Home | History | Annotate | Download | only in inputflinger
      1 /*
      2  * Copyright (C) 2005 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <assert.h>
     18 #include <dirent.h>
     19 #include <errno.h>
     20 #include <fcntl.h>
     21 #include <inttypes.h>
     22 #include <memory.h>
     23 #include <stdint.h>
     24 #include <stdio.h>
     25 #include <stdlib.h>
     26 #include <string.h>
     27 #include <sys/epoll.h>
     28 #include <sys/limits.h>
     29 #include <sys/inotify.h>
     30 #include <sys/ioctl.h>
     31 #include <sys/utsname.h>
     32 #include <unistd.h>
     33 
     34 #define LOG_TAG "EventHub"
     35 
     36 // #define LOG_NDEBUG 0
     37 
     38 #include "EventHub.h"
     39 
     40 #include <hardware_legacy/power.h>
     41 
     42 #include <cutils/properties.h>
     43 #include <openssl/sha.h>
     44 #include <utils/Log.h>
     45 #include <utils/Timers.h>
     46 #include <utils/threads.h>
     47 #include <utils/Errors.h>
     48 
     49 #include <input/KeyLayoutMap.h>
     50 #include <input/KeyCharacterMap.h>
     51 #include <input/VirtualKeyMap.h>
     52 
     53 /* this macro is used to tell if "bit" is set in "array"
     54  * it selects a byte from the array, and does a boolean AND
     55  * operation with a byte that only has the relevant bit set.
     56  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
     57  */
     58 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
     59 
     60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
     61 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
     62 
     63 #define INDENT "  "
     64 #define INDENT2 "    "
     65 #define INDENT3 "      "
     66 
     67 namespace android {
     68 
     69 static const char *WAKE_LOCK_ID = "KeyEvents";
     70 static const char *DEVICE_PATH = "/dev/input";
     71 
     72 /* return the larger integer */
     73 static inline int max(int v1, int v2)
     74 {
     75     return (v1 > v2) ? v1 : v2;
     76 }
     77 
     78 static inline const char* toString(bool value) {
     79     return value ? "true" : "false";
     80 }
     81 
     82 static String8 sha1(const String8& in) {
     83     SHA_CTX ctx;
     84     SHA1_Init(&ctx);
     85     SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
     86     u_char digest[SHA_DIGEST_LENGTH];
     87     SHA1_Final(digest, &ctx);
     88 
     89     String8 out;
     90     for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
     91         out.appendFormat("%02x", digest[i]);
     92     }
     93     return out;
     94 }
     95 
     96 static void getLinuxRelease(int* major, int* minor) {
     97     struct utsname info;
     98     if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
     99         *major = 0, *minor = 0;
    100         ALOGE("Could not get linux version: %s", strerror(errno));
    101     }
    102 }
    103 
    104 // --- Global Functions ---
    105 
    106 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
    107     // Touch devices get dibs on touch-related axes.
    108     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
    109         switch (axis) {
    110         case ABS_X:
    111         case ABS_Y:
    112         case ABS_PRESSURE:
    113         case ABS_TOOL_WIDTH:
    114         case ABS_DISTANCE:
    115         case ABS_TILT_X:
    116         case ABS_TILT_Y:
    117         case ABS_MT_SLOT:
    118         case ABS_MT_TOUCH_MAJOR:
    119         case ABS_MT_TOUCH_MINOR:
    120         case ABS_MT_WIDTH_MAJOR:
    121         case ABS_MT_WIDTH_MINOR:
    122         case ABS_MT_ORIENTATION:
    123         case ABS_MT_POSITION_X:
    124         case ABS_MT_POSITION_Y:
    125         case ABS_MT_TOOL_TYPE:
    126         case ABS_MT_BLOB_ID:
    127         case ABS_MT_TRACKING_ID:
    128         case ABS_MT_PRESSURE:
    129         case ABS_MT_DISTANCE:
    130             return INPUT_DEVICE_CLASS_TOUCH;
    131         }
    132     }
    133 
    134     // Joystick devices get the rest.
    135     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
    136 }
    137 
    138 // --- EventHub::Device ---
    139 
    140 EventHub::Device::Device(int fd, int32_t id, const String8& path,
    141         const InputDeviceIdentifier& identifier) :
    142         next(NULL),
    143         fd(fd), id(id), path(path), identifier(identifier),
    144         classes(0), configuration(NULL), virtualKeyMap(NULL),
    145         ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
    146         timestampOverrideSec(0), timestampOverrideUsec(0) {
    147     memset(keyBitmask, 0, sizeof(keyBitmask));
    148     memset(absBitmask, 0, sizeof(absBitmask));
    149     memset(relBitmask, 0, sizeof(relBitmask));
    150     memset(swBitmask, 0, sizeof(swBitmask));
    151     memset(ledBitmask, 0, sizeof(ledBitmask));
    152     memset(ffBitmask, 0, sizeof(ffBitmask));
    153     memset(propBitmask, 0, sizeof(propBitmask));
    154 }
    155 
    156 EventHub::Device::~Device() {
    157     close();
    158     delete configuration;
    159     delete virtualKeyMap;
    160 }
    161 
    162 void EventHub::Device::close() {
    163     if (fd >= 0) {
    164         ::close(fd);
    165         fd = -1;
    166     }
    167 }
    168 
    169 
    170 // --- EventHub ---
    171 
    172 const uint32_t EventHub::EPOLL_ID_INOTIFY;
    173 const uint32_t EventHub::EPOLL_ID_WAKE;
    174 const int EventHub::EPOLL_SIZE_HINT;
    175 const int EventHub::EPOLL_MAX_EVENTS;
    176 
    177 EventHub::EventHub(void) :
    178         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
    179         mOpeningDevices(0), mClosingDevices(0),
    180         mNeedToSendFinishedDeviceScan(false),
    181         mNeedToReopenDevices(false), mNeedToScanDevices(true),
    182         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
    183     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
    184 
    185     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    186     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
    187 
    188     mINotifyFd = inotify_init();
    189     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
    190     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
    191             DEVICE_PATH, errno);
    192 
    193     struct epoll_event eventItem;
    194     memset(&eventItem, 0, sizeof(eventItem));
    195     eventItem.events = EPOLLIN;
    196     eventItem.data.u32 = EPOLL_ID_INOTIFY;
    197     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
    198     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
    199 
    200     int wakeFds[2];
    201     result = pipe(wakeFds);
    202     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
    203 
    204     mWakeReadPipeFd = wakeFds[0];
    205     mWakeWritePipeFd = wakeFds[1];
    206 
    207     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
    208     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
    209             errno);
    210 
    211     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
    212     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
    213             errno);
    214 
    215     eventItem.data.u32 = EPOLL_ID_WAKE;
    216     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
    217     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
    218             errno);
    219 
    220     int major, minor;
    221     getLinuxRelease(&major, &minor);
    222     // EPOLLWAKEUP was introduced in kernel 3.5
    223     mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
    224 }
    225 
    226 EventHub::~EventHub(void) {
    227     closeAllDevicesLocked();
    228 
    229     while (mClosingDevices) {
    230         Device* device = mClosingDevices;
    231         mClosingDevices = device->next;
    232         delete device;
    233     }
    234 
    235     ::close(mEpollFd);
    236     ::close(mINotifyFd);
    237     ::close(mWakeReadPipeFd);
    238     ::close(mWakeWritePipeFd);
    239 
    240     release_wake_lock(WAKE_LOCK_ID);
    241 }
    242 
    243 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
