Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/hypergeometric.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  You should not attempt to use it directly.
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 // Written by Edward Smith-Rowland based:
     36 //   (1) Handbook of Mathematical Functions,
     37 //       ed. Milton Abramowitz and Irene A. Stegun,
     38 //       Dover Publications,
     39 //       Section 6, pp. 555-566
     40 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     41 
     42 #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
     43 #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
     44 
     45 namespace std
     46 {
     47 namespace tr1
     48 {
     49 
     50   // [5.2] Special functions
     51 
     52   // Implementation-space details.
     53   namespace __detail
     54   {
     55 
     56     /**
     57      *   @brief This routine returns the confluent hypergeometric function
     58      *          by series expansion.
     59      * 
     60      *   @f[
     61      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
     62      *                      \sum_{n=0}^{\infty}
     63      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)}
     64      *                      \frac{x^n}{n!}
     65      *   @f]
     66      * 
     67      *   If a and b are integers and a < 0 and either b > 0 or b < a then the
     68      *   series is a polynomial with a finite number of terms.  If b is an integer
     69      *   and b <= 0 the confluent hypergeometric function is undefined.
     70      *
     71      *   @param  __a  The "numerator" parameter.
     72      *   @param  __c  The "denominator" parameter.
     73      *   @param  __x  The argument of the confluent hypergeometric function.
     74      *   @return  The confluent hypergeometric function.
     75      */
     76     template<typename _Tp>
     77     _Tp
     78     __conf_hyperg_series(const _Tp __a, const _Tp __c, const _Tp __x)
     79     {
     80       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
     81 
     82       _Tp __term = _Tp(1);
     83       _Tp __Fac = _Tp(1);
     84       const unsigned int __max_iter = 100000;
     85       unsigned int __i;
     86       for (__i = 0; __i < __max_iter; ++__i)
     87         {
     88           __term *= (__a + _Tp(__i)) * __x
     89                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
     90           if (std::abs(__term) < __eps)
     91             {
     92               break;
     93             }
     94           __Fac += __term;
     95         }
     96       if (__i == __max_iter)
     97         std::__throw_runtime_error(__N("Series failed to converge "
     98                                        "in __conf_hyperg_series."));
     99 
    100       return __Fac;
    101     }
    102 
    103 
    104     /**
    105      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
    106      *          by an iterative procedure described in
    107      *          Luke, Algorithms for the Computation of Mathematical Functions.
    108      *
    109      *  Like the case of the 2F1 rational approximations, these are 
    110      *  probably guaranteed to converge for x < 0, barring gross    
    111      *  numerical instability in the pre-asymptotic regime.         
    112      */
    113     template<typename _Tp>
    114     _Tp
    115     __conf_hyperg_luke(const _Tp __a, const _Tp __c, const _Tp __xin)
    116     {
    117       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
    118       const int __nmax = 20000;
    119       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    120       const _Tp __x  = -__xin;
    121       const _Tp __x3 = __x * __x * __x;
    122       const _Tp __t0 = __a / __c;
    123       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
    124       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
    125       _Tp __F = _Tp(1);
    126       _Tp __prec;
    127 
    128       _Tp __Bnm3 = _Tp(1);
    129       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
    130       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
    131 
    132       _Tp __Anm3 = _Tp(1);
    133       _Tp __Anm2 = __Bnm2 - __t0 * __x;
    134       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
    135                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
    136 
    137       int __n = 3;
    138       while(1)
    139         {
    140           _Tp __npam1 = _Tp(__n - 1) + __a;
    141           _Tp __npcm1 = _Tp(__n - 1) + __c;
    142           _Tp __npam2 = _Tp(__n - 2) + __a;
    143           _Tp __npcm2 = _Tp(__n - 2) + __c;
    144           _Tp __tnm1  = _Tp(2 * __n - 1);
    145           _Tp __tnm3  = _Tp(2 * __n - 3);
    146           _Tp __tnm5  = _Tp(2 * __n - 5);
    147           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
    148           _Tp __F2 =  (_Tp(__n) + __a) * __npam1
    149                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
    150           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
    151                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
    152                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
    153           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c)
    154                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
    155 
    156           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
