1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Initialization.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <map> 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// \brief Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_Other 53 }; 54 55 /// \brief Check whether the array of type AT can be initialized by the Init 56 /// expression by means of string initialization. Returns SIF_None if so, 57 /// otherwise returns a StringInitFailureKind that describes why the 58 /// initialization would not work. 59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 60 ASTContext &Context) { 61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 62 return SIF_Other; 63 64 // See if this is a string literal or @encode. 65 Init = Init->IgnoreParens(); 66 67 // Handle @encode, which is a narrow string. 68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 69 return SIF_None; 70 71 // Otherwise we can only handle string literals. 72 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 73 if (!SL) 74 return SIF_Other; 75 76 const QualType ElemTy = 77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 78 79 switch (SL->getKind()) { 80 case StringLiteral::Ascii: 81 case StringLiteral::UTF8: 82 // char array can be initialized with a narrow string. 83 // Only allow char x[] = "foo"; not char x[] = L"foo"; 84 if (ElemTy->isCharType()) 85 return SIF_None; 86 if (IsWideCharCompatible(ElemTy, Context)) 87 return SIF_NarrowStringIntoWideChar; 88 return SIF_Other; 89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 90 // "An array with element type compatible with a qualified or unqualified 91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 92 // string literal with the corresponding encoding prefix (L, u, or U, 93 // respectively), optionally enclosed in braces. 94 case StringLiteral::UTF16: 95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 96 return SIF_None; 97 if (ElemTy->isCharType()) 98 return SIF_WideStringIntoChar; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_IncompatWideStringIntoWideChar; 101 return SIF_Other; 102 case StringLiteral::UTF32: 103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 104 return SIF_None; 105 if (ElemTy->isCharType()) 106 return SIF_WideStringIntoChar; 107 if (IsWideCharCompatible(ElemTy, Context)) 108 return SIF_IncompatWideStringIntoWideChar; 109 return SIF_Other; 110 case StringLiteral::Wide: 111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 112 return SIF_None; 113 if (ElemTy->isCharType()) 114 return SIF_WideStringIntoChar; 115 if (IsWideCharCompatible(ElemTy, Context)) 116 return SIF_IncompatWideStringIntoWideChar; 117 return SIF_Other; 118 } 119 120 llvm_unreachable("missed a StringLiteral kind?"); 121 } 122 123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 124 ASTContext &Context) { 125 const ArrayType *arrayType = Context.getAsArrayType(declType); 126 if (!arrayType) 127 return SIF_Other; 128 return IsStringInit(init, arrayType, Context); 129 } 130 131 /// Update the type of a string literal, including any surrounding parentheses, 132 /// to match the type of the object which it is initializing. 133 static void updateStringLiteralType(Expr *E, QualType Ty) { 134 while (true) { 135 E->setType(Ty); 136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 137 break; 138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) 139 E = PE->getSubExpr(); 140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 141 E = UO->getSubExpr(); 142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) 143 E = GSE->getResultExpr(); 144 else 145 llvm_unreachable("unexpected expr in string literal init"); 146 } 147 } 148 149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 150 Sema &S) { 151 // Get the length of the string as parsed. 152 uint64_t StrLength = 153 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue(); 154 155 156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 157 // C99 6.7.8p14. We have an array of character type with unknown size 158 // being initialized to a string literal. 159 llvm::APInt ConstVal(32, StrLength); 160 // Return a new array type (C99 6.7.8p22). 161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 162 ConstVal, 163 ArrayType::Normal, 0); 164 updateStringLiteralType(Str, DeclT); 165 return; 166 } 167 168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 169 170 // We have an array of character type with known size. However, 171 // the size may be smaller or larger than the string we are initializing. 172 // FIXME: Avoid truncation for 64-bit length strings. 173 if (S.getLangOpts().CPlusPlus) { 174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 175 // For Pascal strings it's OK to strip off the terminating null character, 176 // so the example below is valid: 177 // 178 // unsigned char a[2] = "\pa"; 179 if (SL->isPascal()) 180 StrLength--; 181 } 182 183 // [dcl.init.string]p2 184 if (StrLength > CAT->getSize().getZExtValue()) 185 S.Diag(Str->getLocStart(), 186 diag::err_initializer_string_for_char_array_too_long) 187 << Str->getSourceRange(); 188 } else { 189 // C99 6.7.8p14. 190 if (StrLength-1 > CAT->getSize().getZExtValue()) 191 S.Diag(Str->getLocStart(), 192 diag::warn_initializer_string_for_char_array_too_long) 193 << Str->getSourceRange(); 194 } 195 196 // Set the type to the actual size that we are initializing. If we have 197 // something like: 198 // char x[1] = "foo"; 199 // then this will set the string literal's type to char[1]. 200 updateStringLiteralType(Str, DeclT); 201 } 202 203 //===----------------------------------------------------------------------===// 204 // Semantic checking for initializer lists. 205 //===----------------------------------------------------------------------===// 206 207 /// @brief Semantic checking for initializer lists. 208 /// 209 /// The InitListChecker class contains a set of routines that each 210 /// handle the initialization of a certain kind of entity, e.g., 211 /// arrays, vectors, struct/union types, scalars, etc. The 212 /// InitListChecker itself performs a recursive walk of the subobject 213 /// structure of the type to be initialized, while stepping through 214 /// the initializer list one element at a time. The IList and Index 215 /// parameters to each of the Check* routines contain the active 216 /// (syntactic) initializer list and the index into that initializer 217 /// list that represents the current initializer. Each routine is 218 /// responsible for moving that Index forward as it consumes elements. 219 /// 220 /// Each Check* routine also has a StructuredList/StructuredIndex 221 /// arguments, which contains the current "structured" (semantic) 222 /// initializer list and the index into that initializer list where we 223 /// are copying initializers as we map them over to the semantic 224 /// list. Once we have completed our recursive walk of the subobject 225 /// structure, we will have constructed a full semantic initializer 226 /// list. 227 /// 228 /// C99 designators cause changes in the initializer list traversal, 229 /// because they make the initialization "jump" into a specific 230 /// subobject and then continue the initialization from that 231 /// point. CheckDesignatedInitializer() recursively steps into the 232 /// designated subobject and manages backing out the recursion to 233 /// initialize the subobjects after the one designated. 234 namespace { 235 class InitListChecker { 236 Sema &SemaRef; 237 bool hadError; 238 bool VerifyOnly; // no diagnostics, no structure building 239 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 240 InitListExpr *FullyStructuredList; 241 242 void CheckImplicitInitList(const InitializedEntity &Entity, 243 InitListExpr *ParentIList, QualType T, 244 unsigned &Index, InitListExpr *StructuredList, 245 unsigned &StructuredIndex); 246 void CheckExplicitInitList(const InitializedEntity &Entity, 247 InitListExpr *IList, QualType &T, 248 InitListExpr *StructuredList, 249 bool TopLevelObject = false); 250 void CheckListElementTypes(const InitializedEntity &Entity, 251 InitListExpr *IList, QualType &DeclType, 252 bool SubobjectIsDesignatorContext, 253 unsigned &Index, 254 InitListExpr *StructuredList, 255 unsigned &StructuredIndex, 256 bool TopLevelObject = false); 257 void CheckSubElementType(const InitializedEntity &Entity, 258 InitListExpr *IList, QualType ElemType, 259 unsigned &Index, 260 InitListExpr *StructuredList, 261 unsigned &StructuredIndex); 262 void CheckComplexType(const InitializedEntity &Entity, 263 InitListExpr *IList, QualType DeclType, 264 unsigned &Index, 265 InitListExpr *StructuredList, 266 unsigned &StructuredIndex); 267 void CheckScalarType(const InitializedEntity &Entity, 268 InitListExpr *IList, QualType DeclType, 269 unsigned &Index, 270 InitListExpr *StructuredList, 271 unsigned &StructuredIndex); 272 void CheckReferenceType(const InitializedEntity &Entity, 273 InitListExpr *IList, QualType DeclType, 274 unsigned &Index, 275 InitListExpr *StructuredList, 276 unsigned &StructuredIndex); 277 void CheckVectorType(const InitializedEntity &Entity, 278 InitListExpr *IList, QualType DeclType, unsigned &Index, 279 InitListExpr *StructuredList, 280 unsigned &StructuredIndex); 281 void CheckStructUnionTypes(const InitializedEntity &Entity, 282 InitListExpr *IList, QualType DeclType, 283 RecordDecl::field_iterator Field, 284 bool SubobjectIsDesignatorContext, unsigned &Index, 285 InitListExpr *StructuredList, 286 unsigned &StructuredIndex, 287 bool TopLevelObject = false); 288 void CheckArrayType(const InitializedEntity &Entity, 289 InitListExpr *IList, QualType &DeclType, 290 llvm::APSInt elementIndex, 291 bool SubobjectIsDesignatorContext, unsigned &Index, 292 InitListExpr *StructuredList, 293 unsigned &StructuredIndex); 294 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 295 InitListExpr *IList, DesignatedInitExpr *DIE, 296 unsigned DesigIdx, 297 QualType &CurrentObjectType, 298 RecordDecl::field_iterator *NextField, 299 llvm::APSInt *NextElementIndex, 300 unsigned &Index, 301 InitListExpr *StructuredList, 302 unsigned &StructuredIndex, 303 bool FinishSubobjectInit, 304 bool TopLevelObject); 305 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 306 QualType CurrentObjectType, 307 InitListExpr *StructuredList, 308 unsigned StructuredIndex, 309 SourceRange InitRange); 310 void UpdateStructuredListElement(InitListExpr *StructuredList, 311 unsigned &StructuredIndex, 312 Expr *expr); 313 int numArrayElements(QualType DeclType); 314 int numStructUnionElements(QualType DeclType); 315 316 static ExprResult PerformEmptyInit(Sema &SemaRef, 317 SourceLocation Loc, 318 const InitializedEntity &Entity, 319 bool VerifyOnly); 320 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 321 const InitializedEntity &ParentEntity, 322 InitListExpr *ILE, bool &RequiresSecondPass); 323 void FillInEmptyInitializations(const InitializedEntity &Entity, 324 InitListExpr *ILE, bool &RequiresSecondPass); 325 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 326 Expr *InitExpr, FieldDecl *Field, 327 bool TopLevelObject); 328 void CheckEmptyInitializable(const InitializedEntity &Entity, 329 SourceLocation Loc); 330 331 public: 332 InitListChecker(Sema &S, const InitializedEntity &Entity, 333 InitListExpr *IL, QualType &T, bool VerifyOnly); 334 bool HadError() { return hadError; } 335 336 // @brief Retrieves the fully-structured initializer list used for 337 // semantic analysis and code generation. 338 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 339 }; 340 } // end anonymous namespace 341 342 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 343 SourceLocation Loc, 344 const InitializedEntity &Entity, 345 bool VerifyOnly) { 346 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 347 true); 348 MultiExprArg SubInit; 349 Expr *InitExpr; 350 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 351 352 // C++ [dcl.init.aggr]p7: 353 // If there are fewer initializer-clauses in the list than there are 354 // members in the aggregate, then each member not explicitly initialized 355 // ... 356 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 357 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 358 if (EmptyInitList) { 359 // C++1y / DR1070: 360 // shall be initialized [...] from an empty initializer list. 361 // 362 // We apply the resolution of this DR to C++11 but not C++98, since C++98 363 // does not have useful semantics for initialization from an init list. 364 // We treat this as copy-initialization, because aggregate initialization 365 // always performs copy-initialization on its elements. 366 // 367 // Only do this if we're initializing a class type, to avoid filling in 368 // the initializer list where possible. 369 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 370 InitListExpr(SemaRef.Context, Loc, None, Loc); 371 InitExpr->setType(SemaRef.Context.VoidTy); 372 SubInit = InitExpr; 373 Kind = InitializationKind::CreateCopy(Loc, Loc); 374 } else { 375 // C++03: 376 // shall be value-initialized. 377 } 378 379 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 380 // libstdc++4.6 marks the vector default constructor as explicit in 381 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 382 // stlport does so too. Look for std::__debug for libstdc++, and for 383 // std:: for stlport. This is effectively a compiler-side implementation of 384 // LWG2193. 385 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 386 InitializationSequence::FK_ExplicitConstructor) { 387 OverloadCandidateSet::iterator Best; 388 OverloadingResult O = 389 InitSeq.getFailedCandidateSet() 390 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 391 (void)O; 392 assert(O == OR_Success && "Inconsistent overload resolution"); 393 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 394 CXXRecordDecl *R = CtorDecl->getParent(); 395 396 if (CtorDecl->getMinRequiredArguments() == 0 && 397 CtorDecl->isExplicit() && R->getDeclName() && 398 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 399 400 401 bool IsInStd = false; 402 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 403 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 404 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 405 IsInStd = true; 406 } 407 408 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 409 .Cases("basic_string", "deque", "forward_list", true) 410 .Cases("list", "map", "multimap", "multiset", true) 411 .Cases("priority_queue", "queue", "set", "stack", true) 412 .Cases("unordered_map", "unordered_set", "vector", true) 413 .Default(false)) { 414 InitSeq.InitializeFrom( 415 SemaRef, Entity, 416 InitializationKind::CreateValue(Loc, Loc, Loc, true), 417 MultiExprArg(), /*TopLevelOfInitList=*/false); 418 // Emit a warning for this. System header warnings aren't shown 419 // by default, but people working on system headers should see it. 420 if (!VerifyOnly) { 421 SemaRef.Diag(CtorDecl->getLocation(), 422 diag::warn_invalid_initializer_from_system_header); 423 SemaRef.Diag(Entity.getDecl()->getLocation(), 424 diag::note_used_in_initialization_here); 425 } 426 } 427 } 428 } 429 if (!InitSeq) { 430 if (!VerifyOnly) { 431 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 432 if (Entity.getKind() == InitializedEntity::EK_Member) 433 SemaRef.Diag(Entity.getDecl()->getLocation(), 434 diag::note_in_omitted_aggregate_initializer) 435 << /*field*/1 << Entity.getDecl(); 436 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 437 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 438 << /*array element*/0 << Entity.getElementIndex(); 439 } 440 return ExprError(); 441 } 442 443 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 444 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 445 } 446 447 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 448 SourceLocation Loc) { 449 assert(VerifyOnly && 450 "CheckEmptyInitializable is only inteded for verification mode."); 451 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid()) 452 hadError = true; 453 } 454 455 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 456 const InitializedEntity &ParentEntity, 457 InitListExpr *ILE, 458 bool &RequiresSecondPass) { 459 SourceLocation Loc = ILE->getLocEnd(); 460 unsigned NumInits = ILE->getNumInits(); 461 InitializedEntity MemberEntity 462 = InitializedEntity::InitializeMember(Field, &ParentEntity); 463 if (Init >= NumInits || !ILE->getInit(Init)) { 464 // C++1y [dcl.init.aggr]p7: 465 // If there are fewer initializer-clauses in the list than there are 466 // members in the aggregate, then each member not explicitly initialized 467 // shall be initialized from its brace-or-equal-initializer [...] 468 if (Field->hasInClassInitializer()) { 469 Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context, Loc, Field); 470 if (Init < NumInits) 471 ILE->setInit(Init, DIE); 472 else { 473 ILE->updateInit(SemaRef.Context, Init, DIE); 474 RequiresSecondPass = true; 475 } 476 return; 477 } 478 479 if (Field->getType()->isReferenceType()) { 480 // C++ [dcl.init.aggr]p9: 481 // If an incomplete or empty initializer-list leaves a 482 // member of reference type uninitialized, the program is 483 // ill-formed. 484 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 485 << Field->getType() 486 << ILE->getSyntacticForm()->getSourceRange(); 487 SemaRef.Diag(Field->getLocation(), 488 diag::note_uninit_reference_member); 489 hadError = true; 490 return; 491 } 492 493 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 494 /*VerifyOnly*/false); 495 if (MemberInit.isInvalid()) { 496 hadError = true; 497 return; 498 } 499 500 if (hadError) { 501 // Do nothing 502 } else if (Init < NumInits) { 503 ILE->setInit(Init, MemberInit.getAs<Expr>()); 504 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 505 // Empty initialization requires a constructor call, so 506 // extend the initializer list to include the constructor 507 // call and make a note that we'll need to take another pass 508 // through the initializer list. 509 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 510 RequiresSecondPass = true; 511 } 512 } else if (InitListExpr *InnerILE 513 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 514 FillInEmptyInitializations(MemberEntity, InnerILE, 515 RequiresSecondPass); 516 } 517 518 /// Recursively replaces NULL values within the given initializer list 519 /// with expressions that perform value-initialization of the 520 /// appropriate type. 521 void 522 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 523 InitListExpr *ILE, 524 bool &RequiresSecondPass) { 525 assert((ILE->getType() != SemaRef.Context.VoidTy) && 526 "Should not have void type"); 527 528 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 529 const RecordDecl *RDecl = RType->getDecl(); 530 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 531 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 532 Entity, ILE, RequiresSecondPass); 533 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 534 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 535 for (auto *Field : RDecl->fields()) { 536 if (Field->hasInClassInitializer()) { 537 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass); 538 break; 539 } 540 } 541 } else { 542 unsigned Init = 0; 543 for (auto *Field : RDecl->fields()) { 544 if (Field->isUnnamedBitfield()) 545 continue; 546 547 if (hadError) 548 return; 549 550 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass); 551 if (hadError) 552 return; 553 554 ++Init; 555 556 // Only look at the first initialization of a union. 557 if (RDecl->isUnion()) 558 break; 559 } 560 } 561 562 return; 563 } 564 565 QualType ElementType; 566 567 InitializedEntity ElementEntity = Entity; 568 unsigned NumInits = ILE->getNumInits(); 569 unsigned NumElements = NumInits; 570 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 571 ElementType = AType->getElementType(); 572 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 573 NumElements = CAType->getSize().getZExtValue(); 574 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 575 0, Entity); 576 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 577 ElementType = VType->getElementType(); 578 NumElements = VType->getNumElements(); 579 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 580 0, Entity); 581 } else 582 ElementType = ILE->getType(); 583 584 for (unsigned Init = 0; Init != NumElements; ++Init) { 585 if (hadError) 586 return; 587 588 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 589 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 590 ElementEntity.setElementIndex(Init); 591 592 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 593 if (!InitExpr && !ILE->hasArrayFiller()) { 594 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(), 595 ElementEntity, 596 /*VerifyOnly*/false); 597 if (ElementInit.isInvalid()) { 598 hadError = true; 599 return; 600 } 601 602 if (hadError) { 603 // Do nothing 604 } else if (Init < NumInits) { 605 // For arrays, just set the expression used for value-initialization 606 // of the "holes" in the array. 607 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 608 ILE->setArrayFiller(ElementInit.getAs<Expr>()); 609 else 610 ILE->setInit(Init, ElementInit.getAs<Expr>()); 611 } else { 612 // For arrays, just set the expression used for value-initialization 613 // of the rest of elements and exit. 614 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 615 ILE->setArrayFiller(ElementInit.getAs<Expr>()); 616 return; 617 } 618 619 if (!isa<ImplicitValueInitExpr>(ElementInit.get())) { 620 // Empty initialization requires a constructor call, so 621 // extend the initializer list to include the constructor 622 // call and make a note that we'll need to take another pass 623 // through the initializer list. 624 ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>()); 625 RequiresSecondPass = true; 626 } 627 } 628 } else if (InitListExpr *InnerILE 629 = dyn_cast_or_null<InitListExpr>(InitExpr)) 630 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass); 631 } 632 } 633 634 635 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 636 InitListExpr *IL, QualType &T, 637 bool VerifyOnly) 638 : SemaRef(S), VerifyOnly(VerifyOnly) { 639 hadError = false; 640 641 FullyStructuredList = 642 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 643 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 644 /*TopLevelObject=*/true); 645 646 if (!hadError && !VerifyOnly) { 647 bool RequiresSecondPass = false; 648 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass); 649 if (RequiresSecondPass && !hadError) 650 FillInEmptyInitializations(Entity, FullyStructuredList, 651 RequiresSecondPass); 652 } 653 } 654 655 int InitListChecker::numArrayElements(QualType DeclType) { 656 // FIXME: use a proper constant 657 int maxElements = 0x7FFFFFFF; 658 if (const ConstantArrayType *CAT = 659 SemaRef.Context.getAsConstantArrayType(DeclType)) { 660 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 661 } 662 return maxElements; 663 } 664 665 int InitListChecker::numStructUnionElements(QualType DeclType) { 666 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 667 int InitializableMembers = 0; 668 for (const auto *Field : structDecl->fields()) 669 if (!Field->isUnnamedBitfield()) 670 ++InitializableMembers; 671 672 if (structDecl->isUnion()) 673 return std::min(InitializableMembers, 1); 674 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 675 } 676 677 /// Check whether the range of the initializer \p ParentIList from element 678 /// \p Index onwards can be used to initialize an object of type \p T. Update 679 /// \p Index to indicate how many elements of the list were consumed. 