Home | History | Annotate | Download | only in gradients
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGradientShaderPriv.h"
      9 #include "SkLinearGradient.h"
     10 #include "SkRadialGradient.h"
     11 #include "SkTwoPointRadialGradient.h"
     12 #include "SkTwoPointConicalGradient.h"
     13 #include "SkSweepGradient.h"
     14 
     15 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix* localMatrix)
     16     : INHERITED(localMatrix)
     17 {
     18     SkASSERT(desc.fCount > 1);
     19 
     20     fGradFlags = SkToU8(desc.fGradFlags);
     21 
     22     SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
     23     SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
     24     fTileMode = desc.fTileMode;
     25     fTileProc = gTileProcs[desc.fTileMode];
     26 
     27     /*  Note: we let the caller skip the first and/or last position.
     28         i.e. pos[0] = 0.3, pos[1] = 0.7
     29         In these cases, we insert dummy entries to ensure that the final data
     30         will be bracketed by [0, 1].
     31         i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
     32 
     33         Thus colorCount (the caller's value, and fColorCount (our value) may
     34         differ by up to 2. In the above example:
     35             colorCount = 2
     36             fColorCount = 4
     37      */
     38     fColorCount = desc.fCount;
     39     // check if we need to add in dummy start and/or end position/colors
     40     bool dummyFirst = false;
     41     bool dummyLast = false;
     42     if (desc.fPos) {
     43         dummyFirst = desc.fPos[0] != 0;
     44         dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
     45         fColorCount += dummyFirst + dummyLast;
     46     }
     47 
     48     if (fColorCount > kColorStorageCount) {
     49         size_t size = sizeof(SkColor) + sizeof(Rec);
     50         fOrigColors = reinterpret_cast<SkColor*>(
     51                                         sk_malloc_throw(size * fColorCount));
     52     }
     53     else {
     54         fOrigColors = fStorage;
     55     }
     56 
     57     // Now copy over the colors, adding the dummies as needed
     58     {
     59         SkColor* origColors = fOrigColors;
     60         if (dummyFirst) {
     61             *origColors++ = desc.fColors[0];
     62         }
     63         memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor));
     64         if (dummyLast) {
     65             origColors += desc.fCount;
     66             *origColors = desc.fColors[desc.fCount - 1];
     67         }
     68     }
     69 
     70     fRecs = (Rec*)(fOrigColors + fColorCount);
     71     if (fColorCount > 2) {
     72         Rec* recs = fRecs;
     73         recs->fPos = 0;
     74         //  recs->fScale = 0; // unused;
     75         recs += 1;
     76         if (desc.fPos) {
     77             /*  We need to convert the user's array of relative positions into
     78                 fixed-point positions and scale factors. We need these results
     79                 to be strictly monotonic (no two values equal or out of order).
     80                 Hence this complex loop that just jams a zero for the scale
     81                 value if it sees a segment out of order, and it assures that
     82                 we start at 0 and end at 1.0
     83             */
     84             SkFixed prev = 0;
     85             int startIndex = dummyFirst ? 0 : 1;
     86             int count = desc.fCount + dummyLast;
     87             for (int i = startIndex; i < count; i++) {
     88                 // force the last value to be 1.0
     89                 SkFixed curr;
     90                 if (i == desc.fCount) {  // we're really at the dummyLast
     91                     curr = SK_Fixed1;
     92                 } else {
     93                     curr = SkScalarToFixed(desc.fPos[i]);
     94                 }
     95                 // pin curr withing range
     96                 if (curr < 0) {
     97                     curr = 0;
     98                 } else if (curr > SK_Fixed1) {
     99                     curr = SK_Fixed1;
    100                 }
    101                 recs->fPos = curr;
    102                 if (curr > prev) {
    103                     recs->fScale = (1 << 24) / (curr - prev);
    104                 } else {
    105                     recs->fScale = 0; // ignore this segment
    106                 }
    107                 // get ready for the next value
    108                 prev = curr;
    109                 recs += 1;
    110             }
    111         } else {    // assume even distribution
    112             SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
    113             SkFixed p = dp;
    114             SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
    115             for (int i = 1; i < desc.fCount - 1; i++) {
    116                 recs->fPos   = p;
    117                 recs->fScale = scale;
    118                 recs += 1;
    119                 p += dp;
    120             }
    121             recs->fPos = SK_Fixed1;
    122             recs->fScale = scale;
    123         }
    124     }
    125     this->initCommon();
    126 }
    127 
    128 static uint32_t pack_mode_flags(SkShader::TileMode mode, uint32_t flags) {
    129     SkASSERT(0 == (flags >> 28));
    130     SkASSERT(0 == ((uint32_t)mode >> 4));
    131     return (flags << 4) | mode;
    132 }
    133 
    134 static SkShader::TileMode unpack_mode(uint32_t packed) {
    135     return (SkShader::TileMode)(packed & 0xF);
    136 }
    137 
    138 static uint32_t unpack_flags(uint32_t packed) {
    139     return packed >> 4;
    140 }
    141 
    142 SkGradientShaderBase::SkGradientShaderBase(SkReadBuffer& buffer) : INHERITED(buffer) {
    143     if (buffer.isVersionLT(SkReadBuffer::kNoUnitMappers_Version)) {
    144         // skip the old SkUnitMapper slot
    145         buffer.skipFlattenable();
    146     }
    147 
    148     int colorCount = fColorCount = buffer.getArrayCount();
    149     if (colorCount > kColorStorageCount) {
