1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # April 2010 11 # 12 # The module implements "4-bit" GCM GHASH function and underlying 13 # single multiplication operation in GF(2^128). "4-bit" means that it 14 # uses 256 bytes per-key table [+32 bytes shared table]. There is no 15 # experimental performance data available yet. The only approximation 16 # that can be made at this point is based on code size. Inner loop is 17 # 32 instructions long and on single-issue core should execute in <40 18 # cycles. Having verified that gcc 3.4 didn't unroll corresponding 19 # loop, this assembler loop body was found to be ~3x smaller than 20 # compiler-generated one... 21 # 22 # July 2010 23 # 24 # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on 25 # Cortex A8 core and ~25 cycles per processed byte (which was observed 26 # to be ~3 times faster than gcc-generated code:-) 27 # 28 # February 2011 29 # 30 # Profiler-assisted and platform-specific optimization resulted in 7% 31 # improvement on Cortex A8 core and ~23.5 cycles per byte. 32 # 33 # March 2011 34 # 35 # Add NEON implementation featuring polynomial multiplication, i.e. no 36 # lookup tables involved. On Cortex A8 it was measured to process one 37 # byte in 15 cycles or 55% faster than integer-only code. 38 # 39 # April 2014 40 # 41 # Switch to multiplication algorithm suggested in paper referred 42 # below and combine it with reduction algorithm from x86 module. 43 # Performance improvement over previous version varies from 65% on 44 # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8 45 # processes one byte in 8.45 cycles, A9 - in 10.2, Snapdragon S4 - 46 # in 9.33. 47 # 48 # Cmara, D.; Gouva, C. P. L.; Lpez, J. & Dahab, R.: Fast Software 49 # Polynomial Multiplication on ARM Processors using the NEON Engine. 50 # 51 # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf 52 53 # ==================================================================== 54 # Note about "528B" variant. In ARM case it makes lesser sense to 55 # implement it for following reasons: 56 # 57 # - performance improvement won't be anywhere near 50%, because 128- 58 # bit shift operation is neatly fused with 128-bit xor here, and 59 # "538B" variant would eliminate only 4-5 instructions out of 32 60 # in the inner loop (meaning that estimated improvement is ~15%); 61 # - ARM-based systems are often embedded ones and extra memory 62 # consumption might be unappreciated (for so little improvement); 63 # 64 # Byte order [in]dependence. ========================================= 65 # 66 # Caller is expected to maintain specific *dword* order in Htable, 67 # namely with *least* significant dword of 128-bit value at *lower* 68 # address. This differs completely from C code and has everything to 69 # do with ldm instruction and order in which dwords are "consumed" by 70 # algorithm. *Byte* order within these dwords in turn is whatever 71 # *native* byte order on current platform. See gcm128.c for working 72 # example... 