPrec) {
    493       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    494       if (RHS == 0) return 0;
    495     }
    496 
    497     // Merge LHS/RHS.
    498     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    499   }
    500 }
    501 
    502 /// expression
    503 ///   ::= unary binoprhs
    504 ///
    505 static ExprAST *ParseExpression() {
    506   ExprAST *LHS = ParseUnary();
    507   if (!LHS) return 0;
    508 
    509   return ParseBinOpRHS(0, LHS);
    510 }
    511 
    512 /// prototype
    513 ///   ::= id '(' id* ')'
    514 ///   ::= binary LETTER number? (id, id)
    515 ///   ::= unary LETTER (id)
    516 static PrototypeAST *ParsePrototype() {
    517   std::string FnName;
    518 
    519   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    520   unsigned BinaryPrecedence = 30;
    521 
    522   switch (CurTok) {
    523   default:
    524     return ErrorP("Expected function name in prototype");
    525   case tok_identifier:
    526     FnName = IdentifierStr;
    527     Kind = 0;
    528     getNextToken();
    529     break;
    530   case tok_unary:
    531     getNextToken();
    532     if (!isascii(CurTok))
    533       return ErrorP("Expected unary operator");
    534     FnName = "unary";
    535     FnName += (char)CurTok;
    536     Kind = 1;
    537     getNextToken();
    538     break;
    539   case tok_binary:
    540     getNextToken();
    541     if (!isascii(CurTok))
    542       return ErrorP("Expected binary operator");
    543     FnName = "binary";
    544     FnName += (char)CurTok;
    545     Kind = 2;
    546     getNextToken();
    547 
    548     // Read the precedence if present.
    549     if (CurTok == tok_number) {
    550       if (NumVal < 1 || NumVal > 100)
    551         return ErrorP("Invalid precedecnce: must be 1..100");
    552       BinaryPrecedence = (unsigned)NumVal;
    553       getNextToken();
    554     }
    555     break;
    556   }
    557 
    558   if (CurTok != '(')
    559     return ErrorP("Expected '(' in prototype");
    560 
    561   std::vector<std::string> ArgNames;
    562   while (getNextToken() == tok_identifier)
    563     ArgNames.push_back(IdentifierStr);
    564   if (CurTok != ')')
    565     return ErrorP("Expected ')' in prototype");
    566 
    567   // success.
    568   getNextToken();  // eat ')'.
    569 
    570   // Verify right number of names for operator.
    571   if (Kind && ArgNames.size() != Kind)
    572     return ErrorP("Invalid number of operands for operator");
    573 
    574   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    575 }
    576 
    577 /// definition ::= 'def' prototype expression
    578 static FunctionAST *ParseDefinition() {
    579   getNextToken();  // eat def.
    580   PrototypeAST *Proto = ParsePrototype();
    581   if (Proto == 0) return 0;
    582 
    583   if (ExprAST *E = ParseExpression())
    584     return new FunctionAST(Proto, E);
    585   return 0;
    586 }
    587 
    588 /// toplevelexpr ::= expression
    589 static FunctionAST *ParseTopLevelExpr() {
    590   if (ExprAST *E = ParseExpression()) {
    591     // Make an anonymous proto.
    592     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    593     return new FunctionAST(Proto, E);
    594   }
    595   return 0;
    596 }
    597 
    598 /// external ::= 'extern' prototype
    599 static PrototypeAST *ParseExtern() {
    600   getNextToken();  // eat extern.
