Home | History | Annotate | Download | only in test
      1 /*
      2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <math.h>
     12 #include <stdlib.h>
     13 #include <string.h>
     14 
     15 #include "third_party/googletest/src/include/gtest/gtest.h"
     16 #include "test/acm_random.h"
     17 #include "test/clear_system_state.h"
     18 #include "test/register_state_check.h"
     19 #include "test/util.h"
     20 
     21 #include "./vpx_config.h"
     22 #include "./vp9_rtcd.h"
     23 #include "vp9/common/vp9_entropy.h"
     24 #include "vpx/vpx_integer.h"
     25 
     26 using libvpx_test::ACMRandom;
     27 
     28 namespace {
     29 #ifdef _MSC_VER
     30 static int round(double x) {
     31   if (x < 0)
     32     return static_cast<int>(ceil(x - 0.5));
     33   else
     34     return static_cast<int>(floor(x + 0.5));
     35 }
     36 #endif
     37 
     38 const int kNumCoeffs = 1024;
     39 const double kPi = 3.141592653589793238462643383279502884;
     40 void reference_32x32_dct_1d(const double in[32], double out[32], int stride) {
     41   const double kInvSqrt2 = 0.707106781186547524400844362104;
     42   for (int k = 0; k < 32; k++) {
     43     out[k] = 0.0;
     44     for (int n = 0; n < 32; n++)
     45       out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
     46     if (k == 0)
     47       out[k] = out[k] * kInvSqrt2;
     48   }
     49 }
     50 
     51 void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
     52                             double output[kNumCoeffs]) {
     53   // First transform columns
     54   for (int i = 0; i < 32; ++i) {
     55     double temp_in[32], temp_out[32];
     56     for (int j = 0; j < 32; ++j)
     57       temp_in[j] = input[j*32 + i];
     58     reference_32x32_dct_1d(temp_in, temp_out, 1);
     59     for (int j = 0; j < 32; ++j)
     60       output[j * 32 + i] = temp_out[j];
     61   }
     62   // Then transform rows
     63   for (int i = 0; i < 32; ++i) {
     64     double temp_in[32], temp_out[32];
     65     for (int j = 0; j < 32; ++j)
     66       temp_in[j] = output[j + i*32];
     67     reference_32x32_dct_1d(temp_in, temp_out, 1);
     68     // Scale by some magic number
     69     for (int j = 0; j < 32; ++j)
     70       output[j + i * 32] = temp_out[j] / 4;
     71   }
     72 }
     73 
     74 typedef void (*fwd_txfm_t)(const int16_t *in, int16_t *out, int stride);
     75 typedef void (*inv_txfm_t)(const int16_t *in, uint8_t *out, int stride);
     76 
     77 typedef std::tr1::tuple<fwd_txfm_t, inv_txfm_t, int> trans_32x32_param_t;
     78 
     79 class Trans32x32Test : public ::testing::TestWithParam<trans_32x32_param_t> {
     80  public:
     81   virtual ~Trans32x32Test() {}
     82   virtual void SetUp() {
     83     fwd_txfm_ = GET_PARAM(0);
     84     inv_txfm_ = GET_PARAM(1);
     85     version_  = GET_PARAM(2);  // 0: high precision forward transform
     86                                // 1: low precision version for rd loop
     87   }
     88 
     89   virtual void TearDown() { libvpx_test::ClearSystemState(); }
     90 
     91  protected:
     92   int version_;
     93   fwd_txfm_t fwd_txfm_;
     94   inv_txfm_t inv_txfm_;
     95 };
     96 
     97 TEST_P(Trans32x32Test, AccuracyCheck) {
     98   ACMRandom rnd(ACMRandom::DeterministicSeed());
     99   uint32_t max_error = 0;
    100   int64_t total_error = 0;
    101   const int count_test_block = 1000;
    102   DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
    103   DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
    104   DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
    105   DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
    106 
    107   for (int i = 0; i < count_test_block; ++i) {
    108     // Initialize a test block with input range [-255, 255].
    109     for (int j = 0; j < kNumCoeffs; ++j) {
    110       src[j] = rnd.Rand8();
    111       dst[j] = rnd.Rand8();
    112       test_input_block[j] = src[j] - dst[j];
    113     }
    114 
    115     REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
    116     REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
    117 
    118     for (int j = 0; j < kNumCoeffs; ++j) {
    119       const uint32_t diff = dst[j] - src[j];
    120       const uint32_t error = diff * diff;
    121       if (max_error < error)
    122         max_error = error;
    123       total_error += error;
    124     }
    125   }
    126 
    127   if (version_ == 1) {
    128     max_error /= 2;
    129     total_error /= 45;
    130   }
    131 
    132   EXPECT_GE(1u, max_error)
    133       << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
    134 
    135   EXPECT_GE(count_test_block, total_error)
    136       << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
    137 }
    138 
    139 TEST_P(Trans32x32Test, CoeffCheck) {
    140   ACMRandom rnd(ACMRandom::DeterministicSeed());
    141   const int count_test_block = 1000;
    142 
    143   DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
    144   DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
    145   DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
    146 
    147   for (int i = 0; i < count_test_block; ++i) {
    148     for (int j = 0; j < kNumCoeffs; ++j)
    149       input_block[j] = rnd.Rand8() - rnd.Rand8();
    150 
    151     const int stride = 32;
    152     vp9_fdct32x32_c(input_block, output_ref_block, stride);
    153     REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));
    154 
    155     if (version_ == 0) {
    156       for (int j = 0; j < kNumCoeffs; ++j)
    157         EXPECT_EQ(output_block[j], output_ref_block[j])
    158             << "Error: 32x32 FDCT versions have mismatched coefficients";
    159     } else {
    160       for (int j = 0; j < kNumCoeffs; ++j)
    161         EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
    162             << "Error: 32x32 FDCT rd has mismatched coefficients";
    163     }
    164   }
    165 }
    166 
    167 TEST_P(Trans32x32Test, MemCheck) {
    168   ACMRandom rnd(ACMRandom::DeterministicSeed());
    169   const int count_test_block = 2000;
    170 
    171   DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
    172   DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
    173   DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
    174   DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
    175 
    176   for (int i = 0; i < count_test_block; ++i) {
    177     // Initialize a test block with input range [-255, 255].