    150         size_t allocSize = (sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount;
    151         if (buffer.validateAvailable(allocSize)) {
    152             fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(allocSize));
    153         } else {
    154             fOrigColors =  NULL;
    155             colorCount = fColorCount = 0;
    156         }
    157     } else {
    158         fOrigColors = fStorage;
    159     }
    160     buffer.readColorArray(fOrigColors, colorCount);
    161 
    162     {
    163         uint32_t packed = buffer.readUInt();
    164         fGradFlags = SkToU8(unpack_flags(packed));
    165         fTileMode = unpack_mode(packed);
    166     }
    167     fTileProc = gTileProcs[fTileMode];
    168     fRecs = (Rec*)(fOrigColors + colorCount);
    169     if (colorCount > 2) {
    170         Rec* recs = fRecs;
    171         recs[0].fPos = 0;
    172         for (int i = 1; i < colorCount; i++) {
    173             recs[i].fPos = buffer.readInt();
    174             recs[i].fScale = buffer.readUInt();
    175         }
    176     }
    177     buffer.readMatrix(&fPtsToUnit);
    178     this->initCommon();
    179 }
    180 
    181 SkGradientShaderBase::~SkGradientShaderBase() {
    182     if (fOrigColors != fStorage) {
    183         sk_free(fOrigColors);
    184     }
    185 }
    186 
    187 void SkGradientShaderBase::initCommon() {
    188     unsigned colorAlpha = 0xFF;
    189     for (int i = 0; i < fColorCount; i++) {
    190         colorAlpha &= SkColorGetA(fOrigColors[i]);
    191     }
    192     fColorsAreOpaque = colorAlpha == 0xFF;
    193 }
    194 
    195 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
    196     this->INHERITED::flatten(buffer);
    197     buffer.writeColorArray(fOrigColors, fColorCount);
    198     buffer.writeUInt(pack_mode_flags(fTileMode, fGradFlags));
    199     if (fColorCount > 2) {
    200         Rec* recs = fRecs;
    201         for (int i = 1; i < fColorCount; i++) {
    202             buffer.writeInt(recs[i].fPos);
    203             buffer.writeUInt(recs[i].fScale);
    204         }
    205     }
    206     buffer.writeMatrix(fPtsToUnit);
    207 }
    208 
    209 SkGradientShaderBase::GpuColorType SkGradientShaderBase::getGpuColorType(SkColor colors[3]) const {
    210     if (fColorCount <= 3) {
    211         memcpy(colors, fOrigColors, fColorCount * sizeof(SkColor));
    212     }
    213 
    214     if (SkShader::kClamp_TileMode == fTileMode) {
    215         if (2 == fColorCount) {
    216             return kTwo_GpuColorType;
    217         } else if (3 == fColorCount &&
    218                    (SkScalarAbs(
    219                     SkFixedToScalar(fRecs[1].fPos) - SK_ScalarHalf) < SK_Scalar1 / 1000)) {
    220             return kThree_GpuColorType;
    221         }
    222     }
    223     return kTexture_GpuColorType;
    224 }
    225 
    226 void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst,
    227                                               SkColor* colorSrc, Rec* recSrc,
    228                                               int count) {
    229     SkAutoSTArray<8, SkColor> colorsTemp(count);
    230     for (int i = 0; i < count; ++i) {
    231         int offset = count - i - 1;
    232         colorsTemp[i] = colorSrc[offset];
    233     }
    234     if (count > 2) {
    235         SkAutoSTArray<8, Rec> recsTemp(count);
    236         for (int i = 0; i < count; ++i) {
    237             int offset = count - i - 1;
    238             recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos;
    239             recsTemp[i].fScale = recSrc[offset].fScale;
    240         }
    241         memcpy(recDst, recsTemp.get(), count * sizeof(Rec));
    242     }
    243     memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor));
    244 }
    245 
    246 void SkGradientShaderBase::flipGradientColors() {
    247     FlipGradientColors(fOrigColors, fRecs, fOrigColors, fRecs, fColorCount);
    248 }
    249 
    250 bool SkGradientShaderBase::isOpaque() const {
    251     return fColorsAreOpaque;
    252 }
    253 
    254 SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext(
    255         const SkGradientShaderBase& shader, const ContextRec& rec)
    256     : INHERITED(shader, rec)
    257     , fCache(shader.refCache(getPaintAlpha()))
    258 {
    259     const SkMatrix& inverse = this->getTotalInverse();
    260 
    261     fDstToIndex.setConcat(shader.fPtsToUnit, inverse);
    262 
    263     fDstToIndexProc = fDstToIndex.getMapXYProc();
    264     fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex);
    265 
    266     // now convert our colors in to PMColors
    267     unsigned paintAlpha = this->getPaintAlpha();
    268 
    269     fFlags = this->INHERITED::getFlags();
    270     if (shader.fColorsAreOpaque && paintAlpha == 0xFF) {
    271         fFlags |= kOpaqueAlpha_Flag;
    272     }
    273     // we can do span16 as long as our individual colors are opaque,
    274     // regardless of the paint's alpha
    275     if (shader.fColorsAreOpaque) {
    276         fFlags |= kHasSpan16_Flag;
    277     }
    278 }
    279 
    280 SkGradientShaderBase::GradientShaderCache::GradientShaderCache(
    281         U8CPU alpha, const SkGradientShaderBase& shader)
    282     : fCacheAlpha(alpha)
    283     , fShader(shader)
    284     , fCache16Inited(false)
    285     , fCache32Inited(false)
    286 {
    287     // Only initialize the cache in getCache16/32.
    288     fCache16 = NULL;
    289     fCache32 = NULL;
    290     fCache16Storage = NULL;
    291     fCache32PixelRef = NULL;
    292 }
    293 
    294 SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {
    295     sk_free(fCache16Storage);
    296     SkSafeUnref(fCache32PixelRef);
    297 }
    298 
    299 #define Fixed_To_Dot8(x)        (((x) + 0x80) >> 8)
    300 
    301 /** We take the original colors, not our premultiplied PMColors, since we can
    302     build a 16bit table as long as the original colors are opaque, even if the
    303     paint specifies a non-opaque alpha.