73 74 while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} 75 open STDOUT,">$output"; 76 77 $Xi="r0"; # argument block 78 $Htbl="r1"; 79 $inp="r2"; 80 $len="r3"; 81 82 $Zll="r4"; # variables 83 $Zlh="r5"; 84 $Zhl="r6"; 85 $Zhh="r7"; 86 $Tll="r8"; 87 $Tlh="r9"; 88 $Thl="r10"; 89 $Thh="r11"; 90 $nlo="r12"; 91 ################# r13 is stack pointer 92 $nhi="r14"; 93 ################# r15 is program counter 94 95 $rem_4bit=$inp; # used in gcm_gmult_4bit 96 $cnt=$len; 97 98 sub Zsmash() { 99 my $i=12; 100 my @args=@_; 101 for ($Zll,$Zlh,$Zhl,$Zhh) { 102 $code.=<<___; 103 #if __ARM_ARCH__>=7 && defined(__ARMEL__) 104 rev $_,$_ 105 str $_,[$Xi,#$i] 106 #elif defined(__ARMEB__) 107 str $_,[$Xi,#$i] 108 #else 109 mov $Tlh,$_,lsr#8 110 strb $_,[$Xi,#$i+3] 111 mov $Thl,$_,lsr#16 112 strb $Tlh,[$Xi,#$i+2] 113 mov $Thh,$_,lsr#24 114 strb $Thl,[$Xi,#$i+1] 115 strb $Thh,[$Xi,#$i] 116 #endif 117 ___ 118 $code.="\t".shift(@args)."\n"; 119 $i-=4; 120 } 121 } 122 123 $code=<<___; 124 #include "arm_arch.h" 125 126 .text 127 .code 32 128 129 .type rem_4bit,%object 130 .align 5 131 rem_4bit: 132 .short 0x0000,0x1C20,0x3840,0x2460 133 .short 0x7080,0x6CA0,0x48C0,0x54E0 134 .short 0xE100,0xFD20,0xD940,0xC560 135 .short 0x9180,0x8DA0,0xA9C0,0xB5E0 136 .size rem_4bit,.-rem_4bit 137 138 .type rem_4bit_get,%function 139 rem_4bit_get: 140 sub $rem_4bit,pc,#8 141 sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit 142 b .Lrem_4bit_got 143 nop 144 .size rem_4bit_get,.-rem_4bit_get 145 146 .global gcm_ghash_4bit 147 .type gcm_ghash_4bit,%function 148 gcm_ghash_4bit: 149 sub r12,pc,#8 150 add $len,$inp,$len @ $len to point at the end 151 stmdb sp!,{r3-r11,lr} @ save $len/end too 152 sub r12,r12,#48 @ &rem_4bit 153 154 ldmia r12,{r4-r11} @ copy rem_4bit ... 155 stmdb sp!,{r4-r11} @ ... to stack 156 157 ldrb $nlo,[$inp,#15] 158 ldrb $nhi,[$Xi,#15] 159 .Louter: 160 eor $nlo,$nlo,$nhi 161 and $nhi,$nlo,#0xf0 162 and $nlo,$nlo,#0x0f 163 mov $cnt,#14 164 165 add $Zhh,$Htbl,$nlo,lsl#4 166 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] 167 add $Thh,$Htbl,$nhi 168 ldrb $nlo,[$inp,#14] 169 170 and $nhi,$Zll,#0xf @ rem 171 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 172 add $nhi,$nhi,$nhi 173 eor $Zll,$Tll,$Zll,lsr#4 174 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] 175 eor $Zll,$Zll,$Zlh,lsl#28 176 ldrb $nhi,[$Xi,#14] 177 eor $Zlh,$Tlh,$Zlh,lsr#4 178 eor $Zlh,$Zlh,$Zhl,lsl#28 179 eor $Zhl,$Thl,$Zhl,lsr#4 180 eor $Zhl,$Zhl,$Zhh,lsl#28 181 eor $Zhh,$Thh,$Zhh,lsr#4 182 eor $nlo,$nlo,$nhi 183 and $nhi,$nlo,#0xf0 184 and $nlo,$nlo,#0x0f 185 eor $Zhh,$Zhh,$Tll,lsl#16 186 187 .Linner: 188 add $Thh,$Htbl,$nlo,lsl#4 189 and $nlo,$Zll,#0xf @ rem 190 subs $cnt,$cnt,#1 