Home | History | Annotate | Download | only in hwui
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "OpenGLRenderer"
     18 #define ATRACE_TAG ATRACE_TAG_VIEW
     19 
     20 #include <math.h>
     21 #include <utils/Log.h>
     22 #include <utils/Trace.h>
     23 
     24 #include "AmbientShadow.h"
     25 #include "Caches.h"
     26 #include "ShadowTessellator.h"
     27 #include "SpotShadow.h"
     28 
     29 namespace android {
     30 namespace uirenderer {
     31 
     32 void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
     33         const Vector3* casterPolygon, int casterVertexCount,
     34         const Vector3& centroid3d, const Rect& casterBounds,
     35         const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
     36     ATRACE_CALL();
     37 
     38     // A bunch of parameters to tweak the shadow.
     39     // TODO: Allow some of these changable by debug settings or APIs.
     40     float heightFactor = 1.0f / 128;
     41     const float geomFactor = 64;
     42 
     43     Caches& caches = Caches::getInstance();
     44     if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) {
     45         heightFactor *= caches.propertyAmbientRatio;
     46     }
     47 
     48     Rect ambientShadowBounds(casterBounds);
     49     ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);
     50 
     51     if (!localClip.intersects(ambientShadowBounds)) {
     52 #if DEBUG_SHADOW
     53         ALOGD("Ambient shadow is out of clip rect!");
     54 #endif
     55         return;
     56     }
     57 
     58     AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
     59             casterVertexCount, centroid3d, heightFactor, geomFactor,
     60             shadowVertexBuffer);
     61 }
     62 
     63 void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
     64         const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid,
     65         const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius,
     66         const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
     67     ATRACE_CALL();
     68 
     69     Caches& caches = Caches::getInstance();
     70 
     71     Vector3 adjustedLightCenter(lightCenter);
     72     if (CC_UNLIKELY(caches.propertyLightPosY > 0)) {
     73         adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up
     74     }
     75     if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) {
     76         adjustedLightCenter.z = caches.propertyLightPosZ;
     77     }
     78 
     79 #if DEBUG_SHADOW
     80     ALOGD("light center %f %f %f",
     81             adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z);
     82 #endif
     83 
     84     // light position (because it's in local space) needs to compensate for receiver transform
     85     // TODO: should apply to light orientation, not just position
     86     Matrix4 reverseReceiverTransform;
     87     reverseReceiverTransform.loadInverse(receiverTransform);
     88     reverseReceiverTransform.mapPoint3d(adjustedLightCenter);
     89 
     90     const int lightVertexCount = 8;
     91     if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) {
     92         lightRadius = caches.propertyLightDiameter;
     93     }
     94 
     95     // Now light and caster are both in local space, we will check whether
     96     // the shadow is within the clip area.
     97     Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius,
     98             adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius);
     99     lightRect.unionWith(localClip);
    100     if (!lightRect.intersects(casterBounds)) {
    101 #if DEBUG_SHADOW
    102         ALOGD("Spot shadow is out of clip rect!");
    103 #endif
    104         return;
    105     }
    106 
    107     SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius,
    108             casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer);
    109 
    110 #if DEBUG_SHADOW
    111      if(shadowVertexBuffer.getVertexCount() <= 0) {
    112         ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
    113      }
    114 #endif
    115 }
    116 
    117 void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
    118     int currentIndex = 0;
    119     const int rays = SHADOW_RAY_COUNT;
    120     // For the penumbra area.
    121     for (int layer = 0; layer < 2; layer ++) {
    122         int baseIndex = layer * rays;
    123         for (int i = 0; i < rays; i++) {
    124             shadowIndices[currentIndex++] = i + baseIndex;
    125             shadowIndices[currentIndex++] = rays + i + baseIndex;
    126         }
    127         // To close the loop, back to the ray 0.
    128         shadowIndices[currentIndex++] = 0 + baseIndex;
    129          // Note this is the same as the first index of next layer loop.
    130         shadowIndices[currentIndex++] = rays + baseIndex;
    131     }
    132 
    133 #if DEBUG_SHADOW
    134     if (currentIndex != MAX_SHADOW_INDEX_COUNT) {
    135         ALOGW("vertex index count is wrong. current %d, expected %d",
    136                 currentIndex, MAX_SHADOW_INDEX_COUNT);
    137     }
    138     for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) {
    139         ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
    140     }
    141 #endif
    142 }
    143 
    144 /**
    145  * Calculate the centroid of a 2d polygon.
