Home | History | Annotate | Download | only in Intersection
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include <vector>
      8 
      9 /* Given:
     10  * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t]
     11  */
     12 
     13 const char result1[] =
     14 "-d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + "
     15 " 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - "
     16 " b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - "
     17 " 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + "
     18 " a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - "
     19 " 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + "
     20 " a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + "
     21 " a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - "
     22 " 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - "
     23 " 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + "
     24 " b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + "
     25 " 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + "
     26 " 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - "
     27 " 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + "
     28 " 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - "
     29 " c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - "
     30 " 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - "
     31 " b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - "
     32 " 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + "
     33 " 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - "
     34 " 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + "
     35 " a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - "
     36 " 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - "
     37 " 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + "
     38 " 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3";
     39 
     40 const size_t len1 = sizeof(result1) - 1;
     41 
     42 /* Given:
     43  * Expand[
     44  * Det[{{a, b, c, (d - x),      0,      0},
     45  *      {0, a, b,      c,  (d - x),     0},
     46  *      {0, 0, a,      b,       c, (d - x)},
     47  *      {e, f, g, (h - y),      0,      0},
     48  *      {0, e, f,      g,  (h - y),     0},
     49  *      {0, 0, e,      f,       g, (h - y)}}]]
     50  */
     51  // result1 and result2 are the same. 102 factors:
     52 const char result2[] =
     53 "-d^3 e^3       + c d^2 e^2 f   - b d^2 e f^2   + a d^2 f^3     - c^2 d e^2 g + "
     54 " 2 b d^2 e^2 g + b c d e f g   - 3 a d^2 e f g - a c d f^2 g   - "
     55 " b^2 d e g^2   + 2 a c d e g^2 + a b d f g^2   - a^2 d g^3     + c^3 e^2 h - "
     56 " 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h   + 2 b^2 d e f h + "
     57 " a c d e f h   + a c^2 f^2 h   - 2 a b d f^2 h + b^2 c e g h   - "
     58 " 2 a c^2 e g h - a b d e g h   - a b c f g h   + 3 a^2 d f g h + "
     59 " a^2 c g^2 h   - b^3 e h^2     + 3 a b c e h^2 - 3 a^2 d e h^2 + "
     60 " a b^2 f h^2   - 2 a^2 c f h^2 - a^2 b g h^2   + a^3 h^3       + 3 d^2 e^3 x - "
     61 " 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x   + c^2 e^2 g x   - "
     62 " 4 b d e^2 g x - b c e f g x   + 6 a d e f g x + a c f^2 g x   + "
     63 " b^2 e g^2 x   - 2 a c e g^2 x - a b f g^2 x   + a^2 g^3 x     + "
     64 " 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x   + "
     65 " 2 a b f^2 h x + a b e g h x   - 3 a^2 f g h x + 3 a^2 e h^2 x - "
     66 " 3 d e^3 x^2   + c e^2 f x^2   - b e f^2 x^2   + a f^3 x^2     + "
     67 " 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3       - "
     68 " c^3 e^2 y     + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y   - "
     69 " 2 b^2 d e f y - a c d e f y   - a c^2 f^2 y   + 2 a b d f^2 y - "