191 add $nlo,$nlo,$nlo 192 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] 193 eor $Zll,$Tll,$Zll,lsr#4 194 eor $Zll,$Zll,$Zlh,lsl#28 195 eor $Zlh,$Tlh,$Zlh,lsr#4 196 eor $Zlh,$Zlh,$Zhl,lsl#28 197 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] 198 eor $Zhl,$Thl,$Zhl,lsr#4 199 ldrplb $nlo,[$inp,$cnt] 200 eor $Zhl,$Zhl,$Zhh,lsl#28 201 eor $Zhh,$Thh,$Zhh,lsr#4 202 203 add $Thh,$Htbl,$nhi 204 and $nhi,$Zll,#0xf @ rem 205 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] 206 add $nhi,$nhi,$nhi 207 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 208 eor $Zll,$Tll,$Zll,lsr#4 209 ldrplb $Tll,[$Xi,$cnt] 210 eor $Zll,$Zll,$Zlh,lsl#28 211 eor $Zlh,$Tlh,$Zlh,lsr#4 212 ldrh $Tlh,[sp,$nhi] 213 eor $Zlh,$Zlh,$Zhl,lsl#28 214 eor $Zhl,$Thl,$Zhl,lsr#4 215 eor $Zhl,$Zhl,$Zhh,lsl#28 216 eorpl $nlo,$nlo,$Tll 217 eor $Zhh,$Thh,$Zhh,lsr#4 218 andpl $nhi,$nlo,#0xf0 219 andpl $nlo,$nlo,#0x0f 220 eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] 221 bpl .Linner 222 223 ldr $len,[sp,#32] @ re-load $len/end 224 add $inp,$inp,#16 225 mov $nhi,$Zll 226 ___ 227 &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]"); 228 $code.=<<___; 229 bne .Louter 230 231 add sp,sp,#36 232 #if __ARM_ARCH__>=5 233 ldmia sp!,{r4-r11,pc} 234 #else 235 ldmia sp!,{r4-r11,lr} 236 tst lr,#1 237 moveq pc,lr @ be binary compatible with V4, yet 238 bx lr @ interoperable with Thumb ISA:-) 239 #endif 240 .size gcm_ghash_4bit,.-gcm_ghash_4bit 241 242 .global gcm_gmult_4bit 243 .type gcm_gmult_4bit,%function 244 gcm_gmult_4bit: 245 stmdb sp!,{r4-r11,lr} 246 ldrb $nlo,[$Xi,#15] 247 b rem_4bit_get 248 .Lrem_4bit_got: 249 and $nhi,$nlo,#0xf0 250 and $nlo,$nlo,#0x0f 251 mov $cnt,#14 252 253 add $Zhh,$Htbl,$nlo,lsl#4 254 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] 255 ldrb $nlo,[$Xi,#14] 256 257 add $Thh,$Htbl,$nhi 258 and $nhi,$Zll,#0xf @ rem 259 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 260 add $nhi,$nhi,$nhi 261 eor $Zll,$Tll,$Zll,lsr#4 262 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] 263 eor $Zll,$Zll,$Zlh,lsl#28 264 eor $Zlh,$Tlh,$Zlh,lsr#4 265 eor $Zlh,$Zlh,$Zhl,lsl#28 266 eor $Zhl,$Thl,$Zhl,lsr#4 267 eor $Zhl,$Zhl,$Zhh,lsl#28 268 eor $Zhh,$Thh,$Zhh,lsr#4 269 and $nhi,$nlo,#0xf0 270 eor $Zhh,$Zhh,$Tll,lsl#16 271 and $nlo,$nlo,#0x0f 272 273 .Loop: 274 add $Thh,$Htbl,$nlo,lsl#4 275 and $nlo,$Zll,#0xf @ rem 276 subs $cnt,$cnt,#1 277 add $nlo,$nlo,$nlo 278 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] 279 eor $Zll,$Tll,$Zll,lsr#4 280 eor $Zll,$Zll,$Zlh,lsl#28 281 eor $Zlh,$Tlh,$Zlh,lsr#4 282 eor $Zlh,$Zlh,$Zhl,lsl#28 283 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] 284 eor $Zhl,$Thl,$Zhl,lsr#4 285 ldrplb $nlo,[$Xi,$cnt] 286 eor $Zhl,$Zhl,$Zhh,lsl#28 287 eor $Zhh,$Thh,$Zhh,lsr#4 288 289 add $Thh,$Htbl,$nhi 290 and $nhi,$Zll,#0xf @ rem 291 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] 