    244     AutoMutex _l(mLock);
    245     Device* device = getDeviceLocked(deviceId);
    246     if (device == NULL) return InputDeviceIdentifier();
    247     return device->identifier;
    248 }
    249 
    250 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
    251     AutoMutex _l(mLock);
    252     Device* device = getDeviceLocked(deviceId);
    253     if (device == NULL) return 0;
    254     return device->classes;
    255 }
    256 
    257 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
    258     AutoMutex _l(mLock);
    259     Device* device = getDeviceLocked(deviceId);
    260     if (device == NULL) return 0;
    261     return device->controllerNumber;
    262 }
    263 
    264 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
    265     AutoMutex _l(mLock);
    266     Device* device = getDeviceLocked(deviceId);
    267     if (device && device->configuration) {
    268         *outConfiguration = *device->configuration;
    269     } else {
    270         outConfiguration->clear();
    271     }
    272 }
    273 
    274 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
    275         RawAbsoluteAxisInfo* outAxisInfo) const {
    276     outAxisInfo->clear();
    277 
    278     if (axis >= 0 && axis <= ABS_MAX) {
    279         AutoMutex _l(mLock);
    280 
    281         Device* device = getDeviceLocked(deviceId);
    282         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
    283             struct input_absinfo info;
    284             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
    285                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
    286                      axis, device->identifier.name.string(), device->fd, errno);
    287                 return -errno;
    288             }
    289 
    290             if (info.minimum != info.maximum) {
    291                 outAxisInfo->valid = true;
    292                 outAxisInfo->minValue = info.minimum;
    293                 outAxisInfo->maxValue = info.maximum;
    294                 outAxisInfo->flat = info.flat;
    295                 outAxisInfo->fuzz = info.fuzz;
    296                 outAxisInfo->resolution = info.resolution;
    297             }
    298             return OK;
    299         }
    300     }
    301     return -1;
    302 }
    303 
    304 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
    305     if (axis >= 0 && axis <= REL_MAX) {
    306         AutoMutex _l(mLock);
    307 
    308         Device* device = getDeviceLocked(deviceId);
    309         if (device) {
    310             return test_bit(axis, device->relBitmask);
    311         }
    312     }
    313     return false;
    314 }
    315 
    316 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
    317     if (property >= 0 && property <= INPUT_PROP_MAX) {
    318         AutoMutex _l(mLock);
    319 
    320         Device* device = getDeviceLocked(deviceId);
    321         if (device) {
    322             return test_bit(property, device->propBitmask);
    323         }
    324     }
    325     return false;
    326 }
    327 
    328 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
    329     if (scanCode >= 0 && scanCode <= KEY_MAX) {
    330         AutoMutex _l(mLock);
    331 
    332         Device* device = getDeviceLocked(deviceId);
    333         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
    334             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
    335             memset(keyState, 0, sizeof(keyState));
    336             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
    337                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
    338             }
    339         }
    340     }
    341     return AKEY_STATE_UNKNOWN;
    342 }
    343 
    344 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
    345     AutoMutex _l(mLock);
    346 
    347     Device* device = getDeviceLocked(deviceId);
    348     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
    349         Vector<int32_t> scanCodes;
    350         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
    351         if (scanCodes.size() != 0) {
    352             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
    353             memset(keyState, 0, sizeof(keyState));
    354             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
    355                 for (size_t i = 0; i < scanCodes.size(); i++) {
    356                     int32_t sc = scanCodes.itemAt(i);
    357                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
    358                         return AKEY_STATE_DOWN;
    359                     }
    360                 }
    361                 return AKEY_STATE_UP;
    362             }
    363         }
    364     }
    365     return AKEY_STATE_UNKNOWN;
    366 }
    367 
    368 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
    369     if (sw >= 0 && sw <= SW_MAX) {
    370         AutoMutex _l(mLock);
    371 
    372         Device* device = getDeviceLocked(deviceId);
    373         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
    374             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
    375             memset(swState, 0, sizeof(swState));
    376             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
    377                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
    378             }
    379         }
    380     }
    381     return AKEY_STATE_UNKNOWN;
    382 }
    383 
    384 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
    385     *outValue = 0;
    386 
    387     if (axis >= 0 && axis <= ABS_MAX) {
    388         AutoMutex _l(mLock);
    389 
    390         Device* device = getDeviceLocked(deviceId);
    391         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
    392             struct input_absinfo info;
    393             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
    394                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
    395                      axis, device->identifier.name.string(), device->fd, errno);
    396                 return -errno;
    397             }
    398 
    399             *outValue = info.value;
    400             return OK;
    401         }
    402     }
    403     return -1;
    404 }
    405 
    406 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
    407         const int32_t* keyCodes, uint8_t* outFlags) const {
    408     AutoMutex _l(mLock);
    409 
    410     Device* device = getDeviceLocked(deviceId);
    411     if (device && device->keyMap.haveKeyLayout()) {
    412         Vector<int32_t> scanCodes;
    413         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
    414             scanCodes.clear();
    415 
    416             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
    417                     keyCodes[codeIndex], &scanCodes);
    418             if (! err) {
    419                 // check the possible scan codes identified by the layout map against the
    420                 // map of codes actually emitted by the driver
    421                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
    422                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
    423                         outFlags[codeIndex] = 1;
    424                         break;
    425                     }
    426                 }
    427             }
    428         }
    429         return true;
    430     }
    431     return false;
    432 }
    433 
    434 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
    435         int32_t* outKeycode, uint32_t* outFlags) const {
    436     AutoMutex _l(mLock);
    437     Device* device = getDeviceLocked(deviceId);
    438 
    439     if (device) {
    440         // Check the key character map first.
    441         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
    442         if (kcm != NULL) {
    443             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
    444                 *outFlags = 0;
    445                 return NO_ERROR;
    446             }
    447         }
    448 
    449         // Check the key layout next.
