1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the various pseudo instructions used by the compiler, 11 // as well as Pat patterns used during instruction selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 //===----------------------------------------------------------------------===// 16 // Pattern Matching Support 17 18 def GetLo32XForm : SDNodeXForm<imm, [{ 19 // Transformation function: get the low 32 bits. 20 return getI32Imm((unsigned)N->getZExtValue()); 21 }]>; 22 23 def GetLo8XForm : SDNodeXForm<imm, [{ 24 // Transformation function: get the low 8 bits. 25 return getI8Imm((uint8_t)N->getZExtValue()); 26 }]>; 27 28 29 //===----------------------------------------------------------------------===// 30 // Random Pseudo Instructions. 31 32 // PIC base construction. This expands to code that looks like this: 33 // call $next_inst 34 // popl %destreg" 35 let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in 36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), 37 "", []>; 38 39 40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into 41 // a stack adjustment and the codegen must know that they may modify the stack 42 // pointer before prolog-epilog rewriting occurs. 43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become 44 // sub / add which can clobber EFLAGS. 45 let Defs = [ESP, EFLAGS], Uses = [ESP] in { 46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), 47 "#ADJCALLSTACKDOWN", 48 [(X86callseq_start timm:$amt)]>, 49 Requires<[Not64BitMode]>; 50 def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 51 "#ADJCALLSTACKUP", 52 [(X86callseq_end timm:$amt1, timm:$amt2)]>, 53 Requires<[Not64BitMode]>; 54 } 55 56 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into 57 // a stack adjustment and the codegen must know that they may modify the stack 58 // pointer before prolog-epilog rewriting occurs. 59 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become 60 // sub / add which can clobber EFLAGS. 61 let Defs = [RSP, EFLAGS], Uses = [RSP] in { 62 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt), 63 "#ADJCALLSTACKDOWN", 64 [(X86callseq_start timm:$amt)]>, 65 Requires<[In64BitMode]>; 66 def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), 67 "#ADJCALLSTACKUP", 68 [(X86callseq_end timm:$amt1, timm:$amt2)]>, 69 Requires<[In64BitMode]>; 70 } 71 72 73 74 // x86-64 va_start lowering magic. 75 let usesCustomInserter = 1, Defs = [EFLAGS] in { 76 def VASTART_SAVE_XMM_REGS : I<0, Pseudo, 77 (outs), 78 (ins GR8:$al, 79 i64imm:$regsavefi, i64imm:$offset, 80 variable_ops), 81 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", 82 [(X86vastart_save_xmm_regs GR8:$al, 83 imm:$regsavefi, 84 imm:$offset), 85 (implicit EFLAGS)]>; 86 87 // The VAARG_64 pseudo-instruction takes the address of the va_list, 88 // and places the address of the next argument into a register. 89 let Defs = [EFLAGS] in 90 def VAARG_64 : I<0, Pseudo, 91 (outs GR64:$dst), 92 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), 93 "#VAARG_64 $dst, $ap, $size, $mode, $align", 94 [(set GR64:$dst, 95 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), 96 (implicit EFLAGS)]>; 97 98 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows 99 // targets. These calls are needed to probe the stack when allocating more than 100 // 4k bytes in one go. Touching the stack at 4K increments is necessary to 101 // ensure that the guard pages used by the OS virtual memory manager are 102 // allocated in correct sequence. 103 // The main point of having separate instruction are extra unmodelled effects 104 // (compared to ordinary calls) like stack pointer change. 105 106 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in 107 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins), 108 "# dynamic stack allocation", 109 [(X86WinAlloca)]>; 110 111 // When using segmented stacks these are lowered into instructions which first 112 // check if the current stacklet has enough free memory. If it does, memory is 113 // allocated by bumping the stack pointer. Otherwise memory is allocated from 114 // the heap. 115 116 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in 117 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), 118 "# variable sized alloca for segmented stacks", 119 [(set GR32:$dst, 120 (X86SegAlloca GR32:$size))]>, 121 Requires<[Not64BitMode]>; 122 123 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in 124 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), 125 "# variable sized alloca for segmented stacks", 126 [(set GR64:$dst, 127 (X86SegAlloca GR64:$size))]>, 128 Requires<[In64BitMode]>; 129 } 130 131 // The MSVC runtime contains an _ftol2 routine for converting floating-point 132 // to integer values. It has a strange calling convention: the input is 133 // popped from the x87 stack, and the return value is given in EDX:EAX. ECX is 134 // used as a temporary register. No other registers (aside from flags) are 135 // touched. 136 // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80 137 // variant is unnecessary. 138 139 let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in { 140 def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src), 141 "# win32 fptoui", 142 [(X86WinFTOL RFP32:$src)]>, 143 Requires<[Not64BitMode]>; 144 145 def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src), 146 "# win32 fptoui", 147 [(X86WinFTOL RFP64:$src)]>, 148 Requires<[Not64BitMode]>; 149 } 150 151 //===----------------------------------------------------------------------===// 152 // EH Pseudo Instructions 153 // 154 let SchedRW = [WriteSystem] in { 155 let isTerminator = 1, isReturn = 1, isBarrier = 1, 156 hasCtrlDep = 1, isCodeGenOnly = 1 in { 157 def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), 158 "ret\t#eh_return, addr: $addr", 159 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; 160 161 } 162 163 let isTerminator = 1, isReturn = 1, isBarrier = 1, 164 hasCtrlDep = 1, isCodeGenOnly = 1 in { 165 def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), 166 "ret\t#eh_return, addr: $addr", 167 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; 168 169 } 170 171 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, 172 usesCustomInserter = 1 in { 173 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), 174 "#EH_SJLJ_SETJMP32", 175 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, 176 Requires<[Not64BitMode]>; 177 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), 178 "#EH_SJLJ_SETJMP64", 179 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, 180 Requires<[In64BitMode]>; 181 let isTerminator = 1 in { 182 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), 183 "#EH_SJLJ_LONGJMP32", 184 [(X86eh_sjlj_longjmp addr:$buf)]>, 185 Requires<[Not64BitMode]>; 186 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), 187 "#EH_SJLJ_LONGJMP64", 188 [(X86eh_sjlj_longjmp addr:$buf)]>, 189 Requires<[In64BitMode]>; 190 } 191 } 192 } // SchedRW 193 194 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { 195 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), 196 "#EH_SjLj_Setup\t$dst", []>; 197 } 198 199 //===----------------------------------------------------------------------===// 200 // Pseudo instructions used by unwind info. 201 // 202 let isPseudo = 1 in { 203 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), 204 "#SEH_PushReg $reg", []>; 205 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), 206 "#SEH_SaveReg $reg, $dst", []>; 207 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), 208 "#SEH_SaveXMM $reg, $dst", []>; 209 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), 210 "#SEH_StackAlloc $size", []>; 211 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), 212 "#SEH_SetFrame $reg, $offset", []>; 213 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), 214 "#SEH_PushFrame $mode", []>; 215 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), 216 "#SEH_EndPrologue", []>; 217 } 218 219 //===----------------------------------------------------------------------===// 220 // Pseudo instructions used by segmented stacks. 221 // 222 223 // This is lowered into a RET instruction by MCInstLower. We need 224 // this so that we don't have to have a MachineBasicBlock which ends 225 // with a RET and also has successors. 226 let isPseudo = 1 in { 227 def MORESTACK_RET: I<0, Pseudo, (outs), (ins), 228 "", []>; 229 230 // This instruction is lowered to a RET followed by a MOV. The two 231 // instructions are not generated on a higher level since then the 232 // verifier sees a MachineBasicBlock ending with a non-terminator. 233 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), 234 "", []>; 235 } 236 237 //===----------------------------------------------------------------------===// 238 // Alias Instructions 239 //===----------------------------------------------------------------------===// 240 241 // Alias instruction mapping movr0 to xor. 242 // FIXME: remove when we can teach regalloc that xor reg, reg is ok. 243 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, 244 isPseudo = 1 in 245 def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", 246 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; 247 248 // Other widths can also make use of the 32-bit xor, which may have a smaller 249 // encoding and avoid partial register updates. 