    304 */
    305 void SkGradientShaderBase::GradientShaderCache::Build16bitCache(
    306         uint16_t cache[], SkColor c0, SkColor c1, int count) {
    307     SkASSERT(count > 1);
    308     SkASSERT(SkColorGetA(c0) == 0xFF);
    309     SkASSERT(SkColorGetA(c1) == 0xFF);
    310 
    311     SkFixed r = SkColorGetR(c0);
    312     SkFixed g = SkColorGetG(c0);
    313     SkFixed b = SkColorGetB(c0);
    314 
    315     SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
    316     SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
    317     SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
    318 
    319     r = SkIntToFixed(r) + 0x8000;
    320     g = SkIntToFixed(g) + 0x8000;
    321     b = SkIntToFixed(b) + 0x8000;
    322 
    323     do {
    324         unsigned rr = r >> 16;
    325         unsigned gg = g >> 16;
    326         unsigned bb = b >> 16;
    327         cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
    328         cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
    329         cache += 1;
    330         r += dr;
    331         g += dg;
    332         b += db;
    333     } while (--count != 0);
    334 }
    335 
    336 /*
    337  *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
    338  *  release builds, we saw a compiler error where the 0xFF parameter in
    339  *  SkPackARGB32() was being totally ignored whenever it was called with
    340  *  a non-zero add (e.g. 0x8000).
    341  *
    342  *  We found two work-arounds:
    343  *      1. change r,g,b to unsigned (or just one of them)
    344  *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
    345  *         of using |
    346  *
    347  *  We chose #1 just because it was more localized.
    348  *  See http://code.google.com/p/skia/issues/detail?id=1113
    349  *
    350  *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
    351  */
    352 typedef uint32_t SkUFixed;
    353 
    354 void SkGradientShaderBase::GradientShaderCache::Build32bitCache(
    355         SkPMColor cache[], SkColor c0, SkColor c1,
    356         int count, U8CPU paintAlpha, uint32_t gradFlags) {
    357     SkASSERT(count > 1);
    358 
    359     // need to apply paintAlpha to our two endpoints
    360     uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
    361     uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
    362 
    363 
    364     const bool interpInPremul = SkToBool(gradFlags &
    365                            SkGradientShader::kInterpolateColorsInPremul_Flag);
    366 
    367     uint32_t r0 = SkColorGetR(c0);
    368     uint32_t g0 = SkColorGetG(c0);
    369     uint32_t b0 = SkColorGetB(c0);
    370 
    371     uint32_t r1 = SkColorGetR(c1);
    372     uint32_t g1 = SkColorGetG(c1);
    373     uint32_t b1 = SkColorGetB(c1);
    374 
    375     if (interpInPremul) {
    376         r0 = SkMulDiv255Round(r0, a0);
    377         g0 = SkMulDiv255Round(g0, a0);
    378         b0 = SkMulDiv255Round(b0, a0);
    379 
    380         r1 = SkMulDiv255Round(r1, a1);
    381         g1 = SkMulDiv255Round(g1, a1);
    382         b1 = SkMulDiv255Round(b1, a1);
    383     }
    384 
    385     SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
    386     SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
    387     SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
    388     SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
    389 
    390     /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
    391         in the loop. Without this, the bias for each would be
    392             0x2000  0xA000  0xE000  0x6000
    393         With this trick, we can add 0 for the first (no-op) and just adjust the
    394         others.
    395      */
    396     SkUFixed a = SkIntToFixed(a0) + 0x2000;
    397     SkUFixed r = SkIntToFixed(r0) + 0x2000;
    398     SkUFixed g = SkIntToFixed(g0) + 0x2000;
    399     SkUFixed b = SkIntToFixed(b0) + 0x2000;
    400 
    401     /*
    402      *  Our dither-cell (spatially) is
    403      *      0 2
    404      *      3 1
    405      *  Where
    406      *      [0] -> [-1/8 ... 1/8 ) values near 0
    407      *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
    408      *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
    409      *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
    410      */
    411 
    412     if (0xFF == a0 && 0 == da) {
    413         do {
    414             cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0     ) >> 16,
    415                                                         (g + 0     ) >> 16,
    416                                                         (b + 0     ) >> 16);
    417             cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + 0x8000) >> 16,
    418                                                         (g + 0x8000) >> 16,
    419                                                         (b + 0x8000) >> 16);
    420             cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + 0xC000) >> 16,
    421                                                         (g + 0xC000) >> 16,
    422                                                         (b + 0xC000) >> 16);
    423             cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + 0x4000) >> 16,
    424                                                         (g + 0x4000) >> 16,
    425                                                         (b + 0x4000) >> 16);
    426             cache += 1;
    427             r += dr;
    428             g += dg;
    429             b += db;
    430         } while (--count != 0);
    431     } else if (interpInPremul) {
    432         do {
    433             cache[kCache32Count*0] = SkPackARGB32((a + 0     ) >> 16,
    434                                                   (r + 0     ) >> 16,
    435                                                   (g + 0     ) >> 16,
    436                                                   (b + 0     ) >> 16);
    437             cache[kCache32Count*1] = SkPackARGB32((a + 0x8000) >> 16,
    438                                                   (r + 0x8000) >> 16,
    439                                                   (g + 0x8000) >> 16,
    440                                                   (b + 0x8000) >> 16);
    441             cache[kCache32Count*2] = SkPackARGB32((a + 0xC000) >> 16,
    442                                                   (r + 0xC000) >> 16,
    443                                                   (g + 0xC000) >> 16,
    444                                                   (b + 0xC000) >> 16);
    445             cache[kCache32Count*3] = SkPackARGB32((a + 0x4000) >> 16,
    446                                                   (r + 0x4000) >> 16,