    601   return ParsePrototype();
    602 }
    603 
    604 //===----------------------------------------------------------------------===//
    605 // Quick and dirty hack
    606 //===----------------------------------------------------------------------===//
    607 
    608 // FIXME: Obviously we can do better than this
    609 std::string GenerateUniqueName(const char *root)
    610 {
    611   static int i = 0;
    612   char s[16];
    613   sprintf(s, "%s%d", root, i++);
    614   std::string S = s;
    615   return S;
    616 }
    617 
    618 std::string MakeLegalFunctionName(std::string Name)
    619 {
    620   std::string NewName;
    621   if (!Name.length())
    622       return GenerateUniqueName("anon_func_");
    623 
    624   // Start with what we have
    625   NewName = Name;
    626 
    627   // Look for a numberic first character
    628   if (NewName.find_first_of("0123456789") == 0) {
    629     NewName.insert(0, 1, 'n');
    630   }
    631 
    632   // Replace illegal characters with their ASCII equivalent
    633   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
    634   size_t pos;
    635   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
    636     char old_c = NewName.at(pos);
    637     char new_str[16];
    638     sprintf(new_str, "%d", (int)old_c);
    639     NewName = NewName.replace(pos, 1, new_str);
    640   }
    641 
    642   return NewName;
    643 }
    644 
    645 //===----------------------------------------------------------------------===//
    646 // MCJIT helper class
    647 //===----------------------------------------------------------------------===//
    648 
    649 class MCJITHelper
    650 {
    651 public:
    652   MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
    653   ~MCJITHelper();
    654 
    655   Function *getFunction(const std::string FnName);
    656   Module *getModuleForNewFunction();
    657   void *getPointerToFunction(Function* F);
    658   void *getPointerToNamedFunction(const std::string &Name);
    659   void dump();
    660 
    661 private:
    662   typedef std::vector<Module*> ModuleVector;
    663   typedef std::vector<ExecutionEngine*> EngineVector;
    664 
    665   LLVMContext  &Context;
    666   Module       *OpenModule;
    667   ModuleVector  Modules;
    668   EngineVector  Engines;
    669 };
    670 
    671 class HelpingMemoryManager : public SectionMemoryManager
    672 {
    673   HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    674   void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    675 
    676 public:
    677   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
    678   virtual ~HelpingMemoryManager() {}
    679 
    680   /// This method returns the address of the specified function.
    681   /// Our implementation will attempt to find functions in other
    682   /// modules associated with the MCJITHelper to cross link functions
    683   /// from one generated module to another.
    684   ///
    685   /// If \p AbortOnFailure is false and no function with the given name is
    686   /// found, this function returns a null pointer. Otherwise, it prints a
    687   /// message to stderr and aborts.
    688   virtual void *getPointerToNamedFunction(const std::string &Name,
    689                                           bool AbortOnFailure = true);
    690 private:
    691   MCJITHelper *MasterHelper;
    692 };
    693 
    694 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
    695                                         bool AbortOnFailure)
    696 {
    697   // Try the standard symbol resolution first, but ask it not to abort.
    698   void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
    699   if (pfn)
    700     return pfn;
    701 
    702   pfn = MasterHelper->getPointerToNamedFunction(Name);
    703   if (!pfn && AbortOnFailure)
    704     report_fatal_error("Program used external function '" + Name +
    705                         "' which could not be resolved!");
    706   return pfn;
    707 }
    708 
    709 MCJITHelper::~MCJITHelper()
    710 {
    711   if (OpenModule)
    712     delete OpenModule;
    713   EngineVector::iterator begin = Engines.begin();
    714   EngineVector::iterator end = Engines.end();
    715   EngineVector::iterator it;
    716   for (it = begin; it != end; ++it)
    717     delete *it;
    718 }
    719 
    720 Function *MCJITHelper::getFunction(const std::string FnName) {
    721   ModuleVector::iterator begin = Modules.begin();
    722   ModuleVector::iterator end = Modules.end();
    723   ModuleVector::iterator it;
    724   for (it = begin; it != end; ++it) {
    725     Function *F = (*it)->getFunction(FnName);
    726     if (F) {
    727       if (*it == OpenModule)
    728           return F;
    729 
    730       assert(OpenModule != NULL);
    731 
    732       // This function is in a module that has already been JITed.
    733       // We need to generate a new prototype for external linkage.
    734       Function *PF = OpenModule->getFunction(FnName);
    735       if (PF && !PF->empty()) {
    736         ErrorF("redefinition of function across modules");
    737         return 0;
    738       }
    739 
    740       // If we don't have a prototype yet, create one.
    741       if (!PF)
    742         PF = Function::Create(F->getFunctionType(),
    743                                       Function::ExternalLinkage,
    744                                       FnName,
    745                                       OpenModule);
    746       return PF;
    747     }
    748   }
    749   return NULL;
    750 }
    751 
    752 Module *MCJITHelper::getModuleForNewFunction() {
    753   // If we have a Module that hasn't been JITed, use that.
    754   if (OpenModule)
    755     return OpenModule;
    756 
    757   // Otherwise create a new Module.