    450         if (device->keyMap.haveKeyLayout()) {
    451             if (!device->keyMap.keyLayoutMap->mapKey(
    452                     scanCode, usageCode, outKeycode, outFlags)) {
    453                 return NO_ERROR;
    454             }
    455         }
    456     }
    457 
    458     *outKeycode = 0;
    459     *outFlags = 0;
    460     return NAME_NOT_FOUND;
    461 }
    462 
    463 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
    464     AutoMutex _l(mLock);
    465     Device* device = getDeviceLocked(deviceId);
    466 
    467     if (device && device->keyMap.haveKeyLayout()) {
    468         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
    469         if (err == NO_ERROR) {
    470             return NO_ERROR;
    471         }
    472     }
    473 
    474     return NAME_NOT_FOUND;
    475 }
    476 
    477 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
    478     AutoMutex _l(mLock);
    479 
    480     mExcludedDevices = devices;
    481 }
    482 
    483 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
    484     AutoMutex _l(mLock);
    485     Device* device = getDeviceLocked(deviceId);
    486     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
    487         if (test_bit(scanCode, device->keyBitmask)) {
    488             return true;
    489         }
    490     }
    491     return false;
    492 }
    493 
    494 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
    495     AutoMutex _l(mLock);
    496     Device* device = getDeviceLocked(deviceId);
    497     int32_t sc;
    498     if (device && mapLed(device, led, &sc) == NO_ERROR) {
    499         if (test_bit(sc, device->ledBitmask)) {
    500             return true;
    501         }
    502     }
    503     return false;
    504 }
    505 
    506 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
    507     AutoMutex _l(mLock);
    508     Device* device = getDeviceLocked(deviceId);
    509     setLedStateLocked(device, led, on);
    510 }
    511 
    512 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
    513     int32_t sc;
    514     if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
    515         struct input_event ev;
    516         ev.time.tv_sec = 0;
    517         ev.time.tv_usec = 0;
    518         ev.type = EV_LED;
    519         ev.code = sc;
    520         ev.value = on ? 1 : 0;
    521 
    522         ssize_t nWrite;
    523         do {
    524             nWrite = write(device->fd, &ev, sizeof(struct input_event));
    525         } while (nWrite == -1 && errno == EINTR);
    526     }
    527 }
    528 
    529 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
    530         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
    531     outVirtualKeys.clear();
    532 
    533     AutoMutex _l(mLock);
    534     Device* device = getDeviceLocked(deviceId);
    535     if (device && device->virtualKeyMap) {
    536         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
    537     }
    538 }
    539 
    540 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
    541     AutoMutex _l(mLock);
    542     Device* device = getDeviceLocked(deviceId);
    543     if (device) {
    544         return device->getKeyCharacterMap();
    545     }
    546     return NULL;
    547 }
    548 
    549 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
    550         const sp<KeyCharacterMap>& map) {
    551     AutoMutex _l(mLock);
    552     Device* device = getDeviceLocked(deviceId);
    553     if (device) {
    554         if (map != device->overlayKeyMap) {
    555             device->overlayKeyMap = map;
    556             device->combinedKeyMap = KeyCharacterMap::combine(
    557                     device->keyMap.keyCharacterMap, map);
    558             return true;
    559         }
    560     }
    561     return false;
    562 }
    563 
    564 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
    565     String8 rawDescriptor;
    566     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
    567             identifier.product);
    568     // TODO add handling for USB devices to not uniqueify kbs that show up twice
    569     if (!identifier.uniqueId.isEmpty()) {
    570         rawDescriptor.append("uniqueId:");
    571         rawDescriptor.append(identifier.uniqueId);
    572     } else if (identifier.nonce != 0) {
    573         rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
    574     }
    575 
    576     if (identifier.vendor == 0 && identifier.product == 0) {
    577         // If we don't know the vendor and product id, then the device is probably
    578         // built-in so we need to rely on other information to uniquely identify
    579         // the input device.  Usually we try to avoid relying on the device name or
    580         // location but for built-in input device, they are unlikely to ever change.
    581         if (!identifier.name.isEmpty()) {
    582             rawDescriptor.append("name:");
    583             rawDescriptor.append(identifier.name);
    584         } else if (!identifier.location.isEmpty()) {
    585             rawDescriptor.append("location:");
    586             rawDescriptor.append(identifier.location);
    587         }
    588     }
    589     identifier.descriptor = sha1(rawDescriptor);
    590     return rawDescriptor;
    591 }
    592 
    593 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
    594     // Compute a device descriptor that uniquely identifies the device.
    595     // The descriptor is assumed to be a stable identifier.  Its value should not
    596     // change between reboots, reconnections, firmware updates or new releases
    597     // of Android. In practice we sometimes get devices that cannot be uniquely
    598     // identified. In this case we enforce uniqueness between connected devices.
    599     // Ideally, we also want the descriptor to be short and relatively opaque.
    600 
    601     identifier.nonce = 0;
    602     String8 rawDescriptor = generateDescriptor(identifier);
    603     if (identifier.uniqueId.isEmpty()) {
    604         // If it didn't have a unique id check for conflicts and enforce
    605         // uniqueness if necessary.
    606         while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
    607             identifier.nonce++;
    608             rawDescriptor = generateDescriptor(identifier);
    609         }
    610     }
    611     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
    612             identifier.descriptor.string());
    613 }
    614 
    615 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
    616     AutoMutex _l(mLock);
    617     Device* device = getDeviceLocked(deviceId);
    618     if (device && !device->isVirtual()) {
    619         ff_effect effect;
    620         memset(&effect, 0, sizeof(effect));
    621         effect.type = FF_RUMBLE;
    622         effect.id = device->ffEffectId;
    623         effect.u.rumble.strong_magnitude = 0xc000;
    624         effect.u.rumble.weak_magnitude = 0xc000;
    625         effect.replay.length = (duration + 999999LL) / 1000000LL;
    626         effect.replay.delay = 0;
    627         if (ioctl(device->fd, EVIOCSFF, &effect)) {
    628             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
    629                     device->identifier.name.string(), errno);
    630             return;
    631         }
    632         device->ffEffectId = effect.id;
    633 
    634         struct input_event ev;
    635         ev.time.tv_sec = 0;
    636         ev.time.tv_usec = 0;
    637         ev.type = EV_FF;
    638         ev.code = device->ffEffectId;
    639         ev.value = 1;
    640         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
    641             ALOGW("Could not start force feedback effect on device %s due to error %d.",
    642                     device->identifier.name.string(), errno);
    643             return;
    644         }
    645         device->ffEffectPlaying = true;
    646     }
    647 }
    648 
    649 void EventHub::cancelVibrate(int32_t deviceId) {
    650     AutoMutex _l(mLock);
    651     Device* device = getDeviceLocked(deviceId);
    652     if (device && !device->isVirtual()) {
    653         if (device->ffEffectPlaying) {
    654             device->ffEffectPlaying = false;
    655 
    656             struct input_event ev;
    657             ev.time.tv_sec = 0;
    658             ev.time.tv_usec = 0;
    659             ev.type = EV_FF;
    660             ev.code = device->ffEffectId;
    661             ev.value = 0;
    662             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
    663                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
    664                         device->identifier.name.string(), errno);
    665                 return;
    666             }
    667         }
    668     }
    669 }
    670 
    671 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
    672     size_t size = mDevices.size();
    673     for (size_t i = 0; i < size; i++) {
    674         Device* device = mDevices.valueAt(i);
    675         if (descriptor.compare(device->identifier.descriptor) == 0) {
    676             return device;
    677         }
    678     }
    679     return NULL;
    680 }
    681 
    682 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
    683     if (deviceId == BUILT_IN_KEYBOARD_ID) {
    684         deviceId = mBuiltInKeyboardId;
    685     }
    686     ssize_t index = mDevices.indexOfKey(deviceId);
    687     return index >= 0 ? mDevices.valueAt(index) : NULL;
    688 }
    689 
    690 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
    691     for (size_t i = 0; i < mDevices.size(); i++) {
    692         Device* device = mDevices.valueAt(i);
    693         if (device->path == devicePath) {
    694             return device;
    695         }
    696     }
    697     return NULL;
    698 }
    699 
    700 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
    701     ALOG_ASSERT(bufferSize >= 1);
    702 
    703     AutoMutex _l(mLock);
    704 
    705     struct input_event readBuffer[bufferSize];
    706 
    707     RawEvent* event = buffer;
    708     size_t capacity = bufferSize;
    709     bool awoken = false;
    710     for (;;) {
    711         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    712 
    713         // Reopen input devices if needed.
