1 /* 2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <math.h> 12 #include <stdlib.h> 13 #include <string.h> 14 15 #include "third_party/googletest/src/include/gtest/gtest.h" 16 #include "test/acm_random.h" 17 #include "test/clear_system_state.h" 18 #include "test/register_state_check.h" 19 #include "test/util.h" 20 21 #include "./vpx_config.h" 22 #include "./vp9_rtcd.h" 23 #include "vp9/common/vp9_entropy.h" 24 #include "vpx/vpx_integer.h" 25 26 using libvpx_test::ACMRandom; 27 28 namespace { 29 #ifdef _MSC_VER 30 static int round(double x) { 31 if (x < 0) 32 return static_cast<int>(ceil(x - 0.5)); 33 else 34 return static_cast<int>(floor(x + 0.5)); 35 } 36 #endif 37 38 const int kNumCoeffs = 1024; 39 const double kPi = 3.141592653589793238462643383279502884; 40 void reference_32x32_dct_1d(const double in[32], double out[32], int stride) { 41 const double kInvSqrt2 = 0.707106781186547524400844362104; 42 for (int k = 0; k < 32; k++) { 43 out[k] = 0.0; 44 for (int n = 0; n < 32; n++) 45 out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); 46 if (k == 0) 47 out[k] = out[k] * kInvSqrt2; 48 } 49 } 50 51 void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], 52 double output[kNumCoeffs]) { 53 // First transform columns 54 for (int i = 0; i < 32; ++i) { 55 double temp_in[32], temp_out[32]; 56 for (int j = 0; j < 32; ++j) 57 temp_in[j] = input[j*32 + i]; 58 reference_32x32_dct_1d(temp_in, temp_out, 1); 59 for (int j = 0; j < 32; ++j) 60 output[j * 32 + i] = temp_out[j]; 61 } 62 // Then transform rows 63 for (int i = 0; i < 32; ++i) { 64 double temp_in[32], temp_out[32]; 65 for (int j = 0; j < 32; ++j) 66 temp_in[j] = output[j + i*32]; 67 reference_32x32_dct_1d(temp_in, temp_out, 1); 68 // Scale by some magic number 69 for (int j = 0; j < 32; ++j) 70 output[j + i * 32] = temp_out[j] / 4; 71 } 72 } 73 74 typedef void (*fwd_txfm_t)(const int16_t *in, int16_t *out, int stride); 75 typedef void (*inv_txfm_t)(const int16_t *in, uint8_t *out, int stride); 76 77 typedef std::tr1::tuple<fwd_txfm_t, inv_txfm_t, int> trans_32x32_param_t; 78 79 class Trans32x32Test : public ::testing::TestWithParam<trans_32x32_param_t> { 80 public: 81 virtual ~Trans32x32Test() {} 82 virtual void SetUp() { 83 fwd_txfm_ = GET_PARAM(0); 84 inv_txfm_ = GET_PARAM(1); 85 version_ = GET_PARAM(2); // 0: high precision forward transform 86 // 1: low precision version for rd loop 87 } 88 89 virtual void TearDown() { libvpx_test::ClearSystemState(); } 90 91 protected: 92 int version_; 93 fwd_txfm_t fwd_txfm_; 94 inv_txfm_t inv_txfm_; 95 }; 96 97 TEST_P(Trans32x32Test, AccuracyCheck) { 98 ACMRandom rnd(ACMRandom::DeterministicSeed()); 99 uint32_t max_error = 0; 100 int64_t total_error = 0; 101 const int count_test_block = 1000; 102 DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs); 103 DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs); 104 DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); 105 DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); 106 107 for (int i = 0; i < count_test_block; ++i) { 108 // Initialize a test block with input range [-255, 255]. 109 for (int j = 0; j < kNumCoeffs; ++j) { 110 src[j] = rnd.Rand8(); 111 dst[j] = rnd.Rand8(); 112 test_input_block[j] = src[j] - dst[j]; 113 } 114 115 REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); 116 REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); 117 118 for (int j = 0; j < kNumCoeffs; ++j) { 119 const uint32_t diff = dst[j] - src[j]; 120 const uint32_t error = diff * diff; 121 if (max_error < error) 122 max_error = error; 123 total_error += error; 124 } 125 } 126 127 if (version_ == 1) { 128 max_error /= 2; 129 total_error /= 45; 130 } 131 132 EXPECT_GE(1u, max_error) 133 << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; 134 135 EXPECT_GE(count_test_block, total_error) 136 << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; 137 } 138 139 TEST_P(Trans32x32Test, CoeffCheck) { 140 ACMRandom rnd(ACMRandom::DeterministicSeed()); 141 const int count_test_block = 1000; 142 143 DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); 144 DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); 145 DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); 146 147 for (int i = 0; i < count_test_block; ++i) { 148 for (int j = 0; j < kNumCoeffs; ++j) 149 input_block[j] = rnd.Rand8() - rnd.Rand8(); 