     70 " b^2 c e g y   + 2 a c^2 e g y + a b d e g y   + a b c f g y   - "
     71 " 3 a^2 d f g y - a^2 c g^2 y   + 2 b^3 e h y   - 6 a b c e h y + "
     72 " 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - "
     73 " 3 a^3 h^2 y   - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + "
     74 " a c e f x y   - 2 a b f^2 x y - a b e g x y   + 3 a^2 f g x y - "
     75 " 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2     + 3 a b c e y^2 - "
     76 " 3 a^2 d e y^2 + a b^2 f y^2   - 2 a^2 c f y^2 - a^2 b g y^2   + "
     77 " 3 a^3 h y^2   + 3 a^2 e x y^2 - a^3 y^3";
     78 
     79 const size_t len2 = sizeof(result2) - 1;
     80 
     81 /* Given: r1 = Resultant[
     82  *      a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
     83  *      e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, t]
     84  *        Collect[r1, {x, y}, Simplify]
     85  *        CForm[%]
     86  *      then use regex to replace Power\(([a-h]),3\) with \1*\1*\1
     87  *                            and Power\(([a-h]),2\) with \1*\1
     88  * yields:
     89 
     90 d*d*d*e*e*e - 3*d*d*(3*c*e*e*f + 3*b*e*(-3*f*f + 2*e*g) + a*(9*f*f*f - 9*e*f*g + e*e*h)) -
     91    h*(27*c*c*c*e*e - 27*c*c*(3*b*e*f - 3*a*f*f + 2*a*e*g) +
     92       h*(-27*b*b*b*e + 27*a*b*b*f - 9*a*a*b*g + a*a*a*h) +
     93       9*c*(9*b*b*e*g + a*b*(-9*f*g + 3*e*h) + a*a*(3*g*g - 2*f*h))) +
     94    3*d*(9*c*c*e*e*g + 9*b*b*e*(3*g*g - 2*f*h) + 3*a*b*(-9*f*g*g + 6*f*f*h + e*g*h) +
     95       a*a*(9*g*g*g - 9*f*g*h + e*h*h) + 3*c*(3*b*e*(-3*f*g + e*h) + a*(9*f*f*g - 6*e*g*g - e*f*h)))
     96 
     97 - Power(e - 3*f + 3*g - h,3)*Power(x,3)
     98 
     99 + 3*(6*b*d*d*e*e - d*d*d*e*e + 18*b*b*d*e*f - 18*b*d*d*e*f -
    100       9*b*d*d*f*f - 54*b*b*d*e*g + 12*b*d*d*e*g - 27*b*b*d*g*g - 18*b*b*b*e*h + 18*b*b*d*e*h +
    101       18*b*b*d*f*h + a*a*a*h*h - 9*b*b*b*h*h + 9*c*c*c*e*(e + 2*h) +
    102       a*a*(-3*b*h*(2*g + h) + d*(-27*g*g + 9*g*h - h*(2*e + h) + 9*f*(g + h))) +
    103       a*(9*b*b*h*(2*f + h) - 3*b*d*(6*f*f - 6*f*(3*g - 2*h) + g*(-9*g + h) + e*(g + h)) +
    104          d*d*(e*e + 9*f*(3*f - g) + e*(-9*f - 9*g + 2*h))) -
    105       9*c*c*(d*e*(e + 2*g) + 3*b*(f*h + e*(f + h)) + a*(-3*f*f - 6*f*h + 2*(g*h + e*(g + h)))) +
    106       3*c*(d*d*e*(e + 2*f) + a*a*(3*g*g + 6*g*h - 2*h*(2*f + h)) + 9*b*b*(g*h + e*(g + h)) +
    107          a*d*(-9*f*f - 18*f*g + 6*g*g + f*h + e*(f + 12*g + h)) +
    108          b*(d*(-3*e*e + 9*f*g + e*(9*f + 9*g - 6*h)) + 3*a*(h*(2*e - 3*g + h) - 3*f*(g + h)))))*y
    109 
    110 - 3*(18*c*c*c*e - 18*c*c*d*e + 6*c*d*d*e - d*d*d*e + 3*c*d*d*f - 9*c*c*d*g + a*a*a*h + 9*c*c*c*h -
    111       9*b*b*b*(e + 2*h) - a*a*(d*(e - 9*f + 18*g - 7*h) + 3*c*(2*f - 6*g + h)) +
    112       a*(-9*c*c*(2*e - 6*f + 2*g - h) + d*d*(-7*e + 18*f - 9*g + h) + 3*c*d*(7*e - 17*f + 3*g + h)) +
    113       9*b*b*(3*c*(e + g + h) + a*(f + 2*h) - d*(e - 2*(f - 3*g + h))) -
    114       3*b*(-(d*d*(e - 6*f + 2*g)) - 3*c*d*(e + 3*f + 3*g - h) + 9*c*c*(e + f + h) + a*a*(g + 2*h) +
    115          a*(c*(-3*e + 9*f + 9*g + 3*h) + d*(e + 3*f - 17*g + 7*h))))*Power(y,2)
    116 
    117 + Power(a - 3*b + 3*c - d,3)*Power(y,3)
    118 
    119 + Power(x,2)*(-3*(-9*b*e*f*f + 9*a*f*f*f + 6*b*e*e*g - 9*a*e*f*g + 27*b*e*f*g - 27*a*f*f*g + 18*a*e*g*g - 54*b*e*g*g +
    120          27*a*f*g*g + 27*b*f*g*g - 18*a*g*g*g + a*e*e*h - 9*b*e*e*h + 3*a*e*f*h + 9*b*e*f*h + 9*a*f*f*h -
    121          18*b*f*f*h - 21*a*e*g*h + 51*b*e*g*h - 9*a*f*g*h - 27*b*f*g*h + 18*a*g*g*h + 7*a*e*h*h - 18*b*e*h*h - 3*a*f*h*h +
    122          18*b*f*h*h - 6*a*g*h*h - 3*b*g*h*h + a*h*h*h +
    123          3*c*(-9*f*f*(g - 2*h) + 3*g*g*h - f*h*(9*g + 2*h) + e*e*(f - 6*g + 6*h) +
    124             e*(9*f*g + 6*g*g - 17*f*h - 3*g*h + 3*h*h)) -