250 def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; 251 def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; 252 def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> { 253 let AddedComplexity = 20; 254 } 255 256 // Materialize i64 constant where top 32-bits are zero. This could theoretically 257 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however 258 // that would make it more difficult to rematerialize. 259 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, 260 isCodeGenOnly = 1, neverHasSideEffects = 1 in 261 def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src), 262 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>; 263 264 // This 64-bit pseudo-move can be used for both a 64-bit constant that is 265 // actually the zero-extension of a 32-bit constant, and for labels in the 266 // x86-64 small code model. 267 def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>; 268 269 let AddedComplexity = 1 in 270 def : Pat<(i64 mov64imm32:$src), 271 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; 272 273 // Use sbb to materialize carry bit. 274 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { 275 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. 276 // However, Pat<> can't replicate the destination reg into the inputs of the 277 // result. 278 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", 279 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 280 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", 281 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 282 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", 283 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 284 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", 285 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; 286 } // isCodeGenOnly 287 288 289 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 290 (SETB_C16r)>; 291 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 292 (SETB_C32r)>; 293 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 294 (SETB_C64r)>; 295 296 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 297 (SETB_C16r)>; 298 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 299 (SETB_C32r)>; 300 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 301 (SETB_C64r)>; 302 303 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and 304 // will be eliminated and that the sbb can be extended up to a wider type. When 305 // this happens, it is great. However, if we are left with an 8-bit sbb and an 306 // and, we might as well just match it as a setb. 307 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), 308 (SETBr)>; 309 310 // (add OP, SETB) -> (adc OP, 0) 311 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), 312 (ADC8ri GR8:$op, 0)>; 313 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), 314 (ADC32ri8 GR32:$op, 0)>; 315 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), 316 (ADC64ri8 GR64:$op, 0)>; 317 318 // (sub OP, SETB) -> (sbb OP, 0) 319 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 320 (SBB8ri GR8:$op, 0)>; 321 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 322 (SBB32ri8 GR32:$op, 0)>; 323 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), 324 (SBB64ri8 GR64:$op, 0)>; 325 326 // (sub OP, SETCC_CARRY) -> (adc OP, 0) 327 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), 328 (ADC8ri GR8:$op, 0)>; 329 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), 330 (ADC32ri8 GR32:$op, 0)>; 331 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), 332 (ADC64ri8 GR64:$op, 0)>; 333 334 //===----------------------------------------------------------------------===// 335 // String Pseudo Instructions 336 // 337 let SchedRW = [WriteMicrocoded] in { 338 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { 339 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", 340 [(X86rep_movs i8)], IIC_REP_MOVS>, REP, 341 Requires<[Not64BitMode]>; 342 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", 343 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, 344 Requires<[Not64BitMode]>; 345 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", 346 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, 347 Requires<[Not64BitMode]>; 348 } 349 350 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { 351 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", 352 [(X86rep_movs i8)], IIC_REP_MOVS>, REP, 353 Requires<[In64BitMode]>; 354 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", 355 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16, 356 Requires<[In64BitMode]>; 357 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", 358 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32, 359 Requires<[In64BitMode]>; 360 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", 361 [(X86rep_movs i64)], IIC_REP_MOVS>, REP, 362 Requires<[In64BitMode]>; 363 } 364 365 // FIXME: Should use "(X86rep_stos AL)" as the pattern. 366 let Defs = [ECX,EDI], isCodeGenOnly = 1 in { 367 let Uses = [AL,ECX,EDI] in 368 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", 369 [(X86rep_stos i8)], IIC_REP_STOS>, REP, 370 Requires<[Not64BitMode]>; 371 let Uses = [AX,ECX,EDI] in 372 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", 373 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, 374 Requires<[Not64BitMode]>; 375 let Uses = [EAX,ECX,EDI] in 376 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", 377 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, 378 Requires<[Not64BitMode]>; 379 } 380 381 let Defs = [RCX,RDI], isCodeGenOnly = 1 in { 382 let Uses = [AL,RCX,RDI] in 383 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", 384 [(X86rep_stos i8)], IIC_REP_STOS>, REP, 385 Requires<[In64BitMode]>; 386 let Uses = [AX,RCX,RDI] in 387 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", 388 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16, 389 Requires<[In64BitMode]>; 390 let Uses = [RAX,RCX,RDI] in 391 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", 392 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32, 393 Requires<[In64BitMode]>; 394 395 let Uses = [RAX,RCX,RDI] in 396 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", 397 [(X86rep_stos i64)], IIC_REP_STOS>, REP, 398 Requires<[In64BitMode]>; 399 } 400 } // SchedRW 401 402 //===----------------------------------------------------------------------===// 403 // Thread Local Storage Instructions 404 // 405 406 // ELF TLS Support 407 // All calls clobber the non-callee saved registers. ESP is marked as 408 // a use to prevent stack-pointer assignments that appear immediately 409 // before calls from potentially appearing dead. 410 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, 411 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 412 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 413 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], 414 Uses = [ESP] in { 415 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 416 "# TLS_addr32", 417 [(X86tlsaddr tls32addr:$sym)]>, 418 Requires<[Not64BitMode]>; 419 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 420 "# TLS_base_addr32", 421 [(X86tlsbaseaddr tls32baseaddr:$sym)]>, 422 Requires<[Not64BitMode]>; 423 } 424 425 // All calls clobber the non-callee saved registers. RSP is marked as 426 // a use to prevent stack-pointer assignments that appear immediately 427 // before calls from potentially appearing dead. 428 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 429 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, 430 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 431 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 432 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], 433 Uses = [RSP] in { 434 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 435 "# TLS_addr64", 436 [(X86tlsaddr tls64addr:$sym)]>, 437 Requires<[In64BitMode]>; 438 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 439 "# TLS_base_addr64", 440 [(X86tlsbaseaddr tls64baseaddr:$sym)]>, 441 Requires<[In64BitMode]>; 442 } 443 444 // Darwin TLS Support 445 // For i386, the address of the thunk is passed on the stack, on return the 446 // address of the variable is in %eax. %ecx is trashed during the function 447 // call. All other registers are preserved. 448 let Defs = [EAX, ECX, EFLAGS], 449 Uses = [ESP], 450 usesCustomInserter = 1 in 451 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), 452 "# TLSCall_32", 453 [(X86TLSCall addr:$sym)]>, 454 Requires<[Not64BitMode]>; 455 456 // For x86_64, the address of the thunk is passed in %rdi, on return 457 // the address of the variable is in %rax. All other registers are preserved. 