292 add $nhi,$nhi,$nhi 293 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] 294 eor $Zll,$Tll,$Zll,lsr#4 295 eor $Zll,$Zll,$Zlh,lsl#28 296 eor $Zlh,$Tlh,$Zlh,lsr#4 297 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] 298 eor $Zlh,$Zlh,$Zhl,lsl#28 299 eor $Zhl,$Thl,$Zhl,lsr#4 300 eor $Zhl,$Zhl,$Zhh,lsl#28 301 eor $Zhh,$Thh,$Zhh,lsr#4 302 andpl $nhi,$nlo,#0xf0 303 andpl $nlo,$nlo,#0x0f 304 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] 305 bpl .Loop 306 ___ 307 &Zsmash(); 308 $code.=<<___; 309 #if __ARM_ARCH__>=5 310 ldmia sp!,{r4-r11,pc} 311 #else 312 ldmia sp!,{r4-r11,lr} 313 tst lr,#1 314 moveq pc,lr @ be binary compatible with V4, yet 315 bx lr @ interoperable with Thumb ISA:-) 316 #endif 317 .size gcm_gmult_4bit,.-gcm_gmult_4bit 318 ___ 319 { 320 my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); 321 my ($t0,$t1,$t2,$t3)=map("q$_",(8..12)); 322 my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31)); 323 324 sub clmul64x64 { 325 my ($r,$a,$b)=@_; 326 $code.=<<___; 327 vext.8 $t0#lo, $a, $a, #1 @ A1 328 vmull.p8 $t0, $t0#lo, $b @ F = A1*B 329 vext.8 $r#lo, $b, $b, #1 @ B1 330 vmull.p8 $r, $a, $r#lo @ E = A*B1 331 vext.8 $t1#lo, $a, $a, #2 @ A2 332 vmull.p8 $t1, $t1#lo, $b @ H = A2*B 333 vext.8 $t3#lo, $b, $b, #2 @ B2 334 vmull.p8 $t3, $a, $t3#lo @ G = A*B2 335 vext.8 $t2#lo, $a, $a, #3 @ A3 336 veor $t0, $t0, $r @ L = E + F 337 vmull.p8 $t2, $t2#lo, $b @ J = A3*B 338 vext.8 $r#lo, $b, $b, #3 @ B3 339 veor $t1, $t1, $t3 @ M = G + H 340 vmull.p8 $r, $a, $r#lo @ I = A*B3 341 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 342 vand $t0#hi, $t0#hi, $k48 343 vext.8 $t3#lo, $b, $b, #4 @ B4 344 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 345 vand $t1#hi, $t1#hi, $k32 346 vmull.p8 $t3, $a, $t3#lo @ K = A*B4 347 veor $t2, $t2, $r @ N = I + J 348 veor $t0#lo, $t0#lo, $t0#hi 349 veor $t1#lo, $t1#lo, $t1#hi 350 veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 351 vand $t2#hi, $t2#hi, $k16 352 vext.8 $t0, $t0, $t0, #15 353 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 354 vmov.i64 $t3#hi, #0 355 vext.8 $t1, $t1, $t1, #14 356 veor $t2#lo, $t2#lo, $t2#hi 357 vmull.p8 $r, $a, $b @ D = A*B 358 vext.8 $t3, $t3, $t3, #12 359 vext.8 $t2, $t2, $t2, #13 360 veor $t0, $t0, $t1 361 veor $t2, $t2, $t3 362 veor $r, $r, $t0 363 veor $r, $r, $t2 364 ___ 365 } 366 367 $code.=<<___; 368 #if __ARM_ARCH__>=7 369 .fpu neon 370 371 .global gcm_init_neon 372 .type gcm_init_neon,%function 373 .align 4 374 gcm_init_neon: 375 vld1.64 $IN#hi,[r1,:64]! @ load H 376 vmov.i8 $t0,#0xe1 377 vld1.64 $IN#lo,[r1,:64] 378 vshl.i64 $t0#hi,#57 379 vshr.u64 $t0#lo,#63 @ t0=0xc2....01 380 vdup.8 $t1,$IN#hi[7] 381 vshr.u64 $Hlo,$IN#lo,#63 382 vshr.s8 $t1,#7 @ broadcast carry bit 383 vshl.i64 $IN,$IN,#1 384 vand $t0,$t0,$t1 385 vorr $IN#hi,$Hlo @ H<<<=1 386 veor $IN,$IN,$t0 @ twisted H 387 vstmia r0,{$IN} 388 389 ret @ bx lr 390 .size gcm_init_neon,.