1 //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This describes the calling conventions for the X86-32 and X86-64 11 // architectures. 12 // 13 //===----------------------------------------------------------------------===// 14 15 /// CCIfSubtarget - Match if the current subtarget has a feature F. 16 class CCIfSubtarget<string F, CCAction A> 17 : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>; 18 19 //===----------------------------------------------------------------------===// 20 // Return Value Calling Conventions 21 //===----------------------------------------------------------------------===// 22 23 // Return-value conventions common to all X86 CC's. 24 def RetCC_X86Common : CallingConv<[ 25 // Scalar values are returned in AX first, then DX. For i8, the ABI 26 // requires the values to be in AL and AH, however this code uses AL and DL 27 // instead. This is because using AH for the second register conflicts with 28 // the way LLVM does multiple return values -- a return of {i16,i8} would end 29 // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI 30 // for functions that return two i8 values are currently expected to pack the 31 // values into an i16 (which uses AX, and thus AL:AH). 32 // 33 // For code that doesn't care about the ABI, we allow returning more than two 34 // integer values in registers. 35 CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, 36 CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, 37 CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, 38 CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, 39 40 // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 41 // can only be used by ABI non-compliant code. If the target doesn't have XMM 42 // registers, it won't have vector types. 43 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 44 CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, 45 46 // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 47 // can only be used by ABI non-compliant code. This vector type is only 48 // supported while using the AVX target feature. 49 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 50 CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, 51 52 // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 53 // can only be used by ABI non-compliant code. This vector type is only 54 // supported while using the AVX-512 target feature. 55 CCIfType<[v16i32, v8i64, v16f32, v8f64], 56 CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, 57 58 // MMX vector types are always returned in MM0. If the target doesn't have 59 // MM0, it doesn't support these vector types. 60 CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, 61 62 // Long double types are always returned in ST0 (even with SSE). 63 CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> 64 ]>; 65 66 // X86-32 C return-value convention. 67 def RetCC_X86_32_C : CallingConv<[ 68 // The X86-32 calling convention returns FP values in ST0, unless marked 69 // with "inreg" (used here to distinguish one kind of reg from another, 70 // weirdly; this is really the sse-regparm calling convention) in which 71 // case they use XMM0, otherwise it is the same as the common X86 calling 72 // conv. 73 CCIfInReg<CCIfSubtarget<"hasSSE2()", 74 CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, 75 CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>, 76 CCDelegateTo<RetCC_X86Common> 77 ]>; 78 79 // X86-32 FastCC return-value convention. 80 def RetCC_X86_32_Fast : CallingConv<[ 81 // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has 82 // SSE2. 83 // This can happen when a float, 2 x float, or 3 x float vector is split by 84 // target lowering, and is returned in 1-3 sse regs. 85 CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, 86 CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, 87 88 // For integers, ECX can be used as an extra return register 89 CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, 90 CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, 91 CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, 92 93 // Otherwise, it is the same as the common X86 calling convention. 94 CCDelegateTo<RetCC_X86Common> 95 ]>; 96 97 // Intel_OCL_BI return-value convention. 98 def RetCC_Intel_OCL_BI : CallingConv<[ 99 // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. 100 CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], 101 CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, 102 103 // 256-bit FP vectors 104 // No more than 4 registers 105 CCIfType<[v8f32, v4f64, v8i32, v4i64], 106 CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, 107 108 // 512-bit FP vectors 109 CCIfType<[v16f32, v8f64, v16i32, v8i64], 110 CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, 111 112 // i32, i64 in the standard way 113 CCDelegateTo<RetCC_X86Common> 114 ]>; 115 116 // X86-32 HiPE return-value convention. 117 def RetCC_X86_32_HiPE : CallingConv<[ 118 // Promote all types to i32 119 CCIfType<[i8, i16], CCPromoteToType<i32>>, 120 121 // Return: HP, P, VAL1, VAL2 122 CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> 123 ]>; 124 125 // X86-64 C return-value convention. 