Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2012 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 #include "SkBitmap.h"
     10 #include "SkErrorInternals.h"
     11 #include "SkReadBuffer.h"
     12 #include "SkStream.h"
     13 #include "SkTypeface.h"
     14 
     15 static uint32_t default_flags() {
     16     uint32_t flags = 0;
     17 #ifdef SK_SCALAR_IS_FLOAT
     18     flags |= SkReadBuffer::kScalarIsFloat_Flag;
     19 #endif
     20     if (8 == sizeof(void*)) {
     21         flags |= SkReadBuffer::kPtrIs64Bit_Flag;
     22     }
     23     return flags;
     24 }
     25 
     26 SkReadBuffer::SkReadBuffer() {
     27     fFlags = default_flags();
     28     fVersion = 0;
     29     fMemoryPtr = NULL;
     30 
     31     fBitmapStorage = NULL;
     32     fTFArray = NULL;
     33     fTFCount = 0;
     34 
     35     fFactoryTDArray = NULL;
     36     fFactoryArray = NULL;
     37     fFactoryCount = 0;
     38     fBitmapDecoder = NULL;
     39 #ifdef DEBUG_NON_DETERMINISTIC_ASSERT
     40     fDecodedBitmapIndex = -1;
     41 #endif // DEBUG_NON_DETERMINISTIC_ASSERT
     42 }
     43 
     44 SkReadBuffer::SkReadBuffer(const void* data, size_t size) {
     45     fFlags = default_flags();
     46     fVersion = 0;
     47     fReader.setMemory(data, size);
     48     fMemoryPtr = NULL;
     49 
     50     fBitmapStorage = NULL;
     51     fTFArray = NULL;
     52     fTFCount = 0;
     53 
     54     fFactoryTDArray = NULL;
     55     fFactoryArray = NULL;
     56     fFactoryCount = 0;
     57     fBitmapDecoder = NULL;
     58 #ifdef DEBUG_NON_DETERMINISTIC_ASSERT
     59     fDecodedBitmapIndex = -1;
     60 #endif // DEBUG_NON_DETERMINISTIC_ASSERT
     61 }
     62 
     63 SkReadBuffer::SkReadBuffer(SkStream* stream) {
     64     fFlags = default_flags();
     65     fVersion = 0;
     66     const size_t length = stream->getLength();
     67     fMemoryPtr = sk_malloc_throw(length);
     68     stream->read(fMemoryPtr, length);
     69     fReader.setMemory(fMemoryPtr, length);
     70 
     71     fBitmapStorage = NULL;
     72     fTFArray = NULL;
     73     fTFCount = 0;
     74 
     75     fFactoryTDArray = NULL;
     76     fFactoryArray = NULL;
     77     fFactoryCount = 0;
     78     fBitmapDecoder = NULL;
     79 #ifdef DEBUG_NON_DETERMINISTIC_ASSERT
     80     fDecodedBitmapIndex = -1;
     81 #endif // DEBUG_NON_DETERMINISTIC_ASSERT
     82 }
     83 
     84 SkReadBuffer::~SkReadBuffer() {
     85     sk_free(fMemoryPtr);
     86     SkSafeUnref(fBitmapStorage);
     87 }
     88 
     89 bool SkReadBuffer::readBool() {
     90     return fReader.readBool();
     91 }
     92 
     93 SkColor SkReadBuffer::readColor() {
     94     return fReader.readInt();
     95 }
     96 
     97 SkFixed SkReadBuffer::readFixed() {
     98     return fReader.readS32();
     99 }
    100 
    101 int32_t SkReadBuffer::readInt() {
    102     return fReader.readInt();
    103 }
    104 
    105 SkScalar SkReadBuffer::readScalar() {
    106     return fReader.readScalar();
    107 }
    108 
    109 uint32_t SkReadBuffer::readUInt() {
    110     return fReader.readU32();
    111 }
    112 
    113 int32_t SkReadBuffer::read32() {
    114     return fReader.readInt();
    115 }
    116 
    117 void SkReadBuffer::readString(SkString* string) {
    118     size_t len;
    119     const char* strContents = fReader.readString(&len);
    120     string->set(strContents, len);
    121 }
    122 
    123 void* SkReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
    124     SkDEBUGCODE(int32_t encodingType = ) fReader.readInt();
    125     SkASSERT(encodingType == encoding);
    126     *length =  fReader.readInt();
    127     void* data = sk_malloc_throw(*length);
    128     memcpy(data, fReader.skip(SkAlign4(*length)), *length);
    129     return data;
    130 }
    131 
    132 void SkReadBuffer::readPoint(SkPoint* point) {
    133     point->fX = fReader.readScalar();
    134     point->fY = fReader.readScalar();
    135 }
    136 
    137 void SkReadBuffer::readMatrix(SkMatrix* matrix) {
    138     fReader.readMatrix(matrix);
    139 }
    140 
    141 void SkReadBuffer::readIRect(SkIRect* rect) {
    142     memcpy(rect, fReader.skip(sizeof(SkIRect)), sizeof(SkIRect));
    143 }
    144 
    145 void SkReadBuffer::readRect(SkRect* rect) {
    146     memcpy(rect, fReader.skip(sizeof(SkRect)), sizeof(SkRect));
    147 }
    148 
    149 void SkReadBuffer::readRegion(SkRegion* region) {
    150     fReader.readRegion(region);