    447                                                   (g + 0x4000) >> 16,
    448                                                   (b + 0x4000) >> 16);
    449             cache += 1;
    450             a += da;
    451             r += dr;
    452             g += dg;
    453             b += db;
    454         } while (--count != 0);
    455     } else {    // interpolate in unpreml space
    456         do {
    457             cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
    458                                                              (r + 0     ) >> 16,
    459                                                              (g + 0     ) >> 16,
    460                                                              (b + 0     ) >> 16);
    461             cache[kCache32Count*1] = SkPremultiplyARGBInline((a + 0x8000) >> 16,
    462                                                              (r + 0x8000) >> 16,
    463                                                              (g + 0x8000) >> 16,
    464                                                              (b + 0x8000) >> 16);
    465             cache[kCache32Count*2] = SkPremultiplyARGBInline((a + 0xC000) >> 16,
    466                                                              (r + 0xC000) >> 16,
    467                                                              (g + 0xC000) >> 16,
    468                                                              (b + 0xC000) >> 16);
    469             cache[kCache32Count*3] = SkPremultiplyARGBInline((a + 0x4000) >> 16,
    470                                                              (r + 0x4000) >> 16,
    471                                                              (g + 0x4000) >> 16,
    472                                                              (b + 0x4000) >> 16);
    473             cache += 1;
    474             a += da;
    475             r += dr;
    476             g += dg;
    477             b += db;
    478         } while (--count != 0);
    479     }
    480 }
    481 
    482 static inline int SkFixedToFFFF(SkFixed x) {
    483     SkASSERT((unsigned)x <= SK_Fixed1);
    484     return x - (x >> 16);
    485 }
    486 
    487 const uint16_t* SkGradientShaderBase::GradientShaderCache::getCache16() {
    488     SkOnce(&fCache16Inited, &fCache16Mutex, SkGradientShaderBase::GradientShaderCache::initCache16,
    489            this);
    490     SkASSERT(fCache16);
    491     return fCache16;
    492 }
    493 
    494 void SkGradientShaderBase::GradientShaderCache::initCache16(GradientShaderCache* cache) {
    495     // double the count for dither entries
    496     const int entryCount = kCache16Count * 2;
    497     const size_t allocSize = sizeof(uint16_t) * entryCount;
    498 
    499     SkASSERT(NULL == cache->fCache16Storage);
    500     cache->fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
    501     cache->fCache16 = cache->fCache16Storage;
    502     if (cache->fShader.fColorCount == 2) {
    503         Build16bitCache(cache->fCache16, cache->fShader.fOrigColors[0],
    504                         cache->fShader.fOrigColors[1], kCache16Count);
    505     } else {
    506         Rec* rec = cache->fShader.fRecs;
    507         int prevIndex = 0;
    508         for (int i = 1; i < cache->fShader.fColorCount; i++) {
    509             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
    510             SkASSERT(nextIndex < kCache16Count);
    511 
    512             if (nextIndex > prevIndex)
    513                 Build16bitCache(cache->fCache16 + prevIndex, cache->fShader.fOrigColors[i-1],
    514                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1);
    515             prevIndex = nextIndex;
    516         }
    517     }
    518 }
    519 
    520 const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() {
    521     SkOnce(&fCache32Inited, &fCache32Mutex, SkGradientShaderBase::GradientShaderCache::initCache32,
    522            this);
    523     SkASSERT(fCache32);
    524     return fCache32;
    525 }
    526 
    527 void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) {
    528     SkImageInfo info;
    529     info.fWidth = kCache32Count;
    530     info.fHeight = 4;   // for our 4 dither rows
    531     info.fAlphaType = kPremul_SkAlphaType;
    532     info.fColorType = kN32_SkColorType;
    533 
    534     SkASSERT(NULL == cache->fCache32PixelRef);
    535     cache->fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, NULL);
    536     cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->getAddr();
    537     if (cache->fShader.fColorCount == 2) {
    538         Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0],
    539                         cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha,
    540                         cache->fShader.fGradFlags);
    541     } else {
    542         Rec* rec = cache->fShader.fRecs;
    543         int prevIndex = 0;
    544         for (int i = 1; i < cache->fShader.fColorCount; i++) {
    545             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
    546             SkASSERT(nextIndex < kCache32Count);
    547 
    548             if (nextIndex > prevIndex)
    549                 Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1],
    550                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1,
    551                                 cache->fCacheAlpha, cache->fShader.fGradFlags);
    552             prevIndex = nextIndex;
    553         }
    554     }
    555 }
    556 
    557 /*
    558  *  The gradient holds a cache for the most recent value of alpha. Successive
    559  *  callers with the same alpha value will share the same cache.
    560  */
    561 SkGradientShaderBase::GradientShaderCache* SkGradientShaderBase::refCache(U8CPU alpha) const {
    562     SkAutoMutexAcquire ama(fCacheMutex);
    563     if (!fCache || fCache->getAlpha() != alpha) {
    564         fCache.reset(SkNEW_ARGS(GradientShaderCache, (alpha, *this)));
    565     }
    566     // Increment the ref counter inside the mutex to ensure the returned pointer is still valid.
    567     // Otherwise, the pointer may have been overwritten on a different thread before the object's
    568     // ref count was incremented.
    569     fCache.get()->ref();
    570     return fCache;
    571 }
    572 
    573 /*
    574  *  Because our caller might rebuild the same (logically the same) gradient
    575  *  over and over, we'd like to return exactly the same "bitmap" if possible,
    576  *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
    577  *  To do that, we maintain a private cache of built-bitmaps, based on our
    578  *  colors and positions. Note: we don't try to flatten the fMapper, so if one
    579  *  is present, we skip the cache for now.