126 def RetCC_X86_64_C : CallingConv<[ 127 // The X86-64 calling convention always returns FP values in XMM0. 128 CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, 129 CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, 130 131 // MMX vector types are always returned in XMM0. 132 CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, 133 CCDelegateTo<RetCC_X86Common> 134 ]>; 135 136 // X86-Win64 C return-value convention. 137 def RetCC_X86_Win64_C : CallingConv<[ 138 // The X86-Win64 calling convention always returns __m64 values in RAX. 139 CCIfType<[x86mmx], CCBitConvertToType<i64>>, 140 141 // Otherwise, everything is the same as 'normal' X86-64 C CC. 142 CCDelegateTo<RetCC_X86_64_C> 143 ]>; 144 145 // X86-64 HiPE return-value convention. 146 def RetCC_X86_64_HiPE : CallingConv<[ 147 // Promote all types to i64 148 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, 149 150 // Return: HP, P, VAL1, VAL2 151 CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> 152 ]>; 153 154 // X86-64 WebKit_JS return-value convention. 155 def RetCC_X86_64_WebKit_JS : CallingConv<[ 156 // Promote all types to i64 157 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, 158 159 // Return: RAX 160 CCIfType<[i64], CCAssignToReg<[RAX]>> 161 ]>; 162 163 // X86-64 AnyReg return-value convention. No explicit register is specified for 164 // the return-value. The register allocator is allowed and expected to choose 165 // any free register. 166 // 167 // This calling convention is currently only supported by the stackmap and 168 // patchpoint intrinsics. All other uses will result in an assert on Debug 169 // builds. On Release builds we fallback to the X86 C calling convention. 170 def RetCC_X86_64_AnyReg : CallingConv<[ 171 CCCustom<"CC_X86_AnyReg_Error"> 172 ]>; 173 174 // This is the root return-value convention for the X86-32 backend. 175 def RetCC_X86_32 : CallingConv<[ 176 // If FastCC, use RetCC_X86_32_Fast. 177 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, 178 // If HiPE, use RetCC_X86_32_HiPE. 179 CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>, 180 181 // Otherwise, use RetCC_X86_32_C. 182 CCDelegateTo<RetCC_X86_32_C> 183 ]>; 184 185 // This is the root return-value convention for the X86-64 backend. 186 def RetCC_X86_64 : CallingConv<[ 187 // HiPE uses RetCC_X86_64_HiPE 188 CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>, 189 190 // Handle JavaScript calls. 191 CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>, 192 CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>, 193 194 // Handle explicit CC selection 195 CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>, 196 CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>, 197 198 // Mingw64 and native Win64 use Win64 CC 199 CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, 200 201 // Otherwise, drop to normal X86-64 CC 202 CCDelegateTo<RetCC_X86_64_C> 203 ]>; 204 205 // This is the return-value convention used for the entire X86 backend. 206 def RetCC_X86 : CallingConv<[ 207 208 // Check if this is the Intel OpenCL built-ins calling convention 209 CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>, 210 211 CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, 212 CCDelegateTo<RetCC_X86_32> 213 ]>; 214 215 //===----------------------------------------------------------------------===// 216 // X86-64 Argument Calling Conventions 217 //===----------------------------------------------------------------------===// 218 219 def CC_X86_64_C : CallingConv<[ 220 // Handles byval parameters. 221 CCIfByVal<CCPassByVal<8, 8>>, 222 223 // Promote i8/i16 arguments to i32. 224 CCIfType<[i8, i16], CCPromoteToType<i32>>, 225 226 // The 'nest' parameter, if any, is passed in R10. 227 CCIfNest<CCAssignToReg<[R10]>>, 228 229 // The first 6 integer arguments are passed in integer registers. 230 CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, 231 CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, 232 233 // The first 8 MMX vector arguments are passed in XMM registers on Darwin. 234 CCIfType<[x86mmx], 235 CCIfSubtarget<"isTargetDarwin()", 236 CCIfSubtarget<"hasSSE2()", 237 CCPromoteToType<v2i64>>>>, 238 239 // The first 8 FP/Vector arguments are passed in XMM registers. 240 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 241 CCIfSubtarget<"hasSSE1()", 242 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, 243 244 // The first 8 256-bit vector arguments are passed in YMM registers, unless 245 // this is a vararg function. 246 // FIXME: This isn't precisely correct; the x86-64 ABI document says that 247 // fixed arguments to vararg functions are supposed to be passed in 248 // registers. Actually modeling that would be a lot of work, though. 249 CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 250 CCIfSubtarget<"hasFp256()", 251 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, 252 YMM4, YMM5, YMM6, YMM7]>>>>, 253 254 // The first 8 512-bit vector arguments are passed in ZMM registers. 