    157                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
    158           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
    159                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
    160           _Tp __r = __An / __Bn;
    161 
    162           __prec = std::abs((__F - __r) / __F);
    163           __F = __r;
    164 
    165           if (__prec < __eps || __n > __nmax)
    166             break;
    167 
    168           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
    169             {
    170               __An   /= __big;
    171               __Bn   /= __big;
    172               __Anm1 /= __big;
    173               __Bnm1 /= __big;
    174               __Anm2 /= __big;
    175               __Bnm2 /= __big;
    176               __Anm3 /= __big;
    177               __Bnm3 /= __big;
    178             }
    179           else if (std::abs(__An) < _Tp(1) / __big
    180                 || std::abs(__Bn) < _Tp(1) / __big)
    181             {
    182               __An   *= __big;
    183               __Bn   *= __big;
    184               __Anm1 *= __big;
    185               __Bnm1 *= __big;
    186               __Anm2 *= __big;
    187               __Bnm2 *= __big;
    188               __Anm3 *= __big;
    189               __Bnm3 *= __big;
    190             }
    191 
    192           ++__n;
    193           __Bnm3 = __Bnm2;
    194           __Bnm2 = __Bnm1;
    195           __Bnm1 = __Bn;
    196           __Anm3 = __Anm2;
    197           __Anm2 = __Anm1;
    198           __Anm1 = __An;
    199         }
    200 
    201       if (__n >= __nmax)
    202         std::__throw_runtime_error(__N("Iteration failed to converge "
    203                                        "in __conf_hyperg_luke."));
    204 
    205       return __F;
    206     }
    207 
    208 
    209     /**
    210      *   @brief  Return the confluent hypogeometric function
    211      *           @f$ _1F_1(a;c;x) @f$.
    212      * 
    213      *   @todo  Handle b == nonpositive integer blowup - return NaN.
    214      *
    215      *   @param  __a  The "numerator" parameter.
    216      *   @param  __c  The "denominator" parameter.
    217      *   @param  __x  The argument of the confluent hypergeometric function.
    218      *   @return  The confluent hypergeometric function.
    219      */
    220     template<typename _Tp>
    221     inline _Tp
    222     __conf_hyperg(const _Tp __a, const _Tp __c, const _Tp __x)
    223     {
    224 #if _GLIBCXX_USE_C99_MATH_TR1
    225       const _Tp __c_nint = std::tr1::nearbyint(__c);
    226 #else
    227       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
    228 #endif
    229       if (__isnan(__a) || __isnan(__c) || __isnan(__x))
    230         return std::numeric_limits<_Tp>::quiet_NaN();
    231       else if (__c_nint == __c && __c_nint <= 0)
    232         return std::numeric_limits<_Tp>::infinity();
    233       else if (__a == _Tp(0))
    234         return _Tp(1);
    235       else if (__c == __a)
    236         return std::exp(__x);
    237       else if (__x < _Tp(0))
    238         return __conf_hyperg_luke(__a, __c, __x);
    239       else
    240         return __conf_hyperg_series(__a, __c, __x);
    241     }
    242 
    243 
    244     /**
    245      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
    246      *   by series expansion.
    247      * 
    248      *   The hypogeometric function is defined by
    249      *   @f[
    250      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
    251      *                      \sum_{n=0}^{\infty}
    252      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
    253      *                      \frac{x^n}{n!}
    254      *   @f]
    255      * 
    256      *   This works and it's pretty fast.
    257      *
    258      *   @param  __a  The first "numerator" parameter.
    259      *   @param  __a  The second "numerator" parameter.
    260      *   @param  __c  The "denominator" parameter.
    261      *   @param  __x  The argument of the confluent hypergeometric function.
    262      *   @return  The confluent hypergeometric function.
    263      */
    264     template<typename _Tp>
    265     _Tp
    266     __hyperg_series(const _Tp __a, const _Tp __b,
    267                     const _Tp __c, const _Tp __x)
    268     {
    269       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    270 
    271       _Tp __term = _Tp(1);
    272       _Tp __Fabc = _Tp(1);
    273       const unsigned int __max_iter = 100000;
    274       unsigned int __i;
    275       for (__i = 0; __i < __max_iter; ++__i)
    276         {
    277           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
    278                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
    279           if (std::abs(__term) < __eps)
    280             {
    281               break;
    282             }
    283           __Fabc += __term;
    284         }
    285       if (__i == __max_iter)
    286         std::__throw_runtime_error(__N("Series failed to converge "
    287                                        "in __hyperg_series."));
    288 
    289       return __Fabc;
    290     }
    291 
    292 
    293     /**
    294      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
    295      *           by an iterative procedure described in
    296      *           Luke, Algorithms for the Computation of Mathematical Functions.