    714         if (mNeedToReopenDevices) {
    715             mNeedToReopenDevices = false;
    716 
    717             ALOGI("Reopening all input devices due to a configuration change.");
    718 
    719             closeAllDevicesLocked();
    720             mNeedToScanDevices = true;
    721             break; // return to the caller before we actually rescan
    722         }
    723 
    724         // Report any devices that had last been added/removed.
    725         while (mClosingDevices) {
    726             Device* device = mClosingDevices;
    727             ALOGV("Reporting device closed: id=%d, name=%s\n",
    728                  device->id, device->path.string());
    729             mClosingDevices = device->next;
    730             event->when = now;
    731             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
    732             event->type = DEVICE_REMOVED;
    733             event += 1;
    734             delete device;
    735             mNeedToSendFinishedDeviceScan = true;
    736             if (--capacity == 0) {
    737                 break;
    738             }
    739         }
    740 
    741         if (mNeedToScanDevices) {
    742             mNeedToScanDevices = false;
    743             scanDevicesLocked();
    744             mNeedToSendFinishedDeviceScan = true;
    745         }
    746 
    747         while (mOpeningDevices != NULL) {
    748             Device* device = mOpeningDevices;
    749             ALOGV("Reporting device opened: id=%d, name=%s\n",
    750                  device->id, device->path.string());
    751             mOpeningDevices = device->next;
    752             event->when = now;
    753             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
    754             event->type = DEVICE_ADDED;
    755             event += 1;
    756             mNeedToSendFinishedDeviceScan = true;
    757             if (--capacity == 0) {
    758                 break;
    759             }
    760         }
    761 
    762         if (mNeedToSendFinishedDeviceScan) {
    763             mNeedToSendFinishedDeviceScan = false;
    764             event->when = now;
    765             event->type = FINISHED_DEVICE_SCAN;
    766             event += 1;
    767             if (--capacity == 0) {
    768                 break;
    769             }
    770         }
    771 
    772         // Grab the next input event.
    773         bool deviceChanged = false;
    774         while (mPendingEventIndex < mPendingEventCount) {
    775             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
    776             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
    777                 if (eventItem.events & EPOLLIN) {
    778                     mPendingINotify = true;
    779                 } else {
    780                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
    781                 }
    782                 continue;
    783             }
    784 
    785             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
    786                 if (eventItem.events & EPOLLIN) {
    787                     ALOGV("awoken after wake()");
    788                     awoken = true;
    789                     char buffer[16];
    790                     ssize_t nRead;
    791                     do {
    792                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
    793                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
    794                 } else {
    795                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
    796                             eventItem.events);
    797                 }
    798                 continue;
    799             }
    800 
    801             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
    802             if (deviceIndex < 0) {
    803                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
    804                         eventItem.events, eventItem.data.u32);
    805                 continue;
    806             }
    807 
    808             Device* device = mDevices.valueAt(deviceIndex);
    809             if (eventItem.events & EPOLLIN) {
    810                 int32_t readSize = read(device->fd, readBuffer,
    811                         sizeof(struct input_event) * capacity);
    812                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
    813                     // Device was removed before INotify noticed.
    814                     ALOGW("could not get event, removed? (fd: %d size: %" PRId32
    815                             " bufferSize: %zu capacity: %zu errno: %d)\n",
    816                             device->fd, readSize, bufferSize, capacity, errno);
    817                     deviceChanged = true;
    818                     closeDeviceLocked(device);
    819                 } else if (readSize < 0) {
    820                     if (errno != EAGAIN && errno != EINTR) {
    821                         ALOGW("could not get event (errno=%d)", errno);
    822                     }
    823                 } else if ((readSize % sizeof(struct input_event)) != 0) {
    824                     ALOGE("could not get event (wrong size: %d)", readSize);
    825                 } else {
    826                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
    827 
    828                     size_t count = size_t(readSize) / sizeof(struct input_event);
    829                     for (size_t i = 0; i < count; i++) {
    830                         struct input_event& iev = readBuffer[i];
    831                         ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
    832                                 device->path.string(),
    833                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
    834                                 iev.type, iev.code, iev.value);
    835 
    836                         // Some input devices may have a better concept of the time
    837                         // when an input event was actually generated than the kernel
    838                         // which simply timestamps all events on entry to evdev.
    839                         // This is a custom Android extension of the input protocol
    840                         // mainly intended for use with uinput based device drivers.
    841                         if (iev.type == EV_MSC) {
    842                             if (iev.code == MSC_ANDROID_TIME_SEC) {
    843                                 device->timestampOverrideSec = iev.value;
    844                                 continue;
    845                             } else if (iev.code == MSC_ANDROID_TIME_USEC) {
    846                                 device->timestampOverrideUsec = iev.value;
    847                                 continue;
    848                             }
    849                         }
    850                         if (device->timestampOverrideSec || device->timestampOverrideUsec) {
    851                             iev.time.tv_sec = device->timestampOverrideSec;
    852                             iev.time.tv_usec = device->timestampOverrideUsec;
    853                             if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
    854                                 device->timestampOverrideSec = 0;
    855                                 device->timestampOverrideUsec = 0;
    856                             }
    857                             ALOGV("applied override time %d.%06d",
    858                                     int(iev.time.tv_sec), int(iev.time.tv_usec));
    859                         }
    860 
    861 #ifdef HAVE_POSIX_CLOCKS
    862                         // Use the time specified in the event instead of the current time
    863                         // so that downstream code can get more accurate estimates of
    864                         // event dispatch latency from the time the event is enqueued onto
    865                         // the evdev client buffer.