255 CCIfNotVarArg<CCIfType<[v16i32, v8i64, v16f32, v8f64], 256 CCIfSubtarget<"hasAVX512()", 257 CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>, 258 259 // Integer/FP values get stored in stack slots that are 8 bytes in size and 260 // 8-byte aligned if there are no more registers to hold them. 261 CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, 262 263 // Long doubles get stack slots whose size and alignment depends on the 264 // subtarget. 265 CCIfType<[f80], CCAssignToStack<0, 0>>, 266 267 // Vectors get 16-byte stack slots that are 16-byte aligned. 268 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, 269 270 // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. 271 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 272 CCAssignToStack<32, 32>>, 273 274 // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. 275 CCIfType<[v16i32, v8i64, v16f32, v8f64], 276 CCAssignToStack<64, 64>> 277 ]>; 278 279 // Calling convention used on Win64 280 def CC_X86_Win64_C : CallingConv<[ 281 // FIXME: Handle byval stuff. 282 // FIXME: Handle varargs. 283 284 // Promote i8/i16 arguments to i32. 285 CCIfType<[i8, i16], CCPromoteToType<i32>>, 286 287 // The 'nest' parameter, if any, is passed in R10. 288 CCIfNest<CCAssignToReg<[R10]>>, 289 290 // 128 bit vectors are passed by pointer 291 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, 292 293 294 // 256 bit vectors are passed by pointer 295 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>, 296 297 // 512 bit vectors are passed by pointer 298 CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>, 299 300 // The first 4 MMX vector arguments are passed in GPRs. 301 CCIfType<[x86mmx], CCBitConvertToType<i64>>, 302 303 // The first 4 integer arguments are passed in integer registers. 304 CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], 305 [XMM0, XMM1, XMM2, XMM3]>>, 306 307 // Do not pass the sret argument in RCX, the Win64 thiscall calling 308 // convention requires "this" to be passed in RCX. 309 CCIfCC<"CallingConv::X86_ThisCall", 310 CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], 311 [XMM1, XMM2, XMM3]>>>>, 312 313 CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], 314 [XMM0, XMM1, XMM2, XMM3]>>, 315 316 // The first 4 FP/Vector arguments are passed in XMM registers. 317 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 318 CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], 319 [RCX , RDX , R8 , R9 ]>>, 320 321 // Integer/FP values get stored in stack slots that are 8 bytes in size and 322 // 8-byte aligned if there are no more registers to hold them. 323 CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, 324 325 // Long doubles get stack slots whose size and alignment depends on the 326 // subtarget. 327 CCIfType<[f80], CCAssignToStack<0, 0>> 328 ]>; 329 330 def CC_X86_64_GHC : CallingConv<[ 331 // Promote i8/i16/i32 arguments to i64. 332 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, 333 334 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim 335 CCIfType<[i64], 336 CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, 337 338 // Pass in STG registers: F1, F2, F3, F4, D1, D2 339 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 340 CCIfSubtarget<"hasSSE1()", 341 CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> 342 ]>; 343 344 def CC_X86_64_HiPE : CallingConv<[ 345 // Promote i8/i16/i32 arguments to i64. 346 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, 347 348 // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 349 CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, 350 351 // Integer/FP values get stored in stack slots that are 8 bytes in size and 352 // 8-byte aligned if there are no more registers to hold them. 353 CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> 354 ]>; 355 356 def CC_X86_64_WebKit_JS : CallingConv<[ 357 // Promote i8/i16 arguments to i32. 358 CCIfType<[i8, i16], CCPromoteToType<i32>>, 359 360 // Only the first integer argument is passed in register. 361 CCIfType<[i32], CCAssignToReg<[EAX]>>, 362 CCIfType<[i64], CCAssignToReg<[RAX]>>, 363 364 // The remaining integer arguments are passed on the stack. 32bit integer and 365 // floating-point arguments are aligned to 4 byte and stored in 4 byte slots. 366 // 64bit integer and floating-point arguments are aligned to 8 byte and stored 367 // in 8 byte stack slots. 368 CCIfType<[i32, f32], CCAssignToStack<4, 4>>, 369 CCIfType<[i64, f64], CCAssignToStack<8, 8>> 370 ]>; 371 372 // No explicit register is specified for the AnyReg calling convention. The 373 // register allocator may assign the arguments to any free register. 374 // 375 // This calling convention is currently only supported by the stackmap and 376 // patchpoint intrinsics. All other uses will result in an assert on Debug 377 // builds. On Release builds we fallback to the X86 C calling convention. 378 def CC_X86_64_AnyReg : CallingConv<[ 379 CCCustom<"CC_X86_AnyReg_Error"> 380 ]>; 381 382 //===----------------------------------------------------------------------===// 383 // X86 C Calling Convention 384 //===----------------------------------------------------------------------===// 385 386 /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP 387 /// values are spilled on the stack, and the first 4 vector values go in XMM 388 /// regs. 389 def CC_X86_32_Common : CallingConv<[ 390 // Handles byval parameters. 