Home | History | Annotate | Download | only in X86
      1 //=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Intel Silvermont to support
     11 // instruction scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 def SLMModel : SchedMachineModel {
     16   // All x86 instructions are modeled as a single micro-op, and SLM can decode 2
     17   // instructions per cycle.
     18   let IssueWidth = 2;
     19   let MicroOpBufferSize = 32; // Based on the reorder buffer.
     20   let LoadLatency = 3;
     21   let MispredictPenalty = 10;
     22 
     23   // For small loops, expand by a small factor to hide the backedge cost.
     24   let LoopMicroOpBufferSize = 10;
     25 
     26   // FIXME: SSE4 is unimplemented. This flag is set to allow
     27   // the scheduler to assign a default model to unrecognized opcodes.
     28   let CompleteModel = 0;
     29 }
     30 
     31 let SchedModel = SLMModel in {
     32 
     33 // Silvermont has 5 reservation stations for micro-ops
     34 
     35 def IEC_RSV0 : ProcResource<1>;
     36 def IEC_RSV1 : ProcResource<1>;
     37 def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; }
     38 def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; }
     39 def MEC_RSV  : ProcResource<1>;
     40 
     41 // Many micro-ops are capable of issuing on multiple ports.
     42 def IEC_RSV01  : ProcResGroup<[IEC_RSV0, IEC_RSV1]>;
     43 def FPC_RSV01  : ProcResGroup<[FPC_RSV0, FPC_RSV1]>;
     44 
     45 def SMDivider      : ProcResource<1>;
     46 def SMFPMultiplier : ProcResource<1>;
     47 def SMFPDivider    : ProcResource<1>;
     48 
     49 // Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
     50 // cycles after the memory operand.
     51 def : ReadAdvance<ReadAfterLd, 3>;
     52 
     53 // Many SchedWrites are defined in pairs with and without a folded load.
     54 // Instructions with folded loads are usually micro-fused, so they only appear
     55 // as two micro-ops when queued in the reservation station.
     56 // This multiclass defines the resource usage for variants with and without
     57 // folded loads.
     58 multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW,
     59                           ProcResourceKind ExePort,
     60                           int Lat> {
     61   // Register variant is using a single cycle on ExePort.
     62   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
     63 
     64   // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the
     65   // latency.
     66   def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> {
     67      let Latency = !add(Lat, 3);
     68   }
     69 }
     70 
     71 // A folded store needs a cycle on MEC_RSV for the store data, but it does not
     72 // need an extra port cycle to recompute the address.
     73 def : WriteRes<WriteRMW, [MEC_RSV]>;
     74 
     75 def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>;
     76 def : WriteRes<WriteLoad,  [MEC_RSV]> { let Latency = 3; }
     77 def : WriteRes<WriteMove,  [IEC_RSV01]>;
     78 def : WriteRes<WriteZero,  []>;
     79 
     80 defm : SMWriteResPair<WriteALU,   IEC_RSV01, 1>;
     81 defm : SMWriteResPair<WriteIMul,  IEC_RSV1,  3>;
     82 defm : SMWriteResPair<WriteShift, IEC_RSV0,  1>;
     83 defm : SMWriteResPair<WriteJump,  IEC_RSV1,   1>;
     84 
     85 // This is for simple LEAs with one or two input operands.
     86 // The complex ones can only execute on port 1, and they require two cycles on
     87 // the port to read all inputs. We don't model that.
     88 def : WriteRes<WriteLEA, [IEC_RSV1]>;
     89 
     90 // This is quite rough, latency depends on the dividend.
     91 def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> {
     92   let Latency = 25;
     93   let ResourceCycles = [1, 25];
     94 }
     95 def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
     96   let Latency = 29;
     97   let ResourceCycles = [1, 1, 25];
     98 }
     99 
    100 // Scalar and vector floating point.
