Home | History | Annotate | Download | only in audioflinger
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
     18 #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
     19 
     20 namespace android {
     21 
     22 // depends on AudioResamplerFirOps.h
     23 
     24 /* variant for input type TI = int16_t input samples */
     25 template<typename TC>
     26 static inline
     27 void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples)
     28 {
     29     uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
     30     l = mulAddRL(1, rl, coef, l);
     31     r = mulAddRL(0, rl, coef, r);
     32 }
     33 
     34 template<typename TC>
     35 static inline
     36 void mac(int32_t& l, TC coef, const int16_t* samples)
     37 {
     38     l = mulAdd(samples[0], coef, l);
     39 }
     40 
     41 /* variant for input type TI = float input samples */
     42 template<typename TC>
     43 static inline
     44 void mac(float& l, float& r, TC coef,  const float* samples)
     45 {
     46     l += *samples++ * coef;
     47     r += *samples * coef;
     48 }
     49 
     50 template<typename TC>
     51 static inline
     52 void mac(float& l, TC coef,  const float* samples)
     53 {
     54     l += *samples * coef;
     55 }
     56 
     57 /* variant for output type TO = int32_t output samples */
     58 static inline
     59 int32_t volumeAdjust(int32_t value, int32_t volume)
     60 {
     61     return 2 * mulRL(0, value, volume);  // Note: only use top 16b
     62 }
     63 
     64 /* variant for output type TO = float output samples */
     65 static inline
     66 float volumeAdjust(float value, float volume)
     67 {
     68     return value * volume;
     69 }
     70 
     71 /*
     72  * Helper template functions for loop unrolling accumulator operations.
     73  *
     74  * Unrolling the loops achieves about 2x gain.
     75  * Using a recursive template rather than an array of TO[] for the accumulator
     76  * values is an additional 10-20% gain.
     77  */
     78 
     79 template<int CHANNELS, typename TO>
     80 class Accumulator : public Accumulator<CHANNELS-1, TO> // recursive
     81 {
     82 public:
     83     inline void clear() {
     84         value = 0;
     85         Accumulator<CHANNELS-1, TO>::clear();
     86     }
     87     template<typename TC, typename TI>
     88     inline void acc(TC coef, const TI*& data) {
     89         mac(value, coef, data++);
     90         Accumulator<CHANNELS-1, TO>::acc(coef, data);
     91     }
     92     inline void volume(TO*& out, TO gain) {
     93         *out++ = volumeAdjust(value, gain);
     94         Accumulator<CHANNELS-1, TO>::volume(out, gain);
     95     }
     96 
     97     TO value; // one per recursive inherited base class
     98 };
     99 
    100 template<typename TO>
    101 class Accumulator<0, TO> {
    102 public:
    103     inline void clear() {
    104     }
    105     template<typename TC, typename TI>
    106     inline void acc(TC coef __unused, const TI*& data __unused) {
    107     }
    108     inline void volume(TO*& out __unused, TO gain __unused) {
    109     }
    110 };
    111 
    112 template<typename TC, typename TINTERP>
    113 inline
    114 TC interpolate(TC coef_0, TC coef_1, TINTERP lerp)
    115 {
    116     return lerp * (coef_1 - coef_0) + coef_0;
    117 }
    118 
    119 template<>
    120 inline
    121 int16_t interpolate<int16_t, uint32_t>(int16_t coef_0, int16_t coef_1, uint32_t lerp)
    122 {   // in some CPU architectures 16b x 16b multiplies are faster.
    123     return (static_cast<int16_t>(lerp) * static_cast<int16_t>(coef_1 - coef_0) >> 15) + coef_0;
    124 }
    125 
    126 template<>
    127 inline
    128 int32_t interpolate<int32_t, uint32_t>(int32_t coef_0, int32_t coef_1, uint32_t lerp)
    129 {
    130     return (lerp * static_cast<int64_t>(coef_1 - coef_0) >> 31) + coef_0;
    131 }
    132 
    133 /* class scope for passing in functions into templates */
    134 struct InterpCompute {
    135     template<typename TC, typename TINTERP>
    136     static inline
    137     TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) {
    138         return interpolate(coef_0, coef_1, lerp);
    139     }
    140 
    141     template<typename TC, typename TINTERP>
    142     static inline
    143     TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) {
    144         return interpolate(coef_0, coef_1, lerp);
    145     }
    146 };
    147 
    148 struct InterpNull {
    149     template<typename TC, typename TINTERP>
    150     static inline
    151     TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) {
    152         return coef_0;
    153     }
    154 
    155     template<typename TC, typename TINTERP>
    156     static inline
    157     TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) {
    158         return coef_1;
    159     }
    160 };
    161 
    162 /*
    163  * Calculates a single output frame (two samples).