680 /// 681 /// This also fills in \p StructuredList, from element \p StructuredIndex 682 /// onwards, with the fully-braced, desugared form of the initialization. 683 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 684 InitListExpr *ParentIList, 685 QualType T, unsigned &Index, 686 InitListExpr *StructuredList, 687 unsigned &StructuredIndex) { 688 int maxElements = 0; 689 690 if (T->isArrayType()) 691 maxElements = numArrayElements(T); 692 else if (T->isRecordType()) 693 maxElements = numStructUnionElements(T); 694 else if (T->isVectorType()) 695 maxElements = T->getAs<VectorType>()->getNumElements(); 696 else 697 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 698 699 if (maxElements == 0) { 700 if (!VerifyOnly) 701 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 702 diag::err_implicit_empty_initializer); 703 ++Index; 704 hadError = true; 705 return; 706 } 707 708 // Build a structured initializer list corresponding to this subobject. 709 InitListExpr *StructuredSubobjectInitList 710 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 711 StructuredIndex, 712 SourceRange(ParentIList->getInit(Index)->getLocStart(), 713 ParentIList->getSourceRange().getEnd())); 714 unsigned StructuredSubobjectInitIndex = 0; 715 716 // Check the element types and build the structural subobject. 717 unsigned StartIndex = Index; 718 CheckListElementTypes(Entity, ParentIList, T, 719 /*SubobjectIsDesignatorContext=*/false, Index, 720 StructuredSubobjectInitList, 721 StructuredSubobjectInitIndex); 722 723 if (!VerifyOnly) { 724 StructuredSubobjectInitList->setType(T); 725 726 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 727 // Update the structured sub-object initializer so that it's ending 728 // range corresponds with the end of the last initializer it used. 729 if (EndIndex < ParentIList->getNumInits()) { 730 SourceLocation EndLoc 731 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 732 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 733 } 734 735 // Complain about missing braces. 736 if (T->isArrayType() || T->isRecordType()) { 737 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 738 diag::warn_missing_braces) 739 << StructuredSubobjectInitList->getSourceRange() 740 << FixItHint::CreateInsertion( 741 StructuredSubobjectInitList->getLocStart(), "{") 742 << FixItHint::CreateInsertion( 743 SemaRef.getLocForEndOfToken( 744 StructuredSubobjectInitList->getLocEnd()), 745 "}"); 746 } 747 } 748 } 749 750 /// Check whether the initializer \p IList (that was written with explicit 751 /// braces) can be used to initialize an object of type \p T. 752 /// 753 /// This also fills in \p StructuredList with the fully-braced, desugared 754 /// form of the initialization. 755 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 756 InitListExpr *IList, QualType &T, 757 InitListExpr *StructuredList, 758 bool TopLevelObject) { 759 if (!VerifyOnly) { 760 SyntacticToSemantic[IList] = StructuredList; 761 StructuredList->setSyntacticForm(IList); 762 } 763 764 unsigned Index = 0, StructuredIndex = 0; 765 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 766 Index, StructuredList, StructuredIndex, TopLevelObject); 767 if (!VerifyOnly) { 768 QualType ExprTy = T; 769 if (!ExprTy->isArrayType()) 770 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 771 IList->setType(ExprTy); 772 StructuredList->setType(ExprTy); 773 } 774 if (hadError) 775 return; 776 777 if (Index < IList->getNumInits()) { 778 // We have leftover initializers 779 if (VerifyOnly) { 780 if (SemaRef.getLangOpts().CPlusPlus || 781 (SemaRef.getLangOpts().OpenCL && 782 IList->getType()->isVectorType())) { 783 hadError = true; 784 } 785 return; 786 } 787 788 if (StructuredIndex == 1 && 789 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 790 SIF_None) { 791 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; 792 if (SemaRef.getLangOpts().CPlusPlus) { 793 DK = diag::err_excess_initializers_in_char_array_initializer; 794 hadError = true; 795 } 796 // Special-case 797 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 798 << IList->getInit(Index)->getSourceRange(); 799 } else if (!T->isIncompleteType()) { 800 // Don't complain for incomplete types, since we'll get an error 801 // elsewhere 802 QualType CurrentObjectType = StructuredList->getType(); 803 int initKind = 804 CurrentObjectType->isArrayType()? 0 : 805 CurrentObjectType->isVectorType()? 1 : 806 CurrentObjectType->isScalarType()? 2 : 807 CurrentObjectType->isUnionType()? 3 : 808 4; 809 810 unsigned DK = diag::warn_excess_initializers; 811 if (SemaRef.getLangOpts().CPlusPlus) { 812 DK = diag::err_excess_initializers; 813 hadError = true; 814 } 815 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 816 DK = diag::err_excess_initializers; 817 hadError = true; 818 } 819 820 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 821 << initKind << IList->getInit(Index)->getSourceRange(); 822 } 823 } 824 825 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 && 826 !TopLevelObject) 827 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) 828 << IList->getSourceRange() 829 << FixItHint::CreateRemoval(IList->getLocStart()) 830 << FixItHint::CreateRemoval(IList->getLocEnd()); 831 } 832 833 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 834 InitListExpr *IList, 835 QualType &DeclType, 836 bool SubobjectIsDesignatorContext, 837 unsigned &Index, 838 InitListExpr *StructuredList, 839 unsigned &StructuredIndex, 840 bool TopLevelObject) { 841 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 842 // Explicitly braced initializer for complex type can be real+imaginary 843 // parts. 844 CheckComplexType(Entity, IList, DeclType, Index, 845 StructuredList, StructuredIndex); 846 } else if (DeclType->isScalarType()) { 847 CheckScalarType(Entity, IList, DeclType, Index, 848 StructuredList, StructuredIndex); 849 } else if (DeclType->isVectorType()) { 850 CheckVectorType(Entity, IList, DeclType, Index, 851 StructuredList, StructuredIndex); 852 } else if (DeclType->isRecordType()) { 853 assert(DeclType->isAggregateType() && 854 "non-aggregate records should be handed in CheckSubElementType"); 855 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 856 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), 857 SubobjectIsDesignatorContext, Index, 858 StructuredList, StructuredIndex, 859 TopLevelObject); 860 } else if (DeclType->isArrayType()) { 861 llvm::APSInt Zero( 862 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 863 false); 864 CheckArrayType(Entity, IList, DeclType, Zero, 865 SubobjectIsDesignatorContext, Index, 866 StructuredList, StructuredIndex); 867 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 868 // This type is invalid, issue a diagnostic. 869 ++Index; 870 if (!VerifyOnly) 871 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 872 << DeclType; 873 hadError = true; 874 } else if (DeclType->isReferenceType()) { 875 CheckReferenceType(Entity, IList, DeclType, Index, 876 StructuredList, StructuredIndex); 877 } else if (DeclType->isObjCObjectType()) { 878 if (!VerifyOnly) 879 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 880 << DeclType; 881 hadError = true; 882 } else { 883 if (!VerifyOnly) 884 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 885 << DeclType; 886 hadError = true; 887 } 888 } 889 890 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 891 InitListExpr *IList, 892 QualType ElemType, 893 unsigned &Index, 894 InitListExpr *StructuredList, 895 unsigned &StructuredIndex) { 896 Expr *expr = IList->getInit(Index); 897 898 if (ElemType->isReferenceType()) 899 return CheckReferenceType(Entity, IList, ElemType, Index, 900 StructuredList, StructuredIndex); 901 902 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 903 if (!ElemType->isRecordType() || ElemType->isAggregateType()) { 904 InitListExpr *InnerStructuredList 905 = getStructuredSubobjectInit(IList, Index, ElemType, 906 StructuredList, StructuredIndex, 907 SubInitList->getSourceRange()); 908 CheckExplicitInitList(Entity, SubInitList, ElemType, 909 InnerStructuredList); 910 ++StructuredIndex; 911 ++Index; 912 return; 913 } 914 assert(SemaRef.getLangOpts().CPlusPlus && 915 "non-aggregate records are only possible in C++"); 916 // C++ initialization is handled later. 917 } 918 919 // FIXME: Need to handle atomic aggregate types with implicit init lists. 920 if (ElemType->isScalarType() || ElemType->isAtomicType()) 921 return CheckScalarType(Entity, IList, ElemType, Index, 922 StructuredList, StructuredIndex); 923 924 assert((ElemType->isRecordType() || ElemType->isVectorType() || 925 ElemType->isArrayType()) && "Unexpected type"); 926 927 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { 928 // arrayType can be incomplete if we're initializing a flexible 929 // array member. There's nothing we can do with the completed 930 // type here, though. 931 932 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 933 if (!VerifyOnly) { 934 CheckStringInit(expr, ElemType, arrayType, SemaRef); 935 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 936 } 937 ++Index; 938 return; 939 } 940 941 // Fall through for subaggregate initialization. 942 943 } else if (SemaRef.getLangOpts().CPlusPlus) { 944 // C++ [dcl.init.aggr]p12: 945 // All implicit type conversions (clause 4) are considered when 946 // initializing the aggregate member with an initializer from 947 // an initializer-list. If the initializer can initialize a 948 // member, the member is initialized. [...] 949 950 // FIXME: Better EqualLoc? 951 InitializationKind Kind = 952 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 953 InitializationSequence Seq(SemaRef, Entity, Kind, expr); 954 955 if (Seq) { 956 if (!VerifyOnly) { 957 ExprResult Result = 958 Seq.Perform(SemaRef, Entity, Kind, expr); 959 if (Result.isInvalid()) 960 hadError = true; 961 962 UpdateStructuredListElement(StructuredList, StructuredIndex, 963 Result.getAs<Expr>()); 964 } 965 ++Index; 966 return; 967 } 968 969 // Fall through for subaggregate initialization 970 } else { 971 // C99 6.7.8p13: 972 // 973 // The initializer for a structure or union object that has 974 // automatic storage duration shall be either an initializer 975 // list as described below, or a single expression that has 976 // compatible structure or union type. In the latter case, the 977 // initial value of the object, including unnamed members, is 978 // that of the expression. 979 ExprResult ExprRes = expr; 980 if ((ElemType->isRecordType() || ElemType->isVectorType()) && 981 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes, 982 !VerifyOnly) 983 != Sema::Incompatible) { 984 if (ExprRes.isInvalid()) 985 hadError = true; 986 else { 987 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 988 if (ExprRes.isInvalid()) 989 hadError = true; 990 } 991 UpdateStructuredListElement(StructuredList, StructuredIndex, 992 ExprRes.getAs<Expr>()); 993 ++Index; 994 return; 995 } 996 ExprRes.get(); 997 // Fall through for subaggregate initialization 998 } 999 1000 // C++ [dcl.init.aggr]p12: 1001 // 1002 // [...] Otherwise, if the member is itself a non-empty 1003 // subaggregate, brace elision is assumed and the initializer is 1004 // considered for the initialization of the first member of 1005 // the subaggregate. 1006 if (!SemaRef.getLangOpts().OpenCL && 1007 (ElemType->isAggregateType() || ElemType->isVectorType())) { 1008 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1009 StructuredIndex); 1010 ++StructuredIndex; 1011 } else { 1012 if (!VerifyOnly) { 1013 // We cannot initialize this element, so let 1014 // PerformCopyInitialization produce the appropriate diagnostic. 1015 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1016 /*TopLevelOfInitList=*/true); 1017 } 1018 hadError = true; 1019 ++Index; 1020 ++StructuredIndex; 1021 } 1022 } 1023 1024 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1025 InitListExpr *IList, QualType DeclType, 1026 unsigned &Index, 1027 InitListExpr *StructuredList, 1028 unsigned &StructuredIndex) { 1029 assert(Index == 0 && "Index in explicit init list must be zero"); 1030 1031 // As an extension, clang supports complex initializers, which initialize 1032 // a complex number component-wise. When an explicit initializer list for 1033 // a complex number contains two two initializers, this extension kicks in: 1034 // it exepcts the initializer list to contain two elements convertible to 1035 // the element type of the complex type. The first element initializes 1036 // the real part, and the second element intitializes the imaginary part. 1037 1038 if (IList->getNumInits() != 2) 1039 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1040 StructuredIndex); 1041 1042 // This is an extension in C. (The builtin _Complex type does not exist 1043 // in the C++ standard.) 1044 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1045 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 1046 << IList->getSourceRange(); 1047 1048 // Initialize the complex number. 1049 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1050 InitializedEntity ElementEntity = 1051 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1052 1053 for (unsigned i = 0; i < 2; ++i) { 1054 ElementEntity.setElementIndex(Index); 1055 CheckSubElementType(ElementEntity, IList, elementType, Index, 1056 StructuredList, StructuredIndex); 1057 } 1058 } 1059 1060 1061 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1062 InitListExpr *IList, QualType DeclType, 1063 unsigned &Index, 1064 InitListExpr *StructuredList, 1065 unsigned &StructuredIndex) { 1066 if (Index >= IList->getNumInits()) { 1067 if (!VerifyOnly) 1068 SemaRef.Diag(IList->getLocStart(), 1069 SemaRef.getLangOpts().CPlusPlus11 ? 1070 diag::warn_cxx98_compat_empty_scalar_initializer : 1071 diag::err_empty_scalar_initializer) 1072 << IList->getSourceRange(); 1073 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1074 ++Index; 1075 ++StructuredIndex; 1076 return; 1077 } 1078 1079 Expr *expr = IList->getInit(Index); 1080 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1081 // FIXME: This is invalid, and accepting it causes overload resolution 1082 // to pick the wrong overload in some corner cases. 1083 if (!VerifyOnly) 1084 SemaRef.Diag(SubIList->getLocStart(), 1085 diag::ext_many_braces_around_scalar_init) 1086 << SubIList->getSourceRange(); 1087 1088 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1089 StructuredIndex); 1090 return; 1091 } else if (isa<DesignatedInitExpr>(expr)) { 1092 if (!VerifyOnly) 1093 SemaRef.Diag(expr->getLocStart(), 1094 diag::err_designator_for_scalar_init) 1095 << DeclType << expr->getSourceRange(); 1096 hadError = true; 1097 ++Index; 1098 ++StructuredIndex; 1099 return; 1100 } 1101 1102 if (VerifyOnly) { 1103 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1104 hadError = true; 1105 ++Index; 1106 return; 1107 } 1108 1109 ExprResult Result = 1110 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1111 /*TopLevelOfInitList=*/true); 1112 1113 Expr *ResultExpr = nullptr; 1114 1115 if (Result.isInvalid()) 1116 hadError = true; // types weren't compatible. 1117 else { 1118 ResultExpr = Result.getAs<Expr>(); 1119 1120 if (ResultExpr != expr) { 1121 // The type was promoted, update initializer list. 1122 IList->setInit(Index, ResultExpr); 1123 } 1124 } 1125 if (hadError) 1126 ++StructuredIndex; 1127 else 1128 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1129 ++Index; 1130 } 1131 1132 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1133 InitListExpr *IList, QualType DeclType, 1134 unsigned &Index, 1135 InitListExpr *StructuredList, 1136 unsigned &StructuredIndex) { 1137 if (Index >= IList->getNumInits()) { 1138 // FIXME: It would be wonderful if we could point at the actual member. In 1139 // general, it would be useful to pass location information down the stack, 1140 // so that we know the location (or decl) of the "current object" being 1141 // initialized. 1142 if (!VerifyOnly) 1143 SemaRef.Diag(IList->getLocStart(), 1144 diag::err_init_reference_member_uninitialized) 1145 << DeclType 1146 << IList->getSourceRange(); 1147 hadError = true; 1148 ++Index; 1149 ++StructuredIndex; 1150 return; 1151 } 1152 1153 Expr *expr = IList->getInit(Index); 1154 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1155 if (!VerifyOnly) 1156 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 1157 << DeclType << IList->getSourceRange(); 1158 hadError = true; 1159 ++Index; 1160 ++StructuredIndex; 1161 return; 1162 } 1163 1164 if (VerifyOnly) { 1165 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1166 hadError = true; 1167 ++Index; 1168 return; 1169 } 1170 1171 ExprResult Result = 1172 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1173 /*TopLevelOfInitList=*/true); 1174 1175 if (Result.isInvalid()) 1176 hadError = true; 1177 1178 expr = Result.getAs<Expr>(); 1179 IList->setInit(Index, expr); 1180 1181 if (hadError) 1182 ++StructuredIndex; 1183 else 1184 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1185 ++Index; 1186 } 1187 1188 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1189 InitListExpr *IList, QualType DeclType, 1190 unsigned &Index, 1191 InitListExpr *StructuredList, 1192 unsigned &StructuredIndex) { 1193 const VectorType *VT = DeclType->getAs<VectorType>(); 1194 unsigned maxElements = VT->getNumElements(); 1195 unsigned numEltsInit = 0; 1196 QualType elementType = VT->getElementType(); 1197 1198 if (Index >= IList->getNumInits()) { 1199 // Make sure the element type can be value-initialized. 1200 if (VerifyOnly) 1201 CheckEmptyInitializable( 1202 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1203 IList->getLocEnd()); 1204 return; 1205 } 1206 1207 if (!SemaRef.getLangOpts().OpenCL) { 1208 // If the initializing element is a vector, try to copy-initialize 1209 // instead of breaking it apart (which is doomed to failure anyway). 1210 Expr *Init = IList->getInit(Index); 1211 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1212 if (VerifyOnly) { 1213 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1214 hadError = true; 1215 ++Index; 1216 return; 1217 } 1218 1219 ExprResult Result = 1220 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init, 1221 /*TopLevelOfInitList=*/true); 1222 1223 Expr *ResultExpr = nullptr; 1224 if (Result.isInvalid()) 1225 hadError = true; // types weren't compatible. 1226 else { 1227 ResultExpr = Result.getAs<Expr>(); 1228 1229 if (ResultExpr != Init) { 1230 // The type was promoted, update initializer list. 1231 IList->setInit(Index, ResultExpr); 1232 } 1233 } 1234 if (hadError) 1235 ++StructuredIndex; 1236 else 1237 UpdateStructuredListElement(StructuredList, StructuredIndex, 1238 ResultExpr); 1239 ++Index; 1240 return; 1241 } 1242 1243 InitializedEntity ElementEntity = 1244 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1245 1246 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1247 // Don't attempt to go past the end of the init list 1248 if (Index >= IList->getNumInits()) { 1249 if (VerifyOnly) 1250 CheckEmptyInitializable(ElementEntity, IList->getLocEnd()); 1251 break; 1252 } 1253 1254 ElementEntity.setElementIndex(Index); 1255 CheckSubElementType(ElementEntity, IList, elementType, Index, 1256 StructuredList, StructuredIndex); 1257 } 1258 1259 if (VerifyOnly) 1260 return; 1261 1262 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1263 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1264 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1265 T->getVectorKind() == VectorType::NeonPolyVector)) { 1266 // The ability to use vector initializer lists is a GNU vector extension 1267 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1268 // endian machines it works fine, however on big endian machines it 1269 // exhibits surprising behaviour: 1270 // 1271 // uint32x2_t x = {42, 64}; 1272 // return vget_lane_u32(x, 0); // Will return 64. 1273 // 1274 // Because of this, explicitly call out that it is non-portable. 1275 // 1276 SemaRef.Diag(IList->getLocStart(), 1277 diag::warn_neon_vector_initializer_non_portable); 1278 1279 const char *typeCode; 1280 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1281 1282 if (elementType->isFloatingType()) 1283 typeCode = "f"; 1284 else if (elementType->isSignedIntegerType()) 1285 typeCode = "s"; 1286 else if (elementType->isUnsignedIntegerType()) 1287 typeCode = "u"; 1288 else 1289 llvm_unreachable("Invalid element type!"); 1290 1291 SemaRef.Diag(IList->getLocStart(), 1292 SemaRef.Context.getTypeSize(VT) > 64 ? 1293 diag::note_neon_vector_initializer_non_portable_q : 1294 diag::note_neon_vector_initializer_non_portable) 1295 << typeCode << typeSize; 1296 } 1297 1298 return; 1299 } 1300 1301 InitializedEntity ElementEntity = 1302 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1303 1304 // OpenCL initializers allows vectors to be constructed from vectors. 