Home | History | Annotate | Download | only in Analysis
      1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements bookkeeping for "interesting" users of expressions
     11 // computed from induction variables.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/IVUsers.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/Analysis/LoopPass.h"
     18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Type.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <algorithm>
     29 using namespace llvm;
     30 
     31 #define DEBUG_TYPE "iv-users"
     32 
     33 char IVUsers::ID = 0;
     34 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
     35                       "Induction Variable Users", false, true)
     36 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     37 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     38 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
     39 INITIALIZE_PASS_END(IVUsers, "iv-users",
     40                       "Induction Variable Users", false, true)
     41 
     42 Pass *llvm::createIVUsersPass() {
     43   return new IVUsers();
     44 }
     45 
     46 /// isInteresting - Test whether the given expression is "interesting" when
     47 /// used by the given expression, within the context of analyzing the
     48 /// given loop.
     49 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
     50                           ScalarEvolution *SE, LoopInfo *LI) {
     51   // An addrec is interesting if it's affine or if it has an interesting start.
     52   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
     53     // Keep things simple. Don't touch loop-variant strides unless they're
     54     // only used outside the loop and we can simplify them.
     55     if (AR->getLoop() == L)
     56       return AR->isAffine() ||
     57              (!L->contains(I) &&
     58               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
     59     // Otherwise recurse to see if the start value is interesting, and that
     60     // the step value is not interesting, since we don't yet know how to
     61     // do effective SCEV expansions for addrecs with interesting steps.
     62     return isInteresting(AR->getStart(), I, L, SE, LI) &&
     63           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
     64   }
     65 
     66   // An add is interesting if exactly one of its operands is interesting.
     67   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
     68     bool AnyInterestingYet = false;
     69     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
     70          OI != OE; ++OI)
     71       if (isInteresting(*OI, I, L, SE, LI)) {
     72         if (AnyInterestingYet)
     73           return false;
     74         AnyInterestingYet = true;
     75       }
     76     return AnyInterestingYet;
     77   }
     78 
     79   // Nothing else is interesting here.
     80   return false;
     81 }
     82 
     83 /// Return true if all loop headers that dominate this block are in simplified
     84 /// form.
     85 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
     86                                  const LoopInfo *LI,
     87                                  SmallPtrSet<Loop*,16> &SimpleLoopNests) {
     88   Loop *NearestLoop = nullptr;
     89   for (DomTreeNode *Rung = DT->getNode(BB);
     90        Rung; Rung = Rung->getIDom()) {
     91     BasicBlock *DomBB = Rung->getBlock();
     92     Loop *DomLoop = LI->getLoopFor(DomBB);
     93     if (DomLoop && DomLoop->getHeader() == DomBB) {
     94       // If the domtree walk reaches a loop with no preheader, return false.
     95       if (!DomLoop->isLoopSimplifyForm())
     96         return false;
     97       // If we have already checked this loop nest, stop checking.
     98       if (SimpleLoopNests.count(DomLoop))
     99         break;
    100       // If we have not already checked this loop nest, remember the loop
    101       // header nearest to BB. The nearest loop may not contain BB.
    102       if (!NearestLoop)
    103         NearestLoop = DomLoop;
    104     }
    105   }
    106   if (NearestLoop)
    107     SimpleLoopNests.insert(NearestLoop);
    108   return true;
    109 }
    110 
    111 /// AddUsersImpl - Inspect the specified instruction.  If it is a
    112 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
    113 /// return true.  Otherwise, return false.
    114 bool IVUsers::AddUsersImpl(Instruction *I,
    115                            SmallPtrSet<Loop*,16> &SimpleLoopNests) {
    116   // Add this IV user to the Processed set before returning false to ensure that
    117   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
    118   if (!Processed.insert(I))
    119     return true;    // Instruction already handled.
    120 
    121   if (!SE->isSCEVable(I->getType()))
    122     return false;   // Void and FP expressions cannot be reduced.
    123 
    124   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
    125   // pass to SCEVExpander. Expressions are not safe to expand if they represent
    126   // operations that are not safe to speculate, namely integer division.
