1 2 #include <stdio.h> 3 #include <stdlib.h> 4 5 #define HAVE_SSE2 1 6 7 /* DO NOT COMPILE WITH -O/-O2/-O3 ! GENERATES INVALID ASSEMBLY. */ 8 9 10 /* mmx.h 11 12 MultiMedia eXtensions GCC interface library for IA32. 13 14 To use this library, simply include this header file 15 and compile with GCC. You MUST have inlining enabled 16 in order for mmx_ok() to work; this can be done by 17 simply using -O on the GCC command line. 18 19 Compiling with -DMMX_TRACE will cause detailed trace 20 output to be sent to stderr for each mmx operation. 21 This adds lots of code, and obviously slows execution to 22 a crawl, but can be very useful for debugging. 23 24 THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY 25 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT 26 LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY 27 AND FITNESS FOR ANY PARTICULAR PURPOSE. 28 29 June 11, 1998 by H. Dietz and R. Fisher 30 */ 31 32 33 /* The type of an value that fits in an MMX register 34 (note that long long constant values MUST be suffixed 35 by LL and unsigned long long values by ULL, lest 36 they be truncated by the compiler) 37 */ 38 typedef union { 39 long long q; /* Quadword (64-bit) value */ 40 unsigned long long uq; /* Unsigned Quadword */ 41 int d[2]; /* 2 Doubleword (32-bit) values */ 42 unsigned int ud[2]; /* 2 Unsigned Doubleword */ 43 short w[4]; /* 4 Word (16-bit) values */ 44 unsigned short uw[4]; /* 4 Unsigned Word */ 45 char b[8]; /* 8 Byte (8-bit) values */ 46 unsigned char ub[8]; /* 8 Unsigned Byte */ 47 } mmx_t; 48 49 50 /* Function to test if mmx instructions are supported... 51 */ 52 inline extern int 53 mmx_ok(void) 54 { 55 /* Returns 1 if mmx instructions are ok, 56 0 if hardware does not support mmx 57 */ 58 register int ok = 0; 59 60 __asm__ __volatile__ ( 61 /* Get CPU version information */ 62 "movl $1, %%eax\n\t" 63 "cpuid\n\t" 64 "movl %%edx, %0" 65 : "=a" (ok) 66 : /* no input */ 67 ); 68 return((ok & 0x800000) == 0x800000); 69 } 70 71 72 /* Helper functions for the instruction macros that follow... 73 (note that memory-to-register, m2r, instructions are nearly 74 as efficient as register-to-register, r2r, instructions; 75 however, memory-to-memory instructions are really simulated 76 as a convenience, and are only 1/3 as efficient) 77 */ 78 #ifdef MMX_TRACE 79 80 /* Include the stuff for printing a trace to stderr... 81 */ 82 83 #include <stdio.h> 84 85 #define mmx_m2r(op, mem, reg) \ 86 { \ 87 mmx_t mmx_trace; \ 88 mmx_trace = (mem); \ 89 fprintf(stderr, #op "_m2r(" #mem "=0x%016llx, ", mmx_trace.q); \ 90 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 91 : "=X" (mmx_trace) \ 92 : /* nothing */ ); \ 93 fprintf(stderr, #reg "=0x%016llx) => ", mmx_trace.q); \ 94 __asm__ __volatile__ (#op " %0, %%" #reg \ 95 : /* nothing */ \ 96 : "X" (mem)); \ 97 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 98 : "=X" (mmx_trace) \ 99 : /* nothing */ ); \ 100 fprintf(stderr, #reg "=0x%016llx\n", mmx_trace.q); \ 101 } 102 103 #define mmx_r2m(op, reg, mem) \ 104 { \ 105 mmx_t mmx_trace; \ 106 __asm__ __volatile__ ("movq %%" #reg ", %0" \ 107 : "=X" (mmx_trace) \ 108 : /* nothing */ ); \ 109 fprintf(stderr, #op "_r2m(" #reg "=0x%016llx, ", mmx_trace.q); \ 110 mmx_trace = (mem); \ 111 fprintf(stderr, #mem "=0x%016llx) => ", mmx_trace.q); \ 112 __asm__ __volatile__ (#op " %%" #reg ", %0" \ 113 : "=X" (mem) \ 114 : /* nothing */ ); \ 115 mmx_trace = (mem); \ 116 fprintf(stderr, #mem "=0x%016llx\n", mmx_trace.q); \ 117 } 118 119 #define mmx_r2r(op, regs, regd) \ 120 { \ 121 mmx_t mmx_trace; \ 122 __asm__ __volatile__ ("movq %%" #regs ", %0" \ 123 : "=X" (mmx_trace) \ 124 : /* nothing */ ); \ 125 fprintf(stderr, #op "_r2r(" #regs "=0x%016llx, ", mmx_trace.q); \ 126 __asm__ __volatile__ ("movq %%" #regd ", %0" \ 127 : "=X" (mmx_trace) \ 128 : /* nothing */ ); \ 129 fprintf(stderr, #regd "=0x%016llx) => ", mmx_trace.q); \ 130 __asm__ __volatile__ (#op " %" #regs ", %" #regd); \ 131 __asm__ __volatile__ ("movq %%" #regd ", %0" \ 132 : "=X" (mmx_trace) \ 133 : /* nothing */ ); \ 134 fprintf(stderr, #regd "=0x%016llx\n", mmx_trace.q); \ 135 } 136 137 #define mmx_m2m(op, mems, memd) \ 138 { \ 139 mmx_t mmx_trace; \ 140 mmx_trace = (mems); \ 141 fprintf(stderr, #op "_m2m(" #mems "=0x%016llx, ", mmx_trace.q); \ 142 mmx_trace = (memd); \ 143 fprintf(stderr, #memd "=0x%016llx) => ", mmx_trace.q); \ 144 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ 145 #op " %1, %%mm0\n\t" \ 146 "movq %%mm0, %0" \ 147 : "=X" (memd) \ 148 : "X" (mems)); \ 149 mmx_trace = (memd); \ 150 fprintf(stderr, #memd "=0x%016llx\n", mmx_trace.q); \ 151 } 152 153 #else 154 155 /* These macros are a lot simpler without the tracing... 