    580  */
    581 void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const {
    582     // our caller assumes no external alpha, so we ensure that our cache is
    583     // built with 0xFF
    584     SkAutoTUnref<GradientShaderCache> cache(this->refCache(0xFF));
    585 
    586     // build our key: [numColors + colors[] + {positions[]} + flags ]
    587     int count = 1 + fColorCount + 1;
    588     if (fColorCount > 2) {
    589         count += fColorCount - 1;    // fRecs[].fPos
    590     }
    591 
    592     SkAutoSTMalloc<16, int32_t> storage(count);
    593     int32_t* buffer = storage.get();
    594 
    595     *buffer++ = fColorCount;
    596     memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
    597     buffer += fColorCount;
    598     if (fColorCount > 2) {
    599         for (int i = 1; i < fColorCount; i++) {
    600             *buffer++ = fRecs[i].fPos;
    601         }
    602     }
    603     *buffer++ = fGradFlags;
    604     SkASSERT(buffer - storage.get() == count);
    605 
    606     ///////////////////////////////////
    607 
    608     SK_DECLARE_STATIC_MUTEX(gMutex);
    609     static SkBitmapCache* gCache;
    610     // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
    611     static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
    612     SkAutoMutexAcquire ama(gMutex);
    613 
    614     if (NULL == gCache) {
    615         gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
    616     }
    617     size_t size = count * sizeof(int32_t);
    618 
    619     if (!gCache->find(storage.get(), size, bitmap)) {
    620         // force our cahce32pixelref to be built
    621         (void)cache->getCache32();
    622         bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1));
    623         bitmap->setPixelRef(cache->getCache32PixelRef());
    624 
    625         gCache->add(storage.get(), size, *bitmap);
    626     }
    627 }
    628 
    629 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const {
    630     if (info) {
    631         if (info->fColorCount >= fColorCount) {
    632             SkColor* colorLoc;
    633             Rec*     recLoc;
    634             if (flipGrad && (info->fColors || info->fColorOffsets)) {
    635                 SkAutoSTArray<8, SkColor> colorStorage(fColorCount);
    636                 SkAutoSTArray<8, Rec> recStorage(fColorCount);
    637                 colorLoc = colorStorage.get();
    638                 recLoc = recStorage.get();
    639                 FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount);
    640             } else {
    641                 colorLoc = fOrigColors;
    642                 recLoc = fRecs;
    643             }
    644             if (info->fColors) {
    645                 memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor));
    646             }
    647             if (info->fColorOffsets) {
    648                 if (fColorCount == 2) {
    649                     info->fColorOffsets[0] = 0;
    650                     info->fColorOffsets[1] = SK_Scalar1;
    651                 } else if (fColorCount > 2) {
    652                     for (int i = 0; i < fColorCount; ++i) {
    653                         info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos);
    654                     }
    655                 }
    656             }
    657         }
    658         info->fColorCount = fColorCount;
    659         info->fTileMode = fTileMode;
    660         info->fGradientFlags = fGradFlags;
    661     }
    662 }
    663 
    664 #ifndef SK_IGNORE_TO_STRING
    665 void SkGradientShaderBase::toString(SkString* str) const {
    666 
    667     str->appendf("%d colors: ", fColorCount);
    668 
    669     for (int i = 0; i < fColorCount; ++i) {
    670         str->appendHex(fOrigColors[i]);
    671         if (i < fColorCount-1) {
    672             str->append(", ");
    673         }
    674     }
    675 
    676     if (fColorCount > 2) {
    677         str->append(" points: (");
    678         for (int i = 0; i < fColorCount; ++i) {
    679             str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
    680             if (i < fColorCount-1) {
    681                 str->append(", ");
    682             }
    683         }
    684         str->append(")");
    685     }
    686 
    687     static const char* gTileModeName[SkShader::kTileModeCount] = {
    688         "clamp", "repeat", "mirror"
    689     };
    690 
    691     str->append(" ");
    692     str->append(gTileModeName[fTileMode]);
    693 
    694     this->INHERITED::toString(str);
    695 }
    696 #endif
    697 
    698 ///////////////////////////////////////////////////////////////////////////////
    699 ///////////////////////////////////////////////////////////////////////////////
    700 
    701 #include "SkEmptyShader.h"
    702 
    703 // assumes colors is SkColor* and pos is SkScalar*
    704 #define EXPAND_1_COLOR(count)               \
    705     SkColor tmp[2];                         \
    706     do {                                    \
    707         if (1 == count) {                   \
    708             tmp[0] = tmp[1] = colors[0];    \
    709             colors = tmp;                   \
    710             pos = NULL;                     \
    711             count = 2;                      \
    712         }                                   \
    713     } while (0)
    714 
    715 static void desc_init(SkGradientShaderBase::Descriptor* desc,
    716                       const SkColor colors[],
    717                       const SkScalar pos[], int colorCount,
    718                       SkShader::TileMode mode, uint32_t flags) {
    719     desc->fColors       = colors;
    720     desc->fPos          = pos;
    721     desc->fCount        = colorCount;
    722     desc->fTileMode     = mode;
    723     desc->fGradFlags    = flags;
    724 }
    725 
    726 SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
    727                                          const SkColor colors[],
    728                                          const SkScalar pos[], int colorCount,
    729                                          SkShader::TileMode mode,
    730                                          uint32_t flags,
    731                                          const SkMatrix* localMatrix) {
    732     if (NULL == pts || NULL == colors || colorCount < 1) {
    733         return NULL;
    734     }
    735     EXPAND_1_COLOR(colorCount);
    736 
    737     SkGradientShaderBase::Descriptor desc;
    738     desc_init(&desc, colors, pos, colorCount, mode, flags);
    739     return SkNEW_ARGS(SkLinearGradient, (pts, desc, localMatrix));
    740 }
    741 
    742 SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
    743                                          const SkColor colors[],
    744                                          const SkScalar pos[], int colorCount,
    745                                          SkShader::TileMode mode,
    746                                          uint32_t flags,
    747                                          const SkMatrix* localMatrix) {
    748     if (radius <= 0 || NULL == colors || colorCount < 1) {
    749         return NULL;
    750     }
    751     EXPAND_1_COLOR(colorCount);
    752 