1305 for (unsigned i = 0; i < maxElements; ++i) { 1306 // Don't attempt to go past the end of the init list 1307 if (Index >= IList->getNumInits()) 1308 break; 1309 1310 ElementEntity.setElementIndex(Index); 1311 1312 QualType IType = IList->getInit(Index)->getType(); 1313 if (!IType->isVectorType()) { 1314 CheckSubElementType(ElementEntity, IList, elementType, Index, 1315 StructuredList, StructuredIndex); 1316 ++numEltsInit; 1317 } else { 1318 QualType VecType; 1319 const VectorType *IVT = IType->getAs<VectorType>(); 1320 unsigned numIElts = IVT->getNumElements(); 1321 1322 if (IType->isExtVectorType()) 1323 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1324 else 1325 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1326 IVT->getVectorKind()); 1327 CheckSubElementType(ElementEntity, IList, VecType, Index, 1328 StructuredList, StructuredIndex); 1329 numEltsInit += numIElts; 1330 } 1331 } 1332 1333 // OpenCL requires all elements to be initialized. 1334 if (numEltsInit != maxElements) { 1335 if (!VerifyOnly) 1336 SemaRef.Diag(IList->getLocStart(), 1337 diag::err_vector_incorrect_num_initializers) 1338 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1339 hadError = true; 1340 } 1341 } 1342 1343 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1344 InitListExpr *IList, QualType &DeclType, 1345 llvm::APSInt elementIndex, 1346 bool SubobjectIsDesignatorContext, 1347 unsigned &Index, 1348 InitListExpr *StructuredList, 1349 unsigned &StructuredIndex) { 1350 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1351 1352 // Check for the special-case of initializing an array with a string. 1353 if (Index < IList->getNumInits()) { 1354 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1355 SIF_None) { 1356 // We place the string literal directly into the resulting 1357 // initializer list. This is the only place where the structure 1358 // of the structured initializer list doesn't match exactly, 1359 // because doing so would involve allocating one character 1360 // constant for each string. 1361 if (!VerifyOnly) { 1362 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1363 UpdateStructuredListElement(StructuredList, StructuredIndex, 1364 IList->getInit(Index)); 1365 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1366 } 1367 ++Index; 1368 return; 1369 } 1370 } 1371 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1372 // Check for VLAs; in standard C it would be possible to check this 1373 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1374 // them in all sorts of strange places). 1375 if (!VerifyOnly) 1376 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1377 diag::err_variable_object_no_init) 1378 << VAT->getSizeExpr()->getSourceRange(); 1379 hadError = true; 1380 ++Index; 1381 ++StructuredIndex; 1382 return; 1383 } 1384 1385 // We might know the maximum number of elements in advance. 1386 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1387 elementIndex.isUnsigned()); 1388 bool maxElementsKnown = false; 1389 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1390 maxElements = CAT->getSize(); 1391 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1392 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1393 maxElementsKnown = true; 1394 } 1395 1396 QualType elementType = arrayType->getElementType(); 1397 while (Index < IList->getNumInits()) { 1398 Expr *Init = IList->getInit(Index); 1399 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1400 // If we're not the subobject that matches up with the '{' for 1401 // the designator, we shouldn't be handling the 1402 // designator. Return immediately. 1403 if (!SubobjectIsDesignatorContext) 1404 return; 1405 1406 // Handle this designated initializer. elementIndex will be 1407 // updated to be the next array element we'll initialize. 1408 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1409 DeclType, nullptr, &elementIndex, Index, 1410 StructuredList, StructuredIndex, true, 1411 false)) { 1412 hadError = true; 1413 continue; 1414 } 1415 1416 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1417 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1418 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1419 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1420 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1421 1422 // If the array is of incomplete type, keep track of the number of 1423 // elements in the initializer. 1424 if (!maxElementsKnown && elementIndex > maxElements) 1425 maxElements = elementIndex; 1426 1427 continue; 1428 } 1429 1430 // If we know the maximum number of elements, and we've already 1431 // hit it, stop consuming elements in the initializer list. 1432 if (maxElementsKnown && elementIndex == maxElements) 1433 break; 1434 1435 InitializedEntity ElementEntity = 1436 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1437 Entity); 1438 // Check this element. 1439 CheckSubElementType(ElementEntity, IList, elementType, Index, 1440 StructuredList, StructuredIndex); 1441 ++elementIndex; 1442 1443 // If the array is of incomplete type, keep track of the number of 1444 // elements in the initializer. 1445 if (!maxElementsKnown && elementIndex > maxElements) 1446 maxElements = elementIndex; 1447 } 1448 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1449 // If this is an incomplete array type, the actual type needs to 1450 // be calculated here. 1451 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1452 if (maxElements == Zero) { 1453 // Sizing an array implicitly to zero is not allowed by ISO C, 1454 // but is supported by GNU. 1455 SemaRef.Diag(IList->getLocStart(), 1456 diag::ext_typecheck_zero_array_size); 1457 } 1458 1459 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1460 ArrayType::Normal, 0); 1461 } 1462 if (!hadError && VerifyOnly) { 1463 // Check if there are any members of the array that get value-initialized. 1464 // If so, check if doing that is possible. 1465 // FIXME: This needs to detect holes left by designated initializers too. 1466 if (maxElementsKnown && elementIndex < maxElements) 1467 CheckEmptyInitializable(InitializedEntity::InitializeElement( 1468 SemaRef.Context, 0, Entity), 1469 IList->getLocEnd()); 1470 } 1471 } 1472 1473 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1474 Expr *InitExpr, 1475 FieldDecl *Field, 1476 bool TopLevelObject) { 1477 // Handle GNU flexible array initializers. 1478 unsigned FlexArrayDiag; 1479 if (isa<InitListExpr>(InitExpr) && 1480 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1481 // Empty flexible array init always allowed as an extension 1482 FlexArrayDiag = diag::ext_flexible_array_init; 1483 } else if (SemaRef.getLangOpts().CPlusPlus) { 1484 // Disallow flexible array init in C++; it is not required for gcc 1485 // compatibility, and it needs work to IRGen correctly in general. 1486 FlexArrayDiag = diag::err_flexible_array_init; 1487 } else if (!TopLevelObject) { 1488 // Disallow flexible array init on non-top-level object 1489 FlexArrayDiag = diag::err_flexible_array_init; 1490 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1491 // Disallow flexible array init on anything which is not a variable. 1492 FlexArrayDiag = diag::err_flexible_array_init; 1493 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1494 // Disallow flexible array init on local variables. 1495 FlexArrayDiag = diag::err_flexible_array_init; 1496 } else { 1497 // Allow other cases. 1498 FlexArrayDiag = diag::ext_flexible_array_init; 1499 } 1500 1501 if (!VerifyOnly) { 1502 SemaRef.Diag(InitExpr->getLocStart(), 1503 FlexArrayDiag) 1504 << InitExpr->getLocStart(); 1505 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1506 << Field; 1507 } 1508 1509 return FlexArrayDiag != diag::ext_flexible_array_init; 1510 } 1511 1512 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, 1513 InitListExpr *IList, 1514 QualType DeclType, 1515 RecordDecl::field_iterator Field, 1516 bool SubobjectIsDesignatorContext, 1517 unsigned &Index, 1518 InitListExpr *StructuredList, 1519 unsigned &StructuredIndex, 1520 bool TopLevelObject) { 1521 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); 1522 1523 // If the record is invalid, some of it's members are invalid. To avoid 1524 // confusion, we forgo checking the intializer for the entire record. 1525 if (structDecl->isInvalidDecl()) { 1526 // Assume it was supposed to consume a single initializer. 1527 ++Index; 1528 hadError = true; 1529 return; 1530 } 1531 1532 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1533 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1534 1535 // If there's a default initializer, use it. 1536 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1537 if (VerifyOnly) 1538 return; 1539 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1540 Field != FieldEnd; ++Field) { 1541 if (Field->hasInClassInitializer()) { 1542 StructuredList->setInitializedFieldInUnion(*Field); 1543 // FIXME: Actually build a CXXDefaultInitExpr? 1544 return; 1545 } 1546 } 1547 } 1548 1549 // Value-initialize the first named member of the union. 1550 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1551 Field != FieldEnd; ++Field) { 1552 if (Field->getDeclName()) { 1553 if (VerifyOnly) 1554 CheckEmptyInitializable( 1555 InitializedEntity::InitializeMember(*Field, &Entity), 1556 IList->getLocEnd()); 1557 else 1558 StructuredList->setInitializedFieldInUnion(*Field); 1559 break; 1560 } 1561 } 1562 return; 1563 } 1564 1565 // If structDecl is a forward declaration, this loop won't do 1566 // anything except look at designated initializers; That's okay, 1567 // because an error should get printed out elsewhere. It might be 1568 // worthwhile to skip over the rest of the initializer, though. 1569 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1570 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1571 bool InitializedSomething = false; 1572 bool CheckForMissingFields = true; 1573 while (Index < IList->getNumInits()) { 1574 Expr *Init = IList->getInit(Index); 1575 1576 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1577 // If we're not the subobject that matches up with the '{' for 1578 // the designator, we shouldn't be handling the 1579 // designator. Return immediately. 1580 if (!SubobjectIsDesignatorContext) 1581 return; 1582 1583 // Handle this designated initializer. Field will be updated to 1584 // the next field that we'll be initializing. 1585 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1586 DeclType, &Field, nullptr, Index, 1587 StructuredList, StructuredIndex, 1588 true, TopLevelObject)) 1589 hadError = true; 1590 1591 InitializedSomething = true; 1592 1593 // Disable check for missing fields when designators are used. 1594 // This matches gcc behaviour. 1595 CheckForMissingFields = false; 1596 continue; 1597 } 1598 1599 if (Field == FieldEnd) { 1600 // We've run out of fields. We're done. 1601 break; 1602 } 1603 1604 // We've already initialized a member of a union. We're done. 1605 if (InitializedSomething && DeclType->isUnionType()) 1606 break; 1607 1608 // If we've hit the flexible array member at the end, we're done. 1609 if (Field->getType()->isIncompleteArrayType()) 1610 break; 1611 1612 if (Field->isUnnamedBitfield()) { 1613 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1614 ++Field; 1615 continue; 1616 } 1617 1618 // Make sure we can use this declaration. 1619 bool InvalidUse; 1620 if (VerifyOnly) 1621 InvalidUse = !SemaRef.CanUseDecl(*Field); 1622 else 1623 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1624 IList->getInit(Index)->getLocStart()); 1625 if (InvalidUse) { 1626 ++Index; 1627 ++Field; 1628 hadError = true; 1629 continue; 1630 } 1631 1632 InitializedEntity MemberEntity = 1633 InitializedEntity::InitializeMember(*Field, &Entity); 1634 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1635 StructuredList, StructuredIndex); 1636 InitializedSomething = true; 1637 1638 if (DeclType->isUnionType() && !VerifyOnly) { 1639 // Initialize the first field within the union. 1640 StructuredList->setInitializedFieldInUnion(*Field); 1641 } 1642 1643 ++Field; 1644 } 1645 1646 // Emit warnings for missing struct field initializers. 1647 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1648 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1649 !DeclType->isUnionType()) { 1650 // It is possible we have one or more unnamed bitfields remaining. 1651 // Find first (if any) named field and emit warning. 1652 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1653 it != end; ++it) { 1654 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 1655 SemaRef.Diag(IList->getSourceRange().getEnd(), 1656 diag::warn_missing_field_initializers) << *it; 1657 break; 1658 } 1659 } 1660 } 1661 1662 // Check that any remaining fields can be value-initialized. 1663 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1664 !Field->getType()->isIncompleteArrayType()) { 1665 // FIXME: Should check for holes left by designated initializers too. 1666 for (; Field != FieldEnd && !hadError; ++Field) { 1667 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 1668 CheckEmptyInitializable( 1669 InitializedEntity::InitializeMember(*Field, &Entity), 1670 IList->getLocEnd()); 1671 } 1672 } 1673 1674 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1675 Index >= IList->getNumInits()) 1676 return; 1677 1678 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1679 TopLevelObject)) { 1680 hadError = true; 1681 ++Index; 1682 return; 1683 } 1684 1685 InitializedEntity MemberEntity = 1686 InitializedEntity::InitializeMember(*Field, &Entity); 1687 1688 if (isa<InitListExpr>(IList->getInit(Index))) 1689 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1690 StructuredList, StructuredIndex); 1691 else 1692 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1693 StructuredList, StructuredIndex); 1694 } 1695 1696 /// \brief Expand a field designator that refers to a member of an 1697 /// anonymous struct or union into a series of field designators that 1698 /// refers to the field within the appropriate subobject. 1699 /// 1700 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1701 DesignatedInitExpr *DIE, 1702 unsigned DesigIdx, 1703 IndirectFieldDecl *IndirectField) { 1704 typedef DesignatedInitExpr::Designator Designator; 1705 1706 // Build the replacement designators. 1707 SmallVector<Designator, 4> Replacements; 1708 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1709 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1710 if (PI + 1 == PE) 1711 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1712 DIE->getDesignator(DesigIdx)->getDotLoc(), 1713 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1714 else 1715 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1716 SourceLocation(), SourceLocation())); 1717 assert(isa<FieldDecl>(*PI)); 1718 Replacements.back().setField(cast<FieldDecl>(*PI)); 1719 } 1720 1721 // Expand the current designator into the set of replacement 1722 // designators, so we have a full subobject path down to where the 1723 // member of the anonymous struct/union is actually stored. 1724 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1725 &Replacements[0] + Replacements.size()); 1726 } 1727 1728 /// \brief Given an implicit anonymous field, search the IndirectField that 1729 /// corresponds to FieldName. 1730 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField, 1731 IdentifierInfo *FieldName) { 1732 if (!FieldName) 1733 return nullptr; 1734 1735 assert(AnonField->isAnonymousStructOrUnion()); 1736 Decl *NextDecl = AnonField->getNextDeclInContext(); 1737 while (IndirectFieldDecl *IF = 1738 dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) { 1739 if (FieldName == IF->getAnonField()->getIdentifier()) 1740 return IF; 1741 NextDecl = NextDecl->getNextDeclInContext(); 1742 } 1743 return nullptr; 1744 } 1745 1746 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1747 DesignatedInitExpr *DIE) { 1748 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1749 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1750 for (unsigned I = 0; I < NumIndexExprs; ++I) 1751 IndexExprs[I] = DIE->getSubExpr(I + 1); 1752 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), 1753 DIE->size(), IndexExprs, 1754 DIE->getEqualOrColonLoc(), 1755 DIE->usesGNUSyntax(), DIE->getInit()); 1756 } 1757 1758 namespace { 1759 1760 // Callback to only accept typo corrections that are for field members of 1761 // the given struct or union. 1762 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { 1763 public: 1764 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 1765 : Record(RD) {} 1766 1767 bool ValidateCandidate(const TypoCorrection &candidate) override { 1768 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 1769 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 1770 } 1771 1772 private: 1773 RecordDecl *Record; 1774 }; 1775 1776 } 1777 1778 /// @brief Check the well-formedness of a C99 designated initializer. 1779 /// 1780 /// Determines whether the designated initializer @p DIE, which 1781 /// resides at the given @p Index within the initializer list @p 1782 /// IList, is well-formed for a current object of type @p DeclType 1783 /// (C99 6.7.8). The actual subobject that this designator refers to 1784 /// within the current subobject is returned in either 1785 /// @p NextField or @p NextElementIndex (whichever is appropriate). 1786 /// 1787 /// @param IList The initializer list in which this designated 1788 /// initializer occurs. 1789 /// 1790 /// @param DIE The designated initializer expression. 1791 /// 1792 /// @param DesigIdx The index of the current designator. 1793 /// 1794 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 1795 /// into which the designation in @p DIE should refer. 1796 /// 1797 /// @param NextField If non-NULL and the first designator in @p DIE is 1798 /// a field, this will be set to the field declaration corresponding 1799 /// to the field named by the designator. 1800 /// 1801 /// @param NextElementIndex If non-NULL and the first designator in @p 1802 /// DIE is an array designator or GNU array-range designator, this 1803 /// will be set to the last index initialized by this designator. 1804 /// 1805 /// @param Index Index into @p IList where the designated initializer 1806 /// @p DIE occurs. 1807 /// 1808 /// @param StructuredList The initializer list expression that 1809 /// describes all of the subobject initializers in the order they'll 1810 /// actually be initialized. 1811 /// 1812 /// @returns true if there was an error, false otherwise. 1813 bool 1814 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 1815 InitListExpr *IList, 1816 DesignatedInitExpr *DIE, 1817 unsigned DesigIdx, 1818 QualType &CurrentObjectType, 1819 RecordDecl::field_iterator *NextField, 1820 llvm::APSInt *NextElementIndex, 1821 unsigned &Index, 1822 InitListExpr *StructuredList, 1823 unsigned &StructuredIndex, 1824 bool FinishSubobjectInit, 1825 bool TopLevelObject) { 1826 if (DesigIdx == DIE->size()) { 1827 // Check the actual initialization for the designated object type. 1828 bool prevHadError = hadError; 1829 1830 // Temporarily remove the designator expression from the 1831 // initializer list that the child calls see, so that we don't try 1832 // to re-process the designator. 1833 unsigned OldIndex = Index; 1834 IList->setInit(OldIndex, DIE->getInit()); 1835 1836 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 1837 StructuredList, StructuredIndex); 1838 1839 // Restore the designated initializer expression in the syntactic 1840 // form of the initializer list. 1841 if (IList->getInit(OldIndex) != DIE->getInit()) 1842 DIE->setInit(IList->getInit(OldIndex)); 1843 IList->setInit(OldIndex, DIE); 1844 1845 return hadError && !prevHadError; 1846 } 1847 1848 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 1849 bool IsFirstDesignator = (DesigIdx == 0); 1850 if (!VerifyOnly) { 1851 assert((IsFirstDesignator || StructuredList) && 1852 "Need a non-designated initializer list to start from"); 1853 1854 // Determine the structural initializer list that corresponds to the 1855 // current subobject. 1856 StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList) 1857 : getStructuredSubobjectInit(IList, Index, CurrentObjectType, 1858 StructuredList, StructuredIndex, 1859 SourceRange(D->getLocStart(), 1860 DIE->getLocEnd())); 1861 assert(StructuredList && "Expected a structured initializer list"); 1862 } 1863 1864 if (D->isFieldDesignator()) { 1865 // C99 6.7.8p7: 1866 // 1867 // If a designator has the form 1868 // 1869 // . identifier 1870 // 1871 // then the current object (defined below) shall have 1872 // structure or union type and the identifier shall be the 1873 // name of a member of that type. 1874 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 1875 if (!RT) { 1876 SourceLocation Loc = D->getDotLoc(); 1877 if (Loc.isInvalid()) 1878 Loc = D->getFieldLoc(); 1879 if (!VerifyOnly) 1880 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 1881 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 1882 ++Index; 1883 return true; 1884 } 1885 1886 // Note: we perform a linear search of the fields here, despite 1887 // the fact that we have a faster lookup method, because we always 1888 // need to compute the field's index. 1889 FieldDecl *KnownField = D->getField(); 1890 IdentifierInfo *FieldName = D->getFieldName(); 1891 unsigned FieldIndex = 0; 1892 RecordDecl::field_iterator 1893 Field = RT->getDecl()->field_begin(), 1894 FieldEnd = RT->getDecl()->field_end(); 1895 for (; Field != FieldEnd; ++Field) { 1896 if (Field->isUnnamedBitfield()) 1897 continue; 1898 1899 // If we find a field representing an anonymous field, look in the 1900 // IndirectFieldDecl that follow for the designated initializer. 1901 if (!KnownField && Field->isAnonymousStructOrUnion()) { 1902 if (IndirectFieldDecl *IF = 1903 FindIndirectFieldDesignator(*Field, FieldName)) { 1904 // In verify mode, don't modify the original. 1905 if (VerifyOnly) 1906 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 1907 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF); 1908 D = DIE->getDesignator(DesigIdx); 1909 break; 1910 } 1911 } 1912 if (KnownField && KnownField == *Field) 1913 break; 1914 if (FieldName && FieldName == Field->getIdentifier()) 1915 break; 1916 1917 ++FieldIndex; 1918 } 1919 1920 if (Field == FieldEnd) { 1921 if (VerifyOnly) { 1922 ++Index; 1923 return true; // No typo correction when just trying this out. 1924 } 1925 1926 // There was no normal field in the struct with the designated 1927 // name. Perform another lookup for this name, which may find 1928 // something that we can't designate (e.g., a member function), 1929 // may find nothing, or may find a member of an anonymous 1930 // struct/union. 