    151 }
    152 
    153 void SkReadBuffer::readPath(SkPath* path) {
    154     fReader.readPath(path);
    155 }
    156 
    157 bool SkReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
    158     const size_t count = this->getArrayCount();
    159     if (count == size) {
    160         (void)fReader.skip(sizeof(uint32_t)); // Skip array count
    161         const size_t byteLength = count * elementSize;
    162         memcpy(value, fReader.skip(SkAlign4(byteLength)), byteLength);
    163         return true;
    164     }
    165     SkASSERT(false);
    166     fReader.skip(fReader.available());
    167     return false;
    168 }
    169 
    170 bool SkReadBuffer::readByteArray(void* value, size_t size) {
    171     return readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
    172 }
    173 
    174 bool SkReadBuffer::readColorArray(SkColor* colors, size_t size) {
    175     return readArray(colors, size, sizeof(SkColor));
    176 }
    177 
    178 bool SkReadBuffer::readIntArray(int32_t* values, size_t size) {
    179     return readArray(values, size, sizeof(int32_t));
    180 }
    181 
    182 bool SkReadBuffer::readPointArray(SkPoint* points, size_t size) {
    183     return readArray(points, size, sizeof(SkPoint));
    184 }
    185 
    186 bool SkReadBuffer::readScalarArray(SkScalar* values, size_t size) {
    187     return readArray(values, size, sizeof(SkScalar));
    188 }
    189 
    190 uint32_t SkReadBuffer::getArrayCount() {
    191     return *(uint32_t*)fReader.peek();
    192 }
    193 
    194 bool SkReadBuffer::readBitmap(SkBitmap* bitmap) {
    195     const int width = this->readInt();
    196     const int height = this->readInt();
    197     // The writer stored a boolean value to determine whether an SkBitmapHeap was used during
    198     // writing.
    199     if (this->readBool()) {
    200         // An SkBitmapHeap was used for writing. Read the index from the stream and find the
    201         // corresponding SkBitmap in fBitmapStorage.
    202         const uint32_t index = this->readUInt();
    203         this->readUInt(); // bitmap generation ID (see SkWriteBuffer::writeBitmap)
    204         if (fBitmapStorage) {
    205             *bitmap = *fBitmapStorage->getBitmap(index);
    206             fBitmapStorage->releaseRef(index);
    207             return true;
    208         } else {
    209             // The bitmap was stored in a heap, but there is no way to access it. Set an error and
    210             // fall through to use a place holder bitmap.
    211             SkErrorInternals::SetError(kParseError_SkError, "SkWriteBuffer::writeBitmap "
    212                                        "stored the SkBitmap in an SkBitmapHeap, but "
    213                                        "SkReadBuffer has no SkBitmapHeapReader to "
    214                                        "retrieve the SkBitmap.");
    215         }
    216     } else {
    217         // The writer stored false, meaning the SkBitmap was not stored in an SkBitmapHeap.
    218         const size_t length = this->readUInt();
    219         if (length > 0) {
    220 #ifdef DEBUG_NON_DETERMINISTIC_ASSERT
    221             fDecodedBitmapIndex++;
    222 #endif // DEBUG_NON_DETERMINISTIC_ASSERT
    223             // A non-zero size means the SkBitmap was encoded. Read the data and pixel
    224             // offset.
    225             const void* data = this->skip(length);
    226             const int32_t xOffset = this->readInt();
    227             const int32_t yOffset = this->readInt();
    228             if (fBitmapDecoder != NULL && fBitmapDecoder(data, length, bitmap)) {
    229                 if (bitmap->width() == width && bitmap->height() == height) {
    230 #ifdef DEBUG_NON_DETERMINISTIC_ASSERT
    231                     if (0 != xOffset || 0 != yOffset) {
    232                         SkDebugf("SkReadBuffer::readBitmap: heights match,"
    233                                  " but offset is not zero. \nInfo about the bitmap:"
    234                                  "\n\tIndex: %d\n\tDimensions: [%d %d]\n\tEncoded"
    235                                  " data size: %d\n\tOffset: (%d, %d)\n",
    236                                  fDecodedBitmapIndex, width, height, length, xOffset,
    237                                  yOffset);
    238                     }
    239 #endif // DEBUG_NON_DETERMINISTIC_ASSERT
    240                     // If the width and height match, there should be no offset.