458 let Defs = [RAX, EFLAGS], 459 Uses = [RSP, RDI], 460 usesCustomInserter = 1 in 461 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), 462 "# TLSCall_64", 463 [(X86TLSCall addr:$sym)]>, 464 Requires<[In64BitMode]>; 465 466 467 //===----------------------------------------------------------------------===// 468 // Conditional Move Pseudo Instructions 469 470 // X86 doesn't have 8-bit conditional moves. Use a customInserter to 471 // emit control flow. An alternative to this is to mark i8 SELECT as Promote, 472 // however that requires promoting the operands, and can induce additional 473 // i8 register pressure. 474 let usesCustomInserter = 1, Uses = [EFLAGS] in { 475 def CMOV_GR8 : I<0, Pseudo, 476 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), 477 "#CMOV_GR8 PSEUDO!", 478 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, 479 imm:$cond, EFLAGS))]>; 480 481 let Predicates = [NoCMov] in { 482 def CMOV_GR32 : I<0, Pseudo, 483 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), 484 "#CMOV_GR32* PSEUDO!", 485 [(set GR32:$dst, 486 (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; 487 def CMOV_GR16 : I<0, Pseudo, 488 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), 489 "#CMOV_GR16* PSEUDO!", 490 [(set GR16:$dst, 491 (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; 492 } // Predicates = [NoCMov] 493 494 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no 495 // SSE1. 496 let Predicates = [FPStackf32] in 497 def CMOV_RFP32 : I<0, Pseudo, 498 (outs RFP32:$dst), 499 (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), 500 "#CMOV_RFP32 PSEUDO!", 501 [(set RFP32:$dst, 502 (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, 503 EFLAGS))]>; 504 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no 505 // SSE2. 506 let Predicates = [FPStackf64] in 507 def CMOV_RFP64 : I<0, Pseudo, 508 (outs RFP64:$dst), 509 (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), 510 "#CMOV_RFP64 PSEUDO!", 511 [(set RFP64:$dst, 512 (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, 513 EFLAGS))]>; 514 def CMOV_RFP80 : I<0, Pseudo, 515 (outs RFP80:$dst), 516 (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), 517 "#CMOV_RFP80 PSEUDO!", 518 [(set RFP80:$dst, 519 (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, 520 EFLAGS))]>; 521 } // UsesCustomInserter = 1, Uses = [EFLAGS] 522 523 524 //===----------------------------------------------------------------------===// 525 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions 526 //===----------------------------------------------------------------------===// 527 528 // FIXME: Use normal instructions and add lock prefix dynamically. 529 530 // Memory barriers 531 532 // TODO: Get this to fold the constant into the instruction. 533 let isCodeGenOnly = 1, Defs = [EFLAGS] in 534 def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), 535 "or{l}\t{$zero, $dst|$dst, $zero}", 536 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK, 537 Sched<[WriteALULd, WriteRMW]>; 538 539 let hasSideEffects = 1 in 540 def Int_MemBarrier : I<0, Pseudo, (outs), (ins), 541 "#MEMBARRIER", 542 [(X86MemBarrier)]>, Sched<[WriteLoad]>; 543 544 // RegOpc corresponds to the mr version of the instruction 545 // ImmOpc corresponds to the mi version of the instruction 546 // ImmOpc8 corresponds to the mi8 version of the instruction 547 // ImmMod corresponds to the instruction format of the mi and mi8 versions 548 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, 549 Format ImmMod, string mnemonic> { 550 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, 551 SchedRW = [WriteALULd, WriteRMW] in { 552 553 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 554 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, 555 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), 556 !strconcat(mnemonic, "{b}\t", 557 "{$src2, $dst|$dst, $src2}"), 558 [], IIC_ALU_NONMEM>, LOCK; 559 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 560 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 561 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), 562 !strconcat(mnemonic, "{w}\t", 563 "{$src2, $dst|$dst, $src2}"), 564 [], IIC_ALU_NONMEM>, OpSize16, LOCK; 565 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 566 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 567 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), 568 !strconcat(mnemonic, "{l}\t", 569 "{$src2, $dst|$dst, $src2}"), 570 [], IIC_ALU_NONMEM>, OpSize32, LOCK; 571 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, 572 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, 573 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 574 !strconcat(mnemonic, "{q}\t", 575 "{$src2, $dst|$dst, $src2}"), 576 [], IIC_ALU_NONMEM>, LOCK; 577 578 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 579 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, 580 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), 581 !strconcat(mnemonic, "{b}\t", 582 "{$src2, $dst|$dst, $src2}"), 583 [], IIC_ALU_MEM>, LOCK; 584 585 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 586 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 587 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), 588 !strconcat(mnemonic, "{w}\t", 589 "{$src2, $dst|$dst, $src2}"), 590 [], IIC_ALU_MEM>, OpSize16, LOCK; 591 592 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 593 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 594 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), 595 !strconcat(mnemonic, "{l}\t", 596 "{$src2, $dst|$dst, $src2}"), 597 [], IIC_ALU_MEM>, OpSize32, LOCK; 598 599 def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, 600 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, 601 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), 602 !strconcat(mnemonic, "{q}\t", 603 "{$src2, $dst|$dst, $src2}"), 604 [], IIC_ALU_MEM>, LOCK; 605 606 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 607 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 608 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), 609 !strconcat(mnemonic, "{w}\t", 610 "{$src2, $dst|$dst, $src2}"), 611 [], IIC_ALU_MEM>, OpSize16, LOCK; 612 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 613 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 614 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), 615 !strconcat(mnemonic, "{l}\t", 616 "{$src2, $dst|$dst, $src2}"), 617 [], IIC_ALU_MEM>, OpSize32, LOCK; 618 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, 619 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, 620 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), 621 !strconcat(mnemonic, "{q}\t", 622 "{$src2, $dst|$dst, $src2}"), 623 [], IIC_ALU_MEM>, LOCK; 624 625 } 626 627 } 628 629 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">; 630 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">; 631 defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">; 632 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">; 633 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; 634 635 // Optimized codegen when the non-memory output is not used. 636 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, 637 string mnemonic> { 638 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, 639 SchedRW = [WriteALULd, WriteRMW] in { 640 641 def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), 642 !strconcat(mnemonic, "{b}\t$dst"), 643 [], IIC_UNARY_MEM>, LOCK; 644 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), 645 !strconcat(mnemonic, "{w}\t$dst"), 646 [], IIC_UNARY_MEM>, OpSize16, LOCK; 647 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), 648 !strconcat(mnemonic, "{l}\t$dst"), 649 [], IIC_UNARY_MEM>, OpSize32, LOCK; 650 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), 651 !strconcat(mnemonic, "{q}\t$dst"), 652 [], IIC_UNARY_MEM>, LOCK; 653 } 654 } 655 656 defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">; 657 defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">; 658 659 // Atomic compare and swap. 660 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, 661 SDPatternOperator frag, X86MemOperand x86memop, 662 InstrItinClass itin> { 663 let isCodeGenOnly = 1 in { 664 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), 665 !strconcat(mnemonic, "\t$ptr"), 666 [(frag addr:$ptr)], itin>, TB, LOCK; 667 } 668 } 669 670 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, 671 string mnemonic, SDPatternOperator frag, 672 InstrItinClass itin8, InstrItinClass itin> { 673 let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { 674 let Defs = [AL, EFLAGS], Uses = [AL] in 675 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), 676 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), 677 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; 678 let Defs = [AX, EFLAGS], Uses = [AX] in 679 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), 680 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), 681 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK; 682 let Defs = [EAX, EFLAGS], Uses = [EAX] in 683 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), 684 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), 685 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK; 686 let Defs = [RAX, EFLAGS], Uses = [RAX] in 687 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), 688 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), 689 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; 690 } 691 } 692 693 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], 694 SchedRW = [WriteALULd, WriteRMW] in { 695 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", 696 X86cas8, i64mem, 697 IIC_CMPX_LOCK_8B>; 698 } 699 700 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], 701 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { 702 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", 703 X86cas16, i128mem, 704 IIC_CMPX_LOCK_16B>, REX_W; 705 } 706 707 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", 708 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; 709 710 // Atomic exchange and add 711 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, 712 string frag, 713 InstrItinClass itin8, InstrItinClass itin> { 714 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, 715 SchedRW = [WriteALULd, WriteRMW] in { 716 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), 717 (ins GR8:$val, i8mem:$ptr), 718 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), 719 [(set GR8:$dst, 720 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], 721 itin8>; 722 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), 723 (ins GR16:$val, i16mem:$ptr), 724 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), 725 [(set 726 GR16:$dst, 727 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], 728 itin>, OpSize16; 729 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), 730 (ins GR32:$val, i32mem:$ptr), 731 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), 732 [(set 733 GR32:$dst, 734 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], 735 itin>, OpSize32; 736 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), 737 (ins GR64:$val, i64mem:$ptr), 738 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), 739 [(set 740 GR64:$dst, 741 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], 742 itin>; 743 } 744 } 745 746 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", 747 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, 748 TB, LOCK; 749 750 def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), 751 "#ACQUIRE_MOV PSEUDO!", 752 [(set GR8:$dst, (atomic_load_8 addr:$src))]>; 753 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), 754 "#ACQUIRE_MOV PSEUDO!", 755 [(set GR16:$dst, (atomic_load_16 addr:$src))]>; 756 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), 757 "#ACQUIRE_MOV PSEUDO!", 758 [(set GR32:$dst, (atomic_load_32 addr:$src))]>; 759 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), 760 "#ACQUIRE_MOV PSEUDO!", 761 [(set GR64:$dst, (atomic_load_64 addr:$src))]>; 762 763 def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), 764 "#RELEASE_MOV PSEUDO!", 765 [(atomic_store_8 addr:$dst, GR8 :$src)]>; 766 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), 767 "#RELEASE_MOV PSEUDO!", 768 [(atomic_store_16 addr:$dst, GR16:$src)]>; 769 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), 770 "#RELEASE_MOV PSEUDO!", 771 [(atomic_store_32 addr:$dst, GR32:$src)]>; 772 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), 773 "#RELEASE_MOV PSEUDO!", 774 [(atomic_store_64 addr:$dst, GR64:$src)]>; 775 776 //===----------------------------------------------------------------------===// 777 // Conditional Move Pseudo Instructions. 778 //===----------------------------------------------------------------------===// 779 780 781 // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after 782 // instruction selection into a branch sequence. 783 let Uses = [EFLAGS], usesCustomInserter = 1 in { 784 def CMOV_FR32 : I<0, Pseudo, 785 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), 786 "#CMOV_FR32 PSEUDO!", 787 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, 788 EFLAGS))]>; 789 def CMOV_FR64 : I<0, Pseudo, 790 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), 791 "#CMOV_FR64 PSEUDO!", 792 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, 793 EFLAGS))]>; 794 def CMOV_V4F32 : I<0, Pseudo, 795 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), 796 "#CMOV_V4F32 PSEUDO!", 797 [(set VR128:$dst, 798 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, 799 EFLAGS)))]>; 800 def CMOV_V2F64 : I<0, Pseudo, 801 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), 802 "#CMOV_V2F64 PSEUDO!", 803 [(set VR128:$dst, 804 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, 805 EFLAGS)))]>; 806 def CMOV_V2I64 : I<0, Pseudo, 807 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), 808 "#CMOV_V2I64 PSEUDO!", 809 [(set VR128:$dst, 810 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, 811 EFLAGS)))]>; 812 def CMOV_V8F32 : I<0, Pseudo, 813 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), 814 "#CMOV_V8F32 PSEUDO!", 815 [(set VR256:$dst, 816 (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, 817 EFLAGS)))]>; 818 def CMOV_V4F64 : I<0, Pseudo, 819 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), 820 "#CMOV_V4F64 PSEUDO!", 821 [(set VR256:$dst, 822 (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, 823 EFLAGS)))]>; 824 def CMOV_V4I64 : I<0, Pseudo, 825 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), 826 "#CMOV_V4I64 PSEUDO!", 827 [(set VR256:$dst, 828 (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond, 829 EFLAGS)))]>; 830 def CMOV_V8I64 : I<0, Pseudo, 831 (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), 832 "#CMOV_V8I64 PSEUDO!", 833 [(set VR512:$dst, 834 (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond, 835 EFLAGS)))]>; 836 def CMOV_V8F64 : I<0, Pseudo, 837 (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), 838 "#CMOV_V8F64 PSEUDO!", 839 [(set VR512:$dst, 840 (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond, 841 EFLAGS)))]>; 842 def CMOV_V16F32 : I<0, Pseudo, 843 (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond), 844 "#CMOV_V16F32 PSEUDO!", 845 [(set VR512:$dst, 846 (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond, 847 EFLAGS)))]>; 848 } 849 850 851 //===----------------------------------------------------------------------===// 852 // DAG Pattern Matching Rules 853 //===----------------------------------------------------------------------===// 854 855 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable 856 def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; 857 def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; 858 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; 859 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; 860 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; 861 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; 862 863 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), 864 (ADD32ri GR32:$src1, tconstpool:$src2)>; 865 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), 866 (ADD32ri GR32:$src1, tjumptable:$src2)>; 867 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), 868 (ADD32ri GR32:$src1, tglobaladdr:$src2)>; 869 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), 870 (ADD32ri GR32:$src1, texternalsym:$src2)>; 871 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), 872 (ADD32ri GR32:$src1, tblockaddress:$src2)>; 873 874 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), 875 (MOV32mi addr:$dst, tglobaladdr:$src)>; 876 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), 877 (MOV32mi addr:$dst, texternalsym:$src)>; 878 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), 879 (MOV32mi addr:$dst, tblockaddress:$src)>; 880 881 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small 882 // code model mode, should use 'movabs'. FIXME: This is really a hack, the 883 // 'movabs' predicate should handle this sort of thing. 884 def : Pat<(i64 (X86Wrapper tconstpool :$dst)), 885 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; 886 def : Pat<(i64 (X86Wrapper tjumptable :$dst)), 887 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; 888 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), 889 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; 890 def : Pat<(i64 (X86Wrapper texternalsym:$dst)), 891 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; 892 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), 893 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; 894 895 // In kernel code model, we can get the address of a label 896 // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of 897 // the MOV64ri32 should accept these. 898 def : Pat<(i64 (X86Wrapper tconstpool :$dst)), 899 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; 900 def : Pat<(i64 (X86Wrapper tjumptable :$dst)), 901 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; 902 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), 903 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; 904 def : Pat<(i64 (X86Wrapper texternalsym:$dst)), 905 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; 906 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), 907 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; 908 909 // If we have small model and -static mode, it is safe to store global addresses 910 // directly as immediates. FIXME: This is really a hack, the 'imm' predicate 911 // for MOV64mi32 should handle this sort of thing. 