156 */ 157 158 #define mmx_m2r(op, mem, reg) \ 159 __asm__ __volatile__ (#op " %0, %%" #reg \ 160 : /* nothing */ \ 161 : "X" (mem)) 162 163 #define mmx_r2m(op, reg, mem) \ 164 __asm__ __volatile__ (#op " %%" #reg ", %0" \ 165 : "=X" (mem) \ 166 : /* nothing */ ) 167 168 #define mmx_r2r(op, regs, regd) \ 169 __asm__ __volatile__ (#op " %" #regs ", %" #regd) 170 171 #define mmx_m2m(op, mems, memd) \ 172 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ 173 #op " %1, %%mm0\n\t" \ 174 "movq %%mm0, %0" \ 175 : "=X" (memd) \ 176 : "X" (mems)) 177 178 #endif 179 180 181 /* 1x64 MOVe Quadword 182 (this is both a load and a store... 183 in fact, it is the only way to store) 184 */ 185 #define movq_m2r(var, reg) mmx_m2r(movq, var, reg) 186 #define movq_r2m(reg, var) mmx_r2m(movq, reg, var) 187 #define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd) 188 #define movq(vars, vard) \ 189 __asm__ __volatile__ ("movq %1, %%mm0\n\t" \ 190 "movq %%mm0, %0" \ 191 : "=X" (vard) \ 192 : "X" (vars)) 193 194 195 /* 1x64 MOVe Doubleword 196 (like movq, this is both load and store... 197 but is most useful for moving things between 198 mmx registers and ordinary registers) 199 */ 200 #define movd_m2r(var, reg) mmx_m2r(movd, var, reg) 201 #define movd_r2m(reg, var) mmx_r2m(movd, reg, var) 202 #define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd) 203 #define movd(vars, vard) \ 204 __asm__ __volatile__ ("movd %1, %%mm0\n\t" \ 205 "movd %%mm0, %0" \ 206 : "=X" (vard) \ 207 : "X" (vars)) 208 209 210 /* 2x32, 4x16, and 8x8 Parallel ADDs 211 */ 212 #define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg) 213 #define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd) 214 #define paddd(vars, vard) mmx_m2m(paddd, vars, vard) 215 216 #define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg) 217 #define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd) 218 #define paddw(vars, vard) mmx_m2m(paddw, vars, vard) 219 220 #define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg) 221 #define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd) 222 #define paddb(vars, vard) mmx_m2m(paddb, vars, vard) 223 224 225 /* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic 226 */ 227 #define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg) 228 #define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd) 229 #define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard) 230 231 #define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg) 232 #define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd) 233 #define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard) 234 235 236 /* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic 237 */ 238 #define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg) 239 #define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd) 240 #define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard) 241 242 #define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg) 243 #define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd) 244 #define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard) 245 246 247 /* 2x32, 4x16, and 8x8 Parallel SUBs 248 */ 249 #define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg) 250 #define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd) 251 #define psubd(vars, vard) mmx_m2m(psubd, vars, vard) 252 253 #define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg) 254 #define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd) 255 #define psubw(vars, vard) mmx_m2m(psubw, vars, vard) 256 257 #define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg) 258 #define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd) 259 #define psubb(vars, vard) mmx_m2m(psubb, vars, vard) 260 261 262 /* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic 263 */ 264 #define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg) 265 #define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd) 266 #define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard) 267 268 #define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg) 269 #define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd) 270 #define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard) 271 272 273 /* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic 274 */ 275 #define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg) 276 #define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd) 277 #define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard) 278 279 #define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg) 280 #define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd) 281 #define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard) 282 283 284 /* 4x16 Parallel MULs giving Low 4x16 portions of results 285 */ 286 #define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg) 287 #define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd) 288 #define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard) 289 290 291 /* 4x16 Parallel MULs giving High 4x16 portions of results 292 */ 293 #define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg) 294 #define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd) 295 #define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard) 296 297 298 /* 4x16->2x32 Parallel Mul-ADD 299 (muls like pmullw, then adds adjacent 16-bit fields 300 in the multiply result to make the final 2x32 result) 301 */ 302 #define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg) 303 #define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd) 304 #define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard) 305 306 307 /* 1x64 bitwise AND 308 */ 309 #define pand_m2r(var, reg) mmx_m2r(pand, var, reg) 310 #define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd) 311 #define pand(vars, vard) mmx_m2m(pand, vars, vard) 312 313 314 /* 1x64 bitwise AND with Not the destination 315 */ 316 #define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg) 317 #define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd) 318 #define pandn(vars, vard) mmx_m2m(pandn, vars, vard) 319 320 321 /* 1x64 bitwise OR 322 */ 323 #define por_m2r(var, reg) mmx_m2r(por, var, reg) 324 #define por_r2r(regs, regd) mmx_r2r(por, regs, regd) 325 #define por(vars, vard) mmx_m2m(por, vars, vard) 326 327 328 /* 1x64 bitwise eXclusive OR 329 */ 330 #define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg) 331 #define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd) 332 #define pxor(vars, vard) mmx_m2m(pxor, vars, vard) 333 334 335 /* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality 336 (resulting fields are either 0 or -1) 337 */ 338 #define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg) 339 #define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd) 340 #define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard) 341 342 #define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg) 343 #define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd) 344 #define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard) 345 346 #define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg) 347 #define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd) 348 #define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard) 349 350 351 /* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than 352 (resulting fields are either 0 or -1) 353 */ 354 #define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg) 355 #define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd) 356 #define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard) 357 358 #define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg) 359 #define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd) 