    125          d*(e*e*e + e*e*(-6*f - 3*g + 7*h) - 9*(2*f - g)*(f*f + g*g - f*(g + h)) +
    126             e*(18*f*f + 9*g*g + 3*g*h + h*h - 3*f*(3*g + 7*h)))) )
    127 
    128 + Power(x,2)*(3*(a - 3*b + 3*c - d)*Power(e - 3*f + 3*g - h,2)*y)
    129 
    130 + x*(-3*(27*b*b*e*g*g - 27*a*b*f*g*g + 9*a*a*g*g*g - 18*b*b*e*f*h + 18*a*b*f*f*h + 3*a*b*e*g*h -
    131          27*b*b*e*g*h - 9*a*a*f*g*h + 27*a*b*f*g*h - 9*a*a*g*g*h + a*a*e*h*h - 9*a*b*e*h*h +
    132          27*b*b*e*h*h + 6*a*a*f*h*h - 18*a*b*f*h*h - 9*b*b*f*h*h + 3*a*a*g*h*h +
    133          6*a*b*g*h*h - a*a*h*h*h + 9*c*c*(e*e*(g - 3*h) - 3*f*f*h + e*(3*f + 2*g)*h) +
    134          d*d*(e*e*e - 9*f*f*f + 9*e*f*(f + g) - e*e*(3*f + 6*g + h)) +
    135          d*(-3*c*(-9*f*f*g + e*e*(2*f - 6*g - 3*h) + e*(9*f*g + 6*g*g + f*h)) +
    136             a*(-18*f*f*f - 18*e*g*g + 18*g*g*g - 2*e*e*h + 3*e*g*h + 2*e*h*h + 9*f*f*(3*g + 2*h) +
    137                3*f*(6*e*g - 9*g*g - e*h - 6*g*h)) - 3*b*(9*f*g*g + e*e*(4*g - 3*h) - 6*f*f*h -
    138                e*(6*f*f + g*(18*g + h) - 3*f*(3*g + 4*h)))) +
    139          3*c*(3*b*(e*e*h + 3*f*g*h - e*(3*f*g - 6*f*h + 6*g*h + h*h)) +
    140             a*(9*f*f*(g - 2*h) + f*h*(-e + 9*g + 4*h) - 3*(2*g*g*h + e*(2*g*g - 4*g*h + h*h))))) )
    141 
    142 + x*3*(-2*a*d*e*e - 7*d*d*e*e + 15*a*d*e*f + 21*d*d*e*f - 9*a*d*f*f - 18*d*d*f*f - 15*a*d*e*g -
    143          3*d*d*e*g - 9*a*a*f*g + 9*d*d*f*g + 18*a*a*g*g + 9*a*d*g*g + 2*a*a*e*h - 2*d*d*e*h +
    144          3*a*a*f*h + 15*a*d*f*h - 21*a*a*g*h - 15*a*d*g*h + 7*a*a*h*h + 2*a*d*h*h -
    145          9*c*c*(2*e*e + 3*f*f + 3*f*h - 2*g*h + e*(-3*f - 4*g + h)) +
    146          9*b*b*(3*g*g - 3*g*h + 2*h*(-2*f + h) + e*(-2*f + 3*g + h)) +
    147          3*b*(3*c*(e*e + 3*e*(f - 3*g) + (9*f - 3*g - h)*h) + a*(6*f*f + e*g - 9*f*g - 9*g*g - 5*e*h + 9*f*h + 14*g*h - 7*h*h) +
    148             d*(-e*e + 12*f*f - 27*f*g + e*(-9*f + 20*g - 5*h) + g*(9*g + h))) +
    149          3*c*(a*(-(e*f) - 9*f*f + 27*f*g - 12*g*g + 5*e*h - 20*f*h + 9*g*h + h*h) +
    150             d*(7*e*e + 9*f*f + 9*f*g - 6*g*g - f*h + e*(-14*f - 9*g + 5*h))))*y
    151 
    152 - x*3*Power(a - 3*b + 3*c - d,2)*(e - 3*f + 3*g - h)*Power(y,2)
    153 
    154 */
    155 
    156 const int factors = 8;
    157 
    158 struct coeff {
    159     int s; // constant and coefficient sign
    160     int n[factors]; // 0 or power of a (1, 2, or 3) for a through h
    161 };
    162 
    163 enum {
    164     xxx_coeff,
    165     xxy_coeff,
    166     xyy_coeff,
    167     yyy_coeff,
    168     xx_coeff,
    169     xy_coeff,
    170     yy_coeff,
    171     x_coeff,
    172     y_coeff,
    173     c_coeff,
    174     coeff_count
    175 };
    176 
    177 typedef std::vector<coeff> coeffs;
    178 typedef std::vector<coeffs> n_coeffs;
    179 
    180 static char skipSpace(const char* str, size_t& index) {
    181     do {
    182         ++index;
    183     } while (str[index] == ' ');
    184     return str[index];
    185 }
    186 
    187 static char backSkipSpace(const char* str, size_t& end) {
    188     while (str[end - 1] == ' ') {
    189         --end;
    190     }
    191     return str[end - 1];
    192 }
    193 
    194 static void match(const char* str, size_t len, coeffs& co, const char pattern[]) {
    195     size_t patternLen = strlen(pattern);
    196     size_t index = 0;
    197     while (index < len) {
    198         char ch = str[index];
    199         if (ch != '-' && ch != '+') {
    200             printf("missing sign\n");
    201         }
    202         size_t end = index + 1;
    203         while (str[end] != '+' && str[end] != '-' && ++end < len) {
    204             ;
    205         }
    206         backSkipSpace(str, end);
    207         size_t idx = index;
    208         index = end;