    127   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I, DL))
    128     return false;
    129 
    130   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
    131   // Also avoid creating IVs of non-native types. For example, we don't want a
    132   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
    133   uint64_t Width = SE->getTypeSizeInBits(I->getType());
    134   if (Width > 64 || (DL && !DL->isLegalInteger(Width)))
    135     return false;
    136 
    137   // Get the symbolic expression for this instruction.
    138   const SCEV *ISE = SE->getSCEV(I);
    139 
    140   // If we've come to an uninteresting expression, stop the traversal and
    141   // call this a user.
    142   if (!isInteresting(ISE, I, L, SE, LI))
    143     return false;
    144 
    145   SmallPtrSet<Instruction *, 4> UniqueUsers;
    146   for (Use &U : I->uses()) {
    147     Instruction *User = cast<Instruction>(U.getUser());
    148     if (!UniqueUsers.insert(User))
    149       continue;
    150 
    151     // Do not infinitely recurse on PHI nodes.
    152     if (isa<PHINode>(User) && Processed.count(User))
    153       continue;
    154 
    155     // Only consider IVUsers that are dominated by simplified loop
    156     // headers. Otherwise, SCEVExpander will crash.
    157     BasicBlock *UseBB = User->getParent();
    158     // A phi's use is live out of its predecessor block.
    159     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
    160       unsigned OperandNo = U.getOperandNo();
    161       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
    162       UseBB = PHI->getIncomingBlock(ValNo);
    163     }
    164     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
    165       return false;
    166 
    167     // Descend recursively, but not into PHI nodes outside the current loop.
    168     // It's important to see the entire expression outside the loop to get
    169     // choices that depend on addressing mode use right, although we won't
    170     // consider references outside the loop in all cases.
    171     // If User is already in Processed, we don't want to recurse into it again,
    172     // but do want to record a second reference in the same instruction.
    173     bool AddUserToIVUsers = false;
    174     if (LI->getLoopFor(User->getParent()) != L) {
    175       if (isa<PHINode>(User) || Processed.count(User) ||
    176           !AddUsersImpl(User, SimpleLoopNests)) {
    177         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
    178                      << "   OF SCEV: " << *ISE << '\n');
    179         AddUserToIVUsers = true;
    180       }
    181     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
    182       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
    183                    << "   OF SCEV: " << *ISE << '\n');
    184       AddUserToIVUsers = true;
    185     }
    186 
    187     if (AddUserToIVUsers) {
    188       // Okay, we found a user that we cannot reduce.
    189       IVStrideUse &NewUse = AddUser(User, I);
    190       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
    191       // The regular return value here is discarded; instead of recording
    192       // it, we just recompute it when we need it.
    193       const SCEV *OriginalISE = ISE;
    194       ISE = TransformForPostIncUse(NormalizeAutodetect,
    195                                    ISE, User, I,
    196                                    NewUse.PostIncLoops,
    197                                    *SE, *DT);
    198 
    199       // PostIncNormalization effectively simplifies the expression under
    200       // pre-increment assumptions. Those assumptions (no wrapping) might not
    201       // hold for the post-inc value. Catch such cases by making sure the
    202       // transformation is invertible.
    203       if (OriginalISE != ISE) {
    204         const SCEV *DenormalizedISE =
    205           TransformForPostIncUse(Denormalize, ISE, User, I,
    206               NewUse.PostIncLoops, *SE, *DT);
    207 
    208         // If we normalized the expression, but denormalization doesn't give the
    209         // original one, discard this user.
    210         if (OriginalISE != DenormalizedISE) {
    211           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
    212                        << *ISE << '\n');
    213           IVUses.pop_back();
    214           return false;
    215         }
    216       }
    217       DEBUG(if (SE->getSCEV(I) != ISE)
    218               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
    219     }
    220   }
    221   return true;
    222 }
    223 
    224 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
    225   // SCEVExpander can only handle users that are dominated by simplified loop
    226   // entries. Keep track of all loops that are only dominated by other simple
    227   // loops so we don't traverse the domtree for each user.