    297      */
    298     template<typename _Tp>
    299     _Tp
    300     __hyperg_luke(const _Tp __a, const _Tp __b, const _Tp __c,
    301                   const _Tp __xin)
    302     {
    303       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
    304       const int __nmax = 20000;
    305       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    306       const _Tp __x  = -__xin;
    307       const _Tp __x3 = __x * __x * __x;
    308       const _Tp __t0 = __a * __b / __c;
    309       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
    310       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
    311                      / (_Tp(2) * (__c + _Tp(1)));
    312 
    313       _Tp __F = _Tp(1);
    314 
    315       _Tp __Bnm3 = _Tp(1);
    316       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
    317       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
    318 
    319       _Tp __Anm3 = _Tp(1);
    320       _Tp __Anm2 = __Bnm2 - __t0 * __x;
    321       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
    322                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
    323 
    324       int __n = 3;
    325       while (1)
    326         {
    327           const _Tp __npam1 = _Tp(__n - 1) + __a;
    328           const _Tp __npbm1 = _Tp(__n - 1) + __b;
    329           const _Tp __npcm1 = _Tp(__n - 1) + __c;
    330           const _Tp __npam2 = _Tp(__n - 2) + __a;
    331           const _Tp __npbm2 = _Tp(__n - 2) + __b;
    332           const _Tp __npcm2 = _Tp(__n - 2) + __c;
    333           const _Tp __tnm1  = _Tp(2 * __n - 1);
    334           const _Tp __tnm3  = _Tp(2 * __n - 3);
    335           const _Tp __tnm5  = _Tp(2 * __n - 5);
    336           const _Tp __n2 = __n * __n;
    337           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
    338                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
    339                          / (_Tp(2) * __tnm3 * __npcm1);
    340           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
    341                          + _Tp(2) - __a * __b) * __npam1 * __npbm1
    342                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
    343           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
    344                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
    345                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
    346                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
    347           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
    348                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
    349 
    350           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
    351                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
    352           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
    353                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
    354           const _Tp __r = __An / __Bn;
    355 
    356           const _Tp __prec = std::abs((__F - __r) / __F);
    357           __F = __r;
    358 
    359           if (__prec < __eps || __n > __nmax)
    360             break;
    361 
    362           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
    363             {
    364               __An   /= __big;
    365               __Bn   /= __big;
    366               __Anm1 /= __big;
    367               __Bnm1 /= __big;
    368               __Anm2 /= __big;
    369               __Bnm2 /= __big;
    370               __Anm3 /= __big;
    371               __Bnm3 /= __big;
    372             }
    373           else if (std::abs(__An) < _Tp(1) / __big
    374                 || std::abs(__Bn) < _Tp(1) / __big)
    375             {
    376               __An   *= __big;
    377               __Bn   *= __big;
    378               __Anm1 *= __big;
    379               __Bnm1 *= __big;
    380               __Anm2 *= __big;
    381               __Bnm2 *= __big;
    382               __Anm3 *= __big;
    383               __Bnm3 *= __big;
    384             }
    385 
    386           ++__n;
    387           __Bnm3 = __Bnm2;
    388           __Bnm2 = __Bnm1;
    389           __Bnm1 = __Bn;
    390           __Anm3 = __Anm2;
    391           __Anm2 = __Anm1;
    392           __Anm1 = __An;
    393         }
    394 
    395       if (__n >= __nmax)
    396         std::__throw_runtime_error(__N("Iteration failed to converge "
    397                                        "in __hyperg_luke."));
    398 
    399       return __F;
    400     }
    401 
    402 
    403     /**
    404      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ by the reflection
    405      *          formulae in Abramowitz & Stegun formula 15.3.6 for d = c - a - b not integral
    406      *          and formula 15.3.11 for d = c - a - b integral.