1931 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 1932 FieldDecl *ReplacementField = nullptr; 1933 if (Lookup.empty()) { 1934 // Name lookup didn't find anything. Determine whether this 1935 // was a typo for another field name. 1936 FieldInitializerValidatorCCC Validator(RT->getDecl()); 1937 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 1938 DeclarationNameInfo(FieldName, D->getFieldLoc()), 1939 Sema::LookupMemberName, /*Scope=*/ nullptr, /*SS=*/ nullptr, 1940 Validator, Sema::CTK_ErrorRecovery, RT->getDecl())) { 1941 SemaRef.diagnoseTypo( 1942 Corrected, 1943 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 1944 << FieldName << CurrentObjectType); 1945 ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>(); 1946 hadError = true; 1947 } else { 1948 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 1949 << FieldName << CurrentObjectType; 1950 ++Index; 1951 return true; 1952 } 1953 } 1954 1955 if (!ReplacementField) { 1956 // Name lookup found something, but it wasn't a field. 1957 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 1958 << FieldName; 1959 SemaRef.Diag(Lookup.front()->getLocation(), 1960 diag::note_field_designator_found); 1961 ++Index; 1962 return true; 1963 } 1964 1965 if (!KnownField) { 1966 // The replacement field comes from typo correction; find it 1967 // in the list of fields. 1968 FieldIndex = 0; 1969 Field = RT->getDecl()->field_begin(); 1970 for (; Field != FieldEnd; ++Field) { 1971 if (Field->isUnnamedBitfield()) 1972 continue; 1973 1974 if (ReplacementField == *Field || 1975 Field->getIdentifier() == ReplacementField->getIdentifier()) 1976 break; 1977 1978 ++FieldIndex; 1979 } 1980 } 1981 } 1982 1983 // All of the fields of a union are located at the same place in 1984 // the initializer list. 1985 if (RT->getDecl()->isUnion()) { 1986 FieldIndex = 0; 1987 if (!VerifyOnly) { 1988 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 1989 if (CurrentField && CurrentField != *Field) { 1990 assert(StructuredList->getNumInits() == 1 1991 && "A union should never have more than one initializer!"); 1992 1993 // we're about to throw away an initializer, emit warning 1994 SemaRef.Diag(D->getFieldLoc(), 1995 diag::warn_initializer_overrides) 1996 << D->getSourceRange(); 1997 Expr *ExistingInit = StructuredList->getInit(0); 1998 SemaRef.Diag(ExistingInit->getLocStart(), 1999 diag::note_previous_initializer) 2000 << /*FIXME:has side effects=*/0 2001 << ExistingInit->getSourceRange(); 2002 2003 // remove existing initializer 2004 StructuredList->resizeInits(SemaRef.Context, 0); 2005 StructuredList->setInitializedFieldInUnion(nullptr); 2006 } 2007 2008 StructuredList->setInitializedFieldInUnion(*Field); 2009 } 2010 } 2011 2012 // Make sure we can use this declaration. 2013 bool InvalidUse; 2014 if (VerifyOnly) 2015 InvalidUse = !SemaRef.CanUseDecl(*Field); 2016 else 2017 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2018 if (InvalidUse) { 2019 ++Index; 2020 return true; 2021 } 2022 2023 if (!VerifyOnly) { 2024 // Update the designator with the field declaration. 2025 D->setField(*Field); 2026 2027 // Make sure that our non-designated initializer list has space 2028 // for a subobject corresponding to this field. 2029 if (FieldIndex >= StructuredList->getNumInits()) 2030 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2031 } 2032 2033 // This designator names a flexible array member. 2034 if (Field->getType()->isIncompleteArrayType()) { 2035 bool Invalid = false; 2036 if ((DesigIdx + 1) != DIE->size()) { 2037 // We can't designate an object within the flexible array 2038 // member (because GCC doesn't allow it). 2039 if (!VerifyOnly) { 2040 DesignatedInitExpr::Designator *NextD 2041 = DIE->getDesignator(DesigIdx + 1); 2042 SemaRef.Diag(NextD->getLocStart(), 2043 diag::err_designator_into_flexible_array_member) 2044 << SourceRange(NextD->getLocStart(), 2045 DIE->getLocEnd()); 2046 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2047 << *Field; 2048 } 2049 Invalid = true; 2050 } 2051 2052 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2053 !isa<StringLiteral>(DIE->getInit())) { 2054 // The initializer is not an initializer list. 2055 if (!VerifyOnly) { 2056 SemaRef.Diag(DIE->getInit()->getLocStart(), 2057 diag::err_flexible_array_init_needs_braces) 2058 << DIE->getInit()->getSourceRange(); 2059 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2060 << *Field; 2061 } 2062 Invalid = true; 2063 } 2064 2065 // Check GNU flexible array initializer. 2066 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2067 TopLevelObject)) 2068 Invalid = true; 2069 2070 if (Invalid) { 2071 ++Index; 2072 return true; 2073 } 2074 2075 // Initialize the array. 2076 bool prevHadError = hadError; 2077 unsigned newStructuredIndex = FieldIndex; 2078 unsigned OldIndex = Index; 2079 IList->setInit(Index, DIE->getInit()); 2080 2081 InitializedEntity MemberEntity = 2082 InitializedEntity::InitializeMember(*Field, &Entity); 2083 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2084 StructuredList, newStructuredIndex); 2085 2086 IList->setInit(OldIndex, DIE); 2087 if (hadError && !prevHadError) { 2088 ++Field; 2089 ++FieldIndex; 2090 if (NextField) 2091 *NextField = Field; 2092 StructuredIndex = FieldIndex; 2093 return true; 2094 } 2095 } else { 2096 // Recurse to check later designated subobjects. 2097 QualType FieldType = Field->getType(); 2098 unsigned newStructuredIndex = FieldIndex; 2099 2100 InitializedEntity MemberEntity = 2101 InitializedEntity::InitializeMember(*Field, &Entity); 2102 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2103 FieldType, nullptr, nullptr, Index, 2104 StructuredList, newStructuredIndex, 2105 true, false)) 2106 return true; 2107 } 2108 2109 // Find the position of the next field to be initialized in this 2110 // subobject. 2111 ++Field; 2112 ++FieldIndex; 2113 2114 // If this the first designator, our caller will continue checking 2115 // the rest of this struct/class/union subobject. 2116 if (IsFirstDesignator) { 2117 if (NextField) 2118 *NextField = Field; 2119 StructuredIndex = FieldIndex; 2120 return false; 2121 } 2122 2123 if (!FinishSubobjectInit) 2124 return false; 2125 2126 // We've already initialized something in the union; we're done. 2127 if (RT->getDecl()->isUnion()) 2128 return hadError; 2129 2130 // Check the remaining fields within this class/struct/union subobject. 2131 bool prevHadError = hadError; 2132 2133 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, 2134 StructuredList, FieldIndex); 2135 return hadError && !prevHadError; 2136 } 2137 2138 // C99 6.7.8p6: 2139 // 2140 // If a designator has the form 2141 // 2142 // [ constant-expression ] 2143 // 2144 // then the current object (defined below) shall have array 2145 // type and the expression shall be an integer constant 2146 // expression. If the array is of unknown size, any 2147 // nonnegative value is valid. 2148 // 2149 // Additionally, cope with the GNU extension that permits 2150 // designators of the form 2151 // 2152 // [ constant-expression ... constant-expression ] 2153 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2154 if (!AT) { 2155 if (!VerifyOnly) 2156 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2157 << CurrentObjectType; 2158 ++Index; 2159 return true; 2160 } 2161 2162 Expr *IndexExpr = nullptr; 2163 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2164 if (D->isArrayDesignator()) { 2165 IndexExpr = DIE->getArrayIndex(*D); 2166 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2167 DesignatedEndIndex = DesignatedStartIndex; 2168 } else { 2169 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2170 2171 DesignatedStartIndex = 2172 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2173 DesignatedEndIndex = 2174 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2175 IndexExpr = DIE->getArrayRangeEnd(*D); 2176 2177 // Codegen can't handle evaluating array range designators that have side 2178 // effects, because we replicate the AST value for each initialized element. 2179 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2180 // elements with something that has a side effect, so codegen can emit an 2181 // "error unsupported" error instead of miscompiling the app. 2182 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2183 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2184 FullyStructuredList->sawArrayRangeDesignator(); 2185 } 2186 2187 if (isa<ConstantArrayType>(AT)) { 2188 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2189 DesignatedStartIndex 2190 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2191 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2192 DesignatedEndIndex 2193 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2194 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2195 if (DesignatedEndIndex >= MaxElements) { 2196 if (!VerifyOnly) 2197 SemaRef.Diag(IndexExpr->getLocStart(), 2198 diag::err_array_designator_too_large) 2199 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2200 << IndexExpr->getSourceRange(); 2201 ++Index; 2202 return true; 2203 } 2204 } else { 2205 // Make sure the bit-widths and signedness match. 2206 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) 2207 DesignatedEndIndex 2208 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); 2209 else if (DesignatedStartIndex.getBitWidth() < 2210 DesignatedEndIndex.getBitWidth()) 2211 DesignatedStartIndex 2212 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); 2213 DesignatedStartIndex.setIsUnsigned(true); 2214 DesignatedEndIndex.setIsUnsigned(true); 2215 } 2216 2217 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2218 // We're modifying a string literal init; we have to decompose the string 2219 // so we can modify the individual characters. 2220 ASTContext &Context = SemaRef.Context; 2221 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2222 2223 // Compute the character type 2224 QualType CharTy = AT->getElementType(); 2225 2226 // Compute the type of the integer literals. 2227 QualType PromotedCharTy = CharTy; 2228 if (CharTy->isPromotableIntegerType()) 2229 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2230 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2231 2232 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2233 // Get the length of the string. 2234 uint64_t StrLen = SL->getLength(); 2235 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2236 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2237 StructuredList->resizeInits(Context, StrLen); 2238 2239 // Build a literal for each character in the string, and put them into 2240 // the init list. 2241 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2242 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2243 Expr *Init = new (Context) IntegerLiteral( 2244 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2245 if (CharTy != PromotedCharTy) 2246 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2247 Init, nullptr, VK_RValue); 2248 StructuredList->updateInit(Context, i, Init); 2249 } 2250 } else { 2251 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2252 std::string Str; 2253 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2254 2255 // Get the length of the string. 2256 uint64_t StrLen = Str.size(); 2257 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2258 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2259 StructuredList->resizeInits(Context, StrLen); 2260 2261 // Build a literal for each character in the string, and put them into 2262 // the init list. 2263 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2264 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2265 Expr *Init = new (Context) IntegerLiteral( 2266 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2267 if (CharTy != PromotedCharTy) 2268 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2269 Init, nullptr, VK_RValue); 2270 StructuredList->updateInit(Context, i, Init); 2271 } 2272 } 2273 } 2274 2275 // Make sure that our non-designated initializer list has space 2276 // for a subobject corresponding to this array element. 2277 if (!VerifyOnly && 2278 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2279 StructuredList->resizeInits(SemaRef.Context, 2280 DesignatedEndIndex.getZExtValue() + 1); 2281 2282 // Repeatedly perform subobject initializations in the range 2283 // [DesignatedStartIndex, DesignatedEndIndex]. 2284 2285 // Move to the next designator 2286 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2287 unsigned OldIndex = Index; 2288 2289 InitializedEntity ElementEntity = 2290 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2291 2292 while (DesignatedStartIndex <= DesignatedEndIndex) { 2293 // Recurse to check later designated subobjects. 2294 QualType ElementType = AT->getElementType(); 2295 Index = OldIndex; 2296 2297 ElementEntity.setElementIndex(ElementIndex); 2298 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 2299 ElementType, nullptr, nullptr, Index, 2300 StructuredList, ElementIndex, 2301 (DesignatedStartIndex == DesignatedEndIndex), 2302 false)) 2303 return true; 2304 2305 // Move to the next index in the array that we'll be initializing. 2306 ++DesignatedStartIndex; 2307 ElementIndex = DesignatedStartIndex.getZExtValue(); 2308 } 2309 2310 // If this the first designator, our caller will continue checking 2311 // the rest of this array subobject. 2312 if (IsFirstDesignator) { 2313 if (NextElementIndex) 2314 *NextElementIndex = DesignatedStartIndex; 2315 StructuredIndex = ElementIndex; 2316 return false; 2317 } 2318 2319 if (!FinishSubobjectInit) 2320 return false; 2321 2322 // Check the remaining elements within this array subobject. 2323 bool prevHadError = hadError; 2324 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2325 /*SubobjectIsDesignatorContext=*/false, Index, 2326 StructuredList, ElementIndex); 2327 return hadError && !prevHadError; 2328 } 2329 2330 // Get the structured initializer list for a subobject of type 2331 // @p CurrentObjectType. 2332 InitListExpr * 2333 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2334 QualType CurrentObjectType, 2335 InitListExpr *StructuredList, 2336 unsigned StructuredIndex, 2337 SourceRange InitRange) { 2338 if (VerifyOnly) 2339 return nullptr; // No structured list in verification-only mode. 2340 Expr *ExistingInit = nullptr; 2341 if (!StructuredList) 2342 ExistingInit = SyntacticToSemantic.lookup(IList); 2343 else if (StructuredIndex < StructuredList->getNumInits()) 2344 ExistingInit = StructuredList->getInit(StructuredIndex); 2345 2346 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2347 return Result; 2348 2349 if (ExistingInit) { 2350 // We are creating an initializer list that initializes the 2351 // subobjects of the current object, but there was already an 2352 // initialization that completely initialized the current 2353 // subobject, e.g., by a compound literal: 2354 // 2355 // struct X { int a, b; }; 2356 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2357 // 2358 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2359 // designated initializer re-initializes the whole 2360 // subobject [0], overwriting previous initializers. 2361 SemaRef.Diag(InitRange.getBegin(), 2362 diag::warn_subobject_initializer_overrides) 2363 << InitRange; 2364 SemaRef.Diag(ExistingInit->getLocStart(), 2365 diag::note_previous_initializer) 2366 << /*FIXME:has side effects=*/0 2367 << ExistingInit->getSourceRange(); 2368 } 2369 2370 InitListExpr *Result 2371 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2372 InitRange.getBegin(), None, 2373 InitRange.getEnd()); 2374 2375 QualType ResultType = CurrentObjectType; 2376 if (!ResultType->isArrayType()) 2377 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2378 Result->setType(ResultType); 2379 2380 // Pre-allocate storage for the structured initializer list. 2381 unsigned NumElements = 0; 2382 unsigned NumInits = 0; 2383 bool GotNumInits = false; 2384 if (!StructuredList) { 2385 NumInits = IList->getNumInits(); 2386 GotNumInits = true; 2387 } else if (Index < IList->getNumInits()) { 2388 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2389 NumInits = SubList->getNumInits(); 2390 GotNumInits = true; 2391 } 2392 } 2393 2394 if (const ArrayType *AType 2395 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2396 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2397 NumElements = CAType->getSize().getZExtValue(); 2398 // Simple heuristic so that we don't allocate a very large 2399 // initializer with many empty entries at the end. 2400 if (GotNumInits && NumElements > NumInits) 2401 NumElements = 0; 2402 } 2403 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2404 NumElements = VType->getNumElements(); 2405 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2406 RecordDecl *RDecl = RType->getDecl(); 2407 if (RDecl->isUnion()) 2408 NumElements = 1; 2409 else 2410 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2411 } 2412 2413 Result->reserveInits(SemaRef.Context, NumElements); 2414 2415 // Link this new initializer list into the structured initializer 2416 // lists. 2417 if (StructuredList) 2418 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2419 else { 2420 Result->setSyntacticForm(IList); 2421 SyntacticToSemantic[IList] = Result; 2422 } 2423 2424 return Result; 2425 } 2426 2427 /// Update the initializer at index @p StructuredIndex within the 2428 /// structured initializer list to the value @p expr. 2429 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2430 unsigned &StructuredIndex, 2431 Expr *expr) { 2432 // No structured initializer list to update 2433 if (!StructuredList) 2434 return; 2435 2436 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2437 StructuredIndex, expr)) { 2438 // This initializer overwrites a previous initializer. Warn. 2439 SemaRef.Diag(expr->getLocStart(), 2440 diag::warn_initializer_overrides) 2441 << expr->getSourceRange(); 2442 SemaRef.Diag(PrevInit->getLocStart(), 2443 diag::note_previous_initializer) 2444 << /*FIXME:has side effects=*/0 2445 << PrevInit->getSourceRange(); 2446 } 2447 2448 ++StructuredIndex; 2449 } 2450 2451 /// Check that the given Index expression is a valid array designator 2452 /// value. This is essentially just a wrapper around 2453 /// VerifyIntegerConstantExpression that also checks for negative values 2454 /// and produces a reasonable diagnostic if there is a 2455 /// failure. Returns the index expression, possibly with an implicit cast 2456 /// added, on success. If everything went okay, Value will receive the 2457 /// value of the constant expression. 2458 static ExprResult 2459 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2460 SourceLocation Loc = Index->getLocStart(); 2461 2462 // Make sure this is an integer constant expression. 2463 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2464 if (Result.isInvalid()) 2465 return Result; 2466 2467 if (Value.isSigned() && Value.isNegative()) 2468 return S.Diag(Loc, diag::err_array_designator_negative) 2469 << Value.toString(10) << Index->getSourceRange(); 2470 2471 Value.setIsUnsigned(true); 2472 return Result; 2473 } 2474 2475 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2476 SourceLocation Loc, 2477 bool GNUSyntax, 2478 ExprResult Init) { 2479 typedef DesignatedInitExpr::Designator ASTDesignator; 2480 2481 bool Invalid = false; 2482 SmallVector<ASTDesignator, 32> Designators; 2483 SmallVector<Expr *, 32> InitExpressions; 2484 2485 // Build designators and check array designator expressions. 2486 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2487 const Designator &D = Desig.getDesignator(Idx); 2488 switch (D.getKind()) { 2489 case Designator::FieldDesignator: 2490 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2491 D.getFieldLoc())); 2492 break; 2493 2494 case Designator::ArrayDesignator: { 2495 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2496 llvm::APSInt IndexValue; 2497 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2498 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2499 if (!Index) 2500 Invalid = true; 2501 else { 2502 Designators.push_back(ASTDesignator(InitExpressions.size(), 2503 D.getLBracketLoc(), 2504 D.getRBracketLoc())); 2505 InitExpressions.push_back(Index); 2506 } 2507 break; 2508 } 2509 2510 case Designator::ArrayRangeDesignator: { 2511 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2512 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2513 llvm::APSInt StartValue; 2514 llvm::APSInt EndValue; 2515 bool StartDependent = StartIndex->isTypeDependent() || 2516 StartIndex->isValueDependent(); 2517 bool EndDependent = EndIndex->isTypeDependent() || 2518 EndIndex->isValueDependent(); 2519 if (!StartDependent) 2520 StartIndex = 2521 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 2522 if (!EndDependent) 2523 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 2524 2525 if (!StartIndex || !EndIndex) 2526 Invalid = true; 2527 else { 2528 // Make sure we're comparing values with the same bit width. 2529 if (StartDependent || EndDependent) { 2530 // Nothing to compute. 2531 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2532 EndValue = EndValue.extend(StartValue.getBitWidth()); 2533 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2534 StartValue = StartValue.extend(EndValue.getBitWidth()); 2535 2536 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2537 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2538 << StartValue.toString(10) << EndValue.toString(10) 2539 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2540 Invalid = true; 2541 } else { 2542 Designators.push_back(ASTDesignator(InitExpressions.size(), 2543 D.getLBracketLoc(), 2544 D.getEllipsisLoc(), 2545 D.getRBracketLoc())); 2546 InitExpressions.push_back(StartIndex); 2547 InitExpressions.push_back(EndIndex); 2548 } 2549 } 2550 break; 2551 } 2552 } 2553 } 2554 2555 if (Invalid || Init.isInvalid()) 2556 return ExprError(); 2557 2558 // Clear out the expressions within the designation. 