912 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), 913 (MOV64mi32 addr:$dst, tconstpool:$src)>, 914 Requires<[NearData, IsStatic]>; 915 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), 916 (MOV64mi32 addr:$dst, tjumptable:$src)>, 917 Requires<[NearData, IsStatic]>; 918 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), 919 (MOV64mi32 addr:$dst, tglobaladdr:$src)>, 920 Requires<[NearData, IsStatic]>; 921 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), 922 (MOV64mi32 addr:$dst, texternalsym:$src)>, 923 Requires<[NearData, IsStatic]>; 924 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), 925 (MOV64mi32 addr:$dst, tblockaddress:$src)>, 926 Requires<[NearData, IsStatic]>; 927 928 // Calls 929 930 // tls has some funny stuff here... 931 // This corresponds to movabs $foo@tpoff, %rax 932 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), 933 (MOV64ri32 tglobaltlsaddr :$dst)>; 934 // This corresponds to add $foo@tpoff, %rax 935 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), 936 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; 937 938 939 // Direct PC relative function call for small code model. 32-bit displacement 940 // sign extended to 64-bit. 941 def : Pat<(X86call (i64 tglobaladdr:$dst)), 942 (CALL64pcrel32 tglobaladdr:$dst)>; 943 def : Pat<(X86call (i64 texternalsym:$dst)), 944 (CALL64pcrel32 texternalsym:$dst)>; 945 946 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they 947 // can never use callee-saved registers. That is the purpose of the GR64_TC 948 // register classes. 949 // 950 // The only volatile register that is never used by the calling convention is 951 // %r11. This happens when calling a vararg function with 6 arguments. 952 // 953 // Match an X86tcret that uses less than 7 volatile registers. 954 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), 955 (X86tcret node:$ptr, node:$off), [{ 956 // X86tcret args: (*chain, ptr, imm, regs..., glue) 957 unsigned NumRegs = 0; 958 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) 959 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) 960 return false; 961 return true; 962 }]>; 963 964 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 965 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, 966 Requires<[Not64BitMode]>; 967 968 // FIXME: This is disabled for 32-bit PIC mode because the global base 969 // register which is part of the address mode may be assigned a 970 // callee-saved register. 971 def : Pat<(X86tcret (load addr:$dst), imm:$off), 972 (TCRETURNmi addr:$dst, imm:$off)>, 973 Requires<[Not64BitMode, IsNotPIC]>; 974 975 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), 976 (TCRETURNdi texternalsym:$dst, imm:$off)>, 977 Requires<[Not64BitMode]>; 978 979 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), 980 (TCRETURNdi texternalsym:$dst, imm:$off)>, 981 Requires<[Not64BitMode]>; 982 983 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), 984 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, 985 Requires<[In64BitMode]>; 986 987 // Don't fold loads into X86tcret requiring more than 6 regs. 988 // There wouldn't be enough scratch registers for base+index. 989 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), 990 (TCRETURNmi64 addr:$dst, imm:$off)>, 991 Requires<[In64BitMode]>; 992 993 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), 994 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, 995 Requires<[In64BitMode]>; 996 997 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), 998 (TCRETURNdi64 texternalsym:$dst, imm:$off)>, 999 Requires<[In64BitMode]>; 1000 1001 // Normal calls, with various flavors of addresses. 1002 def : Pat<(X86call (i32 tglobaladdr:$dst)), 1003 (CALLpcrel32 tglobaladdr:$dst)>; 1004 def : Pat<(X86call (i32 texternalsym:$dst)), 1005 (CALLpcrel32 texternalsym:$dst)>; 1006 def : Pat<(X86call (i32 imm:$dst)), 1007 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; 1008 1009 // Comparisons. 1010 1011 // TEST R,R is smaller than CMP R,0 1012 def : Pat<(X86cmp GR8:$src1, 0), 1013 (TEST8rr GR8:$src1, GR8:$src1)>; 1014 def : Pat<(X86cmp GR16:$src1, 0), 1015 (TEST16rr GR16:$src1, GR16:$src1)>; 1016 def : Pat<(X86cmp GR32:$src1, 0), 1017 (TEST32rr GR32:$src1, GR32:$src1)>; 1018 def : Pat<(X86cmp GR64:$src1, 0), 1019 (TEST64rr GR64:$src1, GR64:$src1)>; 1020 1021 // Conditional moves with folded loads with operands swapped and conditions 1022 // inverted. 1023 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, 1024 Instruction Inst64> { 1025 let Predicates = [HasCMov] in { 1026 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), 1027 (Inst16 GR16:$src2, addr:$src1)>; 1028 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), 1029 (Inst32 GR32:$src2, addr:$src1)>; 1030 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), 1031 (Inst64 GR64:$src2, addr:$src1)>; 1032 } 1033 } 1034 1035 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; 1036 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; 1037 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; 1038 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; 1039 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; 1040 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; 1041 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; 1042 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; 1043 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; 1044 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; 1045 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; 1046 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; 1047 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; 1048 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; 1049 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; 1050 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; 1051 1052 // zextload bool -> zextload byte 1053 def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; 1054 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; 1055 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; 1056 def : Pat<(zextloadi64i1 addr:$src), 1057 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1058 1059 // extload bool -> extload byte 1060 // When extloading from 16-bit and smaller memory locations into 64-bit 1061 // registers, use zero-extending loads so that the entire 64-bit register is 1062 // defined, avoiding partial-register updates. 1063 1064 def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; 1065 def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; 1066 def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; 1067 def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; 1068 def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; 1069 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; 1070 1071 // For other extloads, use subregs, since the high contents of the register are 1072 // defined after an extload. 1073 def : Pat<(extloadi64i1 addr:$src), 1074 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1075 def : Pat<(extloadi64i8 addr:$src), 1076 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; 1077 def : Pat<(extloadi64i16 addr:$src), 1078 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; 1079 def : Pat<(extloadi64i32 addr:$src), 1080 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; 1081 1082 // anyext. Define these to do an explicit zero-extend to 1083 // avoid partial-register updates. 1084 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG 1085 (MOVZX32rr8 GR8 :$src), sub_16bit)>; 1086 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; 1087 1088 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. 1089 def : Pat<(i32 (anyext GR16:$src)), 1090 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; 1091 1092 def : Pat<(i64 (anyext GR8 :$src)), 1093 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; 1094 def : Pat<(i64 (anyext GR16:$src)), 1095 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; 1096 def : Pat<(i64 (anyext GR32:$src)), 1097 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; 1098 1099 1100 // Any instruction that defines a 32-bit result leaves the high half of the 1101 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may 1102 // be copying from a truncate. And x86's cmov doesn't do anything if the 1103 // condition is false. But any other 32-bit operation will zero-extend 1104 // up to 64 bits. 1105 def def32 : PatLeaf<(i32 GR32:$src), [{ 1106 return N->getOpcode() != ISD::TRUNCATE && 1107 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && 1108 N->getOpcode() != ISD::CopyFromReg && 1109 N->getOpcode() != X86ISD::CMOV; 1110 }]>; 1111 1112 // In the case of a 32-bit def that is known to implicitly zero-extend, 1113 // we can use a SUBREG_TO_REG. 1114 def : Pat<(i64 (zext def32:$src)), 1115 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; 1116 1117 //===----------------------------------------------------------------------===// 1118 // Pattern match OR as ADD 1119 //===----------------------------------------------------------------------===// 1120 1121 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be 1122 // 3-addressified into an LEA instruction to avoid copies. However, we also 1123 // want to finally emit these instructions as an or at the end of the code 1124 // generator to make the generated code easier to read. To do this, we select 1125 // into "disjoint bits" pseudo ops. 1126 1127 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. 