    209         skipSpace(str, index);
    210         if (!strncmp(&str[end - patternLen], pattern, patternLen) == 0) {
    211             continue;
    212         }
    213         size_t endCoeff = end - patternLen;
    214         char last = backSkipSpace(str, endCoeff);
    215         if (last == '2' || last == '3') {
    216             last = str[endCoeff - 3]; // skip ^2
    217         }
    218         if (last == 'x' || last == 'y') {
    219             continue;
    220         }
    221         coeff c;
    222         c.s = str[idx] == '-' ? -1 : 1;
    223         bzero(c.n, sizeof(c.n));
    224         ch = skipSpace(str, idx);
    225         if (ch >= '2' && ch <= '6') {
    226             c.s *= ch - '0';
    227             ch = skipSpace(str, idx);
    228         }
    229         while (idx < endCoeff) {
    230             char x = str[idx];
    231             if (x < 'a' || x > 'a' + factors) {
    232                 printf("expected factor\n");
    233             }
    234             idx++;
    235             int pow = 1;
    236             if (str[idx] == '^') {
    237                 idx++;
    238                 char exp = str[idx];
    239                 if (exp < '2' || exp > '3') {
    240                     printf("expected exponent\n");
    241                 }
    242                 pow = exp - '0';
    243             }
    244             skipSpace(str, idx);
    245             c.n[x - 'a'] = pow;
    246         }
    247         co.push_back(c);
    248     }
    249 }
    250 
    251 void cubecode_test(int test);
    252 
    253 void cubecode_test(int test) {
    254     const char* str = test ? result2 : result1;
    255     size_t len = strlen(str);
    256     n_coeffs c(coeff_count);
    257     match(str, len, c[xxx_coeff], "x^3");   // 1 factor
    258     match(str, len, c[xxy_coeff], "x^2 y"); // 1 factor
    259     match(str, len, c[xyy_coeff], "x y^2"); // 1 factor
    260     match(str, len, c[yyy_coeff], "y^3");   // 1 factor
    261     match(str, len, c[xx_coeff], "x^2");    // 7 factors
    262     match(str, len, c[xy_coeff], "x y");    // 8 factors
    263     match(str, len, c[yy_coeff], "y^2");    // 7 factors
    264     match(str, len, c[x_coeff], "x");       // 21 factors
    265     match(str, len, c[y_coeff], "y");       // 21 factors
    266     match(str, len, c[c_coeff], "");        // 34 factors : total 102
    267 #define COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS 0
    268 #define WRITE_AS_NONOPTIMIZED_C_CODE 0
    269 #if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS
    270     int count[factors][factors][factors];
    271     bzero(count, sizeof(count));
    272 #endif
    273 #if WRITE_AS_NONOPTIMIZED_C_CODE
    274     printf("// start of generated code");
    275 #endif
    276     for (n_coeffs::iterator it = c.begin(); it < c.end(); ++it) {
    277         coeffs& co = *it;
    278 #if WRITE_AS_NONOPTIMIZED_C_CODE
    279         printf("\nstatic double calc_%c(double a, double b, double c, double d,"
    280                "\n                     double e, double f, double g, double h) {"
    281                "\n    return"
    282                "\n ", 'A' + (it - c.begin()));
    283         if (co[0].s > 0) {
    284             printf(" ");
    285         }
    286         if (abs(co[0].s) == 1) {
    287             printf("    ");
    288         }
    289 #endif
    290         for (coeffs::iterator ct = co.begin(); ct < co.end(); ++ct) {
    291             const coeff& cf = *ct;
    292 #if WRITE_AS_NONOPTIMIZED_C_CODE
    293             printf("        ");
    294             bool firstFactor = false;
    295             if (ct - co.begin() > 0 || cf.s < 0) {
    296                 printf("%c", cf.s < 0 ? '-' : '+');
    297             }