    866                         //
    867                         // The event's timestamp fortuitously uses the same monotonic clock
    868                         // time base as the rest of Android.  The kernel event device driver
    869                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
    870                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
    871                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
    872                         // system call that also queries ktime_get_ts().
    873                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
    874                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
    875                         ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
    876 
    877                         // Bug 7291243: Add a guard in case the kernel generates timestamps
    878                         // that appear to be far into the future because they were generated
    879                         // using the wrong clock source.
    880                         //
    881                         // This can happen because when the input device is initially opened
    882                         // it has a default clock source of CLOCK_REALTIME.  Any input events
    883                         // enqueued right after the device is opened will have timestamps
    884                         // generated using CLOCK_REALTIME.  We later set the clock source
    885                         // to CLOCK_MONOTONIC but it is already too late.
    886                         //
    887                         // Invalid input event timestamps can result in ANRs, crashes and
    888                         // and other issues that are hard to track down.  We must not let them
    889                         // propagate through the system.
    890                         //
    891                         // Log a warning so that we notice the problem and recover gracefully.
    892                         if (event->when >= now + 10 * 1000000000LL) {
    893                             // Double-check.  Time may have moved on.
    894                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
    895                             if (event->when > time) {
    896                                 ALOGW("An input event from %s has a timestamp that appears to "
    897                                         "have been generated using the wrong clock source "
    898                                         "(expected CLOCK_MONOTONIC): "
    899                                         "event time %" PRId64 ", current time %" PRId64
    900                                         ", call time %" PRId64 ".  "
    901                                         "Using current time instead.",
    902                                         device->path.string(), event->when, time, now);
    903                                 event->when = time;
    904                             } else {
    905                                 ALOGV("Event time is ok but failed the fast path and required "
    906                                         "an extra call to systemTime: "
    907                                         "event time %" PRId64 ", current time %" PRId64
    908                                         ", call time %" PRId64 ".",
    909                                         event->when, time, now);
    910                             }
    911                         }
    912 #else
    913                         event->when = now;
    914 #endif
    915                         event->deviceId = deviceId;
    916                         event->type = iev.type;
    917                         event->code = iev.code;
    918                         event->value = iev.value;
    919                         event += 1;
    920                         capacity -= 1;
    921                     }
    922                     if (capacity == 0) {
    923                         // The result buffer is full.  Reset the pending event index
    924                         // so we will try to read the device again on the next iteration.
    925                         mPendingEventIndex -= 1;
    926                         break;
    927                     }
    928                 }
    929             } else if (eventItem.events & EPOLLHUP) {
    930                 ALOGI("Removing device %s due to epoll hang-up event.",
    931                         device->identifier.name.string());
    932                 deviceChanged = true;
    933                 closeDeviceLocked(device);
    934             } else {
    935                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
    936                         eventItem.events, device->identifier.name.string());
    937             }
    938         }
    939 
    940         // readNotify() will modify the list of devices so this must be done after
    941         // processing all other events to ensure that we read all remaining events
    942         // before closing the devices.
    943         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
    944             mPendingINotify = false;
    945             readNotifyLocked();
    946             deviceChanged = true;
    947         }
    948 
    949         // Report added or removed devices immediately.
    950         if (deviceChanged) {
    951             continue;
    952         }
    953 
    954         // Return now if we have collected any events or if we were explicitly awoken.
    955         if (event != buffer || awoken) {
    956             break;
    957         }
    958 
    959         // Poll for events.  Mind the wake lock dance!
    960         // We hold a wake lock at all times except during epoll_wait().  This works due to some
    961         // subtle choreography.  When a device driver has pending (unread) events, it acquires
    962         // a kernel wake lock.  However, once the last pending event has been read, the device
    963         // driver will release the kernel wake lock.  To prevent the system from going to sleep
    964         // when this happens, the EventHub holds onto its own user wake lock while the client
    965         // is processing events.  Thus the system can only sleep if there are no events
    966         // pending or currently being processed.
    967         //
    968         // The timeout is advisory only.  If the device is asleep, it will not wake just to
    969         // service the timeout.
    970         mPendingEventIndex = 0;
    971 
    972         mLock.unlock(); // release lock before poll, must be before release_wake_lock
    973         release_wake_lock(WAKE_LOCK_ID);
    974 
    975         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
    976 
    977         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
    978         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
    979 
    980         if (pollResult == 0) {
    981             // Timed out.
    982             mPendingEventCount = 0;
    983             break;
    984         }
    985 
    986         if (pollResult < 0) {
    987             // An error occurred.
    988             mPendingEventCount = 0;
    989 
    990             // Sleep after errors to avoid locking up the system.
    991             // Hopefully the error is transient.
    992             if (errno != EINTR) {
    993                 ALOGW("poll failed (errno=%d)\n", errno);
    994                 usleep(100000);
    995             }
    996         } else {
    997             // Some events occurred.
    998             mPendingEventCount = size_t(pollResult);
    999         }
   1000     }
   1001 
   1002     // All done, return the number of events we read.
   1003     return event - buffer;
   1004 }
   1005 
   1006 void EventHub::wake() {
   1007     ALOGV("wake() called");
   1008 
   1009     ssize_t nWrite;
   1010     do {
   1011         nWrite = write(mWakeWritePipeFd, "W", 1);
   1012     } while (nWrite == -1 && errno == EINTR);
   1013 
   1014     if (nWrite != 1 && errno != EAGAIN) {
   1015         ALOGW("Could not write wake signal, errno=%d", errno);
   1016     }
   1017 }
   1018 
   1019 void EventHub::scanDevicesLocked() {
   1020     status_t res = scanDirLocked(DEVICE_PATH);
   1021     if(res < 0) {
   1022         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
   1023     }
   1024     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
   1025         createVirtualKeyboardLocked();
   1026     }
   1027 }
   1028 
   1029 // ----------------------------------------------------------------------------
   1030 
   1031 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
   1032     const uint8_t* end = array + endIndex;
   1033     array += startIndex;
   1034     while (array != end) {
   1035         if (*(array++) != 0) {
   1036             return true;
   1037         }
   1038     }
   1039     return false;
   1040 }
   1041 
   1042 static const int32_t GAMEPAD_KEYCODES[] = {
   1043         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
   1044         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
   1045         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
   1046         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
   1047         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
   1048         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
   1049 };
   1050 
   1051 status_t EventHub::openDeviceLocked(const char *devicePath) {
   1052     char buffer[80];
   1053 
   1054     ALOGV("Opening device: %s", devicePath);
   1055 
   1056     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
   1057     if(fd < 0) {
   1058         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
   1059         return -1;
   1060     }
   1061 
   1062     InputDeviceIdentifier identifier;
   1063 
   1064     // Get device name.