1128 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ 1129 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) 1130 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); 1131 1132 APInt KnownZero0, KnownOne0; 1133 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0); 1134 APInt KnownZero1, KnownOne1; 1135 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0); 1136 return (~KnownZero0 & ~KnownZero1) == 0; 1137 }]>; 1138 1139 1140 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. 1141 // Try this before the selecting to OR. 1142 let AddedComplexity = 5, SchedRW = [WriteALU] in { 1143 1144 let isConvertibleToThreeAddress = 1, 1145 Constraints = "$src1 = $dst", Defs = [EFLAGS] in { 1146 let isCommutable = 1 in { 1147 def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), 1148 "", // orw/addw REG, REG 1149 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; 1150 def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), 1151 "", // orl/addl REG, REG 1152 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; 1153 def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), 1154 "", // orq/addq REG, REG 1155 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; 1156 } // isCommutable 1157 1158 // NOTE: These are order specific, we want the ri8 forms to be listed 1159 // first so that they are slightly preferred to the ri forms. 1160 1161 def ADD16ri8_DB : I<0, Pseudo, 1162 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), 1163 "", // orw/addw REG, imm8 1164 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; 1165 def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), 1166 "", // orw/addw REG, imm 1167 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; 1168 1169 def ADD32ri8_DB : I<0, Pseudo, 1170 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), 1171 "", // orl/addl REG, imm8 1172 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; 1173 def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), 1174 "", // orl/addl REG, imm 1175 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; 1176 1177 1178 def ADD64ri8_DB : I<0, Pseudo, 1179 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), 1180 "", // orq/addq REG, imm8 1181 [(set GR64:$dst, (or_is_add GR64:$src1, 1182 i64immSExt8:$src2))]>; 1183 def ADD64ri32_DB : I<0, Pseudo, 1184 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), 1185 "", // orq/addq REG, imm 1186 [(set GR64:$dst, (or_is_add GR64:$src1, 1187 i64immSExt32:$src2))]>; 1188 } 1189 } // AddedComplexity, SchedRW 1190 1191 1192 //===----------------------------------------------------------------------===// 1193 // Some peepholes 1194 //===----------------------------------------------------------------------===// 1195 1196 // Odd encoding trick: -128 fits into an 8-bit immediate field while 1197 // +128 doesn't, so in this special case use a sub instead of an add. 1198 def : Pat<(add GR16:$src1, 128), 1199 (SUB16ri8 GR16:$src1, -128)>; 1200 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), 1201 (SUB16mi8 addr:$dst, -128)>; 1202 1203 def : Pat<(add GR32:$src1, 128), 1204 (SUB32ri8 GR32:$src1, -128)>; 1205 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), 1206 (SUB32mi8 addr:$dst, -128)>; 1207 1208 def : Pat<(add GR64:$src1, 128), 1209 (SUB64ri8 GR64:$src1, -128)>; 1210 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), 1211 (SUB64mi8 addr:$dst, -128)>; 1212 1213 // The same trick applies for 32-bit immediate fields in 64-bit 1214 // instructions. 1215 def : Pat<(add GR64:$src1, 0x0000000080000000), 1216 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; 1217 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), 1218 (SUB64mi32 addr:$dst, 0xffffffff80000000)>; 1219 1220 // To avoid needing to materialize an immediate in a register, use a 32-bit and 1221 // with implicit zero-extension instead of a 64-bit and if the immediate has at 1222 // least 32 bits of leading zeros. If in addition the last 32 bits can be 1223 // represented with a sign extension of a 8 bit constant, use that. 1224 1225 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), 1226 (SUBREG_TO_REG 1227 (i64 0), 1228 (AND32ri8 1229 (EXTRACT_SUBREG GR64:$src, sub_32bit), 1230 (i32 (GetLo8XForm imm:$imm))), 1231 sub_32bit)>; 1232 1233 def : Pat<(and GR64:$src, i64immZExt32:$imm), 1234 (SUBREG_TO_REG 1235 (i64 0), 1236 (AND32ri 1237 (EXTRACT_SUBREG GR64:$src, sub_32bit), 1238 (i32 (GetLo32XForm imm:$imm))), 1239 sub_32bit)>; 1240 1241 1242 // r & (2^16-1) ==> movz 1243 def : Pat<(and GR32:$src1, 0xffff), 1244 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; 1245 // r & (2^8-1) ==> movz 1246 def : Pat<(and GR32:$src1, 0xff), 1247 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, 1248 GR32_ABCD)), 1249 sub_8bit))>, 1250 Requires<[Not64BitMode]>; 1251 // r & (2^8-1) ==> movz 1252 def : Pat<(and GR16:$src1, 0xff), 1253 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG 1254 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), 1255 sub_16bit)>, 1256 Requires<[Not64BitMode]>; 1257 1258 // r & (2^32-1) ==> movz 1259 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), 1260 (SUBREG_TO_REG (i64 0), 1261 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), 1262 sub_32bit)>; 1263 // r & (2^16-1) ==> movz 1264 def : Pat<(and GR64:$src, 0xffff), 1265 (SUBREG_TO_REG (i64 0), 1266 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), 1267 sub_32bit)>; 1268 // r & (2^8-1) ==> movz 1269 def : Pat<(and GR64:$src, 0xff), 1270 (SUBREG_TO_REG (i64 0), 1271 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), 1272 sub_32bit)>; 1273 // r & (2^8-1) ==> movz 1274 def : Pat<(and GR32:$src1, 0xff), 1275 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, 1276 Requires<[In64BitMode]>; 1277 // r & (2^8-1) ==> movz 1278 def : Pat<(and GR16:$src1, 0xff), 1279 (EXTRACT_SUBREG (MOVZX32rr8 (i8 1280 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, 1281 Requires<[In64BitMode]>; 1282 1283 1284 // sext_inreg patterns 1285 def : Pat<(sext_inreg GR32:$src, i16), 1286 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; 1287 def : Pat<(sext_inreg GR32:$src, i8), 1288 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1289 GR32_ABCD)), 1290 sub_8bit))>, 1291 Requires<[Not64BitMode]>; 1292 1293 def : Pat<(sext_inreg GR16:$src, i8), 1294 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG 1295 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), 1296 sub_16bit)>, 1297 Requires<[Not64BitMode]>; 1298 1299 def : Pat<(sext_inreg GR64:$src, i32), 1300 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; 1301 def : Pat<(sext_inreg GR64:$src, i16), 1302 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; 1303 def : Pat<(sext_inreg GR64:$src, i8), 1304 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; 1305 def : Pat<(sext_inreg GR32:$src, i8), 1306 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, 1307 Requires<[In64BitMode]>; 1308 def : Pat<(sext_inreg GR16:$src, i8), 1309 (EXTRACT_SUBREG (MOVSX32rr8 1310 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, 1311 Requires<[In64BitMode]>; 1312 1313 // sext, sext_load, zext, zext_load 1314 def: Pat<(i16 (sext GR8:$src)), 1315 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; 1316 def: Pat<(sextloadi16i8 addr:$src), 1317 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; 1318 def: Pat<(i16 (zext GR8:$src)), 1319 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; 1320 def: Pat<(zextloadi16i8 addr:$src), 1321 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; 1322 1323 // trunc patterns 1324 def : Pat<(i16 (trunc GR32:$src)), 1325 (EXTRACT_SUBREG GR32:$src, sub_16bit)>; 1326 def : Pat<(i8 (trunc GR32:$src)), 1327 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1328 sub_8bit)>, 1329 Requires<[Not64BitMode]>; 1330 def : Pat<(i8 (trunc GR16:$src)), 1331 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1332 sub_8bit)>, 1333 Requires<[Not64BitMode]>; 1334 def : Pat<(i32 (trunc GR64:$src)), 1335 (EXTRACT_SUBREG GR64:$src, sub_32bit)>; 1336 def : Pat<(i16 (trunc GR64:$src)), 1337 (EXTRACT_SUBREG GR64:$src, sub_16bit)>; 1338 def : Pat<(i8 (trunc GR64:$src)), 1339 (EXTRACT_SUBREG GR64:$src, sub_8bit)>; 1340 def : Pat<(i8 (trunc GR32:$src)), 1341 (EXTRACT_SUBREG GR32:$src, sub_8bit)>, 1342 Requires<[In64BitMode]>; 1343 def : Pat<(i8 (trunc GR16:$src)), 1344 (EXTRACT_SUBREG GR16:$src, sub_8bit)>, 1345 Requires<[In64BitMode]>; 