360 #define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard) 361 362 #define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg) 363 #define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd) 364 #define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard) 365 366 367 /* 1x64, 2x32, and 4x16 Parallel Shift Left Logical 368 */ 369 #define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg) 370 #define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd) 371 #define psllq(vars, vard) mmx_m2m(psllq, vars, vard) 372 373 #define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg) 374 #define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd) 375 #define pslld(vars, vard) mmx_m2m(pslld, vars, vard) 376 377 #define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg) 378 #define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd) 379 #define psllw(vars, vard) mmx_m2m(psllw, vars, vard) 380 381 382 /* 1x64, 2x32, and 4x16 Parallel Shift Right Logical 383 */ 384 #define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg) 385 #define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd) 386 #define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard) 387 388 #define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg) 389 #define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd) 390 #define psrld(vars, vard) mmx_m2m(psrld, vars, vard) 391 392 #define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg) 393 #define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd) 394 #define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard) 395 396 397 /* 2x32 and 4x16 Parallel Shift Right Arithmetic 398 */ 399 #define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg) 400 #define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd) 401 #define psrad(vars, vard) mmx_m2m(psrad, vars, vard) 402 403 #define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg) 404 #define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd) 405 #define psraw(vars, vard) mmx_m2m(psraw, vars, vard) 406 407 408 /* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate 409 (packs source and dest fields into dest in that order) 410 */ 411 #define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg) 412 #define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd) 413 #define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard) 414 415 #define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg) 416 #define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd) 417 #define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard) 418 419 420 /* 4x16->8x8 PACK and Unsigned Saturate 421 (packs source and dest fields into dest in that order) 422 */ 423 #define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg) 424 #define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd) 425 #define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard) 426 427 428 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low 429 (interleaves low half of dest with low half of source 430 as padding in each result field) 431 */ 432 #define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg) 433 #define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd) 434 #define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard) 435 436 #define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg) 437 #define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd) 438 #define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard) 439 440 #define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg) 441 #define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd) 442 #define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard) 443 444 445 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High 446 (interleaves high half of dest with high half of source 447 as padding in each result field) 448 */ 449 #define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg) 450 #define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd) 451 #define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard) 452 453 #define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg) 454 #define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd) 455 #define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard) 456 457 #define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg) 458 #define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd) 459 #define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard) 460 461 462 /* 1x64 add/sub -- this is in sse2, not in mmx. */ 463 #define paddq_m2r(var, reg) mmx_m2r(paddq, var, reg) 464 #define paddq_r2r(regs, regd) mmx_r2r(paddq, regs, regd) 465 #define paddq(vars, vard) mmx_m2m(paddq, vars, vard) 466 467 #define psubq_m2r(var, reg) mmx_m2r(psubq, var, reg) 468 #define psubq_r2r(regs, regd) mmx_r2r(psubq, regs, regd) 469 #define psubq(vars, vard) mmx_m2m(psubq, vars, vard) 470 471 472 473 /* Empty MMx State 474 (used to clean-up when going from mmx to float use 475 of the registers that are shared by both; note that 476 there is no float-to-mmx operation needed, because 477 only the float tag word info is corruptible) 478 */ 479 #ifdef MMX_TRACE 480 481 #define emms() \ 482 { \ 483 fprintf(stderr, "emms()\n"); \ 484 __asm__ __volatile__ ("emms"); \ 485 } 486 487 #else 488 489 #define emms() __asm__ __volatile__ ("emms") 490 491 #endif 492 493 void mkRand( mmx_t* mm ) 494 { 495 mm->uw[0] = 0xFFFF & (random() >> 7); 496 mm->uw[1] = 0xFFFF & (random() >> 7); 497 mm->uw[2] = 0xFFFF & (random() >> 7); 498 mm->uw[3] = 0xFFFF & (random() >> 7); 499 } 500 501 502 503 int main( void ) 504 { 505 int i; 506 // int rval; 507 mmx_t ma; 508 mmx_t mb; 509 mmx_t ma0, mb0; 510 movq_r2r(mm0, mm1); 511 512 // rval = mmx_ok(); 513 514 /* Announce return value of mmx_ok() */ 515 // printf("Value returned from init was %x.", rval); 516 // printf(" (Indicates MMX %s available)\n\n",(rval)? "is" : "not"); 517 // fflush(stdout); fflush(stdout); 518 519 // if(rval) 520 521 #define do_test(_name, _operation) \ 522 for (i = 0; i < 25000; i++) { \ 523 mkRand(&ma); \ 524 mkRand(&mb); \ 525 ma0 = ma; mb0 = mb; \ 526 _operation; \ 527 fprintf(stdout, "%s ( %016llx, %016llx ) -> %016llx\n", \ 528 _name, ma0.q, mb0.q, mb.q); \ 529 fflush(stdout); \ 530 } 531 532 533 { 534 do_test("paddd", paddd(ma,mb)); 535 do_test("paddw", paddw(ma,mb)); 536 do_test("paddb", paddb(ma,mb)); 537 538 do_test("paddsw", paddsw(ma,mb)); 539 do_test("paddsb", paddsb(ma,mb)); 540 541 do_test("paddusw", paddusw(ma,mb)); 542 do_test("paddusb", paddusb(ma,mb)); 543 544 do_test("psubd", psubd(ma,mb)); 545 do_test("psubw", psubw(ma,mb)); 546 do_test("psubb", psubb(ma,mb)); 547 548 do_test("psubsw", psubsw(ma,mb)); 549 do_test("psubsb", psubsb(ma,mb)); 550 551 do_test("psubusw", psubusw(ma,mb)); 552 do_test("psubusb", psubusb(ma,mb)); 553 554 do_test("pmulhw", pmulhw(ma,mb)); 555 do_test("pmullw", pmullw(ma,mb)); 556 557 do_test("pmaddwd", pmaddwd(ma,mb)); 558 559 do_test("pcmpeqd", pcmpeqd(ma,mb)); 560 do_test("pcmpeqw", pcmpeqw(ma,mb)); 561 do_test("pcmpeqb", pcmpeqb(ma,mb)); 562 563 do_test("pcmpgtd", pcmpgtd(ma,mb)); 564 do_test("pcmpgtw", pcmpgtw(ma,mb)); 565 do_test("pcmpgtb", pcmpgtb(ma,mb)); 566 567 do_test("packssdw", packssdw(ma,mb)); 568 do_test("packsswb", packsswb(ma,mb)); 569 do_test("packuswb", packuswb(ma,mb)); 570 571 do_test("punpckhdq", punpckhdq(ma,mb)); 572 do_test("punpckhwd", punpckhwd(ma,mb)); 573 do_test("punpckhbw", punpckhbw(ma,mb)); 574 575 do_test("punpckldq", punpckldq(ma,mb)); 576 do_test("punpcklwd", punpcklwd(ma,mb)); 577 do_test("punpcklbw", punpcklbw(ma,mb)); 578 579 do_test("pand", pand(ma,mb)); 580 do_test("pandn", pandn(ma,mb)); 581 do_test("por", por(ma,mb)); 582 do_test("pxor", pxor(ma,mb)); 583 584 do_test("psllq", psllq(ma,mb)); 585 do_test("pslld", pslld(ma,mb)); 586 do_test("psllw", psllw(ma,mb)); 587 588 do_test("psrlq", psrlq(ma,mb)); 589 do_test("psrld", psrld(ma,mb)); 590 do_test("psrlw", psrlw(ma,mb)); 591 592 do_test("psrad", psrad(ma,mb)); 593 do_test("psraw", psraw(ma,mb)); 594 595 #if HAVE_SSE2 596 do_test("paddq", paddq(ma,mb)); 597 do_test("psubq", psubq(ma,mb)); 598 #endif 599 600 emms(); 601 } 602 603 /* Clean-up and exit nicely */ 604 exit(0); 605 } 606