   1065     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
   1066         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
   1067     } else {
   1068         buffer[sizeof(buffer) - 1] = '\0';
   1069         identifier.name.setTo(buffer);
   1070     }
   1071 
   1072     // Check to see if the device is on our excluded list
   1073     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
   1074         const String8& item = mExcludedDevices.itemAt(i);
   1075         if (identifier.name == item) {
   1076             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
   1077             close(fd);
   1078             return -1;
   1079         }
   1080     }
   1081 
   1082     // Get device driver version.
   1083     int driverVersion;
   1084     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
   1085         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
   1086         close(fd);
   1087         return -1;
   1088     }
   1089 
   1090     // Get device identifier.
   1091     struct input_id inputId;
   1092     if(ioctl(fd, EVIOCGID, &inputId)) {
   1093         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
   1094         close(fd);
   1095         return -1;
   1096     }
   1097     identifier.bus = inputId.bustype;
   1098     identifier.product = inputId.product;
   1099     identifier.vendor = inputId.vendor;
   1100     identifier.version = inputId.version;
   1101 
   1102     // Get device physical location.
   1103     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
   1104         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
   1105     } else {
   1106         buffer[sizeof(buffer) - 1] = '\0';
   1107         identifier.location.setTo(buffer);
   1108     }
   1109 
   1110     // Get device unique id.
   1111     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
   1112         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
   1113     } else {
   1114         buffer[sizeof(buffer) - 1] = '\0';
   1115         identifier.uniqueId.setTo(buffer);
   1116     }
   1117 
   1118     // Fill in the descriptor.
   1119     assignDescriptorLocked(identifier);
   1120 
   1121     // Make file descriptor non-blocking for use with poll().
   1122     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
   1123         ALOGE("Error %d making device file descriptor non-blocking.", errno);
   1124         close(fd);
   1125         return -1;
   1126     }
   1127 
   1128     // Allocate device.  (The device object takes ownership of the fd at this point.)
   1129     int32_t deviceId = mNextDeviceId++;
   1130     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
   1131 
   1132     ALOGV("add device %d: %s\n", deviceId, devicePath);
   1133     ALOGV("  bus:        %04x\n"
   1134          "  vendor      %04x\n"
   1135          "  product     %04x\n"
   1136          "  version     %04x\n",
   1137         identifier.bus, identifier.vendor, identifier.product, identifier.version);
   1138     ALOGV("  name:       \"%s\"\n", identifier.name.string());
   1139     ALOGV("  location:   \"%s\"\n", identifier.location.string());
   1140     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
   1141     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
   1142     ALOGV("  driver:     v%d.%d.%d\n",
   1143         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
   1144 
   1145     // Load the configuration file for the device.
   1146     loadConfigurationLocked(device);
   1147 
   1148     // Figure out the kinds of events the device reports.
   1149     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
   1150     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
   1151     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
   1152     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
   1153     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
   1154     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
   1155     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
   1156 
   1157     // See if this is a keyboard.  Ignore everything in the button range except for
   1158     // joystick and gamepad buttons which are handled like keyboards for the most part.
   1159     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
   1160             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
   1161                     sizeof_bit_array(KEY_MAX + 1));
   1162     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
   1163                     sizeof_bit_array(BTN_MOUSE))
   1164             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
   1165                     sizeof_bit_array(BTN_DIGI));
   1166     if (haveKeyboardKeys || haveGamepadButtons) {
   1167         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
   1168     }
   1169 
   1170     // See if this is a cursor device such as a trackball or mouse.
   1171     if (test_bit(BTN_MOUSE, device->keyBitmask)
   1172             && test_bit(REL_X, device->relBitmask)
   1173             && test_bit(REL_Y, device->relBitmask)) {
   1174         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
   1175     }
   1176 
   1177     // See if this is a touch pad.
   1178     // Is this a new modern multi-touch driver?
   1179     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
   1180             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
   1181         // Some joysticks such as the PS3 controller report axes that conflict
   1182         // with the ABS_MT range.  Try to confirm that the device really is
   1183         // a touch screen.
   1184         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
   1185             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
   1186         }
   1187     // Is this an old style single-touch driver?
   1188     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
   1189             && test_bit(ABS_X, device->absBitmask)
   1190             && test_bit(ABS_Y, device->absBitmask)) {
   1191         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
   1192     }
   1193 
   1194     // See if this device is a joystick.
   1195     // Assumes that joysticks always have gamepad buttons in order to distinguish them
   1196     // from other devices such as accelerometers that also have absolute axes.
   1197     if (haveGamepadButtons) {
   1198         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
   1199         for (int i = 0; i <= ABS_MAX; i++) {
   1200             if (test_bit(i, device->absBitmask)
   1201                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
   1202                 device->classes = assumedClasses;
   1203                 break;
   1204             }
   1205         }
   1206     }
   1207 
   1208     // Check whether this device has switches.
   1209     for (int i = 0; i <= SW_MAX; i++) {
   1210         if (test_bit(i, device->swBitmask)) {
   1211             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
   1212             break;
   1213         }
   1214     }
   1215 
   1216     // Check whether this device supports the vibrator.
   1217     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
   1218         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
   1219     }
   1220 
   1221     // Configure virtual keys.
   1222     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
   1223         // Load the virtual keys for the touch screen, if any.
   1224         // We do this now so that we can make sure to load the keymap if necessary.
   1225         status_t status = loadVirtualKeyMapLocked(device);
   1226         if (!status) {
   1227             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
   1228         }
   1229     }
   1230 
   1231     // Load the key map.
   1232     // We need to do this for joysticks too because the key layout may specify axes.
   1233     status_t keyMapStatus = NAME_NOT_FOUND;
   1234     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
   1235         // Load the keymap for the device.
   1236         keyMapStatus = loadKeyMapLocked(device);
   1237     }
   1238 
   1239     // Configure the keyboard, gamepad or virtual keyboard.
   1240     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
   1241         // Register the keyboard as a built-in keyboard if it is eligible.
   1242         if (!keyMapStatus
   1243                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
   1244                 && isEligibleBuiltInKeyboard(device->identifier,
   1245                         device->configuration, &device->keyMap)) {
   1246             mBuiltInKeyboardId = device->id;
   1247         }
   1248 
   1249         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
   1250         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
   1251             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
   1252         }
   1253 
   1254         // See if this device has a DPAD.