    164  *
    165  * The Process*() functions compute both the positive half FIR dot product and
    166  * the negative half FIR dot product, accumulates, and then applies the volume.
    167  *
    168  * Use fir() to compute the proper coefficient pointers for a polyphase
    169  * filter bank.
    170  *
    171  * ProcessBase() is the fundamental processing template function.
    172  *
    173  * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase.
    174  * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase.
    175  */
    176 
    177 template <int CHANNELS, int STRIDE, typename TFUNC, typename TC, typename TI, typename TO, typename TINTERP>
    178 static inline
    179 void ProcessBase(TO* const out,
    180         size_t count,
    181         const TC* coefsP,
    182         const TC* coefsN,
    183         const TI* sP,
    184         const TI* sN,
    185         TINTERP lerpP,
    186         const TO* const volumeLR)
    187 {
    188     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS > 0)
    189 
    190     if (CHANNELS > 2) {
    191         // TO accum[CHANNELS];
    192         Accumulator<CHANNELS, TO> accum;
    193 
    194         // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0;
    195         accum.clear();
    196         for (size_t i = 0; i < count; ++i) {
    197             TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP);
    198 
    199             // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j);
    200             const TI *tmp_data = sP; // tmp_ptr seems to work better
    201             accum.acc(c, tmp_data);
    202 
    203             coefsP++;
    204             sP -= CHANNELS;
    205             c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP);
    206 
    207             // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j);
    208             tmp_data = sN; // tmp_ptr seems faster than directly using sN
    209             accum.acc(c, tmp_data);
    210 
    211             coefsN++;
    212             sN += CHANNELS;
    213         }
    214         // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]);
    215         TO *tmp_out = out; // may remove if const out definition changes.
    216         accum.volume(tmp_out, volumeLR[0]);
    217     } else if (CHANNELS == 2) {
    218         TO l = 0;
    219         TO r = 0;
    220         for (size_t i = 0; i < count; ++i) {
    221             mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
    222             coefsP++;
    223             sP -= CHANNELS;
    224             mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
    225             coefsN++;
    226             sN += CHANNELS;
    227         }
    228         out[0] += volumeAdjust(l, volumeLR[0]);
    229         out[1] += volumeAdjust(r, volumeLR[1]);
    230     } else { /* CHANNELS == 1 */
    231         TO l = 0;
    232         for (size_t i = 0; i < count; ++i) {
    233             mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
    234             coefsP++;
    235             sP -= CHANNELS;
    236             mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
    237             coefsN++;
    238             sN += CHANNELS;
    239         }
    240         out[0] += volumeAdjust(l, volumeLR[0]);
    241         out[1] += volumeAdjust(l, volumeLR[1]);
    242     }
    243 }
    244 
    245 template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO>
    246 static inline
    247 void ProcessL(TO* const out,
    248         int count,
    249         const TC* coefsP,
    250         const TC* coefsN,
    251         const TI* sP,
    252         const TI* sN,
    253         const TO* const volumeLR)
    254 {
    255     ProcessBase<CHANNELS, STRIDE, InterpNull>(out, count, coefsP, coefsN, sP, sN, 0, volumeLR);
    256 }
    257 
    258 template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO, typename TINTERP>
    259 static inline
    260 void Process(TO* const out,
    261         int count,
    262         const TC* coefsP,
    263         const TC* coefsN,
    264         const TC* coefsP1 __unused,
    265         const TC* coefsN1 __unused,
    266         const TI* sP,
    267         const TI* sN,
    268         TINTERP lerpP,
    269         const TO* const volumeLR)
    270 {
    271     ProcessBase<CHANNELS, STRIDE, InterpCompute>(out, count, coefsP, coefsN, sP, sN, lerpP, volumeLR);
    272 }
    273 
    274 /*
    275  * Calculates a single output frame (two samples) from input sample pointer.
    276  *
    277  * This sets up the params for the accelerated Process() and ProcessL()
    278  * functions to do the appropriate dot products.
    279  *
    280  * @param out should point to the output buffer with space for at least one output frame.
    281  *
    282  * @param phase is the fractional distance between input frames for interpolation:
    283  * phase >= 0  && phase < phaseWrapLimit.  It can be thought of as a rational fraction
    284  * of phase/phaseWrapLimit.
    285  *
    286  * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases
    287  * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift).