    407      *          This assumes a, b, c != negative integer.
    408      *
    409      *   The hypogeometric function is defined by
    410      *   @f[
    411      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
    412      *                      \sum_{n=0}^{\infty}
    413      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
    414      *                      \frac{x^n}{n!}
    415      *   @f]
    416      *
    417      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
    418      *   @f[
    419      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
    420      *                            _2F_1(a,b;1-d;1-x)
    421      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
    422      *                            _2F_1(c-a,c-b;1+d;1-x)
    423      *   @f]
    424      *
    425      *   The reflection formula for integral @f$ m = c - a - b @f$ is:
    426      *   @f[
    427      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
    428      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
    429      *                      - 
    430      *   @f]
    431      */
    432     template<typename _Tp>
    433     _Tp
    434     __hyperg_reflect(const _Tp __a, const _Tp __b, const _Tp __c,
    435                      const _Tp __x)
    436     {
    437       const _Tp __d = __c - __a - __b;
    438       const int __intd  = std::floor(__d + _Tp(0.5L));
    439       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    440       const _Tp __toler = _Tp(1000) * __eps;
    441       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
    442       const bool __d_integer = (std::abs(__d - __intd) < __toler);
    443 
    444       if (__d_integer)
    445         {
    446           const _Tp __ln_omx = std::log(_Tp(1) - __x);
    447           const _Tp __ad = std::abs(__d);
    448           _Tp __F1, __F2;
    449 
    450           _Tp __d1, __d2;
    451           if (__d >= _Tp(0))
    452             {
    453               __d1 = __d;
    454               __d2 = _Tp(0);
    455             }
    456           else
    457             {
    458               __d1 = _Tp(0);
    459               __d2 = __d;
    460             }
    461 
    462           const _Tp __lng_c = __log_gamma(__c);
    463 
    464           //  Evaluate F1.
    465           if (__ad < __eps)
    466             {
    467               //  d = c - a - b = 0.
    468               __F1 = _Tp(0);
    469             }
    470           else
    471             {
    472 
    473               bool __ok_d1 = true;
    474               _Tp __lng_ad, __lng_ad1, __lng_bd1;
    475               __try
    476                 {
    477                   __lng_ad = __log_gamma(__ad);
    478                   __lng_ad1 = __log_gamma(__a + __d1);
    479                   __lng_bd1 = __log_gamma(__b + __d1);
    480                 }
    481               __catch(...)
    482                 {
    483                   __ok_d1 = false;
    484                 }
    485 
    486               if (__ok_d1)
    487                 {
    488                   /* Gamma functions in the denominator are ok.
    489                    * Proceed with evaluation.
    490                    */
    491                   _Tp __sum1 = _Tp(1);
    492                   _Tp __term = _Tp(1);
    493                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
    494                                 - __lng_ad1 - __lng_bd1;
    495 
    496                   /* Do F1 sum.
    497                    */
    498                   for (int __i = 1; __i < __ad; ++__i)
    499                     {
    500                       const int __j = __i - 1;
    501                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
    502                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
    503                       __sum1 += __term;
    504                     }
    505 
    506                   if (__ln_pre1 > __log_max)
    507                     std::__throw_runtime_error(__N("Overflow of gamma functions "
    508                                                    "in __hyperg_luke."));
    509                   else
    510                     __F1 = std::exp(__ln_pre1) * __sum1;
    511                 }
    512               else
    513                 {
    514                   //  Gamma functions in the denominator were not ok.
    515                   //  So the F1 term is zero.
    516                   __F1 = _Tp(0);
    517                 }
    518             } // end F1 evaluation
    519 
    520           // Evaluate F2.
    521           bool __ok_d2 = true;
    522           _Tp __lng_ad2, __lng_bd2;
    523           __try
    524             {
    525               __lng_ad2 = __log_gamma(__a + __d2);
    526               __lng_bd2 = __log_gamma(__b + __d2);
    527             }
    528           __catch(...)
    529             {
    530               __ok_d2 = false;
    531             }
    532 
    533           if (__ok_d2)
    534             {
    535               //  Gamma functions in the denominator are ok.
    536               //  Proceed with evaluation.