    758   std::string ModName = GenerateUniqueName("mcjit_module_");
    759   Module *M = new Module(ModName, Context);
    760   Modules.push_back(M);
    761   OpenModule = M;
    762   return M;
    763 }
    764 
    765 void *MCJITHelper::getPointerToFunction(Function* F) {
    766   // See if an existing instance of MCJIT has this function.
    767   EngineVector::iterator begin = Engines.begin();
    768   EngineVector::iterator end = Engines.end();
    769   EngineVector::iterator it;
    770   for (it = begin; it != end; ++it) {
    771     void *P = (*it)->getPointerToFunction(F);
    772     if (P)
    773       return P;
    774   }
    775 
    776   // If we didn't find the function, see if we can generate it.
    777   if (OpenModule) {
    778     std::string ErrStr;
    779     ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
    780                                               .setErrorStr(&ErrStr)
    781                                               .setUseMCJIT(true)
    782                                               .setMCJITMemoryManager(new HelpingMemoryManager(this))
    783                                               .create();
    784     if (!NewEngine) {
    785       fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    786       exit(1);
    787     }
    788 
    789     // Create a function pass manager for this engine
    790     FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
    791 
    792     // Set up the optimizer pipeline.  Start with registering info about how the
    793     // target lays out data structures.
    794     FPM->add(new DataLayout(*NewEngine->getDataLayout()));
    795     // Provide basic AliasAnalysis support for GVN.
    796     FPM->add(createBasicAliasAnalysisPass());
    797     // Promote allocas to registers.
    798     FPM->add(createPromoteMemoryToRegisterPass());
    799     // Do simple "peephole" optimizations and bit-twiddling optzns.
    800     FPM->add(createInstructionCombiningPass());
    801     // Reassociate expressions.
    802     FPM->add(createReassociatePass());
    803     // Eliminate Common SubExpressions.
    804     FPM->add(createGVNPass());
    805     // Simplify the control flow graph (deleting unreachable blocks, etc).
    806     FPM->add(createCFGSimplificationPass());
    807     FPM->doInitialization();
    808 
    809     // For each function in the module
    810     Module::iterator it;
    811     Module::iterator end = OpenModule->end();
    812     for (it = OpenModule->begin(); it != end; ++it) {
    813       // Run the FPM on this function
    814       FPM->run(*it);
    815     }
    816 
    817     // We don't need this anymore
    818     delete FPM;
    819 
    820     OpenModule = NULL;
    821     Engines.push_back(NewEngine);
    822     NewEngine->finalizeObject();
    823     return NewEngine->getPointerToFunction(F);
    824   }
    825   return NULL;
    826 }
    827 
    828 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
    829 {
    830   // Look for the function in each of our execution engines.
    831   EngineVector::iterator begin = Engines.begin();
    832   EngineVector::iterator end = Engines.end();
    833   EngineVector::iterator it;
    834   for (it = begin; it != end; ++it) {
    835     if (Function *F = (*it)->FindFunctionNamed(Name.c_str()))
    836         return (*it)->getPointerToFunction(F);
    837   }
    838 
    839   return NULL;
    840 }
    841 
    842 void MCJITHelper::dump()
    843 {
    844   ModuleVector::iterator begin = Modules.begin();
    845   ModuleVector::iterator end = Modules.end();
    846   ModuleVector::iterator it;
    847   for (it = begin; it != end; ++it)
    848     (*it)->dump();
    849 }
    850 
    851 //===----------------------------------------------------------------------===//
    852 // Code Generation
    853 //===----------------------------------------------------------------------===//
    854 
    855 static MCJITHelper *TheHelper;
    856 static IRBuilder<> Builder(getGlobalContext());
    857 static std::map<std::string, AllocaInst*> NamedValues;
    858 
    859 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    860 
    861 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
    862 /// the function.  This is used for mutable variables etc.
    863 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
    864                                           const std::string &VarName) {
    865   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
    866                  TheFunction->getEntryBlock().begin());
    867   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
    868                            VarName.c_str());
    869 }
    870 
    871 Value *NumberExprAST::Codegen() {
    872   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    873 }
    874 
    875 Value *VariableExprAST::Codegen() {
    876   // Look this variable up in the function.
    877   Value *V = NamedValues[Name];
    878   char ErrStr[256];
    879   sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
    880   if (V == 0) return ErrorV(ErrStr);
    881 
    882   // Load the value.