-gcm_init_neon 391 392 .global gcm_gmult_neon 393 .type gcm_gmult_neon,%function 394 .align 4 395 gcm_gmult_neon: 396 vld1.64 $IN#hi,[$Xi,:64]! @ load Xi 397 vld1.64 $IN#lo,[$Xi,:64]! 398 vmov.i64 $k48,#0x0000ffffffffffff 399 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H 400 vmov.i64 $k32,#0x00000000ffffffff 401 #ifdef __ARMEL__ 402 vrev64.8 $IN,$IN 403 #endif 404 vmov.i64 $k16,#0x000000000000ffff 405 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing 406 mov $len,#16 407 b .Lgmult_neon 408 .size gcm_gmult_neon,.-gcm_gmult_neon 409 410 .global gcm_ghash_neon 411 .type gcm_ghash_neon,%function 412 .align 4 413 gcm_ghash_neon: 414 vld1.64 $Xl#hi,[$Xi,:64]! @ load Xi 415 vld1.64 $Xl#lo,[$Xi,:64]! 416 vmov.i64 $k48,#0x0000ffffffffffff 417 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H 418 vmov.i64 $k32,#0x00000000ffffffff 419 #ifdef __ARMEL__ 420 vrev64.8 $Xl,$Xl 421 #endif 422 vmov.i64 $k16,#0x000000000000ffff 423 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing 424 425 .Loop_neon: 426 vld1.64 $IN#hi,[$inp]! @ load inp 427 vld1.64 $IN#lo,[$inp]! 428 #ifdef __ARMEL__ 429 vrev64.8 $IN,$IN 430 #endif 431 veor $IN,$Xl @ inp^=Xi 432 .Lgmult_neon: 433 ___ 434 &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.loXi.lo 435 $code.=<<___; 436 veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing 437 ___ 438 &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)(Xi.lo+Xi.hi) 439 &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hiXi.hi 440 $code.=<<___; 441 veor $Xm,$Xm,$Xl @ Karatsuba post-processing 442 veor $Xm,$Xm,$Xh 443 veor $Xl#hi,$Xl#hi,$Xm#lo 444 veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result 445 446 @ equivalent of reduction_avx from ghash-x86_64.pl 447 vshl.i64 $t1,$Xl,#57 @ 1st phase 448 vshl.i64 $t2,$Xl,#62 449 veor $t2,$t2,$t1 @ 450 vshl.i64 $t1,$Xl,#63 451 veor $t2, $t2, $t1 @ 452 veor $Xl#hi,$Xl#hi,$t2#lo @ 453 veor $Xh#lo,$Xh#lo,$t2#hi 454 455 vshr.u64 $t2,$Xl,#1 @ 2nd phase 456 veor $Xh,$Xh,$Xl 457 veor $Xl,$Xl,$t2 @ 458 vshr.u64 $t2,$t2,#6 459 vshr.u64 $Xl,$Xl,#1 @ 460 veor $Xl,$Xl,$Xh @ 461 veor $Xl,$Xl,$t2 @ 462 463 subs $len,#16 464 bne .Loop_neon 465 466 #ifdef __ARMEL__ 467 vrev64.8 $Xl,$Xl 468 #endif 469 sub $Xi,#16 470 vst1.64 $Xl#hi,[$Xi,:64]! @ write out Xi 471 vst1.64 $Xl#lo,[$Xi,:64] 472 473 ret @ bx lr 474 .size gcm_ghash_neon,.-gcm_ghash_neon 475 #endif 476 ___ 477 } 478 $code.=<<___; 479 .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" 480 .align 2 481 ___ 482 483 foreach (split("\n",$code)) { 484 s/\`([^\`]*)\`/eval $1/geo; 485 486 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or 487 s/\bret\b/bx lr/go or 488 s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 489 490 print $_,"\n"; 491 } 492 close STDOUT; # enforce flush 493