2559 Desig.ClearExprs(*this); 2560 2561 DesignatedInitExpr *DIE 2562 = DesignatedInitExpr::Create(Context, 2563 Designators.data(), Designators.size(), 2564 InitExpressions, Loc, GNUSyntax, 2565 Init.getAs<Expr>()); 2566 2567 if (!getLangOpts().C99) 2568 Diag(DIE->getLocStart(), diag::ext_designated_init) 2569 << DIE->getSourceRange(); 2570 2571 return DIE; 2572 } 2573 2574 //===----------------------------------------------------------------------===// 2575 // Initialization entity 2576 //===----------------------------------------------------------------------===// 2577 2578 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2579 const InitializedEntity &Parent) 2580 : Parent(&Parent), Index(Index) 2581 { 2582 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2583 Kind = EK_ArrayElement; 2584 Type = AT->getElementType(); 2585 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2586 Kind = EK_VectorElement; 2587 Type = VT->getElementType(); 2588 } else { 2589 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2590 assert(CT && "Unexpected type"); 2591 Kind = EK_ComplexElement; 2592 Type = CT->getElementType(); 2593 } 2594 } 2595 2596 InitializedEntity 2597 InitializedEntity::InitializeBase(ASTContext &Context, 2598 const CXXBaseSpecifier *Base, 2599 bool IsInheritedVirtualBase) { 2600 InitializedEntity Result; 2601 Result.Kind = EK_Base; 2602 Result.Parent = nullptr; 2603 Result.Base = reinterpret_cast<uintptr_t>(Base); 2604 if (IsInheritedVirtualBase) 2605 Result.Base |= 0x01; 2606 2607 Result.Type = Base->getType(); 2608 return Result; 2609 } 2610 2611 DeclarationName InitializedEntity::getName() const { 2612 switch (getKind()) { 2613 case EK_Parameter: 2614 case EK_Parameter_CF_Audited: { 2615 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2616 return (D ? D->getDeclName() : DeclarationName()); 2617 } 2618 2619 case EK_Variable: 2620 case EK_Member: 2621 return VariableOrMember->getDeclName(); 2622 2623 case EK_LambdaCapture: 2624 return DeclarationName(Capture.VarID); 2625 2626 case EK_Result: 2627 case EK_Exception: 2628 case EK_New: 2629 case EK_Temporary: 2630 case EK_Base: 2631 case EK_Delegating: 2632 case EK_ArrayElement: 2633 case EK_VectorElement: 2634 case EK_ComplexElement: 2635 case EK_BlockElement: 2636 case EK_CompoundLiteralInit: 2637 case EK_RelatedResult: 2638 return DeclarationName(); 2639 } 2640 2641 llvm_unreachable("Invalid EntityKind!"); 2642 } 2643 2644 DeclaratorDecl *InitializedEntity::getDecl() const { 2645 switch (getKind()) { 2646 case EK_Variable: 2647 case EK_Member: 2648 return VariableOrMember; 2649 2650 case EK_Parameter: 2651 case EK_Parameter_CF_Audited: 2652 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2653 2654 case EK_Result: 2655 case EK_Exception: 2656 case EK_New: 2657 case EK_Temporary: 2658 case EK_Base: 2659 case EK_Delegating: 2660 case EK_ArrayElement: 2661 case EK_VectorElement: 2662 case EK_ComplexElement: 2663 case EK_BlockElement: 2664 case EK_LambdaCapture: 2665 case EK_CompoundLiteralInit: 2666 case EK_RelatedResult: 2667 return nullptr; 2668 } 2669 2670 llvm_unreachable("Invalid EntityKind!"); 2671 } 2672 2673 bool InitializedEntity::allowsNRVO() const { 2674 switch (getKind()) { 2675 case EK_Result: 2676 case EK_Exception: 2677 return LocAndNRVO.NRVO; 2678 2679 case EK_Variable: 2680 case EK_Parameter: 2681 case EK_Parameter_CF_Audited: 2682 case EK_Member: 2683 case EK_New: 2684 case EK_Temporary: 2685 case EK_CompoundLiteralInit: 2686 case EK_Base: 2687 case EK_Delegating: 2688 case EK_ArrayElement: 2689 case EK_VectorElement: 2690 case EK_ComplexElement: 2691 case EK_BlockElement: 2692 case EK_LambdaCapture: 2693 case EK_RelatedResult: 2694 break; 2695 } 2696 2697 return false; 2698 } 2699 2700 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 2701 assert(getParent() != this); 2702 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 2703 for (unsigned I = 0; I != Depth; ++I) 2704 OS << "`-"; 2705 2706 switch (getKind()) { 2707 case EK_Variable: OS << "Variable"; break; 2708 case EK_Parameter: OS << "Parameter"; break; 2709 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 2710 break; 2711 case EK_Result: OS << "Result"; break; 2712 case EK_Exception: OS << "Exception"; break; 2713 case EK_Member: OS << "Member"; break; 2714 case EK_New: OS << "New"; break; 2715 case EK_Temporary: OS << "Temporary"; break; 2716 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 2717 case EK_RelatedResult: OS << "RelatedResult"; break; 2718 case EK_Base: OS << "Base"; break; 2719 case EK_Delegating: OS << "Delegating"; break; 2720 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 2721 case EK_VectorElement: OS << "VectorElement " << Index; break; 2722 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 2723 case EK_BlockElement: OS << "Block"; break; 2724 case EK_LambdaCapture: 2725 OS << "LambdaCapture "; 2726 OS << DeclarationName(Capture.VarID); 2727 break; 2728 } 2729 2730 if (Decl *D = getDecl()) { 2731 OS << " "; 2732 cast<NamedDecl>(D)->printQualifiedName(OS); 2733 } 2734 2735 OS << " '" << getType().getAsString() << "'\n"; 2736 2737 return Depth + 1; 2738 } 2739 2740 void InitializedEntity::dump() const { 2741 dumpImpl(llvm::errs()); 2742 } 2743 2744 //===----------------------------------------------------------------------===// 2745 // Initialization sequence 2746 //===----------------------------------------------------------------------===// 2747 2748 void InitializationSequence::Step::Destroy() { 2749 switch (Kind) { 2750 case SK_ResolveAddressOfOverloadedFunction: 2751 case SK_CastDerivedToBaseRValue: 2752 case SK_CastDerivedToBaseXValue: 2753 case SK_CastDerivedToBaseLValue: 2754 case SK_BindReference: 2755 case SK_BindReferenceToTemporary: 2756 case SK_ExtraneousCopyToTemporary: 2757 case SK_UserConversion: 2758 case SK_QualificationConversionRValue: 2759 case SK_QualificationConversionXValue: 2760 case SK_QualificationConversionLValue: 2761 case SK_LValueToRValue: 2762 case SK_ListInitialization: 2763 case SK_ListConstructorCall: 2764 case SK_UnwrapInitList: 2765 case SK_RewrapInitList: 2766 case SK_ConstructorInitialization: 2767 case SK_ZeroInitialization: 2768 case SK_CAssignment: 2769 case SK_StringInit: 2770 case SK_ObjCObjectConversion: 2771 case SK_ArrayInit: 2772 case SK_ParenthesizedArrayInit: 2773 case SK_PassByIndirectCopyRestore: 2774 case SK_PassByIndirectRestore: 2775 case SK_ProduceObjCObject: 2776 case SK_StdInitializerList: 2777 case SK_OCLSamplerInit: 2778 case SK_OCLZeroEvent: 2779 break; 2780 2781 case SK_ConversionSequence: 2782 case SK_ConversionSequenceNoNarrowing: 2783 delete ICS; 2784 } 2785 } 2786 2787 bool InitializationSequence::isDirectReferenceBinding() const { 2788 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 2789 } 2790 2791 bool InitializationSequence::isAmbiguous() const { 2792 if (!Failed()) 2793 return false; 2794 2795 switch (getFailureKind()) { 2796 case FK_TooManyInitsForReference: 2797 case FK_ArrayNeedsInitList: 2798 case FK_ArrayNeedsInitListOrStringLiteral: 2799 case FK_ArrayNeedsInitListOrWideStringLiteral: 2800 case FK_NarrowStringIntoWideCharArray: 2801 case FK_WideStringIntoCharArray: 2802 case FK_IncompatWideStringIntoWideChar: 2803 case FK_AddressOfOverloadFailed: // FIXME: Could do better 2804 case FK_NonConstLValueReferenceBindingToTemporary: 2805 case FK_NonConstLValueReferenceBindingToUnrelated: 2806 case FK_RValueReferenceBindingToLValue: 2807 case FK_ReferenceInitDropsQualifiers: 2808 case FK_ReferenceInitFailed: 2809 case FK_ConversionFailed: 2810 case FK_ConversionFromPropertyFailed: 2811 case FK_TooManyInitsForScalar: 2812 case FK_ReferenceBindingToInitList: 2813 case FK_InitListBadDestinationType: 2814 case FK_DefaultInitOfConst: 2815 case FK_Incomplete: 2816 case FK_ArrayTypeMismatch: 2817 case FK_NonConstantArrayInit: 2818 case FK_ListInitializationFailed: 2819 case FK_VariableLengthArrayHasInitializer: 2820 case FK_PlaceholderType: 2821 case FK_ExplicitConstructor: 2822 return false; 2823 2824 case FK_ReferenceInitOverloadFailed: 2825 case FK_UserConversionOverloadFailed: 2826 case FK_ConstructorOverloadFailed: 2827 case FK_ListConstructorOverloadFailed: 2828 return FailedOverloadResult == OR_Ambiguous; 2829 } 2830 2831 llvm_unreachable("Invalid EntityKind!"); 2832 } 2833 2834 bool InitializationSequence::isConstructorInitialization() const { 2835 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 2836 } 2837 2838 void 2839 InitializationSequence 2840 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 2841 DeclAccessPair Found, 2842 bool HadMultipleCandidates) { 2843 Step S; 2844 S.Kind = SK_ResolveAddressOfOverloadedFunction; 2845 S.Type = Function->getType(); 2846 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2847 S.Function.Function = Function; 2848 S.Function.FoundDecl = Found; 2849 Steps.push_back(S); 2850 } 2851 2852 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 2853 ExprValueKind VK) { 2854 Step S; 2855 switch (VK) { 2856 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 2857 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 2858 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 2859 } 2860 S.Type = BaseType; 2861 Steps.push_back(S); 2862 } 2863 2864 void InitializationSequence::AddReferenceBindingStep(QualType T, 2865 bool BindingTemporary) { 2866 Step S; 2867 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 2868 S.Type = T; 2869 Steps.push_back(S); 2870 } 2871 2872 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 2873 Step S; 2874 S.Kind = SK_ExtraneousCopyToTemporary; 2875 S.Type = T; 2876 Steps.push_back(S); 2877 } 2878 2879 void 2880 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 2881 DeclAccessPair FoundDecl, 2882 QualType T, 2883 bool HadMultipleCandidates) { 2884 Step S; 2885 S.Kind = SK_UserConversion; 2886 S.Type = T; 2887 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2888 S.Function.Function = Function; 2889 S.Function.FoundDecl = FoundDecl; 2890 Steps.push_back(S); 2891 } 2892 2893 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 2894 ExprValueKind VK) { 2895 Step S; 2896 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 2897 switch (VK) { 2898 case VK_RValue: 2899 S.Kind = SK_QualificationConversionRValue; 2900 break; 2901 case VK_XValue: 2902 S.Kind = SK_QualificationConversionXValue; 2903 break; 2904 case VK_LValue: 2905 S.Kind = SK_QualificationConversionLValue; 2906 break; 2907 } 2908 S.Type = Ty; 2909 Steps.push_back(S); 2910 } 2911 2912 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 2913 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 2914 2915 Step S; 2916 S.Kind = SK_LValueToRValue; 2917 S.Type = Ty; 2918 Steps.push_back(S); 2919 } 2920 2921 void InitializationSequence::AddConversionSequenceStep( 2922 const ImplicitConversionSequence &ICS, QualType T, 2923 bool TopLevelOfInitList) { 2924 Step S; 2925 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 2926 : SK_ConversionSequence; 2927 S.Type = T; 2928 S.ICS = new ImplicitConversionSequence(ICS); 2929 Steps.push_back(S); 2930 } 2931 2932 void InitializationSequence::AddListInitializationStep(QualType T) { 2933 Step S; 2934 S.Kind = SK_ListInitialization; 2935 S.Type = T; 2936 Steps.push_back(S); 2937 } 2938 2939 void 2940 InitializationSequence 2941 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, 2942 AccessSpecifier Access, 2943 QualType T, 2944 bool HadMultipleCandidates, 2945 bool FromInitList, bool AsInitList) { 2946 Step S; 2947 S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall 2948 : SK_ConstructorInitialization; 2949 S.Type = T; 2950 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2951 S.Function.Function = Constructor; 2952 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); 2953 Steps.push_back(S); 2954 } 2955 2956 void InitializationSequence::AddZeroInitializationStep(QualType T) { 2957 Step S; 2958 S.Kind = SK_ZeroInitialization; 2959 S.Type = T; 2960 Steps.push_back(S); 2961 } 2962 2963 void InitializationSequence::AddCAssignmentStep(QualType T) { 2964 Step S; 2965 S.Kind = SK_CAssignment; 2966 S.Type = T; 2967 Steps.push_back(S); 2968 } 2969 2970 void InitializationSequence::AddStringInitStep(QualType T) { 2971 Step S; 2972 S.Kind = SK_StringInit; 2973 S.Type = T; 2974 Steps.push_back(S); 2975 } 2976 2977 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 2978 Step S; 2979 S.Kind = SK_ObjCObjectConversion; 2980 S.Type = T; 2981 Steps.push_back(S); 2982 } 2983 2984 void InitializationSequence::AddArrayInitStep(QualType T) { 2985 Step S; 2986 S.Kind = SK_ArrayInit; 2987 S.Type = T; 2988 Steps.push_back(S); 2989 } 2990 2991 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 2992 Step S; 2993 S.Kind = SK_ParenthesizedArrayInit; 2994 S.Type = T; 2995 Steps.push_back(S); 2996 } 2997 2998 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 2999 bool shouldCopy) { 3000 Step s; 3001 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3002 : SK_PassByIndirectRestore); 3003 s.Type = type; 3004 Steps.push_back(s); 3005 } 3006 3007 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3008 Step S; 3009 S.Kind = SK_ProduceObjCObject; 3010 S.Type = T; 3011 Steps.push_back(S); 3012 } 3013 3014 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3015 Step S; 3016 S.Kind = SK_StdInitializerList; 3017 S.Type = T; 3018 Steps.push_back(S); 3019 } 3020 3021 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3022 Step S; 3023 S.Kind = SK_OCLSamplerInit; 3024 S.Type = T; 3025 Steps.push_back(S); 3026 } 3027 3028 void InitializationSequence::AddOCLZeroEventStep(QualType T) { 3029 Step S; 3030 S.Kind = SK_OCLZeroEvent; 3031 S.Type = T; 3032 Steps.push_back(S); 3033 } 3034 3035 void InitializationSequence::RewrapReferenceInitList(QualType T, 3036 InitListExpr *Syntactic) { 3037 assert(Syntactic->getNumInits() == 1 && 3038 "Can only rewrap trivial init lists."); 3039 Step S; 3040 S.Kind = SK_UnwrapInitList; 3041 S.Type = Syntactic->getInit(0)->getType(); 3042 Steps.insert(Steps.begin(), S); 3043 3044 S.Kind = SK_RewrapInitList; 3045 S.Type = T; 3046 S.WrappingSyntacticList = Syntactic; 3047 Steps.push_back(S); 3048 } 3049 3050 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3051 OverloadingResult Result) { 3052 setSequenceKind(FailedSequence); 3053 this->Failure = Failure; 3054 this->FailedOverloadResult = Result; 3055 } 3056 3057 //===----------------------------------------------------------------------===// 3058 // Attempt initialization 3059 //===----------------------------------------------------------------------===// 3060 3061 static void MaybeProduceObjCObject(Sema &S, 3062 InitializationSequence &Sequence, 3063 const InitializedEntity &Entity) { 3064 if (!S.getLangOpts().ObjCAutoRefCount) return; 3065 3066 /// When initializing a parameter, produce the value if it's marked 3067 /// __attribute__((ns_consumed)). 3068 if (Entity.isParameterKind()) { 3069 if (!Entity.isParameterConsumed()) 3070 return; 3071 3072 assert(Entity.getType()->isObjCRetainableType() && 3073 "consuming an object of unretainable type?"); 3074 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3075 3076 /// When initializing a return value, if the return type is a 3077 /// retainable type, then returns need to immediately retain the 3078 /// object. If an autorelease is required, it will be done at the 3079 /// last instant. 3080 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 3081 if (!Entity.getType()->isObjCRetainableType()) 3082 return; 3083 3084 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3085 } 3086 } 3087 3088 static void TryListInitialization(Sema &S, 3089 const InitializedEntity &Entity, 3090 const InitializationKind &Kind, 3091 InitListExpr *InitList, 3092 InitializationSequence &Sequence); 3093 3094 /// \brief When initializing from init list via constructor, handle 3095 /// initialization of an object of type std::initializer_list<T>. 3096 /// 3097 /// \return true if we have handled initialization of an object of type 3098 /// std::initializer_list<T>, false otherwise. 3099 static bool TryInitializerListConstruction(Sema &S, 3100 InitListExpr *List, 3101 QualType DestType, 3102 InitializationSequence &Sequence) { 3103 QualType E; 3104 if (!S.isStdInitializerList(DestType, &E)) 3105 return false; 3106 3107 if (S.RequireCompleteType(List->getExprLoc(), E, 0)) { 3108 Sequence.setIncompleteTypeFailure(E); 3109 return true; 3110 } 3111 3112 // Try initializing a temporary array from the init list. 3113 QualType ArrayType = S.Context.getConstantArrayType( 3114 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3115 List->getNumInits()), 3116 clang::ArrayType::Normal, 0); 3117 InitializedEntity HiddenArray = 3118 InitializedEntity::InitializeTemporary(ArrayType); 3119 InitializationKind Kind = 3120 InitializationKind::CreateDirectList(List->getExprLoc()); 3121 TryListInitialization(S, HiddenArray, Kind, List, Sequence); 3122 if (Sequence) 3123 Sequence.AddStdInitializerListConstructionStep(DestType); 3124 return true; 3125 } 3126 3127 static OverloadingResult 3128 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3129 MultiExprArg Args, 3130 OverloadCandidateSet &CandidateSet, 3131 ArrayRef<NamedDecl *> Ctors, 3132 OverloadCandidateSet::iterator &Best, 3133 bool CopyInitializing, bool AllowExplicit, 3134 bool OnlyListConstructors, bool InitListSyntax) { 3135 CandidateSet.clear(); 3136 3137 for (ArrayRef<NamedDecl *>::iterator 3138 Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) { 3139 NamedDecl *D = *Con; 3140 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3141 bool SuppressUserConversions = false; 3142 3143 // Find the constructor (which may be a template). 3144 CXXConstructorDecl *Constructor = nullptr; 3145 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3146 if (ConstructorTmpl) 3147 Constructor = cast<CXXConstructorDecl>( 3148 ConstructorTmpl->getTemplatedDecl()); 3149 else { 3150 Constructor = cast<CXXConstructorDecl>(D); 3151 3152 // C++11 [over.best.ics]p4: 3153 // However, when considering the argument of a constructor or 3154 // user-defined conversion function that is a candidate: 3155 // -- by 13.3.1.3 when invoked for the copying/moving of a temporary 3156 // in the second step of a class copy-initialization, 3157 // -- by 13.3.1.7 when passing the initializer list as a single 3158 // argument or when the initializer list has exactly one elementand 3159 // a conversion to some class X or reference to (possibly 3160 // cv-qualified) X is considered for the first parameter of a 3161 // constructor of X, or 3162 // -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, 3163 // only standard conversion sequences and ellipsis conversion sequences 3164 // are considered. 3165 if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) && 3166 Constructor->isCopyOrMoveConstructor()) 3167 SuppressUserConversions = true; 3168 } 3169 3170 if (!Constructor->isInvalidDecl() && 3171 (AllowExplicit || !Constructor->isExplicit()) && 3172 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) { 3173 if (ConstructorTmpl) 3174 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3175 /*ExplicitArgs*/ nullptr, Args, 3176 CandidateSet, SuppressUserConversions); 3177 else { 3178 // C++ [over.match.copy]p1: 3179 // - When initializing a temporary to be bound to the first parameter 3180 // of a constructor that takes a reference to possibly cv-qualified 3181 // T as its first argument, called with a single argument in the 3182 // context of direct-initialization, explicit conversion functions 3183 // are also considered. 3184 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3185 Args.size() == 1 && 3186 Constructor->isCopyOrMoveConstructor(); 3187 S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet, 3188 SuppressUserConversions, 3189 /*PartialOverloading=*/false, 3190 /*AllowExplicit=*/AllowExplicitConv); 3191 } 3192 } 3193 } 3194 3195 // Perform overload resolution and return the result. 3196 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3197 } 3198 3199 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 3200 /// enumerates the constructors of the initialized entity and performs overload 3201 /// resolution to select the best. 3202 /// If InitListSyntax is true, this is list-initialization of a non-aggregate 3203 /// class type. 3204 static void TryConstructorInitialization(Sema &S, 3205 const InitializedEntity &Entity, 3206 const InitializationKind &Kind, 3207 MultiExprArg Args, QualType DestType, 3208 InitializationSequence &Sequence, 3209 bool InitListSyntax = false) { 3210 assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3211 "InitListSyntax must come with a single initializer list argument."); 3212 3213 // The type we're constructing needs to be complete. 3214 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 3215 Sequence.setIncompleteTypeFailure(DestType); 3216 return; 3217 } 3218 3219 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3220 assert(DestRecordType && "Constructor initialization requires record type"); 3221 CXXRecordDecl *DestRecordDecl 3222 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3223 3224 // Build the candidate set directly in the initialization sequence 3225 // structure, so that it will persist if we fail. 3226 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3227 3228 // Determine whether we are allowed to call explicit constructors or 3229 // explicit conversion operators. 3230 bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax; 3231 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3232 3233 // - Otherwise, if T is a class type, constructors are considered. The 3234 // applicable constructors are enumerated, and the best one is chosen 3235 // through overload resolution. 3236 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 3237 // The container holding the constructors can under certain conditions 3238 // be changed while iterating (e.g. because of deserialization). 3239 // To be safe we copy the lookup results to a new container. 3240 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 3241 3242 OverloadingResult Result = OR_No_Viable_Function; 3243 OverloadCandidateSet::iterator Best; 3244 bool AsInitializerList = false; 3245 3246 // C++11 [over.match.list]p1: 3247 // When objects of non-aggregate type T are list-initialized, overload 3248 // resolution selects the constructor in two phases: 3249 // - Initially, the candidate functions are the initializer-list 3250 // constructors of the class T and the argument list consists of the 3251 // initializer list as a single argument. 