    288  *
    289  * @param coefShift gives the bit alignment of the polyphase index in the phase parameter.
    290  *
    291  * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the
    292  * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored.
    293  *
    294  * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to
    295  * and including the #polyphases.  Each polyphase of the filter has half-length halfNumCoefs
    296  * (due to symmetry).  The total size of the filter bank in coefficients is
    297  * (#polyphases+1)*halfNumCoefs.
    298  *
    299  * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line).
    300  *
    301  * The coefs should be attenuated (to compensate for passband ripple)
    302  * if storing back into the native format.
    303  *
    304  * @param samples are unaligned input samples.  The position is in the "middle" of the
    305  * sample array with respect to the FIR filter:
    306  * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs;
    307  * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1.
    308  *
    309  * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
    310  * expressed as a S32 integer.  A negative value inverts the channel 180 degrees.
    311  * The pointer volumeLR should be aligned to a minimum of 8 bytes.
    312  * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
    313  *
    314  * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where
    315  * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling.
    316  *
    317  * The filter polyphase index is given by indexP = phase >> coefShift. Due to
    318  * odd length symmetric filter, the polyphase index of the negative half depends on
    319  * whether interpolation is used.
    320  *
    321  * The fractional siting between the polyphase indices is given by the bits below coefShift:
    322  *
    323  * lerpP = phase << 32 - coefShift >> 1;  // for 32 bit unsigned phase multiply
    324  * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply
    325  *
    326  * For integer types, this is expressed as:
    327  *
    328  * lerpP = phase << sizeof(phase)*8 - coefShift
    329  *              >> (sizeof(phase)-sizeof(*coefs))*8 + 1;
    330  *
    331  * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0):
    332  *
    333  * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent
    334  */
    335 
    336 template<int CHANNELS, bool LOCKED, int STRIDE, typename TC, typename TI, typename TO>
    337 static inline
    338 void fir(TO* const out,
    339         const uint32_t phase, const uint32_t phaseWrapLimit,
    340         const int coefShift, const int halfNumCoefs, const TC* const coefs,
    341         const TI* const samples, const TO* const volumeLR)
    342 {
    343     // NOTE: be very careful when modifying the code here. register
    344     // pressure is very high and a small change might cause the compiler
    345     // to generate far less efficient code.
    346     // Always sanity check the result with objdump or test-resample.
    347 
    348     if (LOCKED) {
    349         // locked polyphase (no interpolation)
    350         // Compute the polyphase filter index on the positive and negative side.
    351         uint32_t indexP = phase >> coefShift;
    352         uint32_t indexN = (phaseWrapLimit - phase) >> coefShift;
    353         const TC* coefsP = coefs + indexP*halfNumCoefs;
    354         const TC* coefsN = coefs + indexN*halfNumCoefs;
    355         const TI* sP = samples;
    356         const TI* sN = samples + CHANNELS;
    357 
    358         // dot product filter.
    359         ProcessL<CHANNELS, STRIDE>(out,
    360                 halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR);
    361     } else {
    362         // interpolated polyphase
    363         // Compute the polyphase filter index on the positive and negative side.
    364         uint32_t indexP = phase >> coefShift;
    365         uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement.
    366         const TC* coefsP = coefs + indexP*halfNumCoefs;
    367         const TC* coefsN = coefs + indexN*halfNumCoefs;
    368         const TC* coefsP1 = coefsP + halfNumCoefs;
    369         const TC* coefsN1 = coefsN + halfNumCoefs;
    370         const TI* sP = samples;
    371         const TI* sN = samples + CHANNELS;
    372 
    373         // Interpolation fraction lerpP derived by shifting all the way up and down
    374         // to clear the appropriate bits and align to the appropriate level
    375         // for the integer multiply.  The constants should resolve in compile time.
    376         //
    377         // The interpolated filter coefficient is derived as follows for the pos/neg half:
    378         //
    379         // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP)
    380         // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP)
    381 
    382         // on-the-fly interpolated dot product filter
    383         if (is_same<TC, float>::value || is_same<TC, double>::value) {
    384             static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0)
    385             TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale;
    386 
    387             Process<CHANNELS, STRIDE>(out,
    388                     halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
    389         } else {
    390             uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift)
    391                     >> ((sizeof(phase)-sizeof(*coefs))*8 + 1);
    392 
    393             Process<CHANNELS, STRIDE>(out,
    394                     halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
    395         }
    396     }
    397 }
    398 
    399 }; // namespace android
    400 
    401 #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/
    402