391 CCIfByVal<CCPassByVal<4, 4>>, 392 393 // The first 3 float or double arguments, if marked 'inreg' and if the call 394 // is not a vararg call and if SSE2 is available, are passed in SSE registers. 395 CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], 396 CCIfSubtarget<"hasSSE2()", 397 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, 398 399 // The first 3 __m64 vector arguments are passed in mmx registers if the 400 // call is not a vararg call. 401 CCIfNotVarArg<CCIfType<[x86mmx], 402 CCAssignToReg<[MM0, MM1, MM2]>>>, 403 404 // Integer/Float values get stored in stack slots that are 4 bytes in 405 // size and 4-byte aligned. 406 CCIfType<[i32, f32], CCAssignToStack<4, 4>>, 407 408 // Doubles get 8-byte slots that are 4-byte aligned. 409 CCIfType<[f64], CCAssignToStack<8, 4>>, 410 411 // Long doubles get slots whose size depends on the subtarget. 412 CCIfType<[f80], CCAssignToStack<0, 4>>, 413 414 // The first 4 SSE vector arguments are passed in XMM registers. 415 CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 416 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, 417 418 // The first 4 AVX 256-bit vector arguments are passed in YMM registers. 419 CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 420 CCIfSubtarget<"hasFp256()", 421 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, 422 423 // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. 424 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, 425 426 // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. 427 CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 428 CCAssignToStack<32, 32>>, 429 430 // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are 431 // passed in the parameter area. 432 CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; 433 434 def CC_X86_32_C : CallingConv<[ 435 // Promote i8/i16 arguments to i32. 436 CCIfType<[i8, i16], CCPromoteToType<i32>>, 437 438 // The 'nest' parameter, if any, is passed in ECX. 439 CCIfNest<CCAssignToReg<[ECX]>>, 440 441 // The first 3 integer arguments, if marked 'inreg' and if the call is not 442 // a vararg call, are passed in integer registers. 443 CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, 444 445 // Otherwise, same as everything else. 446 CCDelegateTo<CC_X86_32_Common> 447 ]>; 448 449 def CC_X86_32_FastCall : CallingConv<[ 450 // Promote i8/i16 arguments to i32. 451 CCIfType<[i8, i16], CCPromoteToType<i32>>, 452 453 // The 'nest' parameter, if any, is passed in EAX. 454 CCIfNest<CCAssignToReg<[EAX]>>, 455 456 // The first 2 integer arguments are passed in ECX/EDX 457 CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>, 458 459 // Otherwise, same as everything else. 460 CCDelegateTo<CC_X86_32_Common> 461 ]>; 462 463 def CC_X86_32_ThisCall_Common : CallingConv<[ 464 // The first integer argument is passed in ECX 465 CCIfType<[i32], CCAssignToReg<[ECX]>>, 466 467 // Otherwise, same as everything else. 468 CCDelegateTo<CC_X86_32_Common> 469 ]>; 470 471 def CC_X86_32_ThisCall_Mingw : CallingConv<[ 472 // Promote i8/i16 arguments to i32. 473 CCIfType<[i8, i16], CCPromoteToType<i32>>, 474 475 CCDelegateTo<CC_X86_32_ThisCall_Common> 476 ]>; 477 478 def CC_X86_32_ThisCall_Win : CallingConv<[ 479 // Promote i8/i16 arguments to i32. 480 CCIfType<[i8, i16], CCPromoteToType<i32>>, 481 482 // Pass sret arguments indirectly through stack. 483 CCIfSRet<CCAssignToStack<4, 4>>, 484 485 CCDelegateTo<CC_X86_32_ThisCall_Common> 486 ]>; 487 488 def CC_X86_32_ThisCall : CallingConv<[ 489 CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>, 490 CCDelegateTo<CC_X86_32_ThisCall_Win> 491 ]>; 492 493 def CC_X86_32_FastCC : CallingConv<[ 494 // Handles byval parameters. Note that we can't rely on the delegation 495 // to CC_X86_32_Common for this because that happens after code that 496 // puts arguments in registers. 497 CCIfByVal<CCPassByVal<4, 4>>, 498 499 // Promote i8/i16 arguments to i32. 500 CCIfType<[i8, i16], CCPromoteToType<i32>>, 501 502 // The 'nest' parameter, if any, is passed in EAX. 503 CCIfNest<CCAssignToReg<[EAX]>>, 504 505 // The first 2 integer arguments are passed in ECX/EDX 506 CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, 507 508 // The first 3 float or double arguments, if the call is not a vararg 509 // call and if SSE2 is available, are passed in SSE registers. 510 CCIfNotVarArg<CCIfType<[f32,f64], 511 CCIfSubtarget<"hasSSE2()", 512 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, 513 514 // Doubles get 8-byte slots that are 8-byte aligned. 515 CCIfType<[f64], CCAssignToStack<8, 8>>, 516 517 // Otherwise, same as everything else. 518 CCDelegateTo<CC_X86_32_Common> 519 ]>; 520 521 def CC_X86_32_GHC : CallingConv<[ 522 // Promote i8/i16 arguments to i32. 523 CCIfType<[i8, i16], CCPromoteToType<i32>>, 524 525 // Pass in STG registers: Base, Sp, Hp, R1 526 CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> 527 ]>; 528 529 def CC_X86_32_HiPE : CallingConv<[ 530 // Promote i8/i16 arguments to i32. 