    537               const int __maxiter = 2000;
    538               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
    539               const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
    540               const _Tp __psi_apd1 = __psi(__a + __d1);
    541               const _Tp __psi_bpd1 = __psi(__b + __d1);
    542 
    543               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
    544                              - __psi_bpd1 - __ln_omx;
    545               _Tp __fact = _Tp(1);
    546               _Tp __sum2 = __psi_term;
    547               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
    548                             - __lng_ad2 - __lng_bd2;
    549 
    550               // Do F2 sum.
    551               int __j;
    552               for (__j = 1; __j < __maxiter; ++__j)
    553                 {
    554                   //  Values for psi functions use recurrence; Abramowitz & Stegun 6.3.5
    555                   const _Tp __term1 = _Tp(1) / _Tp(__j)
    556                                     + _Tp(1) / (__ad + __j);
    557                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
    558                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
    559                   __psi_term += __term1 - __term2;
    560                   __fact *= (__a + __d1 + _Tp(__j - 1))
    561                           * (__b + __d1 + _Tp(__j - 1))
    562                           / ((__ad + __j) * __j) * (_Tp(1) - __x);
    563                   const _Tp __delta = __fact * __psi_term;
    564                   __sum2 += __delta;
    565                   if (std::abs(__delta) < __eps * std::abs(__sum2))
    566                     break;
    567                 }
    568               if (__j == __maxiter)
    569                 std::__throw_runtime_error(__N("Sum F2 failed to converge "
    570                                                "in __hyperg_reflect"));
    571 
    572               if (__sum2 == _Tp(0))
    573                 __F2 = _Tp(0);
    574               else
    575                 __F2 = std::exp(__ln_pre2) * __sum2;
    576             }
    577           else
    578             {
    579               // Gamma functions in the denominator not ok.
    580               // So the F2 term is zero.
    581               __F2 = _Tp(0);
    582             } // end F2 evaluation
    583 
    584           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
    585           const _Tp __F = __F1 + __sgn_2 * __F2;
    586 
    587           return __F;
    588         }
    589       else
    590         {
    591           //  d = c - a - b not an integer.
    592 
    593           //  These gamma functions appear in the denominator, so we
    594           //  catch their harmless domain errors and set the terms to zero.
    595           bool __ok1 = true;
    596           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
    597           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
    598           __try
    599             {
    600               __sgn_g1ca = __log_gamma_sign(__c - __a);
    601               __ln_g1ca = __log_gamma(__c - __a);
    602               __sgn_g1cb = __log_gamma_sign(__c - __b);
    603               __ln_g1cb = __log_gamma(__c - __b);
    604             }
    605           __catch(...)
    606             {
    607               __ok1 = false;
    608             }
    609 
    610           bool __ok2 = true;
    611           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
    612           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
    613           __try
    614             {
    615               __sgn_g2a = __log_gamma_sign(__a);
    616               __ln_g2a = __log_gamma(__a);
    617               __sgn_g2b = __log_gamma_sign(__b);
    618               __ln_g2b = __log_gamma(__b);
    619             }
    620           __catch(...)