3252 if (InitListSyntax) { 3253 InitListExpr *ILE = cast<InitListExpr>(Args[0]); 3254 AsInitializerList = true; 3255 3256 // If the initializer list has no elements and T has a default constructor, 3257 // the first phase is omitted. 3258 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor()) 3259 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3260 CandidateSet, Ctors, Best, 3261 CopyInitialization, AllowExplicit, 3262 /*OnlyListConstructor=*/true, 3263 InitListSyntax); 3264 3265 // Time to unwrap the init list. 3266 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 3267 } 3268 3269 // C++11 [over.match.list]p1: 3270 // - If no viable initializer-list constructor is found, overload resolution 3271 // is performed again, where the candidate functions are all the 3272 // constructors of the class T and the argument list consists of the 3273 // elements of the initializer list. 3274 if (Result == OR_No_Viable_Function) { 3275 AsInitializerList = false; 3276 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3277 CandidateSet, Ctors, Best, 3278 CopyInitialization, AllowExplicit, 3279 /*OnlyListConstructors=*/false, 3280 InitListSyntax); 3281 } 3282 if (Result) { 3283 Sequence.SetOverloadFailure(InitListSyntax ? 3284 InitializationSequence::FK_ListConstructorOverloadFailed : 3285 InitializationSequence::FK_ConstructorOverloadFailed, 3286 Result); 3287 return; 3288 } 3289 3290 // C++11 [dcl.init]p6: 3291 // If a program calls for the default initialization of an object 3292 // of a const-qualified type T, T shall be a class type with a 3293 // user-provided default constructor. 3294 if (Kind.getKind() == InitializationKind::IK_Default && 3295 Entity.getType().isConstQualified() && 3296 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) { 3297 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3298 return; 3299 } 3300 3301 // C++11 [over.match.list]p1: 3302 // In copy-list-initialization, if an explicit constructor is chosen, the 3303 // initializer is ill-formed. 3304 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3305 if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3306 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3307 return; 3308 } 3309 3310 // Add the constructor initialization step. Any cv-qualification conversion is 3311 // subsumed by the initialization. 3312 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3313 Sequence.AddConstructorInitializationStep(CtorDecl, 3314 Best->FoundDecl.getAccess(), 3315 DestType, HadMultipleCandidates, 3316 InitListSyntax, AsInitializerList); 3317 } 3318 3319 static bool 3320 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 3321 Expr *Initializer, 3322 QualType &SourceType, 3323 QualType &UnqualifiedSourceType, 3324 QualType UnqualifiedTargetType, 3325 InitializationSequence &Sequence) { 3326 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3327 S.Context.OverloadTy) { 3328 DeclAccessPair Found; 3329 bool HadMultipleCandidates = false; 3330 if (FunctionDecl *Fn 3331 = S.ResolveAddressOfOverloadedFunction(Initializer, 3332 UnqualifiedTargetType, 3333 false, Found, 3334 &HadMultipleCandidates)) { 3335 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3336 HadMultipleCandidates); 3337 SourceType = Fn->getType(); 3338 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3339 } else if (!UnqualifiedTargetType->isRecordType()) { 3340 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3341 return true; 3342 } 3343 } 3344 return false; 3345 } 3346 3347 static void TryReferenceInitializationCore(Sema &S, 3348 const InitializedEntity &Entity, 3349 const InitializationKind &Kind, 3350 Expr *Initializer, 3351 QualType cv1T1, QualType T1, 3352 Qualifiers T1Quals, 3353 QualType cv2T2, QualType T2, 3354 Qualifiers T2Quals, 3355 InitializationSequence &Sequence); 3356 3357 static void TryValueInitialization(Sema &S, 3358 const InitializedEntity &Entity, 3359 const InitializationKind &Kind, 3360 InitializationSequence &Sequence, 3361 InitListExpr *InitList = nullptr); 3362 3363 /// \brief Attempt list initialization of a reference. 3364 static void TryReferenceListInitialization(Sema &S, 3365 const InitializedEntity &Entity, 3366 const InitializationKind &Kind, 3367 InitListExpr *InitList, 3368 InitializationSequence &Sequence) { 3369 // First, catch C++03 where this isn't possible. 3370 if (!S.getLangOpts().CPlusPlus11) { 3371 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3372 return; 3373 } 3374 3375 QualType DestType = Entity.getType(); 3376 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3377 Qualifiers T1Quals; 3378 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3379 3380 // Reference initialization via an initializer list works thus: 3381 // If the initializer list consists of a single element that is 3382 // reference-related to the referenced type, bind directly to that element 3383 // (possibly creating temporaries). 3384 // Otherwise, initialize a temporary with the initializer list and 3385 // bind to that. 3386 if (InitList->getNumInits() == 1) { 3387 Expr *Initializer = InitList->getInit(0); 3388 QualType cv2T2 = Initializer->getType(); 3389 Qualifiers T2Quals; 3390 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3391 3392 // If this fails, creating a temporary wouldn't work either. 3393 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3394 T1, Sequence)) 3395 return; 3396 3397 SourceLocation DeclLoc = Initializer->getLocStart(); 3398 bool dummy1, dummy2, dummy3; 3399 Sema::ReferenceCompareResult RefRelationship 3400 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3401 dummy2, dummy3); 3402 if (RefRelationship >= Sema::Ref_Related) { 3403 // Try to bind the reference here. 3404 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3405 T1Quals, cv2T2, T2, T2Quals, Sequence); 3406 if (Sequence) 3407 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3408 return; 3409 } 3410 3411 // Update the initializer if we've resolved an overloaded function. 3412 if (Sequence.step_begin() != Sequence.step_end()) 3413 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3414 } 3415 3416 // Not reference-related. Create a temporary and bind to that. 3417 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3418 3419 TryListInitialization(S, TempEntity, Kind, InitList, Sequence); 3420 if (Sequence) { 3421 if (DestType->isRValueReferenceType() || 3422 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3423 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3424 else 3425 Sequence.SetFailed( 3426 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3427 } 3428 } 3429 3430 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3431 static void TryListInitialization(Sema &S, 3432 const InitializedEntity &Entity, 3433 const InitializationKind &Kind, 3434 InitListExpr *InitList, 3435 InitializationSequence &Sequence) { 3436 QualType DestType = Entity.getType(); 3437 3438 // C++ doesn't allow scalar initialization with more than one argument. 3439 // But C99 complex numbers are scalars and it makes sense there. 3440 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 3441 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3442 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3443 return; 3444 } 3445 if (DestType->isReferenceType()) { 3446 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); 3447 return; 3448 } 3449 if (DestType->isRecordType()) { 3450 if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) { 3451 Sequence.setIncompleteTypeFailure(DestType); 3452 return; 3453 } 3454 3455 // C++11 [dcl.init.list]p3: 3456 // - If T is an aggregate, aggregate initialization is performed. 3457 if (!DestType->isAggregateType()) { 3458 if (S.getLangOpts().CPlusPlus11) { 3459 // - Otherwise, if the initializer list has no elements and T is a 3460 // class type with a default constructor, the object is 3461 // value-initialized. 3462 if (InitList->getNumInits() == 0) { 3463 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 3464 if (RD->hasDefaultConstructor()) { 3465 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 3466 return; 3467 } 3468 } 3469 3470 // - Otherwise, if T is a specialization of std::initializer_list<E>, 3471 // an initializer_list object constructed [...] 3472 if (TryInitializerListConstruction(S, InitList, DestType, Sequence)) 3473 return; 3474 3475 // - Otherwise, if T is a class type, constructors are considered. 3476 Expr *InitListAsExpr = InitList; 3477 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 3478 Sequence, /*InitListSyntax*/true); 3479 } else 3480 Sequence.SetFailed( 3481 InitializationSequence::FK_InitListBadDestinationType); 3482 return; 3483 } 3484 } 3485 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 3486 InitList->getNumInits() == 1 && 3487 InitList->getInit(0)->getType()->isRecordType()) { 3488 // - Otherwise, if the initializer list has a single element of type E 3489 // [...references are handled above...], the object or reference is 3490 // initialized from that element; if a narrowing conversion is required 3491 // to convert the element to T, the program is ill-formed. 3492 // 3493 // Per core-24034, this is direct-initialization if we were performing 3494 // direct-list-initialization and copy-initialization otherwise. 3495 // We can't use InitListChecker for this, because it always performs 3496 // copy-initialization. This only matters if we might use an 'explicit' 3497 // conversion operator, so we only need to handle the cases where the source 3498 // is of record type. 3499 InitializationKind SubKind = 3500 Kind.getKind() == InitializationKind::IK_DirectList 3501 ? InitializationKind::CreateDirect(Kind.getLocation(), 3502 InitList->getLBraceLoc(), 3503 InitList->getRBraceLoc()) 3504 : Kind; 3505 Expr *SubInit[1] = { InitList->getInit(0) }; 3506 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3507 /*TopLevelOfInitList*/true); 3508 if (Sequence) 3509 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3510 return; 3511 } 3512 3513 InitListChecker CheckInitList(S, Entity, InitList, 3514 DestType, /*VerifyOnly=*/true); 3515 if (CheckInitList.HadError()) { 3516 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3517 return; 3518 } 3519 3520 // Add the list initialization step with the built init list. 3521 Sequence.AddListInitializationStep(DestType); 3522 } 3523 3524 /// \brief Try a reference initialization that involves calling a conversion 3525 /// function. 3526 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3527 const InitializedEntity &Entity, 3528 const InitializationKind &Kind, 3529 Expr *Initializer, 3530 bool AllowRValues, 3531 InitializationSequence &Sequence) { 3532 QualType DestType = Entity.getType(); 3533 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3534 QualType T1 = cv1T1.getUnqualifiedType(); 3535 QualType cv2T2 = Initializer->getType(); 3536 QualType T2 = cv2T2.getUnqualifiedType(); 3537 3538 bool DerivedToBase; 3539 bool ObjCConversion; 3540 bool ObjCLifetimeConversion; 3541 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3542 T1, T2, DerivedToBase, 3543 ObjCConversion, 3544 ObjCLifetimeConversion) && 3545 "Must have incompatible references when binding via conversion"); 3546 (void)DerivedToBase; 3547 (void)ObjCConversion; 3548 (void)ObjCLifetimeConversion; 3549 3550 // Build the candidate set directly in the initialization sequence 3551 // structure, so that it will persist if we fail. 3552 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3553 CandidateSet.clear(); 3554 3555 // Determine whether we are allowed to call explicit constructors or 3556 // explicit conversion operators. 3557 bool AllowExplicit = Kind.AllowExplicit(); 3558 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 3559 3560 const RecordType *T1RecordType = nullptr; 3561 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3562 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) { 3563 // The type we're converting to is a class type. Enumerate its constructors 3564 // to see if there is a suitable conversion. 3565 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 3566 3567 DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl); 3568 // The container holding the constructors can under certain conditions 3569 // be changed while iterating (e.g. because of deserialization). 3570 // To be safe we copy the lookup results to a new container. 3571 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 3572 for (SmallVectorImpl<NamedDecl *>::iterator 3573 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 3574 NamedDecl *D = *CI; 3575 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3576 3577 // Find the constructor (which may be a template). 3578 CXXConstructorDecl *Constructor = nullptr; 3579 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3580 if (ConstructorTmpl) 3581 Constructor = cast<CXXConstructorDecl>( 3582 ConstructorTmpl->getTemplatedDecl()); 3583 else 3584 Constructor = cast<CXXConstructorDecl>(D); 3585 3586 if (!Constructor->isInvalidDecl() && 3587 Constructor->isConvertingConstructor(AllowExplicit)) { 3588 if (ConstructorTmpl) 3589 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3590 /*ExplicitArgs*/ nullptr, 3591 Initializer, CandidateSet, 3592 /*SuppressUserConversions=*/true); 3593 else 3594 S.AddOverloadCandidate(Constructor, FoundDecl, 3595 Initializer, CandidateSet, 3596 /*SuppressUserConversions=*/true); 3597 } 3598 } 3599 } 3600 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 3601 return OR_No_Viable_Function; 3602 3603 const RecordType *T2RecordType = nullptr; 3604 if ((T2RecordType = T2->getAs<RecordType>()) && 3605 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) { 3606 // The type we're converting from is a class type, enumerate its conversion 3607 // functions. 3608 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 3609 3610 std::pair<CXXRecordDecl::conversion_iterator, 3611 CXXRecordDecl::conversion_iterator> 3612 Conversions = T2RecordDecl->getVisibleConversionFunctions(); 3613 for (CXXRecordDecl::conversion_iterator 3614 I = Conversions.first, E = Conversions.second; I != E; ++I) { 3615 NamedDecl *D = *I; 3616 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3617 if (isa<UsingShadowDecl>(D)) 3618 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3619 3620 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3621 CXXConversionDecl *Conv; 3622 if (ConvTemplate) 3623 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3624 else 3625 Conv = cast<CXXConversionDecl>(D); 3626 3627 // If the conversion function doesn't return a reference type, 3628 // it can't be considered for this conversion unless we're allowed to 3629 // consider rvalues. 3630 // FIXME: Do we need to make sure that we only consider conversion 3631 // candidates with reference-compatible results? That might be needed to 3632 // break recursion. 3633 if ((AllowExplicitConvs || !Conv->isExplicit()) && 3634 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 3635 if (ConvTemplate) 3636 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3637 ActingDC, Initializer, 3638 DestType, CandidateSet, 3639 /*AllowObjCConversionOnExplicit=*/ 3640 false); 3641 else 3642 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3643 Initializer, DestType, CandidateSet, 3644 /*AllowObjCConversionOnExplicit=*/false); 3645 } 3646 } 3647 } 3648 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 3649 return OR_No_Viable_Function; 3650 3651 SourceLocation DeclLoc = Initializer->getLocStart(); 3652 3653 // Perform overload resolution. If it fails, return the failed result. 3654 OverloadCandidateSet::iterator Best; 3655 if (OverloadingResult Result 3656 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 3657 return Result; 3658 3659 FunctionDecl *Function = Best->Function; 3660 // This is the overload that will be used for this initialization step if we 3661 // use this initialization. Mark it as referenced. 3662 Function->setReferenced(); 3663 3664 // Compute the returned type of the conversion. 3665 if (isa<CXXConversionDecl>(Function)) 3666 T2 = Function->getReturnType(); 3667 else 3668 T2 = cv1T1; 3669 3670 // Add the user-defined conversion step. 3671 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3672 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 3673 T2.getNonLValueExprType(S.Context), 3674 HadMultipleCandidates); 3675 3676 // Determine whether we need to perform derived-to-base or 3677 // cv-qualification adjustments. 3678 ExprValueKind VK = VK_RValue; 3679 if (T2->isLValueReferenceType()) 3680 VK = VK_LValue; 3681 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 3682 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 3683 3684 bool NewDerivedToBase = false; 3685 bool NewObjCConversion = false; 3686 bool NewObjCLifetimeConversion = false; 3687 Sema::ReferenceCompareResult NewRefRelationship 3688 = S.CompareReferenceRelationship(DeclLoc, T1, 3689 T2.getNonLValueExprType(S.Context), 3690 NewDerivedToBase, NewObjCConversion, 3691 NewObjCLifetimeConversion); 3692 if (NewRefRelationship == Sema::Ref_Incompatible) { 3693 // If the type we've converted to is not reference-related to the 3694 // type we're looking for, then there is another conversion step 3695 // we need to perform to produce a temporary of the right type 3696 // that we'll be binding to. 3697 ImplicitConversionSequence ICS; 3698 ICS.setStandard(); 3699 ICS.Standard = Best->FinalConversion; 3700 T2 = ICS.Standard.getToType(2); 3701 Sequence.AddConversionSequenceStep(ICS, T2); 3702 } else if (NewDerivedToBase) 3703 Sequence.AddDerivedToBaseCastStep( 3704 S.Context.getQualifiedType(T1, 3705 T2.getNonReferenceType().getQualifiers()), 3706 VK); 3707 else if (NewObjCConversion) 3708 Sequence.AddObjCObjectConversionStep( 3709 S.Context.getQualifiedType(T1, 3710 T2.getNonReferenceType().getQualifiers())); 3711 3712 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 3713 Sequence.AddQualificationConversionStep(cv1T1, VK); 3714 3715 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 3716 return OR_Success; 3717 } 3718 3719 static void CheckCXX98CompatAccessibleCopy(Sema &S, 3720 const InitializedEntity &Entity, 3721 Expr *CurInitExpr); 3722 3723 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 3724 static void TryReferenceInitialization(Sema &S, 3725 const InitializedEntity &Entity, 3726 const InitializationKind &Kind, 3727 Expr *Initializer, 3728 InitializationSequence &Sequence) { 3729 QualType DestType = Entity.getType(); 3730 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3731 Qualifiers T1Quals; 3732 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3733 QualType cv2T2 = Initializer->getType(); 3734 Qualifiers T2Quals; 3735 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3736 3737 // If the initializer is the address of an overloaded function, try 3738 // to resolve the overloaded function. If all goes well, T2 is the 3739 // type of the resulting function. 3740 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3741 T1, Sequence)) 3742 return; 3743 3744 // Delegate everything else to a subfunction. 3745 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3746 T1Quals, cv2T2, T2, T2Quals, Sequence); 3747 } 3748 3749 /// Converts the target of reference initialization so that it has the 3750 /// appropriate qualifiers and value kind. 3751 /// 3752 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'. 3753 /// \code 3754 /// int x; 3755 /// const int &r = x; 3756 /// \endcode 3757 /// 3758 /// In this case the reference is binding to a bitfield lvalue, which isn't 3759 /// valid. Perform a load to create a lifetime-extended temporary instead. 3760 /// \code 3761 /// const int &r = someStruct.bitfield; 3762 /// \endcode 3763 static ExprValueKind 3764 convertQualifiersAndValueKindIfNecessary(Sema &S, 3765 InitializationSequence &Sequence, 3766 Expr *Initializer, 3767 QualType cv1T1, 3768 Qualifiers T1Quals, 3769 Qualifiers T2Quals, 3770 bool IsLValueRef) { 3771 bool IsNonAddressableType = Initializer->refersToBitField() || 3772 Initializer->refersToVectorElement(); 3773 3774 if (IsNonAddressableType) { 3775 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an 3776 // lvalue reference to a non-volatile const type, or the reference shall be 3777 // an rvalue reference. 3778 // 3779 // If not, we can't make a temporary and bind to that. Give up and allow the 3780 // error to be diagnosed later. 3781 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) { 3782 assert(Initializer->isGLValue()); 3783 return Initializer->getValueKind(); 3784 } 3785 3786 // Force a load so we can materialize a temporary. 3787 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType()); 3788 return VK_RValue; 3789 } 3790 3791 if (T1Quals != T2Quals) { 3792 Sequence.AddQualificationConversionStep(cv1T1, 3793 Initializer->getValueKind()); 3794 } 3795 3796 return Initializer->getValueKind(); 3797 } 3798 3799 3800 /// \brief Reference initialization without resolving overloaded functions. 3801 static void TryReferenceInitializationCore(Sema &S, 3802 const InitializedEntity &Entity, 3803 const InitializationKind &Kind, 3804 Expr *Initializer, 3805 QualType cv1T1, QualType T1, 3806 Qualifiers T1Quals, 3807 QualType cv2T2, QualType T2, 3808 Qualifiers T2Quals, 3809 InitializationSequence &Sequence) { 3810 QualType DestType = Entity.getType(); 3811 SourceLocation DeclLoc = Initializer->getLocStart(); 3812 // Compute some basic properties of the types and the initializer. 3813 bool isLValueRef = DestType->isLValueReferenceType(); 3814 bool isRValueRef = !isLValueRef; 3815 bool DerivedToBase = false; 3816 bool ObjCConversion = false; 3817 bool ObjCLifetimeConversion = false; 3818 Expr::Classification InitCategory = Initializer->Classify(S.Context); 3819 Sema::ReferenceCompareResult RefRelationship 3820 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 3821 ObjCConversion, ObjCLifetimeConversion); 3822 3823 // C++0x [dcl.init.ref]p5: 3824 // A reference to type "cv1 T1" is initialized by an expression of type 3825 // "cv2 T2" as follows: 3826 // 3827 // - If the reference is an lvalue reference and the initializer 3828 // expression 3829 // Note the analogous bullet points for rvalue refs to functions. Because 3830 // there are no function rvalues in C++, rvalue refs to functions are treated 3831 // like lvalue refs. 3832 OverloadingResult ConvOvlResult = OR_Success; 3833 bool T1Function = T1->isFunctionType(); 3834 if (isLValueRef || T1Function) { 3835 if (InitCategory.isLValue() && 3836 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3837 (Kind.isCStyleOrFunctionalCast() && 3838 RefRelationship == Sema::Ref_Related))) { 3839 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 3840 // reference-compatible with "cv2 T2," or 3841 // 3842 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 3843 // bit-field when we're determining whether the reference initialization 3844 // can occur. However, we do pay attention to whether it is a bit-field 3845 // to decide whether we're actually binding to a temporary created from 3846 // the bit-field. 