    753     SkGradientShaderBase::Descriptor desc;
    754     desc_init(&desc, colors, pos, colorCount, mode, flags);
    755     return SkNEW_ARGS(SkRadialGradient, (center, radius, desc, localMatrix));
    756 }
    757 
    758 SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
    759                                                  SkScalar startRadius,
    760                                                  const SkPoint& end,
    761                                                  SkScalar endRadius,
    762                                                  const SkColor colors[],
    763                                                  const SkScalar pos[],
    764                                                  int colorCount,
    765                                                  SkShader::TileMode mode,
    766                                                  uint32_t flags,
    767                                                  const SkMatrix* localMatrix) {
    768     if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
    769         return NULL;
    770     }
    771     EXPAND_1_COLOR(colorCount);
    772 
    773     SkGradientShaderBase::Descriptor desc;
    774     desc_init(&desc, colors, pos, colorCount, mode, flags);
    775     return SkNEW_ARGS(SkTwoPointRadialGradient,
    776                       (start, startRadius, end, endRadius, desc, localMatrix));
    777 }
    778 
    779 SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
    780                                                   SkScalar startRadius,
    781                                                   const SkPoint& end,
    782                                                   SkScalar endRadius,
    783                                                   const SkColor colors[],
    784                                                   const SkScalar pos[],
    785                                                   int colorCount,
    786                                                   SkShader::TileMode mode,
    787                                                   uint32_t flags,
    788                                                   const SkMatrix* localMatrix) {
    789     if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
    790         return NULL;
    791     }
    792     if (start == end && startRadius == endRadius) {
    793         return SkNEW(SkEmptyShader);
    794     }
    795 
    796     EXPAND_1_COLOR(colorCount);
    797 
    798     bool flipGradient = startRadius > endRadius;
    799 
    800     SkGradientShaderBase::Descriptor desc;
    801 
    802     if (!flipGradient) {
    803         desc_init(&desc, colors, pos, colorCount, mode, flags);
    804         return SkNEW_ARGS(SkTwoPointConicalGradient,
    805                           (start, startRadius, end, endRadius, flipGradient, desc, localMatrix));
    806     } else {
    807         SkAutoSTArray<8, SkColor> colorsNew(colorCount);
    808         SkAutoSTArray<8, SkScalar> posNew(colorCount);
    809         for (int i = 0; i < colorCount; ++i) {
    810             colorsNew[i] = colors[colorCount - i - 1];
    811         }
    812 
    813         if (pos) {
    814             for (int i = 0; i < colorCount; ++i) {
    815                 posNew[i] = 1 - pos[colorCount - i - 1];
    816             }
    817             desc_init(&desc, colorsNew.get(), posNew.get(), colorCount, mode, flags);
    818         } else {
    819             desc_init(&desc, colorsNew.get(), NULL, colorCount, mode, flags);
    820         }
    821 
    822         return SkNEW_ARGS(SkTwoPointConicalGradient,
    823                           (end, endRadius, start, startRadius, flipGradient, desc, localMatrix));
    824     }
    825 }
    826 
    827 SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
    828                                         const SkColor colors[],
    829                                         const SkScalar pos[],
    830                                         int colorCount,
    831                                         uint32_t flags,
    832                                         const SkMatrix* localMatrix) {
    833     if (NULL == colors || colorCount < 1) {
    834         return NULL;
    835     }
    836     EXPAND_1_COLOR(colorCount);
    837 
    838     SkGradientShaderBase::Descriptor desc;
    839     desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, flags);
    840     return SkNEW_ARGS(SkSweepGradient, (cx, cy, desc, localMatrix));
    841 }
    842 
    843 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
    844     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
    845     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
    846     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
    847     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
    848     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
    849 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
    850 
    851 ///////////////////////////////////////////////////////////////////////////////
    852 
    853 #if SK_SUPPORT_GPU
    854 
    855 #include "effects/GrTextureStripAtlas.h"
    856 #include "GrTBackendEffectFactory.h"
    857 #include "SkGr.h"
    858 
    859 GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory)
    860     : INHERITED(factory)
    861     , fCachedYCoord(SK_ScalarMax) {
    862 }
    863 
    864 GrGLGradientEffect::~GrGLGradientEffect() { }
    865 
    866 void GrGLGradientEffect::emitUniforms(GrGLShaderBuilder* builder, EffectKey key) {
    867 
    868     if (SkGradientShaderBase::kTwo_GpuColorType == ColorTypeFromKey(key)) { // 2 Color case
    869         fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
    870                                              kVec4f_GrSLType, "GradientStartColor");
    871         fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
    872                                            kVec4f_GrSLType, "GradientEndColor");
    873 
    874     } else if (SkGradientShaderBase::kThree_GpuColorType == ColorTypeFromKey(key)){ // 3 Color Case
    875         fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
    876                                              kVec4f_GrSLType, "GradientStartColor");
    877         fColorMidUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
    878                                            kVec4f_GrSLType, "GradientMidColor");
    879         fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
    880                                              kVec4f_GrSLType, "GradientEndColor");
    881 
    882     } else { // if not a fast case
    883         fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
    884                                       kFloat_GrSLType, "GradientYCoordFS");
    885     }
    886 }
    887 
    888 static inline void set_color_uni(const GrGLUniformManager& uman,
    889                                  const GrGLUniformManager::UniformHandle uni,
    890                                  const SkColor* color) {
    891        uman.set4f(uni,
    892                   SkColorGetR(*color) / 255.f,
    893                   SkColorGetG(*color) / 255.f,
    894                   SkColorGetB(*color) / 255.f,
    895                   SkColorGetA(*color) / 255.f);
    896 }
    897 