    228   SmallPtrSet<Loop*,16> SimpleLoopNests;
    229 
    230   return AddUsersImpl(I, SimpleLoopNests);
    231 }
    232 
    233 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
    234   IVUses.push_back(new IVStrideUse(this, User, Operand));
    235   return IVUses.back();
    236 }
    237 
    238 IVUsers::IVUsers()
    239     : LoopPass(ID) {
    240   initializeIVUsersPass(*PassRegistry::getPassRegistry());
    241 }
    242 
    243 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
    244   AU.addRequired<LoopInfo>();
    245   AU.addRequired<DominatorTreeWrapperPass>();
    246   AU.addRequired<ScalarEvolution>();
    247   AU.setPreservesAll();
    248 }
    249 
    250 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
    251 
    252   L = l;
    253   LI = &getAnalysis<LoopInfo>();
    254   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    255   SE = &getAnalysis<ScalarEvolution>();
    256   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
    257   DL = DLP ? &DLP->getDataLayout() : nullptr;
    258 
    259   // Find all uses of induction variables in this loop, and categorize
    260   // them by stride.  Start by finding all of the PHI nodes in the header for
    261   // this loop.  If they are induction variables, inspect their uses.
    262   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
    263     (void)AddUsersIfInteresting(I);
    264 
    265   return false;
    266 }
    267 
    268 void IVUsers::print(raw_ostream &OS, const Module *M) const {
    269   OS << "IV Users for loop ";
    270   L->getHeader()->printAsOperand(OS, false);
    271   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
    272     OS << " with backedge-taken count "
    273        << *SE->getBackedgeTakenCount(L);
    274   }
    275   OS << ":\n";
    276 
    277   for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
    278        E = IVUses.end(); UI != E; ++UI) {
    279     OS << "  ";
    280     UI->getOperandValToReplace()->printAsOperand(OS, false);
    281     OS << " = " << *getReplacementExpr(*UI);
    282     for (PostIncLoopSet::const_iterator
    283          I = UI->PostIncLoops.begin(),
    284          E = UI->PostIncLoops.end(); I != E; ++I) {
    285       OS << " (post-inc with loop ";
    286       (*I)->getHeader()->printAsOperand(OS, false);
    287       OS << ")";
    288     }
    289     OS << " in  ";
    290     if (UI->getUser())
    291       UI->getUser()->print(OS);
    292     else
    293       OS << "Printing <null> User";
    294     OS << '\n';
    295   }
    296 }
    297 
    298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    299 void IVUsers::dump() const {
    300   print(dbgs());
    301 }
    302 #endif
    303 
    304 void IVUsers::releaseMemory() {
    305   Processed.clear();
    306   IVUses.clear();
    307 }
    308 
    309 /// getReplacementExpr - Return a SCEV expression which computes the
    310 /// value of the OperandValToReplace.
    311 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
    312   return SE->getSCEV(IU.getOperandValToReplace());
    313 }
    314 
    315 /// getExpr - Return the expression for the use.
    316 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
    317   return
    318     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
    319                            IU.getUser(), IU.getOperandValToReplace(),
    320                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
    321                            *SE, *DT);
    322 }
    323 
    324 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
    325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    326     if (AR->getLoop() == L)
    327       return AR;
    328     return findAddRecForLoop(AR->getStart(), L);
    329   }
    330 
    331   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    332     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    333          I != E; ++I)
    334       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
    335         return AR;
    336     return nullptr;
    337   }
    338 
    339   return nullptr;
    340 }
    341 
    342 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
    343   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
    344     return AR->getStepRecurrence(*SE);
    345   return nullptr;
    346 }
    347 
    348 void IVStrideUse::transformToPostInc(const Loop *L) {
    349   PostIncLoops.insert(L);
    350 }
    351 
    352 void IVStrideUse::deleted() {
    353   // Remove this user from the list.
    354   Parent->Processed.erase(this->getUser());
    355   Parent->IVUses.erase(this);
    356   // this now dangles!
    357 }
    358