    178     for (int j = 0; j < kNumCoeffs; ++j) {
    179       input_block[j] = rnd.Rand8() - rnd.Rand8();
    180       input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255;
    181     }
    182     if (i == 0)
    183       for (int j = 0; j < kNumCoeffs; ++j)
    184         input_extreme_block[j] = 255;
    185     if (i == 1)
    186       for (int j = 0; j < kNumCoeffs; ++j)
    187         input_extreme_block[j] = -255;
    188 
    189     const int stride = 32;
    190     vp9_fdct32x32_c(input_extreme_block, output_ref_block, stride);
    191     REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, stride));
    192 
    193     // The minimum quant value is 4.
    194     for (int j = 0; j < kNumCoeffs; ++j) {
    195       if (version_ == 0) {
    196         EXPECT_EQ(output_block[j], output_ref_block[j])
    197             << "Error: 32x32 FDCT versions have mismatched coefficients";
    198       } else {
    199         EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
    200             << "Error: 32x32 FDCT rd has mismatched coefficients";
    201       }
    202       EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j]))
    203           << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
    204       EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
    205           << "Error: 32x32 FDCT has coefficient larger than "
    206           << "4*DCT_MAX_VALUE";
    207     }
    208   }
    209 }
    210 
    211 TEST_P(Trans32x32Test, InverseAccuracy) {
    212   ACMRandom rnd(ACMRandom::DeterministicSeed());
    213   const int count_test_block = 1000;
    214   DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
    215   DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
    216   DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
    217   DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
    218 
    219   for (int i = 0; i < count_test_block; ++i) {
    220     double out_r[kNumCoeffs];
    221 
    222     // Initialize a test block with input range [-255, 255]
    223     for (int j = 0; j < kNumCoeffs; ++j) {
    224       src[j] = rnd.Rand8();
    225       dst[j] = rnd.Rand8();
    226       in[j] = src[j] - dst[j];
    227     }
    228 
    229     reference_32x32_dct_2d(in, out_r);
    230     for (int j = 0; j < kNumCoeffs; ++j)
    231       coeff[j] = round(out_r[j]);
    232     REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
    233     for (int j = 0; j < kNumCoeffs; ++j) {
    234       const int diff = dst[j] - src[j];
    235       const int error = diff * diff;
    236       EXPECT_GE(1, error)
    237           << "Error: 32x32 IDCT has error " << error
    238           << " at index " << j;
    239     }
    240   }
    241 }
    242 
    243 using std::tr1::make_tuple;
    244 
    245 INSTANTIATE_TEST_CASE_P(
    246     C, Trans32x32Test,
    247     ::testing::Values(
    248         make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, 0),
    249         make_tuple(&vp9_fdct32x32_rd_c, &vp9_idct32x32_1024_add_c, 1)));
    250 
    251 #if HAVE_NEON
    252 INSTANTIATE_TEST_CASE_P(
    253     NEON, Trans32x32Test,
    254     ::testing::Values(
    255         make_tuple(&vp9_fdct32x32_c,
    256                    &vp9_idct32x32_1024_add_neon, 0),
    257         make_tuple(&vp9_fdct32x32_rd_c,
    258                    &vp9_idct32x32_1024_add_neon, 1)));
    259 #endif
    260 
    261 #if HAVE_SSE2
    262 INSTANTIATE_TEST_CASE_P(
    263     SSE2, Trans32x32Test,
    264     ::testing::Values(
    265         make_tuple(&vp9_fdct32x32_sse2,
    266                    &vp9_idct32x32_1024_add_sse2, 0),
    267         make_tuple(&vp9_fdct32x32_rd_sse2,
    268                    &vp9_idct32x32_1024_add_sse2, 1)));
    269 #endif
    270 
    271 #if HAVE_AVX2
    272 INSTANTIATE_TEST_CASE_P(
    273     AVX2, Trans32x32Test,
    274     ::testing::Values(
    275         make_tuple(&vp9_fdct32x32_avx2,
    276                    &vp9_idct32x32_1024_add_sse2, 0),
    277         make_tuple(&vp9_fdct32x32_rd_avx2,
    278                    &vp9_idct32x32_1024_add_sse2, 1)));
    279 #endif
    280 }  // namespace
    281