150 151 const int stride = 32; 152 vp9_fdct32x32_c(input_block, output_ref_block, stride); 153 REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); 154 155 if (version_ == 0) { 156 for (int j = 0; j < kNumCoeffs; ++j) 157 EXPECT_EQ(output_block[j], output_ref_block[j]) 158 << "Error: 32x32 FDCT versions have mismatched coefficients"; 159 } else { 160 for (int j = 0; j < kNumCoeffs; ++j) 161 EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) 162 << "Error: 32x32 FDCT rd has mismatched coefficients"; 163 } 164 } 165 } 166 167 TEST_P(Trans32x32Test, MemCheck) { 168 ACMRandom rnd(ACMRandom::DeterministicSeed()); 169 const int count_test_block = 2000; 170 171 DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); 172 DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs); 173 DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); 174 DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); 175 176 for (int i = 0; i < count_test_block; ++i) { 177 // Initialize a test block with input range [-255, 255]. 178 for (int j = 0; j < kNumCoeffs; ++j) { 179 input_block[j] = rnd.Rand8() - rnd.Rand8(); 180 input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255; 181 } 182 if (i == 0) 183 for (int j = 0; j < kNumCoeffs; ++j) 184 input_extreme_block[j] = 255; 185 if (i == 1) 186 for (int j = 0; j < kNumCoeffs; ++j) 187 input_extreme_block[j] = -255; 188 189 const int stride = 32; 190 vp9_fdct32x32_c(input_extreme_block, output_ref_block, stride); 191 REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, stride)); 192 193 // The minimum quant value is 4. 194 for (int j = 0; j < kNumCoeffs; ++j) { 195 if (version_ == 0) { 196 EXPECT_EQ(output_block[j], output_ref_block[j]) 197 << "Error: 32x32 FDCT versions have mismatched coefficients"; 198 } else { 199 EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) 200 << "Error: 32x32 FDCT rd has mismatched coefficients"; 201 } 202 EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j])) 203 << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; 204 EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j])) 205 << "Error: 32x32 FDCT has coefficient larger than " 206 << "4*DCT_MAX_VALUE"; 207 } 208 } 209 } 210 211 TEST_P(Trans32x32Test, InverseAccuracy) { 212 ACMRandom rnd(ACMRandom::DeterministicSeed()); 213 const int count_test_block = 1000; 214 DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); 215 DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs); 216 DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); 217 DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); 218 219 for (int i = 0; i < count_test_block; ++i) { 220 double out_r[kNumCoeffs]; 221 222 // Initialize a test block with input range [-255, 255] 223 for (int j = 0; j < kNumCoeffs; ++j) { 224 src[j] = rnd.Rand8(); 225 dst[j] = rnd.Rand8(); 226 in[j] = src[j] - dst[j]; 227 } 228 229 reference_32x32_dct_2d(in, out_r); 230 for (int j = 0; j < kNumCoeffs; ++j) 231 coeff[j] = round(out_r[j]); 232 REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); 233 for (int j = 0; j < kNumCoeffs; ++j) { 234 const int diff = dst[j] - src[j]; 235 const int error = diff * diff; 236 EXPECT_GE(1, error) 237 << "Error: 32x32 IDCT has error " << error 238 << " at index " << j; 239 } 240 } 241 } 242 243 using std::tr1::make_tuple; 244 245 INSTANTIATE_TEST_CASE_P( 246 C, Trans32x32Test, 247 ::testing::Values( 248 make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, 0), 249 make_tuple(&vp9_fdct32x32_rd_c, &vp9_idct32x32_1024_add_c, 1))); 250 251 #if HAVE_NEON 252 INSTANTIATE_TEST_CASE_P( 253 NEON, Trans32x32Test, 254 ::testing::Values( 255 make_tuple(&vp9_fdct32x32_c, 256 &vp9_idct32x32_1024_add_neon, 0), 257 make_tuple(&vp9_fdct32x32_rd_c, 258 &vp9_idct32x32_1024_add_neon, 1))); 259 #endif 260 261 #if HAVE_SSE2 262 INSTANTIATE_TEST_CASE_P( 263 SSE2, Trans32x32Test, 264 ::testing::Values( 265 make_tuple(&vp9_fdct32x32_sse2, 266 &vp9_idct32x32_1024_add_sse2, 0), 267 make_tuple(&vp9_fdct32x32_rd_sse2, 268 &vp9_idct32x32_1024_add_sse2, 1))); 269 #endif 270 271 #if HAVE_AVX2 272 INSTANTIATE_TEST_CASE_P( 273 AVX2, Trans32x32Test, 274 ::testing::Values( 275 make_tuple(&vp9_fdct32x32_avx2, 276 &vp9_idct32x32_1024_add_sse2, 0), 277 make_tuple(&vp9_fdct32x32_rd_avx2, 278 &vp9_idct32x32_1024_add_sse2, 1))); 279 #endif 280 } // namespace 281