3847 if (DerivedToBase) 3848 Sequence.AddDerivedToBaseCastStep( 3849 S.Context.getQualifiedType(T1, T2Quals), 3850 VK_LValue); 3851 else if (ObjCConversion) 3852 Sequence.AddObjCObjectConversionStep( 3853 S.Context.getQualifiedType(T1, T2Quals)); 3854 3855 ExprValueKind ValueKind = 3856 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer, 3857 cv1T1, T1Quals, T2Quals, 3858 isLValueRef); 3859 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 3860 return; 3861 } 3862 3863 // - has a class type (i.e., T2 is a class type), where T1 is not 3864 // reference-related to T2, and can be implicitly converted to an 3865 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 3866 // with "cv3 T3" (this conversion is selected by enumerating the 3867 // applicable conversion functions (13.3.1.6) and choosing the best 3868 // one through overload resolution (13.3)), 3869 // If we have an rvalue ref to function type here, the rhs must be 3870 // an rvalue. DR1287 removed the "implicitly" here. 3871 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 3872 (isLValueRef || InitCategory.isRValue())) { 3873 ConvOvlResult = TryRefInitWithConversionFunction( 3874 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence); 3875 if (ConvOvlResult == OR_Success) 3876 return; 3877 if (ConvOvlResult != OR_No_Viable_Function) 3878 Sequence.SetOverloadFailure( 3879 InitializationSequence::FK_ReferenceInitOverloadFailed, 3880 ConvOvlResult); 3881 } 3882 } 3883 3884 // - Otherwise, the reference shall be an lvalue reference to a 3885 // non-volatile const type (i.e., cv1 shall be const), or the reference 3886 // shall be an rvalue reference. 3887 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 3888 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3889 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3890 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3891 Sequence.SetOverloadFailure( 3892 InitializationSequence::FK_ReferenceInitOverloadFailed, 3893 ConvOvlResult); 3894 else 3895 Sequence.SetFailed(InitCategory.isLValue() 3896 ? (RefRelationship == Sema::Ref_Related 3897 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 3898 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 3899 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3900 3901 return; 3902 } 3903 3904 // - If the initializer expression 3905 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 3906 // "cv1 T1" is reference-compatible with "cv2 T2" 3907 // Note: functions are handled below. 3908 if (!T1Function && 3909 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3910 (Kind.isCStyleOrFunctionalCast() && 3911 RefRelationship == Sema::Ref_Related)) && 3912 (InitCategory.isXValue() || 3913 (InitCategory.isPRValue() && T2->isRecordType()) || 3914 (InitCategory.isPRValue() && T2->isArrayType()))) { 3915 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 3916 if (InitCategory.isPRValue() && T2->isRecordType()) { 3917 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 3918 // compiler the freedom to perform a copy here or bind to the 3919 // object, while C++0x requires that we bind directly to the 3920 // object. Hence, we always bind to the object without making an 3921 // extra copy. However, in C++03 requires that we check for the 3922 // presence of a suitable copy constructor: 3923 // 3924 // The constructor that would be used to make the copy shall 3925 // be callable whether or not the copy is actually done. 3926 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 3927 Sequence.AddExtraneousCopyToTemporary(cv2T2); 3928 else if (S.getLangOpts().CPlusPlus11) 3929 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 3930 } 3931 3932 if (DerivedToBase) 3933 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 3934 ValueKind); 3935 else if (ObjCConversion) 3936 Sequence.AddObjCObjectConversionStep( 3937 S.Context.getQualifiedType(T1, T2Quals)); 3938 3939 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence, 3940 Initializer, cv1T1, 3941 T1Quals, T2Quals, 3942 isLValueRef); 3943 3944 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 3945 return; 3946 } 3947 3948 // - has a class type (i.e., T2 is a class type), where T1 is not 3949 // reference-related to T2, and can be implicitly converted to an 3950 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 3951 // where "cv1 T1" is reference-compatible with "cv3 T3", 3952 // 3953 // DR1287 removes the "implicitly" here. 3954 if (T2->isRecordType()) { 3955 if (RefRelationship == Sema::Ref_Incompatible) { 3956 ConvOvlResult = TryRefInitWithConversionFunction( 3957 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence); 3958 if (ConvOvlResult) 3959 Sequence.SetOverloadFailure( 3960 InitializationSequence::FK_ReferenceInitOverloadFailed, 3961 ConvOvlResult); 3962 3963 return; 3964 } 3965 3966 if ((RefRelationship == Sema::Ref_Compatible || 3967 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) && 3968 isRValueRef && InitCategory.isLValue()) { 3969 Sequence.SetFailed( 3970 InitializationSequence::FK_RValueReferenceBindingToLValue); 3971 return; 3972 } 3973 3974 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3975 return; 3976 } 3977 3978 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 3979 // from the initializer expression using the rules for a non-reference 3980 // copy-initialization (8.5). The reference is then bound to the 3981 // temporary. [...] 3982 3983 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3984 3985 // FIXME: Why do we use an implicit conversion here rather than trying 3986 // copy-initialization? 3987 ImplicitConversionSequence ICS 3988 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 3989 /*SuppressUserConversions=*/false, 3990 /*AllowExplicit=*/false, 3991 /*FIXME:InOverloadResolution=*/false, 3992 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 3993 /*AllowObjCWritebackConversion=*/false); 3994 3995 if (ICS.isBad()) { 3996 // FIXME: Use the conversion function set stored in ICS to turn 3997 // this into an overloading ambiguity diagnostic. However, we need 3998 // to keep that set as an OverloadCandidateSet rather than as some 3999 // other kind of set. 4000 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4001 Sequence.SetOverloadFailure( 4002 InitializationSequence::FK_ReferenceInitOverloadFailed, 4003 ConvOvlResult); 4004 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4005 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4006 else 4007 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4008 return; 4009 } else { 4010 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4011 } 4012 4013 // [...] If T1 is reference-related to T2, cv1 must be the 4014 // same cv-qualification as, or greater cv-qualification 4015 // than, cv2; otherwise, the program is ill-formed. 4016 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4017 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4018 if (RefRelationship == Sema::Ref_Related && 4019 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 4020 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4021 return; 4022 } 4023 4024 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4025 // reference, the initializer expression shall not be an lvalue. 4026 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4027 InitCategory.isLValue()) { 4028 Sequence.SetFailed( 4029 InitializationSequence::FK_RValueReferenceBindingToLValue); 4030 return; 4031 } 4032 4033 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4034 return; 4035 } 4036 4037 /// \brief Attempt character array initialization from a string literal 4038 /// (C++ [dcl.init.string], C99 6.7.8). 4039 static void TryStringLiteralInitialization(Sema &S, 4040 const InitializedEntity &Entity, 4041 const InitializationKind &Kind, 4042 Expr *Initializer, 4043 InitializationSequence &Sequence) { 4044 Sequence.AddStringInitStep(Entity.getType()); 4045 } 4046 4047 /// \brief Attempt value initialization (C++ [dcl.init]p7). 4048 static void TryValueInitialization(Sema &S, 4049 const InitializedEntity &Entity, 4050 const InitializationKind &Kind, 4051 InitializationSequence &Sequence, 4052 InitListExpr *InitList) { 4053 assert((!InitList || InitList->getNumInits() == 0) && 4054 "Shouldn't use value-init for non-empty init lists"); 4055 4056 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4057 // 4058 // To value-initialize an object of type T means: 4059 QualType T = Entity.getType(); 4060 4061 // -- if T is an array type, then each element is value-initialized; 4062 T = S.Context.getBaseElementType(T); 4063 4064 if (const RecordType *RT = T->getAs<RecordType>()) { 4065 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4066 bool NeedZeroInitialization = true; 4067 if (!S.getLangOpts().CPlusPlus11) { 4068 // C++98: 4069 // -- if T is a class type (clause 9) with a user-declared constructor 4070 // (12.1), then the default constructor for T is called (and the 4071 // initialization is ill-formed if T has no accessible default 4072 // constructor); 4073 if (ClassDecl->hasUserDeclaredConstructor()) 4074 NeedZeroInitialization = false; 4075 } else { 4076 // C++11: 4077 // -- if T is a class type (clause 9) with either no default constructor 4078 // (12.1 [class.ctor]) or a default constructor that is user-provided 4079 // or deleted, then the object is default-initialized; 4080 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4081 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4082 NeedZeroInitialization = false; 4083 } 4084 4085 // -- if T is a (possibly cv-qualified) non-union class type without a 4086 // user-provided or deleted default constructor, then the object is 4087 // zero-initialized and, if T has a non-trivial default constructor, 4088 // default-initialized; 4089 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4090 // constructor' part was removed by DR1507. 4091 if (NeedZeroInitialization) 4092 Sequence.AddZeroInitializationStep(Entity.getType()); 4093 4094 // C++03: 4095 // -- if T is a non-union class type without a user-declared constructor, 4096 // then every non-static data member and base class component of T is 4097 // value-initialized; 4098 // [...] A program that calls for [...] value-initialization of an 4099 // entity of reference type is ill-formed. 4100 // 4101 // C++11 doesn't need this handling, because value-initialization does not 4102 // occur recursively there, and the implicit default constructor is 4103 // defined as deleted in the problematic cases. 4104 if (!S.getLangOpts().CPlusPlus11 && 4105 ClassDecl->hasUninitializedReferenceMember()) { 4106 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4107 return; 4108 } 4109 4110 // If this is list-value-initialization, pass the empty init list on when 4111 // building the constructor call. This affects the semantics of a few 4112 // things (such as whether an explicit default constructor can be called). 4113 Expr *InitListAsExpr = InitList; 4114 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4115 bool InitListSyntax = InitList; 4116 4117 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence, 4118 InitListSyntax); 4119 } 4120 } 4121 4122 Sequence.AddZeroInitializationStep(Entity.getType()); 4123 } 4124 4125 /// \brief Attempt default initialization (C++ [dcl.init]p6). 4126 static void TryDefaultInitialization(Sema &S, 4127 const InitializedEntity &Entity, 4128 const InitializationKind &Kind, 4129 InitializationSequence &Sequence) { 4130 assert(Kind.getKind() == InitializationKind::IK_Default); 4131 4132 // C++ [dcl.init]p6: 4133 // To default-initialize an object of type T means: 4134 // - if T is an array type, each element is default-initialized; 4135 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4136 4137 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4138 // constructor for T is called (and the initialization is ill-formed if 4139 // T has no accessible default constructor); 4140 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4141 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence); 4142 return; 4143 } 4144 4145 // - otherwise, no initialization is performed. 4146 4147 // If a program calls for the default initialization of an object of 4148 // a const-qualified type T, T shall be a class type with a user-provided 4149 // default constructor. 4150 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4151 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4152 return; 4153 } 4154 4155 // If the destination type has a lifetime property, zero-initialize it. 4156 if (DestType.getQualifiers().hasObjCLifetime()) { 4157 Sequence.AddZeroInitializationStep(Entity.getType()); 4158 return; 4159 } 4160 } 4161 4162 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 4163 /// which enumerates all conversion functions and performs overload resolution 4164 /// to select the best. 4165 static void TryUserDefinedConversion(Sema &S, 4166 const InitializedEntity &Entity, 4167 const InitializationKind &Kind, 4168 Expr *Initializer, 4169 InitializationSequence &Sequence, 4170 bool TopLevelOfInitList) { 4171 QualType DestType = Entity.getType(); 4172 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4173 QualType SourceType = Initializer->getType(); 4174 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4175 "Must have a class type to perform a user-defined conversion"); 4176 4177 // Build the candidate set directly in the initialization sequence 4178 // structure, so that it will persist if we fail. 4179 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4180 CandidateSet.clear(); 4181 4182 // Determine whether we are allowed to call explicit constructors or 4183 // explicit conversion operators. 4184 bool AllowExplicit = Kind.AllowExplicit(); 4185 4186 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4187 // The type we're converting to is a class type. Enumerate its constructors 4188 // to see if there is a suitable conversion. 4189 CXXRecordDecl *DestRecordDecl 4190 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4191 4192 // Try to complete the type we're converting to. 4193 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 4194 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 4195 // The container holding the constructors can under certain conditions 4196 // be changed while iterating. To be safe we copy the lookup results 4197 // to a new container. 4198 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end()); 4199 for (SmallVectorImpl<NamedDecl *>::iterator 4200 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end(); 4201 Con != ConEnd; ++Con) { 4202 NamedDecl *D = *Con; 4203 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 4204 4205 // Find the constructor (which may be a template). 4206 CXXConstructorDecl *Constructor = nullptr; 4207 FunctionTemplateDecl *ConstructorTmpl 4208 = dyn_cast<FunctionTemplateDecl>(D); 4209 if (ConstructorTmpl) 4210 Constructor = cast<CXXConstructorDecl>( 4211 ConstructorTmpl->getTemplatedDecl()); 4212 else 4213 Constructor = cast<CXXConstructorDecl>(D); 4214 4215 if (!Constructor->isInvalidDecl() && 4216 Constructor->isConvertingConstructor(AllowExplicit)) { 4217 if (ConstructorTmpl) 4218 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 4219 /*ExplicitArgs*/ nullptr, 4220 Initializer, CandidateSet, 4221 /*SuppressUserConversions=*/true); 4222 else 4223 S.AddOverloadCandidate(Constructor, FoundDecl, 4224 Initializer, CandidateSet, 4225 /*SuppressUserConversions=*/true); 4226 } 4227 } 4228 } 4229 } 4230 4231 SourceLocation DeclLoc = Initializer->getLocStart(); 4232 4233 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 4234 // The type we're converting from is a class type, enumerate its conversion 4235 // functions. 4236 4237 // We can only enumerate the conversion functions for a complete type; if 4238 // the type isn't complete, simply skip this step. 4239 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) { 4240 CXXRecordDecl *SourceRecordDecl 4241 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 4242 4243 std::pair<CXXRecordDecl::conversion_iterator, 4244 CXXRecordDecl::conversion_iterator> 4245 Conversions = SourceRecordDecl->getVisibleConversionFunctions(); 4246 for (CXXRecordDecl::conversion_iterator 4247 I = Conversions.first, E = Conversions.second; I != E; ++I) { 4248 NamedDecl *D = *I; 4249 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4250 if (isa<UsingShadowDecl>(D)) 4251 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4252 4253 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4254 CXXConversionDecl *Conv; 4255 if (ConvTemplate) 4256 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4257 else 4258 Conv = cast<CXXConversionDecl>(D); 4259 4260 if (AllowExplicit || !Conv->isExplicit()) { 4261 if (ConvTemplate) 4262 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4263 ActingDC, Initializer, DestType, 4264 CandidateSet, AllowExplicit); 4265 else 4266 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4267 Initializer, DestType, CandidateSet, 4268 AllowExplicit); 4269 } 4270 } 4271 } 4272 } 4273 4274 // Perform overload resolution. If it fails, return the failed result. 4275 OverloadCandidateSet::iterator Best; 4276 if (OverloadingResult Result 4277 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 4278 Sequence.SetOverloadFailure( 4279 InitializationSequence::FK_UserConversionOverloadFailed, 4280 Result); 4281 return; 4282 } 4283 4284 FunctionDecl *Function = Best->Function; 4285 Function->setReferenced(); 4286 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4287 4288 if (isa<CXXConstructorDecl>(Function)) { 4289 // Add the user-defined conversion step. Any cv-qualification conversion is 4290 // subsumed by the initialization. Per DR5, the created temporary is of the 4291 // cv-unqualified type of the destination. 4292 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 4293 DestType.getUnqualifiedType(), 4294 HadMultipleCandidates); 4295 return; 4296 } 4297 4298 // Add the user-defined conversion step that calls the conversion function. 4299 QualType ConvType = Function->getCallResultType(); 4300 if (ConvType->getAs<RecordType>()) { 4301 // If we're converting to a class type, there may be an copy of 4302 // the resulting temporary object (possible to create an object of 4303 // a base class type). That copy is not a separate conversion, so 4304 // we just make a note of the actual destination type (possibly a 4305 // base class of the type returned by the conversion function) and 4306 // let the user-defined conversion step handle the conversion. 4307 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 4308 HadMultipleCandidates); 4309 return; 4310 } 4311 4312 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 4313 HadMultipleCandidates); 4314 4315 // If the conversion following the call to the conversion function 4316 // is interesting, add it as a separate step. 4317 if (Best->FinalConversion.First || Best->FinalConversion.Second || 4318 Best->FinalConversion.Third) { 4319 ImplicitConversionSequence ICS; 4320 ICS.setStandard(); 4321 ICS.Standard = Best->FinalConversion; 4322 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 4323 } 4324 } 4325 4326 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 4327 /// a function with a pointer return type contains a 'return false;' statement. 4328 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 4329 /// code using that header. 4330 /// 4331 /// Work around this by treating 'return false;' as zero-initializing the result 4332 /// if it's used in a pointer-returning function in a system header. 4333 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 4334 const InitializedEntity &Entity, 4335 const Expr *Init) { 4336 return S.getLangOpts().CPlusPlus11 && 4337 Entity.getKind() == InitializedEntity::EK_Result && 4338 Entity.getType()->isPointerType() && 4339 isa<CXXBoolLiteralExpr>(Init) && 4340 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 4341 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 4342 } 4343 4344 /// The non-zero enum values here are indexes into diagnostic alternatives. 4345 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 4346 4347 /// Determines whether this expression is an acceptable ICR source. 4348 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 4349 bool isAddressOf, bool &isWeakAccess) { 4350 // Skip parens. 4351 e = e->IgnoreParens(); 4352 4353 // Skip address-of nodes. 4354 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 4355 if (op->getOpcode() == UO_AddrOf) 4356 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 4357 isWeakAccess); 4358 4359 // Skip certain casts. 4360 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 4361 switch (ce->getCastKind()) { 4362 case CK_Dependent: 4363 case CK_BitCast: 4364 case CK_LValueBitCast: 4365 case CK_NoOp: 4366 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 4367 4368 case CK_ArrayToPointerDecay: 4369 return IIK_nonscalar; 4370 4371 case CK_NullToPointer: 4372 return IIK_okay; 4373 4374 default: 4375 break; 4376 } 4377 4378 // If we have a declaration reference, it had better be a local variable. 4379 } else if (isa<DeclRefExpr>(e)) { 4380 // set isWeakAccess to true, to mean that there will be an implicit 4381 // load which requires a cleanup. 4382 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 4383 isWeakAccess = true; 4384 4385 if (!isAddressOf) return IIK_nonlocal; 4386 4387 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 4388 if (!var) return IIK_nonlocal; 4389 4390 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 4391 4392 // If we have a conditional operator, check both sides. 