    898 static inline void set_mul_color_uni(const GrGLUniformManager& uman,
    899                                      const GrGLUniformManager::UniformHandle uni,
    900                                      const SkColor* color){
    901        float a = SkColorGetA(*color) / 255.f;
    902        float aDiv255 = a / 255.f;
    903        uman.set4f(uni,
    904                   SkColorGetR(*color) * aDiv255,
    905                   SkColorGetG(*color) * aDiv255,
    906                   SkColorGetB(*color) * aDiv255,
    907                   a);
    908 }
    909 
    910 void GrGLGradientEffect::setData(const GrGLUniformManager& uman,
    911                                  const GrDrawEffect& drawEffect) {
    912 
    913     const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
    914 
    915 
    916     if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()){
    917 
    918         if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
    919             set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
    920             set_mul_color_uni(uman, fColorEndUni,   e.getColors(1));
    921         } else {
    922             set_color_uni(uman, fColorStartUni, e.getColors(0));
    923             set_color_uni(uman, fColorEndUni,   e.getColors(1));
    924         }
    925 
    926     } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){
    927 
    928         if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
    929             set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
    930             set_mul_color_uni(uman, fColorMidUni,   e.getColors(1));
    931             set_mul_color_uni(uman, fColorEndUni,   e.getColors(2));
    932         } else {
    933             set_color_uni(uman, fColorStartUni, e.getColors(0));
    934             set_color_uni(uman, fColorMidUni,   e.getColors(1));
    935             set_color_uni(uman, fColorEndUni,   e.getColors(2));
    936         }
    937     } else {
    938 
    939         SkScalar yCoord = e.getYCoord();
    940         if (yCoord != fCachedYCoord) {
    941             uman.set1f(fFSYUni, yCoord);
    942             fCachedYCoord = yCoord;
    943         }
    944     }
    945 }
    946 
    947 
    948 GrGLEffect::EffectKey GrGLGradientEffect::GenBaseGradientKey(const GrDrawEffect& drawEffect) {
    949     const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
    950 
    951     EffectKey key = 0;
    952 
    953     if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()) {
    954         key |= kTwoColorKey;
    955     } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){
    956         key |= kThreeColorKey;
    957     }
    958 
    959     if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
    960         key |= kPremulBeforeInterpKey;
    961     }
    962 
    963     return key;
    964 }
    965 
    966 void GrGLGradientEffect::emitColor(GrGLShaderBuilder* builder,
    967                                    const char* gradientTValue,
    968                                    EffectKey key,
    969                                    const char* outputColor,
    970                                    const char* inputColor,
    971                                    const TextureSamplerArray& samplers) {
    972     if (SkGradientShaderBase::kTwo_GpuColorType == ColorTypeFromKey(key)){
    973         builder->fsCodeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
    974                                builder->getUniformVariable(fColorStartUni).c_str(),
    975                                builder->getUniformVariable(fColorEndUni).c_str(),
    976                                gradientTValue);
    977         // Note that we could skip this step if both colors are known to be opaque. Two
    978         // considerations:
    979         // The gradient SkShader reporting opaque is more restrictive than necessary in the two pt
    980         // case. Make sure the key reflects this optimization (and note that it can use the same
    981         // shader as thekBeforeIterp case). This same optimization applies to the 3 color case below.
    982         if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
    983             builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
    984         }
    985 
    986         builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
    987                                (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
    988     } else if (SkGradientShaderBase::kThree_GpuColorType == ColorTypeFromKey(key)){
    989         builder->fsCodeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
    990                                gradientTValue);
    991         builder->fsCodeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
    992                                builder->getUniformVariable(fColorStartUni).c_str());
    993         if (kTegra3_GrGLRenderer == builder->ctxInfo().renderer()) {
    994             // The Tegra3 compiler will sometimes never return if we have
    995             // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
    996             builder->fsCodeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
    997             builder->fsCodeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
    998             builder->fsCodeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
    999                                    builder->getUniformVariable(fColorMidUni).c_str());
   1000         } else {
   1001             builder->fsCodeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
   1002                                    builder->getUniformVariable(fColorMidUni).c_str());
   1003         }
   1004         builder->fsCodeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
   1005                                builder->getUniformVariable(fColorEndUni).c_str());
   1006         if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
   1007             builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
   1008         }
   1009 
   1010         builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
   1011                                (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
   1012     } else {
   1013         builder->fsCodeAppendf("\tvec2 coord = vec2(%s, %s);\n",
   1014                                gradientTValue,
   1015                                builder->getUniformVariable(fFSYUni).c_str());
   1016         builder->fsCodeAppendf("\t%s = ", outputColor);
   1017         builder->fsAppendTextureLookupAndModulate(inputColor,
   1018                                                   samplers[0],
   1019                                                   "coord");
   1020         builder->fsCodeAppend(";\n");
   1021     }
   1022 }
   1023 
   1024 /////////////////////////////////////////////////////////////////////
   1025 
   1026 GrGradientEffect::GrGradientEffect(GrContext* ctx,
   1027                                    const SkGradientShaderBase& shader,
   1028                                    const SkMatrix& matrix,
   1029                                    SkShader::TileMode tileMode) {
   1030 
   1031     fIsOpaque = shader.isOpaque();
   1032 
   1033     fColorType = shader.getGpuColorType(&fColors[0]);
   1034 
   1035     // The two and three color specializations do not currently support tiling.