    883   return Builder.CreateLoad(V, Name.c_str());
    884 }
    885 
    886 Value *UnaryExprAST::Codegen() {
    887   Value *OperandV = Operand->Codegen();
    888   if (OperandV == 0) return 0;
    889 
    890   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
    891   if (F == 0)
    892     return ErrorV("Unknown unary operator");
    893 
    894   return Builder.CreateCall(F, OperandV, "unop");
    895 }
    896 
    897 Value *BinaryExprAST::Codegen() {
    898   // Special case '=' because we don't want to emit the LHS as an expression.
    899   if (Op == '=') {
    900     // Assignment requires the LHS to be an identifier.
    901     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
    902     if (!LHSE)
    903       return ErrorV("destination of '=' must be a variable");
    904     // Codegen the RHS.
    905     Value *Val = RHS->Codegen();
    906     if (Val == 0) return 0;
    907 
    908     // Look up the name.
    909     Value *Variable = NamedValues[LHSE->getName()];
    910     if (Variable == 0) return ErrorV("Unknown variable name");
    911 
    912     Builder.CreateStore(Val, Variable);
    913     return Val;
    914   }
    915 
    916   Value *L = LHS->Codegen();
    917   Value *R = RHS->Codegen();
    918   if (L == 0 || R == 0) return 0;
    919 
    920   switch (Op) {
    921   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    922   case '-': return Builder.CreateFSub(L, R, "subtmp");
    923   case '*': return Builder.CreateFMul(L, R, "multmp");
    924   case '/': return Builder.CreateFDiv(L, R, "divtmp");
    925   case '<':
    926     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    927     // Convert bool 0/1 to double 0.0 or 1.0
    928     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    929                                 "booltmp");
    930   default: break;
    931   }
    932 
    933   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
    934   // a call to it.
    935   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
    936   assert(F && "binary operator not found!");
    937 
    938   Value *Ops[] = { L, R };
    939   return Builder.CreateCall(F, Ops, "binop");
    940 }
    941 
    942 Value *CallExprAST::Codegen() {
    943   // Look up the name in the global module table.
    944   Function *CalleeF = TheHelper->getFunction(Callee);
    945   if (CalleeF == 0)
    946     return ErrorV("Unknown function referenced");
    947 
    948   // If argument mismatch error.
    949   if (CalleeF->arg_size() != Args.size())
    950     return ErrorV("Incorrect # arguments passed");
    951 
    952   std::vector<Value*> ArgsV;
    953   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    954     ArgsV.push_back(Args[i]->Codegen());
    955     if (ArgsV.back() == 0) return 0;
    956   }
    957 
    958   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    959 }
    960 
    961 Value *IfExprAST::Codegen() {
    962   Value *CondV = Cond->Codegen();
    963   if (CondV == 0) return 0;
    964 
    965   // Convert condition to a bool by comparing equal to 0.0.
    966   CondV = Builder.CreateFCmpONE(CondV,
    967                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    968                                 "ifcond");
    969 
    970   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    971 
    972   // Create blocks for the then and else cases.  Insert the 'then' block at the
    973   // end of the function.
    974   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
    975   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
    976   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
    977 
    978   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
    979 
    980   // Emit then value.
    981   Builder.SetInsertPoint(ThenBB);
    982 
    983   Value *ThenV = Then->Codegen();
    984   if (ThenV == 0) return 0;
    985 
    986   Builder.CreateBr(MergeBB);
    987   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
    988   ThenBB = Builder.GetInsertBlock();
    989 
    990   // Emit else block.
    991   TheFunction->getBasicBlockList().push_back(ElseBB);
    992   Builder.SetInsertPoint(ElseBB);
    993 
    994   Value *ElseV = Else->Codegen();
    995   if (ElseV == 0) return 0;
    996 
    997   Builder.CreateBr(MergeBB);
    998   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
    999   ElseBB = Builder.GetInsertBlock();
   1000 
   1001   // Emit merge block.
   1002   TheFunction->getBasicBlockList().push_back(MergeBB);
   1003   Builder.SetInsertPoint(MergeBB);
   1004   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
   1005                                   "iftmp");
   1006 
   1007   PN->addIncoming(ThenV, ThenBB);
   1008   PN->addIncoming(ElseV, ElseBB);
   1009   return PN;
   1010 }
   1011 
   1012 Value *ForExprAST::Codegen() {
   1013   // Output this as:
   1014   //   var = alloca double
   1015   //   ...