   1255         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
   1256                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
   1257                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
   1258                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
   1259                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
   1260             device->classes |= INPUT_DEVICE_CLASS_DPAD;
   1261         }
   1262 
   1263         // See if this device has a gamepad.
   1264         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
   1265             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
   1266                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
   1267                 break;
   1268             }
   1269         }
   1270 
   1271         // Disable kernel key repeat since we handle it ourselves
   1272         unsigned int repeatRate[] = {0,0};
   1273         if (ioctl(fd, EVIOCSREP, repeatRate)) {
   1274             ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
   1275         }
   1276     }
   1277 
   1278     // If the device isn't recognized as something we handle, don't monitor it.
   1279     if (device->classes == 0) {
   1280         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
   1281                 deviceId, devicePath, device->identifier.name.string());
   1282         delete device;
   1283         return -1;
   1284     }
   1285 
   1286     // Determine whether the device is external or internal.
   1287     if (isExternalDeviceLocked(device)) {
   1288         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
   1289     }
   1290 
   1291     if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
   1292             && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
   1293         device->controllerNumber = getNextControllerNumberLocked(device);
   1294         setLedForController(device);
   1295     }
   1296 
   1297     // Register with epoll.
   1298     struct epoll_event eventItem;
   1299     memset(&eventItem, 0, sizeof(eventItem));
   1300     eventItem.events = mUsingEpollWakeup ? EPOLLIN : EPOLLIN | EPOLLWAKEUP;
   1301     eventItem.data.u32 = deviceId;
   1302     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
   1303         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
   1304         delete device;
   1305         return -1;
   1306     }
   1307 
   1308     String8 wakeMechanism("EPOLLWAKEUP");
   1309     if (!mUsingEpollWakeup) {
   1310 #ifndef EVIOCSSUSPENDBLOCK
   1311         // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
   1312         // will use an epoll flag instead, so as long as we want to support
   1313         // this feature, we need to be prepared to define the ioctl ourselves.
   1314 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
   1315 #endif
   1316         if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) {
   1317             wakeMechanism = "<none>";
   1318         } else {
   1319             wakeMechanism = "EVIOCSSUSPENDBLOCK";
   1320         }
   1321     }
   1322 
   1323     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
   1324     // associated with input events.  This is important because the input system
   1325     // uses the timestamps extensively and assumes they were recorded using the monotonic
   1326     // clock.
   1327     //
   1328     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
   1329     // clock to use to input event timestamps.  The standard kernel behavior was to
   1330     // record a real time timestamp, which isn't what we want.  Android kernels therefore
   1331     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
   1332     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
   1333     // clock to be used instead of the real time clock.
   1334     //
   1335     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
   1336     // Therefore, we no longer require the Android-specific kernel patch described above
   1337     // as long as we make sure to set select the monotonic clock.  We do that here.
   1338     int clockId = CLOCK_MONOTONIC;
   1339     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
   1340 
   1341     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
   1342             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
   1343             "wakeMechanism=%s, usingClockIoctl=%s",
   1344          deviceId, fd, devicePath, device->identifier.name.string(),
   1345          device->classes,
   1346          device->configurationFile.string(),
   1347          device->keyMap.keyLayoutFile.string(),
   1348          device->keyMap.keyCharacterMapFile.string(),
   1349          toString(mBuiltInKeyboardId == deviceId),
   1350          wakeMechanism.string(), toString(usingClockIoctl));
   1351 
   1352     addDeviceLocked(device);
   1353     return 0;
   1354 }
   1355 
   1356 void EventHub::createVirtualKeyboardLocked() {
   1357     InputDeviceIdentifier identifier;
   1358     identifier.name = "Virtual";
   1359     identifier.uniqueId = "<virtual>";
   1360     assignDescriptorLocked(identifier);
   1361 
   1362     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
   1363     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
   1364             | INPUT_DEVICE_CLASS_ALPHAKEY
   1365             | INPUT_DEVICE_CLASS_DPAD
   1366             | INPUT_DEVICE_CLASS_VIRTUAL;
   1367     loadKeyMapLocked(device);
   1368     addDeviceLocked(device);
   1369 }
   1370 
   1371 void EventHub::addDeviceLocked(Device* device) {
   1372     mDevices.add(device->id, device);
   1373     device->next = mOpeningDevices;
   1374     mOpeningDevices = device;
   1375 }
   1376 
   1377 void EventHub::loadConfigurationLocked(Device* device) {
   1378     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
   1379             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
   1380     if (device->configurationFile.isEmpty()) {
   1381         ALOGD("No input device configuration file found for device '%s'.",
   1382                 device->identifier.name.string());
   1383     } else {
   1384         status_t status = PropertyMap::load(device->configurationFile,
   1385                 &device->configuration);
   1386         if (status) {
   1387             ALOGE("Error loading input device configuration file for device '%s'.  "
   1388                     "Using default configuration.",
   1389                     device->identifier.name.string());
   1390         }
   1391     }
   1392 }
   1393 
   1394 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
   1395     // The virtual key map is supplied by the kernel as a system board property file.