    101 defm : SMWriteResPair<WriteFAdd,   FPC_RSV1, 3>;
    102 defm : SMWriteResPair<WriteFRcp,   FPC_RSV0, 5>;
    103 defm : SMWriteResPair<WriteFSqrt,  FPC_RSV0, 15>;
    104 defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
    105 defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
    106 defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>;
    107 defm : SMWriteResPair<WriteFShuffle,  FPC_RSV0,  1>;
    108 defm : SMWriteResPair<WriteFBlend,  FPC_RSV0,  1>;
    109 
    110 // This is quite rough, latency depends on precision
    111 def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> {
    112   let Latency = 5;
    113   let ResourceCycles = [1, 2];
    114 }
    115 def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> {
    116   let Latency = 8;
    117   let ResourceCycles = [1, 1, 2];
    118 }
    119 
    120 def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> {
    121   let Latency = 34;
    122   let ResourceCycles = [1, 34];
    123 }
    124 def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> {
    125   let Latency = 37;
    126   let ResourceCycles = [1, 1, 34];
    127 }
    128 
    129 // Vector integer operations.
    130 defm : SMWriteResPair<WriteVecShift, FPC_RSV0,  1>;
    131 defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>;
    132 defm : SMWriteResPair<WriteVecALU,   FPC_RSV01,  1>;
    133 defm : SMWriteResPair<WriteVecIMul,  FPC_RSV0,   4>;
    134 defm : SMWriteResPair<WriteShuffle,  FPC_RSV0,  1>;
    135 defm : SMWriteResPair<WriteBlend,  FPC_RSV0,  1>;
    136 defm : SMWriteResPair<WriteMPSAD,  FPC_RSV0,  7>;
    137 
    138 // String instructions.
    139 // Packed Compare Implicit Length Strings, Return Mask
    140 def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> {
    141   let Latency = 13;
    142   let ResourceCycles = [13];
    143 }
    144 def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> {
    145   let Latency = 13;
    146   let ResourceCycles = [13, 1];
    147 }
    148 
    149 // Packed Compare Explicit Length Strings, Return Mask
    150 def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> {
    151   let Latency = 17;
    152   let ResourceCycles = [17];
    153 }
    154 def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> {
    155   let Latency = 17;
    156   let ResourceCycles = [17, 1];
    157 }
    158 
    159 // Packed Compare Implicit Length Strings, Return Index
    160 def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> {
    161   let Latency = 17;
    162   let ResourceCycles = [17];
    163 }
    164 def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> {
    165   let Latency = 17;
    166   let ResourceCycles = [17, 1];
    167 }
    168 
    169 // Packed Compare Explicit Length Strings, Return Index
    170 def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> {
    171   let Latency = 21;
    172   let ResourceCycles = [21];
    173 }
    174 def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> {
    175   let Latency = 21;
    176   let ResourceCycles = [21, 1];
    177 }
    178 
    179 // AES Instructions.
    180 def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> {
    181   let Latency = 8;
    182   let ResourceCycles = [5];
    183 }
    184 def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> {
    185   let Latency = 8;
    186   let ResourceCycles = [5, 1];
    187 }
    188 
    189 def : WriteRes<WriteAESIMC, [FPC_RSV0]> {
    190   let Latency = 8;
    191   let ResourceCycles = [5];
    192 }
    193 def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> {
    194   let Latency = 8;
    195   let ResourceCycles = [5, 1];
    196 }
    197 
    198 def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> {
    199   let Latency = 8;
    200   let ResourceCycles = [5];
    201 }
    202 def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> {
    203   let Latency = 8;
    204   let ResourceCycles = [5, 1];
    205 }
    206 
    207 // Carry-less multiplication instructions.
    208 def : WriteRes<WriteCLMul, [FPC_RSV0]> {
    209   let Latency = 10;
    210   let ResourceCycles = [10];
    211 }
    212 def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> {
    213   let Latency = 10;
    214   let ResourceCycles = [10, 1];
    215 }
    216 
    217 
    218 def : WriteRes<WriteSystem,     [FPC_RSV0]> { let Latency = 100; }
    219 def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; }
    220 def : WriteRes<WriteFence, [MEC_RSV]>;
    221 def : WriteRes<WriteNop, []>;
    222 
    223 // AVX is not supported on that architecture, but we should define the basic
    224 // scheduling resources anyway.
    225 def  : WriteRes<WriteIMulH, [FPC_RSV0]>;
    226 defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>;
    227 defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>;
    228 defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0,  1>;
    229 defm : SMWriteResPair<WriteShuffle256, FPC_RSV0,  1>;
    230 defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0,  1>;
    231 } // SchedModel
    232