    241                     SkASSERT(0 == xOffset && 0 == yOffset);
    242                     return true;
    243                 }
    244 
    245                 // This case can only be reached if extractSubset was called, so
    246                 // the recorded width and height must be smaller than or equal to
    247                 // the encoded width and height.
    248                 // FIXME (scroggo): This assert assumes that our decoder and the
    249                 // sources encoder agree on the width and height which may not
    250                 // always be the case. Removing until it can be investigated
    251                 // further.
    252                 //SkASSERT(width <= bitmap->width() && height <= bitmap->height());
    253 
    254                 SkBitmap subsetBm;
    255                 SkIRect subset = SkIRect::MakeXYWH(xOffset, yOffset, width, height);
    256                 if (bitmap->extractSubset(&subsetBm, subset)) {
    257                     bitmap->swap(subsetBm);
    258                     return true;
    259                 }
    260             }
    261             // This bitmap was encoded when written, but we are unable to decode, possibly due to
    262             // not having a decoder.
    263             SkErrorInternals::SetError(kParseError_SkError,
    264                                        "Could not decode bitmap. Resulting bitmap will be red.");
    265         } else {
    266             // A size of zero means the SkBitmap was simply flattened.
    267             if (this->isVersionLT(kNoMoreBitmapFlatten_Version)) {
    268                 SkBitmap tmp;
    269                 tmp.legacyUnflatten(*this);
    270                 // just throw this guy away
    271             } else {
    272                 if (SkBitmap::ReadRawPixels(this, bitmap)) {
    273                     return true;
    274                 }
    275             }
    276         }
    277     }
    278     // Could not read the SkBitmap. Use a placeholder bitmap.
    279     bitmap->setInfo(SkImageInfo::MakeUnknown(width, height));
    280     return false;
    281 }
    282 
    283 SkTypeface* SkReadBuffer::readTypeface() {
    284 
    285     uint32_t index = fReader.readU32();
    286     if (0 == index || index > (unsigned)fTFCount) {
    287         if (index) {
    288             SkDebugf("====== typeface index %d\n", index);
    289         }
    290         return NULL;
    291     } else {
    292         SkASSERT(fTFArray);
    293         return fTFArray[index - 1];
    294     }
    295 }
    296 
    297 SkFlattenable* SkReadBuffer::readFlattenable(SkFlattenable::Type ft) {
    298     //
    299     // TODO: confirm that ft matches the factory we decide to use
    300     //
    301 
    302     SkFlattenable::Factory factory = NULL;
    303 
    304     if (fFactoryCount > 0) {
    305         int32_t index = fReader.readU32();
    306         if (0 == index) {
    307             return NULL; // writer failed to give us the flattenable
    308         }
    309         index -= 1;     // we stored the index-base-1
    310         SkASSERT(index < fFactoryCount);
    311         factory = fFactoryArray[index];
    312     } else if (fFactoryTDArray) {
    313         int32_t index = fReader.readU32();
    314         if (0 == index) {
    315             return NULL; // writer failed to give us the flattenable
    316         }
    317         index -= 1;     // we stored the index-base-1
    318         factory = (*fFactoryTDArray)[index];
    319     } else {
    320         factory = (SkFlattenable::Factory)readFunctionPtr();
    321         if (NULL == factory) {
    322             return NULL; // writer failed to give us the flattenable
    323         }
    324     }
    325 
    326     // if we get here, factory may still be null, but if that is the case, the
    327     // failure was ours, not the writer.
    328     SkFlattenable* obj = NULL;
    329     uint32_t sizeRecorded = fReader.readU32();
    330     if (factory) {
    331         size_t offset = fReader.offset();
    332         obj = (*factory)(*this);
    333         // check that we read the amount we expected
    334         size_t sizeRead = fReader.offset() - offset;
    335         if (sizeRecorded != sizeRead) {
    336             // we could try to fix up the offset...
    337             sk_throw();
    338         }
    339     } else {
    340         // we must skip the remaining data
    341         fReader.skip(sizeRecorded);
    342     }
    343     return obj;
    344 }
    345 
    346 /**
    347  *  Needs to follow the same pattern as readFlattenable(), but explicitly skip whatever data
    348  *  has been written.
    349  */
    350 void SkReadBuffer::skipFlattenable() {
    351     if (fFactoryCount > 0) {
    352         if (0 == fReader.readU32()) {
    353             return;
    354         }
    355     } else if (fFactoryTDArray) {
    356         if (0 == fReader.readU32()) {
    357             return;
    358         }
    359     } else {
    360         if (NULL == this->readFunctionPtr()) {
    361             return;
    362         }
    363     }
    364     uint32_t sizeRecorded = fReader.readU32();
    365     fReader.skip(sizeRecorded);
    366 }
    367