   1396     String8 path;
   1397     path.append("/sys/board_properties/virtualkeys.");
   1398     path.append(device->identifier.name);
   1399     if (access(path.string(), R_OK)) {
   1400         return NAME_NOT_FOUND;
   1401     }
   1402     return VirtualKeyMap::load(path, &device->virtualKeyMap);
   1403 }
   1404 
   1405 status_t EventHub::loadKeyMapLocked(Device* device) {
   1406     return device->keyMap.load(device->identifier, device->configuration);
   1407 }
   1408 
   1409 bool EventHub::isExternalDeviceLocked(Device* device) {
   1410     if (device->configuration) {
   1411         bool value;
   1412         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
   1413             return !value;
   1414         }
   1415     }
   1416     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
   1417 }
   1418 
   1419 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
   1420     if (mControllerNumbers.isFull()) {
   1421         ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
   1422                 device->identifier.name.string());
   1423         return 0;
   1424     }
   1425     // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
   1426     // one
   1427     return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
   1428 }
   1429 
   1430 void EventHub::releaseControllerNumberLocked(Device* device) {
   1431     int32_t num = device->controllerNumber;
   1432     device->controllerNumber= 0;
   1433     if (num == 0) {
   1434         return;
   1435     }
   1436     mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
   1437 }
   1438 
   1439 void EventHub::setLedForController(Device* device) {
   1440     for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
   1441         setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
   1442     }
   1443 }
   1444 
   1445 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
   1446     if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
   1447         return false;
   1448     }
   1449 
   1450     Vector<int32_t> scanCodes;
   1451     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
   1452     const size_t N = scanCodes.size();
   1453     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
   1454         int32_t sc = scanCodes.itemAt(i);
   1455         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
   1456             return true;
   1457         }
   1458     }
   1459 
   1460     return false;
   1461 }
   1462 
   1463 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
   1464     if (!device->keyMap.haveKeyLayout() || !device->ledBitmask) {
   1465         return NAME_NOT_FOUND;
   1466     }
   1467 
   1468     int32_t scanCode;
   1469     if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
   1470         if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
   1471             *outScanCode = scanCode;
   1472             return NO_ERROR;
   1473         }
   1474     }
   1475     return NAME_NOT_FOUND;
   1476 }
   1477 
   1478 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
   1479     Device* device = getDeviceByPathLocked(devicePath);
   1480     if (device) {
   1481         closeDeviceLocked(device);
   1482         return 0;
   1483     }
   1484     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
   1485     return -1;
   1486 }
   1487 
   1488 void EventHub::closeAllDevicesLocked() {
   1489     while (mDevices.size() > 0) {
   1490         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
   1491     }
   1492 }
   1493 
   1494 void EventHub::closeDeviceLocked(Device* device) {
   1495     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
   1496          device->path.string(), device->identifier.name.string(), device->id,
   1497          device->fd, device->classes);
   1498 
   1499     if (device->id == mBuiltInKeyboardId) {
   1500         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
   1501                 device->path.string(), mBuiltInKeyboardId);
   1502         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
   1503     }
   1504 
   1505     if (!device->isVirtual()) {
   1506         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
   1507             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
   1508         }
   1509     }
   1510 
   1511     releaseControllerNumberLocked(device);
   1512 
   1513     mDevices.removeItem(device->id);
   1514     device->close();
   1515 
   1516     // Unlink for opening devices list if it is present.
   1517     Device* pred = NULL;
   1518     bool found = false;
   1519     for (Device* entry = mOpeningDevices; entry != NULL; ) {
   1520         if (entry == device) {
   1521             found = true;
   1522             break;
   1523         }
   1524         pred = entry;
   1525         entry = entry->next;
   1526     }
   1527     if (found) {
   1528         // Unlink the device from the opening devices list then delete it.
   1529         // We don't need to tell the client that the device was closed because
   1530         // it does not even know it was opened in the first place.
   1531         ALOGI("Device %s was immediately closed after opening.", device->path.string());
   1532         if (pred) {
   1533             pred->next = device->next;
   1534         } else {
   1535             mOpeningDevices = device->next;
   1536         }
   1537         delete device;
   1538     } else {
   1539         // Link into closing devices list.
   1540         // The device will be deleted later after we have informed the client.
   1541         device->next = mClosingDevices;
   1542         mClosingDevices = device;
   1543     }
   1544 }
   1545 
   1546 status_t EventHub::readNotifyLocked() {
   1547     int res;
   1548     char devname[PATH_MAX];
   1549     char *filename;
   1550     char event_buf[512];
   1551     int event_size;
   1552     int event_pos = 0;
   1553     struct inotify_event *event;
   1554 
   1555     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
   1556     res = read(mINotifyFd, event_buf, sizeof(event_buf));
   1557     if(res < (int)sizeof(*event)) {
   1558         if(errno == EINTR)
   1559             return 0;
   1560         ALOGW("could not get event, %s\n", strerror(errno));
   1561         return -1;
   1562     }
   1563     //printf("got %d bytes of event information\n", res);
   1564 
   1565     strcpy(devname, DEVICE_PATH);
   1566     filename = devname + strlen(devname);
   1567     *filename++ = '/';
   1568 
   1569     while(res >= (int)sizeof(*event)) {
   1570         event = (struct inotify_event *)(event_buf + event_pos);
   1571         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
   1572         if(event->len) {
   1573             strcpy(filename, event->name);
   1574             if(event->mask & IN_CREATE) {
   1575                 openDeviceLocked(devname);
   1576             } else {
   1577                 ALOGI("Removing device '%s' due to inotify event\n", devname);
   1578                 closeDeviceByPathLocked(devname);
   1579             }
   1580         }
   1581         event_size = sizeof(*event) + event->len;
   1582         res -= event_size;
   1583         event_pos += event_size;
   1584     }
   1585     return 0;
   1586 }
   1587 
   1588 status_t EventHub::scanDirLocked(const char *dirname)
   1589 {
   1590     char devname[PATH_MAX];
   1591     char *filename;
   1592     DIR *dir;
   1593     struct dirent *de;
   1594     dir = opendir(dirname);
   1595     if(dir == NULL)
   1596         return -1;
   1597     strcpy(devname, dirname);
   1598     filename = devname + strlen(devname);
   1599     *filename++ = '/';
   1600     while((de = readdir(dir))) {
   1601         if(de->d_name[0] == '.' &&
   1602            (de->d_name[1] == '\0' ||
   1603             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
   1604             continue;
   1605         strcpy(filename, de->d_name);
   1606         openDeviceLocked(devname);
   1607     }
   1608     closedir(dir);
   1609     return 0;
   1610 }
   1611 
   1612 void EventHub::requestReopenDevices() {
   1613     ALOGV("requestReopenDevices() called");
   1614 
   1615     AutoMutex _l(mLock);
   1616     mNeedToReopenDevices = true;
   1617 }
   1618 
   1619 void EventHub::dump(String8& dump) {
   1620     dump.append("Event Hub State:\n");
   1621 
   1622     { // acquire lock
   1623         AutoMutex _l(mLock);
   1624 
   1625         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
   1626 
   1627         dump.append(INDENT "Devices:\n");
   1628 
   1629         for (size_t i = 0; i < mDevices.size(); i++) {
   1630             const Device* device = mDevices.valueAt(i);
   1631             if (mBuiltInKeyboardId == device->id) {
   1632                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
   1633                         device->id, device->identifier.name.string());
   1634             } else {
   1635                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
   1636                         device->identifier.name.string());
   1637             }
   1638             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
   1639             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
   1640             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
   1641             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
   1642             dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
   1643             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
   1644             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
   1645                     "product=0x%04x, version=0x%04x\n",
   1646                     device->identifier.bus, device->identifier.vendor,
   1647                     device->identifier.product, device->identifier.version);
   1648             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
   1649                     device->keyMap.keyLayoutFile.string());
   1650             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
   1651                     device->keyMap.keyCharacterMapFile.string());
   1652             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
   1653                     device->configurationFile.string());
   1654             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
   1655                     toString(device->overlayKeyMap != NULL));
   1656         }
   1657     } // release lock
   1658 }
   1659 
   1660 void EventHub::monitor() {
   1661     // Acquire and release the lock to ensure that the event hub has not deadlocked.
   1662     mLock.lock();
   1663     mLock.unlock();
   1664 }
   1665 
   1666 
   1667 }; // namespace android
   1668