    621             {
    622               __ok2 = false;
    623             }
    624 
    625           const _Tp __sgn_gc = __log_gamma_sign(__c);
    626           const _Tp __ln_gc = __log_gamma(__c);
    627           const _Tp __sgn_gd = __log_gamma_sign(__d);
    628           const _Tp __ln_gd = __log_gamma(__d);
    629           const _Tp __sgn_gmd = __log_gamma_sign(-__d);
    630           const _Tp __ln_gmd = __log_gamma(-__d);
    631 
    632           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb;
    633           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b;
    634 
    635           _Tp __pre1, __pre2;
    636           if (__ok1 && __ok2)
    637             {
    638               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb;
    639               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b
    640                             + __d * std::log(_Tp(1) - __x);
    641               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
    642                 {
    643                   __pre1 = std::exp(__ln_pre1);
    644                   __pre2 = std::exp(__ln_pre2);
    645                   __pre1 *= __sgn1;
    646                   __pre2 *= __sgn2;
    647                 }
    648               else
    649                 {
    650                   std::__throw_runtime_error(__N("Overflow of gamma functions "
    651                                                  "in __hyperg_reflect"));
    652                 }
    653             }
    654           else if (__ok1 && !__ok2)
    655             {
    656               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
    657               if (__ln_pre1 < __log_max)
    658                 {
    659                   __pre1 = std::exp(__ln_pre1);
    660                   __pre1 *= __sgn1;
    661                   __pre2 = _Tp(0);
    662                 }
    663               else
    664                 {
    665                   std::__throw_runtime_error(__N("Overflow of gamma functions "
    666                                                  "in __hyperg_reflect"));
    667                 }
    668             }
    669           else if (!__ok1 && __ok2)
    670             {
    671               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
    672                             + __d * std::log(_Tp(1) - __x);
    673               if (__ln_pre2 < __log_max)
    674                 {
    675                   __pre1 = _Tp(0);
    676                   __pre2 = std::exp(__ln_pre2);
    677                   __pre2 *= __sgn2;
    678                 }
    679               else
    680                 {
    681                   std::__throw_runtime_error(__N("Overflow of gamma functions "
    682                                                  "in __hyperg_reflect"));
    683                 }
    684             }
    685           else
    686             {
    687               __pre1 = _Tp(0);
    688               __pre2 = _Tp(0);
    689               std::__throw_runtime_error(__N("Underflow of gamma functions "
    690                                              "in __hyperg_reflect"));
    691             }
    692 
    693           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
    694                                            _Tp(1) - __x);
    695           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
    696                                            _Tp(1) - __x);
    697 
    698           const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
    699 
    700           return __F;
    701         }
    702     }
    703 
    704 
    705     /**
    706      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
    707      *
    708      *   The hypogeometric function is defined by
    709      *   @f[
    710      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
    711      *                      \sum_{n=0}^{\infty}
    712      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
    713      *                      \frac{x^n}{n!}
    714      *   @f]
    715      *
    716      *   @param  __a  The first "numerator" parameter.
    717      *   @param  __a  The second "numerator" parameter.
    718      *   @param  __c  The "denominator" parameter.
    719      *   @param  __x  The argument of the confluent hypergeometric function.
    720      *   @return  The confluent hypergeometric function.
    721      */
    722     template<typename _Tp>
    723     inline _Tp
    724     __hyperg(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x)
    725     {
    726 #if _GLIBCXX_USE_C99_MATH_TR1
    727       const _Tp __a_nint = std::tr1::nearbyint(__a);
    728       const _Tp __b_nint = std::tr1::nearbyint(__b);
    729       const _Tp __c_nint = std::tr1::nearbyint(__c);
    730 #else
    731       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
    732       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
    733       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
    734 #endif
    735       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
    736       if (std::abs(__x) >= _Tp(1))
    737         std::__throw_domain_error(__N("Argument outside unit circle "
    738                                       "in __hyperg."));
    739       else if (__isnan(__a) || __isnan(__b)
    740             || __isnan(__c) || __isnan(__x))
    741         return std::numeric_limits<_Tp>::quiet_NaN();
    742       else if (__c_nint == __c && __c_nint <= _Tp(0))
    743         return std::numeric_limits<_Tp>::infinity();
    744       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
    745         return std::pow(_Tp(1) - __x, __c - __a - __b);
    746       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
    747             && __x >= _Tp(0) && __x < _Tp(0.995L))
    748         return __hyperg_series(__a, __b, __c, __x);
    749       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
    750         {
    751           //  For integer a and b the hypergeometric function is a finite polynomial.
    752           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler)
    753             return __hyperg_series(__a_nint, __b, __c, __x);
    754           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler)
    755             return __hyperg_series(__a, __b_nint, __c, __x);
    756           else if (__x < -_Tp(0.25L))
    757             return __hyperg_luke(__a, __b, __c, __x);
    758           else if (__x < _Tp(0.5L))
    759             return __hyperg_series(__a, __b, __c, __x);
    760           else
    761             if (std::abs(__c) > _Tp(10))
    762               return __hyperg_series(__a, __b, __c, __x);
    763             else
    764               return __hyperg_reflect(__a, __b, __c, __x);
    765         }
    766       else
    767         return __hyperg_luke(__a, __b, __c, __x);
    768     }
    769 
    770   } // namespace std::tr1::__detail
    771 }
    772 }
    773 
    774 #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
    775