531 CCIfType<[i8, i16], CCPromoteToType<i32>>, 532 533 // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 534 CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, 535 536 // Integer/Float values get stored in stack slots that are 4 bytes in 537 // size and 4-byte aligned. 538 CCIfType<[i32, f32], CCAssignToStack<4, 4>> 539 ]>; 540 541 // X86-64 Intel OpenCL built-ins calling convention. 542 def CC_Intel_OCL_BI : CallingConv<[ 543 544 CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, 545 CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, 546 547 CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, 548 CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, 549 550 CCIfType<[i32], CCAssignToStack<4, 4>>, 551 552 // The SSE vector arguments are passed in XMM registers. 553 CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], 554 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, 555 556 // The 256-bit vector arguments are passed in YMM registers. 557 CCIfType<[v8f32, v4f64, v8i32, v4i64], 558 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, 559 560 // The 512-bit vector arguments are passed in ZMM registers. 561 CCIfType<[v16f32, v8f64, v16i32, v8i64], 562 CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, 563 564 CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, 565 CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>, 566 CCDelegateTo<CC_X86_32_C> 567 ]>; 568 569 //===----------------------------------------------------------------------===// 570 // X86 Root Argument Calling Conventions 571 //===----------------------------------------------------------------------===// 572 573 // This is the root argument convention for the X86-32 backend. 574 def CC_X86_32 : CallingConv<[ 575 CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, 576 CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, 577 CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, 578 CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, 579 CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>, 580 581 // Otherwise, drop to normal X86-32 CC 582 CCDelegateTo<CC_X86_32_C> 583 ]>; 584 585 // This is the root argument convention for the X86-64 backend. 586 def CC_X86_64 : CallingConv<[ 587 CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, 588 CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>, 589 CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>, 590 CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>, 591 CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>, 592 CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>, 593 594 // Mingw64 and native Win64 use Win64 CC 595 CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, 596 597 // Otherwise, drop to normal X86-64 CC 598 CCDelegateTo<CC_X86_64_C> 599 ]>; 600 601 // This is the argument convention used for the entire X86 backend. 602 def CC_X86 : CallingConv<[ 603 CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>, 604 CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, 605 CCDelegateTo<CC_X86_32> 606 ]>; 607 608 //===----------------------------------------------------------------------===// 609 // Callee-saved Registers. 610 //===----------------------------------------------------------------------===// 611 612 def CSR_NoRegs : CalleeSavedRegs<(add)>; 613 614 def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; 615 def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; 616 617 def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; 618 def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; 619 620 def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, 621 (sequence "XMM%u", 6, 15))>; 622 623 // All GPRs - except r11 624 def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, 625 R8, R9, R10, RSP)>; 626 627 // All registers - except r11 628 def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, 629 (sequence "XMM%u", 0, 15))>; 630 def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, 631 (sequence "YMM%u", 0, 15))>; 632 633 def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, 634 R11, R12, R13, R14, R15, RBP, 635 (sequence "XMM%u", 0, 15))>; 636 637 def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP, 638 (sequence "XMM%u", 16, 31))>; 639 def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP, 640 (sequence "YMM%u", 0, 31)), 641 (sequence "XMM%u", 0, 15))>; 642 643 // Standard C + YMM6-15 644 def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, 645 R13, R14, R15, 646 (sequence "YMM%u", 6, 15))>; 647 648 def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, 649 R12, R13, R14, R15, 650 (sequence "ZMM%u", 6, 21), 651 K4, K5, K6, K7)>; 652 //Standard C + XMM 8-15 653 def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, 654 (sequence "XMM%u", 8, 15))>; 655 656 //Standard C + YMM 8-15 657 def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, 658 (sequence "YMM%u", 8, 15))>; 659 660 def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15, 661 (sequence "ZMM%u", 16, 31), 662 K4, K5, K6, K7)>; 663