   1016   //   start = startexpr
   1017   //   store start -> var
   1018   //   goto loop
   1019   // loop:
   1020   //   ...
   1021   //   bodyexpr
   1022   //   ...
   1023   // loopend:
   1024   //   step = stepexpr
   1025   //   endcond = endexpr
   1026   //
   1027   //   curvar = load var
   1028   //   nextvar = curvar + step
   1029   //   store nextvar -> var
   1030   //   br endcond, loop, endloop
   1031   // outloop:
   1032 
   1033   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1034 
   1035   // Create an alloca for the variable in the entry block.
   1036   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1037 
   1038   // Emit the start code first, without 'variable' in scope.
   1039   Value *StartVal = Start->Codegen();
   1040   if (StartVal == 0) return 0;
   1041 
   1042   // Store the value into the alloca.
   1043   Builder.CreateStore(StartVal, Alloca);
   1044 
   1045   // Make the new basic block for the loop header, inserting after current
   1046   // block.
   1047   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
   1048 
   1049   // Insert an explicit fall through from the current block to the LoopBB.
   1050   Builder.CreateBr(LoopBB);
   1051 
   1052   // Start insertion in LoopBB.
   1053   Builder.SetInsertPoint(LoopBB);
   1054 
   1055   // Within the loop, the variable is defined equal to the PHI node.  If it
   1056   // shadows an existing variable, we have to restore it, so save it now.
   1057   AllocaInst *OldVal = NamedValues[VarName];
   1058   NamedValues[VarName] = Alloca;
   1059 
   1060   // Emit the body of the loop.  This, like any other expr, can change the
   1061   // current BB.  Note that we ignore the value computed by the body, but don't
   1062   // allow an error.
   1063   if (Body->Codegen() == 0)
   1064     return 0;
   1065 
   1066   // Emit the step value.
   1067   Value *StepVal;
   1068   if (Step) {
   1069     StepVal = Step->Codegen();
   1070     if (StepVal == 0) return 0;
   1071   } else {
   1072     // If not specified, use 1.0.
   1073     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
   1074   }
   1075 
   1076   // Compute the end condition.
   1077   Value *EndCond = End->Codegen();
   1078   if (EndCond == 0) return EndCond;
   1079 
   1080   // Reload, increment, and restore the alloca.  This handles the case where
   1081   // the body of the loop mutates the variable.
   1082   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
   1083   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
   1084   Builder.CreateStore(NextVar, Alloca);
   1085 
   1086   // Convert condition to a bool by comparing equal to 0.0.
   1087   EndCond = Builder.CreateFCmpONE(EndCond,
   1088                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1089                                   "loopcond");
   1090 
   1091   // Create the "after loop" block and insert it.
   1092   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
   1093 
   1094   // Insert the conditional branch into the end of LoopEndBB.
   1095   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
   1096 
   1097   // Any new code will be inserted in AfterBB.
   1098   Builder.SetInsertPoint(AfterBB);
   1099 
   1100   // Restore the unshadowed variable.
   1101   if (OldVal)
   1102     NamedValues[VarName] = OldVal;
   1103   else
   1104     NamedValues.erase(VarName);
   1105 
   1106 
   1107   // for expr always returns 0.0.
   1108   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
   1109 }
   1110 
   1111 Value *VarExprAST::Codegen() {
   1112   std::vector<AllocaInst *> OldBindings;
   1113 
   1114   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1115 
   1116   // Register all variables and emit their initializer.
   1117   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
   1118     const std::string &VarName = VarNames[i].first;
   1119     ExprAST *Init = VarNames[i].second;
   1120 
   1121     // Emit the initializer before adding the variable to scope, this prevents
   1122     // the initializer from referencing the variable itself, and permits stuff
   1123     // like this:
   1124     //  var a = 1 in
   1125     //    var a = a in ...   # refers to outer 'a'.
   1126     Value *InitVal;
   1127     if (Init) {
   1128       InitVal = Init->Codegen();
   1129       if (InitVal == 0) return 0;
   1130     } else { // If not specified, use 0.0.
   1131       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
   1132     }
   1133 
   1134     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1135     Builder.CreateStore(InitVal, Alloca);
   1136 
   1137     // Remember the old variable binding so that we can restore the binding when
   1138     // we unrecurse.