   1036     if (SkGradientShaderBase::kTwo_GpuColorType == fColorType ||
   1037         SkGradientShaderBase::kThree_GpuColorType == fColorType) {
   1038         fRow = -1;
   1039 
   1040         if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) {
   1041             fPremulType = kBeforeInterp_PremulType;
   1042         } else {
   1043             fPremulType = kAfterInterp_PremulType;
   1044         }
   1045         fCoordTransform.reset(kCoordSet, matrix);
   1046     } else {
   1047         // doesn't matter how this is set, just be consistent because it is part of the effect key.
   1048         fPremulType = kBeforeInterp_PremulType;
   1049         SkBitmap bitmap;
   1050         shader.getGradientTableBitmap(&bitmap);
   1051 
   1052         GrTextureStripAtlas::Desc desc;
   1053         desc.fWidth  = bitmap.width();
   1054         desc.fHeight = 32;
   1055         desc.fRowHeight = bitmap.height();
   1056         desc.fContext = ctx;
   1057         desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info());
   1058         fAtlas = GrTextureStripAtlas::GetAtlas(desc);
   1059         SkASSERT(NULL != fAtlas);
   1060 
   1061         // We always filter the gradient table. Each table is one row of a texture, always y-clamp.
   1062         GrTextureParams params;
   1063         params.setFilterMode(GrTextureParams::kBilerp_FilterMode);
   1064         params.setTileModeX(tileMode);
   1065 
   1066         fRow = fAtlas->lockRow(bitmap);
   1067         if (-1 != fRow) {
   1068             fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf *
   1069             fAtlas->getVerticalScaleFactor();
   1070             fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture());
   1071             fTextureAccess.reset(fAtlas->getTexture(), params);
   1072         } else {
   1073             GrTexture* texture = GrLockAndRefCachedBitmapTexture(ctx, bitmap, &params);
   1074             fCoordTransform.reset(kCoordSet, matrix, texture);
   1075             fTextureAccess.reset(texture, params);
   1076             fYCoord = SK_ScalarHalf;
   1077 
   1078             // Unlock immediately, this is not great, but we don't have a way of
   1079             // knowing when else to unlock it currently, so it may get purged from
   1080             // the cache, but it'll still be ref'd until it's no longer being used.
   1081             GrUnlockAndUnrefCachedBitmapTexture(texture);
   1082         }
   1083         this->addTextureAccess(&fTextureAccess);
   1084     }
   1085     this->addCoordTransform(&fCoordTransform);
   1086 }
   1087 
   1088 GrGradientEffect::~GrGradientEffect() {
   1089     if (this->useAtlas()) {
   1090         fAtlas->unlockRow(fRow);
   1091     }
   1092 }
   1093 
   1094 bool GrGradientEffect::onIsEqual(const GrEffect& effect) const {
   1095     const GrGradientEffect& s = CastEffect<GrGradientEffect>(effect);
   1096 
   1097     if (this->fColorType == s.getColorType()){
   1098 
   1099         if (SkGradientShaderBase::kTwo_GpuColorType == fColorType) {
   1100             if (*this->getColors(0) != *s.getColors(0) ||
   1101                 *this->getColors(1) != *s.getColors(1)) {
   1102                 return false;
   1103             }
   1104         } else if (SkGradientShaderBase::kThree_GpuColorType == fColorType) {
   1105             if (*this->getColors(0) != *s.getColors(0) ||
   1106                 *this->getColors(1) != *s.getColors(1) ||
   1107                 *this->getColors(2) != *s.getColors(2)) {
   1108                 return false;
   1109             }
   1110         } else {
   1111             if (fYCoord != s.getYCoord()) {
   1112                 return false;
   1113             }
   1114         }
   1115 
   1116         return fTextureAccess.getTexture() == s.fTextureAccess.getTexture()  &&
   1117             fTextureAccess.getParams().getTileModeX() ==
   1118                 s.fTextureAccess.getParams().getTileModeX() &&
   1119             this->useAtlas() == s.useAtlas() &&
   1120             fCoordTransform.getMatrix().cheapEqualTo(s.fCoordTransform.getMatrix());
   1121     }
   1122 
   1123     return false;
   1124 }
   1125 
   1126 void GrGradientEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
   1127     if (fIsOpaque && (kA_GrColorComponentFlag & *validFlags) && 0xff == GrColorUnpackA(*color)) {
   1128         *validFlags = kA_GrColorComponentFlag;
   1129     } else {
   1130         *validFlags = 0;
   1131     }
   1132 }
   1133 
   1134 int GrGradientEffect::RandomGradientParams(SkRandom* random,
   1135                                            SkColor colors[],
   1136                                            SkScalar** stops,
   1137                                            SkShader::TileMode* tm) {
   1138     int outColors = random->nextRangeU(1, kMaxRandomGradientColors);
   1139 
   1140     // if one color, omit stops, otherwise randomly decide whether or not to
   1141     if (outColors == 1 || (outColors >= 2 && random->nextBool())) {
   1142         *stops = NULL;
   1143     }
   1144 
   1145     SkScalar stop = 0.f;
   1146     for (int i = 0; i < outColors; ++i) {
   1147         colors[i] = random->nextU();
   1148         if (NULL != *stops) {
   1149             (*stops)[i] = stop;
   1150             stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
   1151         }
   1152     }
   1153     *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
   1154 
   1155     return outColors;
   1156 }
   1157 
   1158 #endif
   1159