    298             if (ct - co.begin() > 0) {
    299                 printf(" ");
    300             }
    301             if (abs(cf.s) > 1) {
    302                 printf("%d * ", abs(cf.s));
    303             } else {
    304                 if (ct - co.begin() > 0) {
    305                     printf("    ");
    306                 }
    307             }
    308 #endif
    309             for (int x = 0; x < factors; ++x) {
    310                 if (cf.n[x] == 0) {
    311                     continue;
    312                 }
    313 #if WRITE_AS_NONOPTIMIZED_C_CODE
    314                 for (int y = 0 ; y < cf.n[x]; ++y) {
    315                     if (y > 0 || firstFactor) {
    316                         printf(" * ");
    317                     }
    318                     printf("%c", 'a' + x);
    319                 }
    320                 firstFactor = true;
    321 #endif
    322 #if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS
    323                 for (int y = x; y < factors; ++y) {
    324                     if (cf.n[y] == 0) {
    325                         continue;
    326                     }
    327                     if (x == y && cf.n[y] == 1) {
    328                         continue;
    329                     }
    330                     for (int z = y; z < factors; ++z) {
    331                         if (cf.n[z] == 0) {
    332                             continue;
    333                         }
    334                         if ((x == z || y == z) && cf.n[z] == 1) {
    335                             continue;
    336                         }
    337                         if (x == y && y == z && cf.n[z] == 2) {
    338                             continue;
    339                         }
    340                         count[x][y][z]++;
    341                     }
    342                 }
    343 #endif
    344             }
    345 #if WRITE_AS_NONOPTIMIZED_C_CODE
    346             if (ct + 1 < co.end()) {
    347                 printf("\n");
    348             }
    349 #endif
    350         }
    351 #if WRITE_AS_NONOPTIMIZED_C_CODE
    352             printf(";\n}\n");
    353 #endif
    354     }
    355 #if WRITE_AS_NONOPTIMIZED_C_CODE
    356     printf("// end of generated code\n");
    357 #endif
    358 #if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS
    359     const int bestCount = 20;
    360     int best[bestCount][4];
    361     bzero(best, sizeof(best));
    362     for (int x = 0; x < factors; ++x) {
    363         for (int y = x; y < factors; ++y) {
    364             for (int z = y; z < factors; ++z) {
    365                 if (!count[x][y][z]) {
    366                     continue;
    367                 }
    368                 for (int w = 0; w < bestCount; ++w) {
    369                     if (best[w][0] < count[x][y][z]) {
    370                         best[w][0] = count[x][y][z];
    371                         best[w][1] = x;
    372                         best[w][2] = y;
    373                         best[w][3] = z;
    374                         break;
    375                     }
    376                 }
    377             }
    378         }
    379     }
    380     for (int w = 0; w < bestCount; ++w) {
    381         printf("%c%c%c=%d\n", 'a' + best[w][1], 'a'  + best[w][2],
    382             'a' + best[w][3], best[w][0]);
    383     }
    384 #endif
    385 #if WRITE_AS_NONOPTIMIZED_C_CODE
    386     printf("\n");
    387 #endif
    388 }
    389 
    390 /* results: variable triplets used 10 or more times:
    391 aah=14
    392 ade=14
    393 aeh=14
    394 dee=14
    395 bce=13
    396 beg=13
    397 beh=12
    398 bbe=11
    399 bef=11
    400 cee=11
    401 cef=11
    402 def=11
    403 ceh=10
    404 deg=10
    405 */
    406