   1139     OldBindings.push_back(NamedValues[VarName]);
   1140 
   1141     // Remember this binding.
   1142     NamedValues[VarName] = Alloca;
   1143   }
   1144 
   1145   // Codegen the body, now that all vars are in scope.
   1146   Value *BodyVal = Body->Codegen();
   1147   if (BodyVal == 0) return 0;
   1148 
   1149   // Pop all our variables from scope.
   1150   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
   1151     NamedValues[VarNames[i].first] = OldBindings[i];
   1152 
   1153   // Return the body computation.
   1154   return BodyVal;
   1155 }
   1156 
   1157 Function *PrototypeAST::Codegen() {
   1158   // Make the function type:  double(double,double) etc.
   1159   std::vector<Type*> Doubles(Args.size(),
   1160                              Type::getDoubleTy(getGlobalContext()));
   1161   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1162                                        Doubles, false);
   1163 
   1164   std::string FnName = MakeLegalFunctionName(Name);
   1165 
   1166   Module* M = TheHelper->getModuleForNewFunction();
   1167 
   1168   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
   1169 
   1170   // If F conflicted, there was already something named 'FnName'.  If it has a
   1171   // body, don't allow redefinition or reextern.
   1172   if (F->getName() != FnName) {
   1173     // Delete the one we just made and get the existing one.
   1174     F->eraseFromParent();
   1175     F = M->getFunction(Name);
   1176 
   1177     // If F already has a body, reject this.
   1178     if (!F->empty()) {
   1179       ErrorF("redefinition of function");
   1180       return 0;
   1181     }
   1182 
   1183     // If F took a different number of args, reject.
   1184     if (F->arg_size() != Args.size()) {
   1185       ErrorF("redefinition of function with different # args");
   1186       return 0;
   1187     }
   1188   }
   1189 
   1190   // Set names for all arguments.
   1191   unsigned Idx = 0;
   1192   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
   1193        ++AI, ++Idx)
   1194     AI->setName(Args[Idx]);
   1195 
   1196   return F;
   1197 }
   1198 
   1199 /// CreateArgumentAllocas - Create an alloca for each argument and register the
   1200 /// argument in the symbol table so that references to it will succeed.
   1201 void PrototypeAST::CreateArgumentAllocas(Function *F) {
   1202   Function::arg_iterator AI = F->arg_begin();
   1203   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
   1204     // Create an alloca for this variable.
   1205     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
   1206 
   1207     // Store the initial value into the alloca.
   1208     Builder.CreateStore(AI, Alloca);
   1209 
   1210     // Add arguments to variable symbol table.
   1211     NamedValues[Args[Idx]] = Alloca;
   1212   }
   1213 }
   1214 
   1215 Function *FunctionAST::Codegen() {
   1216   NamedValues.clear();
   1217 
   1218   Function *TheFunction = Proto->Codegen();
   1219   if (TheFunction == 0)
   1220     return 0;
   1221 
   1222   // If this is an operator, install it.
   1223   if (Proto->isBinaryOp())
   1224     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
   1225 
   1226   // Create a new basic block to start insertion into.
   1227   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1228   Builder.SetInsertPoint(BB);
   1229 
   1230   // Add all arguments to the symbol table and create their allocas.
   1231   Proto->CreateArgumentAllocas(TheFunction);
   1232 
   1233   if (Value *RetVal = Body->Codegen()) {
   1234     // Finish off the function.
   1235     Builder.CreateRet(RetVal);
   1236 
   1237     // Validate the generated code, checking for consistency.
   1238     verifyFunction(*TheFunction);
   1239 
   1240     return TheFunction;
   1241   }
   1242 
   1243   // Error reading body, remove function.
   1244   TheFunction->eraseFromParent();
   1245 
   1246   if (Proto->isBinaryOp())
   1247     BinopPrecedence.erase(Proto->getOperatorName());
   1248   return 0;
   1249 }
   1250 
   1251 //===----------------------------------------------------------------------===//
   1252 // Top-Level parsing and JIT Driver
   1253 //===----------------------------------------------------------------------===//
   1254 
   1255 static void HandleDefinition() {
   1256   if (FunctionAST *F = ParseDefinition()) {
   1257     if (Function *LF = F->Codegen()) {
   1258 #ifndef MINIMAL_STDERR_OUTPUT
   1259       fprintf(stderr, "Read function definition:");
   1260       LF->dump();
   1261 #endif
   1262     }
   1263   } else {
   1264     // Skip token for error recovery.