    146  *
    147  * @param poly The polygon, which is represented in a Vector2 array.
    148  * @param polyLength The length of the polygon in terms of number of vertices.
    149  * @return the centroid of the polygon.
    150  */
    151 Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
    152     double sumx = 0;
    153     double sumy = 0;
    154     int p1 = polyLength - 1;
    155     double area = 0;
    156     for (int p2 = 0; p2 < polyLength; p2++) {
    157         double x1 = poly[p1].x;
    158         double y1 = poly[p1].y;
    159         double x2 = poly[p2].x;
    160         double y2 = poly[p2].y;
    161         double a = (x1 * y2 - x2 * y1);
    162         sumx += (x1 + x2) * a;
    163         sumy += (y1 + y2) * a;
    164         area += a;
    165         p1 = p2;
    166     }
    167 
    168     Vector2 centroid = poly[0];
    169     if (area != 0) {
    170         centroid = (Vector2){static_cast<float>(sumx / (3 * area)),
    171             static_cast<float>(sumy / (3 * area))};
    172     } else {
    173         ALOGW("Area is 0 while computing centroid!");
    174     }
    175     return centroid;
    176 }
    177 
    178 // Make sure p1 -> p2 is going CW around the poly.
    179 Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) {
    180     Vector2 result = p2 - p1;
    181     if (result.x != 0 || result.y != 0) {
    182         result.normalize();
    183         // Calculate the normal , which is CCW 90 rotate to the delta.
    184         float tempy = result.y;
    185         result.y = result.x;
    186         result.x = -tempy;
    187     }
    188     return result;
    189 }
    190 /**
    191  * Test whether the polygon is order in clockwise.
    192  *
    193  * @param polygon the polygon as a Vector2 array
    194  * @param len the number of points of the polygon
    195  */
    196 bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) {
    197     if (len < 2 || polygon == NULL) {
    198         return true;
    199     }
    200     double sum = 0;
    201     double p1x = polygon[len - 1].x;
    202     double p1y = polygon[len - 1].y;
    203     for (int i = 0; i < len; i++) {
    204 
    205         double p2x = polygon[i].x;
    206         double p2y = polygon[i].y;
    207         sum += p1x * p2y - p2x * p1y;
    208         p1x = p2x;
    209         p1y = p2y;
    210     }
    211     return sum < 0;
    212 }
    213 
    214 bool ShadowTessellator::isClockwisePath(const SkPath& path) {
    215     SkPath::Iter iter(path, false);
    216     SkPoint pts[4];
    217     SkPath::Verb v;
    218 
    219     Vector<Vector2> arrayForDirection;
    220     while (SkPath::kDone_Verb != (v = iter.next(pts))) {
    221             switch (v) {
    222             case SkPath::kMove_Verb:
    223                 arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()});
    224                 break;
    225             case SkPath::kLine_Verb:
    226                 arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
    227                 break;
    228             case SkPath::kQuad_Verb:
    229                 arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
    230                 arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
    231                 break;
    232             case SkPath::kCubic_Verb:
    233                 arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
    234                 arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
    235                 arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()});
    236                 break;
    237             default:
    238                 break;
    239             }
    240     }
    241 
    242     return isClockwise(arrayForDirection.array(), arrayForDirection.size());
    243 }
    244 
    245 void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) {
    246     int n = len / 2;
    247     for (int i = 0; i < n; i++) {
    248         Vertex tmp = polygon[i];
    249         int k = len - 1 - i;
    250         polygon[i] = polygon[k];
    251         polygon[k] = tmp;
    252     }
    253 }
    254 
    255 int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
    256         const Vector2& vector2, float divisor) {
    257     // When there is no distance difference, there is no need for extra vertices.
    258     if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
    259         return 0;
    260     }
    261     // The formula is :
    262     // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
    263     // The value ranges for each step are:
    264     // dot( ) --- [-1, 1]
    265     // acos( )     --- [0, M_PI]
    266     // floor(...)  --- [0, EXTRA_VERTEX_PER_PI]
    267     float dotProduct = vector1.dot(vector2);
    268     // TODO: Use look up table for the dotProduct to extraVerticesNumber
    269     // computation, if needed.
    270     float angle = acosf(dotProduct);
    271     return (int) floor(angle / divisor);
    272 }
    273 
    274 void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
    275     LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
    276             bufferName, used, total);
    277 }
    278 
    279 }; // namespace uirenderer
    280 }; // namespace android
    281