1346 1347 // h-register tricks 1348 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), 1349 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1350 sub_8bit_hi)>, 1351 Requires<[Not64BitMode]>; 1352 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), 1353 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1354 sub_8bit_hi)>, 1355 Requires<[Not64BitMode]>; 1356 def : Pat<(srl GR16:$src, (i8 8)), 1357 (EXTRACT_SUBREG 1358 (MOVZX32rr8 1359 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1360 sub_8bit_hi)), 1361 sub_16bit)>, 1362 Requires<[Not64BitMode]>; 1363 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), 1364 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 1365 GR16_ABCD)), 1366 sub_8bit_hi))>, 1367 Requires<[Not64BitMode]>; 1368 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), 1369 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, 1370 GR16_ABCD)), 1371 sub_8bit_hi))>, 1372 Requires<[Not64BitMode]>; 1373 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), 1374 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1375 GR32_ABCD)), 1376 sub_8bit_hi))>, 1377 Requires<[Not64BitMode]>; 1378 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), 1379 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1380 GR32_ABCD)), 1381 sub_8bit_hi))>, 1382 Requires<[Not64BitMode]>; 1383 1384 // h-register tricks. 1385 // For now, be conservative on x86-64 and use an h-register extract only if the 1386 // value is immediately zero-extended or stored, which are somewhat common 1387 // cases. This uses a bunch of code to prevent a register requiring a REX prefix 1388 // from being allocated in the same instruction as the h register, as there's 1389 // currently no way to describe this requirement to the register allocator. 1390 1391 // h-register extract and zero-extend. 1392 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), 1393 (SUBREG_TO_REG 1394 (i64 0), 1395 (MOVZX32_NOREXrr8 1396 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), 1397 sub_8bit_hi)), 1398 sub_32bit)>; 1399 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), 1400 (MOVZX32_NOREXrr8 1401 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1402 sub_8bit_hi))>, 1403 Requires<[In64BitMode]>; 1404 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), 1405 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 1406 GR32_ABCD)), 1407 sub_8bit_hi))>, 1408 Requires<[In64BitMode]>; 1409 def : Pat<(srl GR16:$src, (i8 8)), 1410 (EXTRACT_SUBREG 1411 (MOVZX32_NOREXrr8 1412 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1413 sub_8bit_hi)), 1414 sub_16bit)>, 1415 Requires<[In64BitMode]>; 1416 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), 1417 (MOVZX32_NOREXrr8 1418 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1419 sub_8bit_hi))>, 1420 Requires<[In64BitMode]>; 1421 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), 1422 (MOVZX32_NOREXrr8 1423 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1424 sub_8bit_hi))>, 1425 Requires<[In64BitMode]>; 1426 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), 1427 (SUBREG_TO_REG 1428 (i64 0), 1429 (MOVZX32_NOREXrr8 1430 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1431 sub_8bit_hi)), 1432 sub_32bit)>; 1433 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), 1434 (SUBREG_TO_REG 1435 (i64 0), 1436 (MOVZX32_NOREXrr8 1437 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1438 sub_8bit_hi)), 1439 sub_32bit)>; 1440 1441 // h-register extract and store. 1442 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), 1443 (MOV8mr_NOREX 1444 addr:$dst, 1445 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), 1446 sub_8bit_hi))>; 1447 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), 1448 (MOV8mr_NOREX 1449 addr:$dst, 1450 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), 1451 sub_8bit_hi))>, 1452 Requires<[In64BitMode]>; 1453 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), 1454 (MOV8mr_NOREX 1455 addr:$dst, 1456 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), 1457 sub_8bit_hi))>, 1458 Requires<[In64BitMode]>; 1459 1460 1461 // (shl x, 1) ==> (add x, x) 1462 // Note that if x is undef (immediate or otherwise), we could theoretically 1463 // end up with the two uses of x getting different values, producing a result 1464 // where the least significant bit is not 0. However, the probability of this 1465 // happening is considered low enough that this is officially not a 1466 // "real problem". 1467 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; 1468 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; 1469 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; 1470 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; 1471 1472 // Helper imms that check if a mask doesn't change significant shift bits. 1473 def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>; 1474 def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>; 1475 1476 // Shift amount is implicitly masked. 1477 multiclass MaskedShiftAmountPats<SDNode frag, string name> { 1478 // (shift x (and y, 31)) ==> (shift x, y) 1479 def : Pat<(frag GR8:$src1, (and CL, immShift32)), 1480 (!cast<Instruction>(name # "8rCL") GR8:$src1)>; 1481 def : Pat<(frag GR16:$src1, (and CL, immShift32)), 1482 (!cast<Instruction>(name # "16rCL") GR16:$src1)>; 1483 def : Pat<(frag GR32:$src1, (and CL, immShift32)), 1484 (!cast<Instruction>(name # "32rCL") GR32:$src1)>; 1485 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), 1486 (!cast<Instruction>(name # "8mCL") addr:$dst)>; 1487 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), 1488 (!cast<Instruction>(name # "16mCL") addr:$dst)>; 1489 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), 1490 (!cast<Instruction>(name # "32mCL") addr:$dst)>; 1491 1492 // (shift x (and y, 63)) ==> (shift x, y) 1493 def : Pat<(frag GR64:$src1, (and CL, immShift64)), 1494 (!cast<Instruction>(name # "64rCL") GR64:$src1)>; 1495 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst), 1496 (!cast<Instruction>(name # "64mCL") addr:$dst)>; 1497 } 1498 1499 defm : MaskedShiftAmountPats<shl, "SHL">; 1500 defm : MaskedShiftAmountPats<srl, "SHR">; 1501 defm : MaskedShiftAmountPats<sra, "SAR">; 1502 defm : MaskedShiftAmountPats<rotl, "ROL">; 1503 defm : MaskedShiftAmountPats<rotr, "ROR">; 1504 1505 // (anyext (setcc_carry)) -> (setcc_carry) 1506 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 1507 (SETB_C16r)>; 1508 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), 1509 (SETB_C32r)>; 1510 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), 1511 (SETB_C32r)>; 1512 1513 1514 1515 1516 //===----------------------------------------------------------------------===// 1517 // EFLAGS-defining Patterns 1518 //===----------------------------------------------------------------------===// 1519 1520 // add reg, reg 1521 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; 1522 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; 1523 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; 1524 1525 // add reg, mem 1526 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), 1527 (ADD8rm GR8:$src1, addr:$src2)>; 1528 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), 1529 (ADD16rm GR16:$src1, addr:$src2)>; 1530 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), 1531 (ADD32rm GR32:$src1, addr:$src2)>; 1532 1533 // add reg, imm 1534 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; 1535 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; 1536 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; 1537 def : Pat<(add GR16:$src1, i16immSExt8:$src2), 1538 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; 1539 def : Pat<(add GR32:$src1, i32immSExt8:$src2), 1540 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; 1541 1542 // sub reg, reg 1543 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; 1544 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; 1545 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; 1546 1547 // sub reg, mem 1548 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), 1549 (SUB8rm GR8:$src1, addr:$src2)>; 1550 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), 1551 (SUB16rm GR16:$src1, addr:$src2)>; 1552 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), 1553 (SUB32rm GR32:$src1, addr:$src2)>; 1554 1555 // sub reg, imm 1556 def : Pat<(sub GR8:$src1, imm:$src2), 1557 (SUB8ri GR8:$src1, imm:$src2)>; 1558 def : Pat<(sub GR16:$src1, imm:$src2), 1559 (SUB16ri GR16:$src1, imm:$src2)>; 1560 def : Pat<(sub GR32:$src1, imm:$src2), 1561 (SUB32ri GR32:$src1, imm:$src2)>; 1562 def : Pat<(sub GR16:$src1, i16immSExt8:$src2), 1563 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; 1564 def : Pat<(sub GR32:$src1, i32immSExt8:$src2), 1565 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; 1566 1567 // sub 0, reg 1568 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; 1569 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; 1570 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; 1571 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; 1572 1573 // mul reg, reg 1574 def : Pat<(mul GR16:$src1, GR16:$src2), 1575 (IMUL16rr GR16:$src1, GR16:$src2)>; 1576 def : Pat<(mul GR32:$src1, GR32:$src2), 1577 (IMUL32rr GR32:$src1, GR32:$src2)>; 1578 1579 // mul reg, mem 1580 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), 1581 (IMUL16rm GR16:$src1, addr:$src2)>; 1582 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), 1583 (IMUL32rm GR32:$src1, addr:$src2)>; 1584 1585 // mul reg, imm 1586 def : Pat<(mul GR16:$src1, imm:$src2), 1587 (IMUL16rri GR16:$src1, imm:$src2)>; 1588 def : Pat<(mul GR32:$src1, imm:$src2), 1589 (IMUL32rri GR32:$src1, imm:$src2)>; 1590 def : Pat<(mul GR16:$src1, i16immSExt8:$src2), 1591 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; 1592 def : Pat<(mul GR32:$src1, i32immSExt8:$src2), 1593 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; 1594 1595 // reg = mul mem, imm 1596 def : Pat<(mul (loadi16 addr:$src1), imm:$src2), 1597 (IMUL16rmi addr:$src1, imm:$src2)>; 1598 def : Pat<(mul (loadi32 addr:$src1), imm:$src2), 1599 (IMUL32rmi addr:$src1, imm:$src2)>; 1600 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), 1601 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; 1602 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), 1603 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; 1604 1605 // Patterns for nodes that do not produce flags, for instructions that do. 1606 1607 // addition 1608 def : Pat<(add GR64:$src1, GR64:$src2), 1609 (ADD64rr GR64:$src1, GR64:$src2)>; 1610 def : Pat<(add GR64:$src1, i64immSExt8:$src2), 1611 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; 1612 def : Pat<(add GR64:$src1, i64immSExt32:$src2), 1613 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; 1614 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), 1615 (ADD64rm GR64:$src1, addr:$src2)>; 1616 1617 // subtraction 1618 def : Pat<(sub GR64:$src1, GR64:$src2), 1619 (SUB64rr GR64:$src1, GR64:$src2)>; 1620 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), 1621 (SUB64rm GR64:$src1, addr:$src2)>; 1622 def : Pat<(sub GR64:$src1, i64immSExt8:$src2), 1623 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; 1624 def : Pat<(sub GR64:$src1, i64immSExt32:$src2), 1625 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; 1626 1627 // Multiply 1628 def : Pat<(mul GR64:$src1, GR64:$src2), 1629 (IMUL64rr GR64:$src1, GR64:$src2)>; 1630 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), 1631 (IMUL64rm GR64:$src1, addr:$src2)>; 1632 def : Pat<(mul GR64:$src1, i64immSExt8:$src2), 1633 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; 1634 def : Pat<(mul GR64:$src1, i64immSExt32:$src2), 1635 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; 1636 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), 1637 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; 1638 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), 1639 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; 1640 1641 // Increment reg. 1642 // Do not make INC if it is slow 1643 def : Pat<(add GR8:$src, 1), 1644 (INC8r GR8:$src)>, Requires<[NotSlowIncDec]>; 1645 def : Pat<(add GR16:$src, 1), 1646 (INC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>; 1647 def : Pat<(add GR16:$src, 1), 1648 (INC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>; 1649 def : Pat<(add GR32:$src, 1), 1650 (INC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>; 1651 def : Pat<(add GR32:$src, 1), 1652 (INC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>; 1653 def : Pat<(add GR64:$src, 1), 1654 (INC64r GR64:$src)>, Requires<[NotSlowIncDec]>; 1655 1656 // Decrement reg. 1657 // Do not make DEC if it is slow 1658 def : Pat<(add GR8:$src, -1), 1659 (DEC8r GR8:$src)>, Requires<[NotSlowIncDec]>; 1660 def : Pat<(add GR16:$src, -1), 1661 (DEC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>; 1662 def : Pat<(add GR16:$src, -1), 1663 (DEC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>; 1664 def : Pat<(add GR32:$src, -1), 1665 (DEC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>; 1666 def : Pat<(add GR32:$src, -1), 1667 (DEC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>; 1668 def : Pat<(add GR64:$src, -1), 1669 (DEC64r GR64:$src)>, Requires<[NotSlowIncDec]>; 1670 1671 // or reg/reg. 1672 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; 1673 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; 1674 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; 1675 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; 1676 1677 // or reg/mem 1678 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), 1679 (OR8rm GR8:$src1, addr:$src2)>; 1680 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), 1681 (OR16rm GR16:$src1, addr:$src2)>; 1682 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), 1683 (OR32rm GR32:$src1, addr:$src2)>; 1684 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), 1685 (OR64rm GR64:$src1, addr:$src2)>; 1686 1687 // or reg/imm 1688 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; 1689 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; 1690 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; 1691 def : Pat<(or GR16:$src1, i16immSExt8:$src2), 1692 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; 1693 def : Pat<(or GR32:$src1, i32immSExt8:$src2), 1694 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; 1695 def : Pat<(or GR64:$src1, i64immSExt8:$src2), 1696 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; 1697 def : Pat<(or GR64:$src1, i64immSExt32:$src2), 1698 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; 1699 1700 // xor reg/reg 1701 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; 1702 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; 1703 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; 1704 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; 1705 1706 // xor reg/mem 1707 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), 1708 (XOR8rm GR8:$src1, addr:$src2)>; 1709 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), 1710 (XOR16rm GR16:$src1, addr:$src2)>; 1711 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), 1712 (XOR32rm GR32:$src1, addr:$src2)>; 1713 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), 1714 (XOR64rm GR64:$src1, addr:$src2)>; 1715 1716 // xor reg/imm 1717 def : Pat<(xor GR8:$src1, imm:$src2), 1718 (XOR8ri GR8:$src1, imm:$src2)>; 1719 def : Pat<(xor GR16:$src1, imm:$src2), 1720 (XOR16ri GR16:$src1, imm:$src2)>; 1721 def : Pat<(xor GR32:$src1, imm:$src2), 1722 (XOR32ri GR32:$src1, imm:$src2)>; 1723 def : Pat<(xor GR16:$src1, i16immSExt8:$src2), 1724 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; 1725 def : Pat<(xor GR32:$src1, i32immSExt8:$src2), 1726 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; 1727 def : Pat<(xor GR64:$src1, i64immSExt8:$src2), 1728 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; 1729 def : Pat<(xor GR64:$src1, i64immSExt32:$src2), 1730 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; 1731 1732 // and reg/reg 1733 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; 1734 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; 1735 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; 1736 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; 1737 1738 // and reg/mem 1739 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), 1740 (AND8rm GR8:$src1, addr:$src2)>; 1741 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), 1742 (AND16rm GR16:$src1, addr:$src2)>; 1743 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), 1744 (AND32rm GR32:$src1, addr:$src2)>; 1745 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), 1746 (AND64rm GR64:$src1, addr:$src2)>; 1747 1748 // and reg/imm 1749 def : Pat<(and GR8:$src1, imm:$src2), 1750 (AND8ri GR8:$src1, imm:$src2)>; 1751 def : Pat<(and GR16:$src1, imm:$src2), 1752 (AND16ri GR16:$src1, imm:$src2)>; 1753 def : Pat<(and GR32:$src1, imm:$src2), 1754 (AND32ri GR32:$src1, imm:$src2)>; 1755 def : Pat<(and GR16:$src1, i16immSExt8:$src2), 1756 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; 1757 def : Pat<(and GR32:$src1, i32immSExt8:$src2), 1758 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; 1759 def : Pat<(and GR64:$src1, i64immSExt8:$src2), 1760 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; 1761 def : Pat<(and GR64:$src1, i64immSExt32:$src2), 1762 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; 1763 1764 // Bit scan instruction patterns to match explicit zero-undef behavior. 1765 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; 1766 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; 1767 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; 1768 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; 1769 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; 1770 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; 1771 1772 // When HasMOVBE is enabled it is possible to get a non-legalized 1773 // register-register 16 bit bswap. This maps it to a ROL instruction. 1774 let Predicates = [HasMOVBE] in { 1775 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; 1776 } 1777