   1265     getNextToken();
   1266   }
   1267 }
   1268 
   1269 static void HandleExtern() {
   1270   if (PrototypeAST *P = ParseExtern()) {
   1271     if (Function *F = P->Codegen()) {
   1272 #ifndef MINIMAL_STDERR_OUTPUT
   1273       fprintf(stderr, "Read extern: ");
   1274       F->dump();
   1275 #endif
   1276     }
   1277   } else {
   1278     // Skip token for error recovery.
   1279     getNextToken();
   1280   }
   1281 }
   1282 
   1283 static void HandleTopLevelExpression() {
   1284   // Evaluate a top-level expression into an anonymous function.
   1285   if (FunctionAST *F = ParseTopLevelExpr()) {
   1286     if (Function *LF = F->Codegen()) {
   1287       // JIT the function, returning a function pointer.
   1288       void *FPtr = TheHelper->getPointerToFunction(LF);
   1289 
   1290       // Cast it to the right type (takes no arguments, returns a double) so we
   1291       // can call it as a native function.
   1292       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1293 #ifdef MINIMAL_STDERR_OUTPUT
   1294       FP();
   1295 #else
   1296       fprintf(stderr, "Evaluated to %f\n", FP());
   1297 #endif
   1298     }
   1299   } else {
   1300     // Skip token for error recovery.
   1301     getNextToken();
   1302   }
   1303 }
   1304 
   1305 /// top ::= definition | external | expression | ';'
   1306 static void MainLoop() {
   1307   while (1) {
   1308 #ifndef MINIMAL_STDERR_OUTPUT
   1309     fprintf(stderr, "ready> ");
   1310 #endif
   1311     switch (CurTok) {
   1312     case tok_eof:    return;
   1313     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1314     case tok_def:    HandleDefinition(); break;
   1315     case tok_extern: HandleExtern(); break;
   1316     default:         HandleTopLevelExpression(); break;
   1317     }
   1318   }
   1319 }
   1320 
   1321 //===----------------------------------------------------------------------===//
   1322 // "Library" functions that can be "extern'd" from user code.
   1323 //===----------------------------------------------------------------------===//
   1324 
   1325 /// putchard - putchar that takes a double and returns 0.
   1326 extern "C"
   1327 double putchard(double X) {
   1328   putchar((char)X);
   1329   return 0;
   1330 }
   1331 
   1332 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1333 extern "C"
   1334 double printd(double X) {
   1335   printf("%f", X);
   1336   return 0;
   1337 }
   1338 
   1339 extern "C"
   1340 double printlf() {
   1341   printf("\n");
   1342   return 0;
   1343 }
   1344 
   1345 //===----------------------------------------------------------------------===//
   1346 // Main driver code.
   1347 //===----------------------------------------------------------------------===//
   1348 
   1349 int main() {
   1350   InitializeNativeTarget();
   1351   InitializeNativeTargetAsmPrinter();
   1352   InitializeNativeTargetAsmParser();
   1353   LLVMContext &Context = getGlobalContext();
   1354 
   1355   // Install standard binary operators.
   1356   // 1 is lowest precedence.
   1357   BinopPrecedence['='] = 2;
   1358   BinopPrecedence['<'] = 10;
   1359   BinopPrecedence['+'] = 20;
   1360   BinopPrecedence['-'] = 20;
   1361   BinopPrecedence['/'] = 40;
   1362   BinopPrecedence['*'] = 40;  // highest.
   1363 
   1364   // Prime the first token.
   1365 #ifndef MINIMAL_STDERR_OUTPUT
   1366   fprintf(stderr, "ready> ");
   1367 #endif
   1368   getNextToken();
   1369 
   1370   // Make the helper, which holds all the code.
   1371   TheHelper = new MCJITHelper(Context);
   1372 
   1373   // Run the main "interpreter loop" now.
   1374   MainLoop();
   1375 
   1376 #ifndef MINIMAL_STDERR_OUTPUT
   1377   // Print out all of the generated code.
   1378   TheHelper->dump();
   1379 #endif
   1380 
   1381   return 0;
   1382 }
   1383