4393 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 4394 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 4395 isWeakAccess)) 4396 return iik; 4397 4398 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 4399 4400 // These are never scalar. 4401 } else if (isa<ArraySubscriptExpr>(e)) { 4402 return IIK_nonscalar; 4403 4404 // Otherwise, it needs to be a null pointer constant. 4405 } else { 4406 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 4407 ? IIK_okay : IIK_nonlocal); 4408 } 4409 4410 return IIK_nonlocal; 4411 } 4412 4413 /// Check whether the given expression is a valid operand for an 4414 /// indirect copy/restore. 4415 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 4416 assert(src->isRValue()); 4417 bool isWeakAccess = false; 4418 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 4419 // If isWeakAccess to true, there will be an implicit 4420 // load which requires a cleanup. 4421 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 4422 S.ExprNeedsCleanups = true; 4423 4424 if (iik == IIK_okay) return; 4425 4426 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 4427 << ((unsigned) iik - 1) // shift index into diagnostic explanations 4428 << src->getSourceRange(); 4429 } 4430 4431 /// \brief Determine whether we have compatible array types for the 4432 /// purposes of GNU by-copy array initialization. 4433 static bool hasCompatibleArrayTypes(ASTContext &Context, 4434 const ArrayType *Dest, 4435 const ArrayType *Source) { 4436 // If the source and destination array types are equivalent, we're 4437 // done. 4438 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 4439 return true; 4440 4441 // Make sure that the element types are the same. 4442 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 4443 return false; 4444 4445 // The only mismatch we allow is when the destination is an 4446 // incomplete array type and the source is a constant array type. 4447 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 4448 } 4449 4450 static bool tryObjCWritebackConversion(Sema &S, 4451 InitializationSequence &Sequence, 4452 const InitializedEntity &Entity, 4453 Expr *Initializer) { 4454 bool ArrayDecay = false; 4455 QualType ArgType = Initializer->getType(); 4456 QualType ArgPointee; 4457 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 4458 ArrayDecay = true; 4459 ArgPointee = ArgArrayType->getElementType(); 4460 ArgType = S.Context.getPointerType(ArgPointee); 4461 } 4462 4463 // Handle write-back conversion. 4464 QualType ConvertedArgType; 4465 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 4466 ConvertedArgType)) 4467 return false; 4468 4469 // We should copy unless we're passing to an argument explicitly 4470 // marked 'out'. 4471 bool ShouldCopy = true; 4472 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4473 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4474 4475 // Do we need an lvalue conversion? 4476 if (ArrayDecay || Initializer->isGLValue()) { 4477 ImplicitConversionSequence ICS; 4478 ICS.setStandard(); 4479 ICS.Standard.setAsIdentityConversion(); 4480 4481 QualType ResultType; 4482 if (ArrayDecay) { 4483 ICS.Standard.First = ICK_Array_To_Pointer; 4484 ResultType = S.Context.getPointerType(ArgPointee); 4485 } else { 4486 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4487 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 4488 } 4489 4490 Sequence.AddConversionSequenceStep(ICS, ResultType); 4491 } 4492 4493 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4494 return true; 4495 } 4496 4497 static bool TryOCLSamplerInitialization(Sema &S, 4498 InitializationSequence &Sequence, 4499 QualType DestType, 4500 Expr *Initializer) { 4501 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 4502 !Initializer->isIntegerConstantExpr(S.getASTContext())) 4503 return false; 4504 4505 Sequence.AddOCLSamplerInitStep(DestType); 4506 return true; 4507 } 4508 4509 // 4510 // OpenCL 1.2 spec, s6.12.10 4511 // 4512 // The event argument can also be used to associate the 4513 // async_work_group_copy with a previous async copy allowing 4514 // an event to be shared by multiple async copies; otherwise 4515 // event should be zero. 4516 // 4517 static bool TryOCLZeroEventInitialization(Sema &S, 4518 InitializationSequence &Sequence, 4519 QualType DestType, 4520 Expr *Initializer) { 4521 if (!S.getLangOpts().OpenCL || !DestType->isEventT() || 4522 !Initializer->isIntegerConstantExpr(S.getASTContext()) || 4523 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) 4524 return false; 4525 4526 Sequence.AddOCLZeroEventStep(DestType); 4527 return true; 4528 } 4529 4530 InitializationSequence::InitializationSequence(Sema &S, 4531 const InitializedEntity &Entity, 4532 const InitializationKind &Kind, 4533 MultiExprArg Args, 4534 bool TopLevelOfInitList) 4535 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 4536 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList); 4537 } 4538 4539 void InitializationSequence::InitializeFrom(Sema &S, 4540 const InitializedEntity &Entity, 4541 const InitializationKind &Kind, 4542 MultiExprArg Args, 4543 bool TopLevelOfInitList) { 4544 ASTContext &Context = S.Context; 4545 4546 // Eliminate non-overload placeholder types in the arguments. We 4547 // need to do this before checking whether types are dependent 4548 // because lowering a pseudo-object expression might well give us 4549 // something of dependent type. 4550 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4551 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4552 // FIXME: should we be doing this here? 4553 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4554 if (result.isInvalid()) { 4555 SetFailed(FK_PlaceholderType); 4556 return; 4557 } 4558 Args[I] = result.get(); 4559 } 4560 4561 // C++0x [dcl.init]p16: 4562 // The semantics of initializers are as follows. The destination type is 4563 // the type of the object or reference being initialized and the source 4564 // type is the type of the initializer expression. The source type is not 4565 // defined when the initializer is a braced-init-list or when it is a 4566 // parenthesized list of expressions. 4567 QualType DestType = Entity.getType(); 4568 4569 if (DestType->isDependentType() || 4570 Expr::hasAnyTypeDependentArguments(Args)) { 4571 SequenceKind = DependentSequence; 4572 return; 4573 } 4574 4575 // Almost everything is a normal sequence. 4576 setSequenceKind(NormalSequence); 4577 4578 QualType SourceType; 4579 Expr *Initializer = nullptr; 4580 if (Args.size() == 1) { 4581 Initializer = Args[0]; 4582 if (S.getLangOpts().ObjC1) { 4583 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(), 4584 DestType, Initializer->getType(), 4585 Initializer) || 4586 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 4587 Args[0] = Initializer; 4588 4589 } 4590 if (!isa<InitListExpr>(Initializer)) 4591 SourceType = Initializer->getType(); 4592 } 4593 4594 // - If the initializer is a (non-parenthesized) braced-init-list, the 4595 // object is list-initialized (8.5.4). 4596 if (Kind.getKind() != InitializationKind::IK_Direct) { 4597 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 4598 TryListInitialization(S, Entity, Kind, InitList, *this); 4599 return; 4600 } 4601 } 4602 4603 // - If the destination type is a reference type, see 8.5.3. 4604 if (DestType->isReferenceType()) { 4605 // C++0x [dcl.init.ref]p1: 4606 // A variable declared to be a T& or T&&, that is, "reference to type T" 4607 // (8.3.2), shall be initialized by an object, or function, of type T or 4608 // by an object that can be converted into a T. 4609 // (Therefore, multiple arguments are not permitted.) 4610 if (Args.size() != 1) 4611 SetFailed(FK_TooManyInitsForReference); 4612 else 4613 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 4614 return; 4615 } 4616 4617 // - If the initializer is (), the object is value-initialized. 4618 if (Kind.getKind() == InitializationKind::IK_Value || 4619 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 4620 TryValueInitialization(S, Entity, Kind, *this); 4621 return; 4622 } 4623 4624 // Handle default initialization. 4625 if (Kind.getKind() == InitializationKind::IK_Default) { 4626 TryDefaultInitialization(S, Entity, Kind, *this); 4627 return; 4628 } 4629 4630 // - If the destination type is an array of characters, an array of 4631 // char16_t, an array of char32_t, or an array of wchar_t, and the 4632 // initializer is a string literal, see 8.5.2. 4633 // - Otherwise, if the destination type is an array, the program is 4634 // ill-formed. 4635 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 4636 if (Initializer && isa<VariableArrayType>(DestAT)) { 4637 SetFailed(FK_VariableLengthArrayHasInitializer); 4638 return; 4639 } 4640 4641 if (Initializer) { 4642 switch (IsStringInit(Initializer, DestAT, Context)) { 4643 case SIF_None: 4644 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 4645 return; 4646 case SIF_NarrowStringIntoWideChar: 4647 SetFailed(FK_NarrowStringIntoWideCharArray); 4648 return; 4649 case SIF_WideStringIntoChar: 4650 SetFailed(FK_WideStringIntoCharArray); 4651 return; 4652 case SIF_IncompatWideStringIntoWideChar: 4653 SetFailed(FK_IncompatWideStringIntoWideChar); 4654 return; 4655 case SIF_Other: 4656 break; 4657 } 4658 } 4659 4660 // Note: as an GNU C extension, we allow initialization of an 4661 // array from a compound literal that creates an array of the same 4662 // type, so long as the initializer has no side effects. 4663 if (!S.getLangOpts().CPlusPlus && Initializer && 4664 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 4665 Initializer->getType()->isArrayType()) { 4666 const ArrayType *SourceAT 4667 = Context.getAsArrayType(Initializer->getType()); 4668 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 4669 SetFailed(FK_ArrayTypeMismatch); 4670 else if (Initializer->HasSideEffects(S.Context)) 4671 SetFailed(FK_NonConstantArrayInit); 4672 else { 4673 AddArrayInitStep(DestType); 4674 } 4675 } 4676 // Note: as a GNU C++ extension, we allow list-initialization of a 4677 // class member of array type from a parenthesized initializer list. 4678 else if (S.getLangOpts().CPlusPlus && 4679 Entity.getKind() == InitializedEntity::EK_Member && 4680 Initializer && isa<InitListExpr>(Initializer)) { 4681 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 4682 *this); 4683 AddParenthesizedArrayInitStep(DestType); 4684 } else if (DestAT->getElementType()->isCharType()) 4685 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 4686 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 4687 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 4688 else 4689 SetFailed(FK_ArrayNeedsInitList); 4690 4691 return; 4692 } 4693 4694 // Determine whether we should consider writeback conversions for 4695 // Objective-C ARC. 4696 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 4697 Entity.isParameterKind(); 4698 4699 // We're at the end of the line for C: it's either a write-back conversion 4700 // or it's a C assignment. There's no need to check anything else. 4701 if (!S.getLangOpts().CPlusPlus) { 4702 // If allowed, check whether this is an Objective-C writeback conversion. 4703 if (allowObjCWritebackConversion && 4704 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 4705 return; 4706 } 4707 4708 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 4709 return; 4710 4711 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) 4712 return; 4713 4714 // Handle initialization in C 4715 AddCAssignmentStep(DestType); 4716 MaybeProduceObjCObject(S, *this, Entity); 4717 return; 4718 } 4719 4720 assert(S.getLangOpts().CPlusPlus); 4721 4722 // - If the destination type is a (possibly cv-qualified) class type: 4723 if (DestType->isRecordType()) { 4724 // - If the initialization is direct-initialization, or if it is 4725 // copy-initialization where the cv-unqualified version of the 4726 // source type is the same class as, or a derived class of, the 4727 // class of the destination, constructors are considered. [...] 4728 if (Kind.getKind() == InitializationKind::IK_Direct || 4729 (Kind.getKind() == InitializationKind::IK_Copy && 4730 (Context.hasSameUnqualifiedType(SourceType, DestType) || 4731 S.IsDerivedFrom(SourceType, DestType)))) 4732 TryConstructorInitialization(S, Entity, Kind, Args, 4733 Entity.getType(), *this); 4734 // - Otherwise (i.e., for the remaining copy-initialization cases), 4735 // user-defined conversion sequences that can convert from the source 4736 // type to the destination type or (when a conversion function is 4737 // used) to a derived class thereof are enumerated as described in 4738 // 13.3.1.4, and the best one is chosen through overload resolution 4739 // (13.3). 4740 else 4741 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this, 4742 TopLevelOfInitList); 4743 return; 4744 } 4745 4746 if (Args.size() > 1) { 4747 SetFailed(FK_TooManyInitsForScalar); 4748 return; 4749 } 4750 assert(Args.size() == 1 && "Zero-argument case handled above"); 4751 4752 // - Otherwise, if the source type is a (possibly cv-qualified) class 4753 // type, conversion functions are considered. 4754 if (!SourceType.isNull() && SourceType->isRecordType()) { 4755 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this, 4756 TopLevelOfInitList); 4757 MaybeProduceObjCObject(S, *this, Entity); 4758 return; 4759 } 4760 4761 // - Otherwise, the initial value of the object being initialized is the 4762 // (possibly converted) value of the initializer expression. Standard 4763 // conversions (Clause 4) will be used, if necessary, to convert the 4764 // initializer expression to the cv-unqualified version of the 4765 // destination type; no user-defined conversions are considered. 4766 4767 ImplicitConversionSequence ICS 4768 = S.TryImplicitConversion(Initializer, Entity.getType(), 4769 /*SuppressUserConversions*/true, 4770 /*AllowExplicitConversions*/ false, 4771 /*InOverloadResolution*/ false, 4772 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4773 allowObjCWritebackConversion); 4774 4775 if (ICS.isStandard() && 4776 ICS.Standard.Second == ICK_Writeback_Conversion) { 4777 // Objective-C ARC writeback conversion. 4778 4779 // We should copy unless we're passing to an argument explicitly 4780 // marked 'out'. 4781 bool ShouldCopy = true; 4782 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4783 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4784 4785 // If there was an lvalue adjustment, add it as a separate conversion. 4786 if (ICS.Standard.First == ICK_Array_To_Pointer || 4787 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4788 ImplicitConversionSequence LvalueICS; 4789 LvalueICS.setStandard(); 4790 LvalueICS.Standard.setAsIdentityConversion(); 4791 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 4792 LvalueICS.Standard.First = ICS.Standard.First; 4793 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 4794 } 4795 4796 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4797 } else if (ICS.isBad()) { 4798 DeclAccessPair dap; 4799 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 4800 AddZeroInitializationStep(Entity.getType()); 4801 } else if (Initializer->getType() == Context.OverloadTy && 4802 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 4803 false, dap)) 4804 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4805 else 4806 SetFailed(InitializationSequence::FK_ConversionFailed); 4807 } else { 4808 AddConversionSequenceStep(ICS, Entity.getType(), TopLevelOfInitList); 4809 4810 MaybeProduceObjCObject(S, *this, Entity); 4811 } 4812 } 4813 4814 InitializationSequence::~InitializationSequence() { 4815 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(), 4816 StepEnd = Steps.end(); 4817 Step != StepEnd; ++Step) 4818 Step->Destroy(); 4819 } 4820 4821 //===----------------------------------------------------------------------===// 4822 // Perform initialization 4823 //===----------------------------------------------------------------------===// 4824 static Sema::AssignmentAction 4825 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 4826 switch(Entity.getKind()) { 4827 case InitializedEntity::EK_Variable: 4828 case InitializedEntity::EK_New: 4829 case InitializedEntity::EK_Exception: 4830 case InitializedEntity::EK_Base: 4831 case InitializedEntity::EK_Delegating: 4832 return Sema::AA_Initializing; 4833 4834 case InitializedEntity::EK_Parameter: 4835 if (Entity.getDecl() && 4836 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4837 return Sema::AA_Sending; 4838 4839 return Sema::AA_Passing; 4840 4841 case InitializedEntity::EK_Parameter_CF_Audited: 4842 if (Entity.getDecl() && 4843 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4844 return Sema::AA_Sending; 4845 4846 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 4847 4848 case InitializedEntity::EK_Result: 4849 return Sema::AA_Returning; 4850 4851 case InitializedEntity::EK_Temporary: 4852 case InitializedEntity::EK_RelatedResult: 4853 // FIXME: Can we tell apart casting vs. converting? 4854 return Sema::AA_Casting; 4855 4856 case InitializedEntity::EK_Member: 4857 case InitializedEntity::EK_ArrayElement: 4858 case InitializedEntity::EK_VectorElement: 4859 case InitializedEntity::EK_ComplexElement: 4860 case InitializedEntity::EK_BlockElement: 4861 case InitializedEntity::EK_LambdaCapture: 4862 case InitializedEntity::EK_CompoundLiteralInit: 4863 return Sema::AA_Initializing; 4864 } 4865 4866 llvm_unreachable("Invalid EntityKind!"); 4867 } 4868 4869 /// \brief Whether we should bind a created object as a temporary when 4870 /// initializing the given entity. 4871 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 4872 switch (Entity.getKind()) { 4873 case InitializedEntity::EK_ArrayElement: 4874 case InitializedEntity::EK_Member: 4875 case InitializedEntity::EK_Result: 4876 case InitializedEntity::EK_New: 4877 case InitializedEntity::EK_Variable: 4878 case InitializedEntity::EK_Base: 4879 case InitializedEntity::EK_Delegating: 4880 case InitializedEntity::EK_VectorElement: 4881 case InitializedEntity::EK_ComplexElement: 4882 case InitializedEntity::EK_Exception: 4883 case InitializedEntity::EK_BlockElement: 4884 case InitializedEntity::EK_LambdaCapture: 4885 case InitializedEntity::EK_CompoundLiteralInit: 4886 return false; 4887 4888 case InitializedEntity::EK_Parameter: 4889 case InitializedEntity::EK_Parameter_CF_Audited: 4890 case InitializedEntity::EK_Temporary: 4891 case InitializedEntity::EK_RelatedResult: 4892 return true; 4893 } 4894 4895 llvm_unreachable("missed an InitializedEntity kind?"); 4896 } 4897 4898 /// \brief Whether the given entity, when initialized with an object 4899 /// created for that initialization, requires destruction. 4900 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 4901 switch (Entity.getKind()) { 4902 case InitializedEntity::EK_Result: 4903 case InitializedEntity::EK_New: 4904 case InitializedEntity::EK_Base: 4905 case InitializedEntity::EK_Delegating: 4906 case InitializedEntity::EK_VectorElement: 4907 case InitializedEntity::EK_ComplexElement: 4908 case InitializedEntity::EK_BlockElement: 4909 case InitializedEntity::EK_LambdaCapture: 4910 return false; 4911 4912 case InitializedEntity::EK_Member: 4913 case InitializedEntity::EK_Variable: 4914 case InitializedEntity::EK_Parameter: 4915 case InitializedEntity::EK_Parameter_CF_Audited: 4916 case InitializedEntity::EK_Temporary: 4917 case InitializedEntity::EK_ArrayElement: 4918 case InitializedEntity::EK_Exception: 4919 case InitializedEntity::EK_CompoundLiteralInit: 4920 case InitializedEntity::EK_RelatedResult: 4921 return true; 4922 } 4923 4924 llvm_unreachable("missed an InitializedEntity kind?"); 4925 } 4926 4927 /// \brief Look for copy and move constructors and constructor templates, for 4928 /// copying an object via direct-initialization (per C++11 [dcl.init]p16). 4929 static void LookupCopyAndMoveConstructors(Sema &S, 4930 OverloadCandidateSet &CandidateSet, 4931 CXXRecordDecl *Class, 4932 Expr *CurInitExpr) { 4933 DeclContext::lookup_result R = S.LookupConstructors(Class); 4934 // The container holding the constructors can under certain conditions 4935 // be changed while iterating (e.g. because of deserialization). 4936 // To be safe we copy the lookup results to a new container. 4937 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 4938 for (SmallVectorImpl<NamedDecl *>::iterator 4939 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 4940 NamedDecl *D = *CI; 4941 CXXConstructorDecl *Constructor = nullptr; 4942 4943 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) { 4944 // Handle copy/moveconstructors, only. 4945 if (!Constructor || Constructor->isInvalidDecl() || 4946 !Constructor->isCopyOrMoveConstructor() || 4947 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4948 continue; 4949 4950 DeclAccessPair FoundDecl 4951 = DeclAccessPair::make(Constructor, Constructor->getAccess()); 4952 S.AddOverloadCandidate(Constructor, FoundDecl, 4953 CurInitExpr, CandidateSet); 4954 continue; 4955 } 4956 4957 // Handle constructor templates. 4958 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D); 4959 if (ConstructorTmpl->isInvalidDecl()) 4960 continue; 4961 4962 Constructor = cast<CXXConstructorDecl>( 4963 ConstructorTmpl->getTemplatedDecl()); 4964 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4965 continue; 4966 4967 // FIXME: Do we need to limit this to copy-constructor-like 4968 // candidates? 4969 DeclAccessPair FoundDecl 4970 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); 4971 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr, 4972 CurInitExpr, CandidateSet, true); 4973 } 4974 } 4975 4976 /// \brief Get the location at which initialization diagnostics should appear. 4977 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 4978 Expr *Initializer) { 4979 switch (Entity.getKind()) { 4980 case InitializedEntity::EK_Result: 4981 return Entity.getReturnLoc(); 4982 4983 case InitializedEntity::EK_Exception: 4984 return Entity.getThrowLoc(); 4985 4986 case InitializedEntity::EK_Variable: 4987 return Entity.getDecl()->getLocation(); 4988 4989 case InitializedEntity::EK_LambdaCapture: 4990 return Entity.getCaptureLoc(); 4991 4992 case InitializedEntity::EK_ArrayElement: 4993 case InitializedEntity::EK_Member: 4994 case InitializedEntity::EK_Parameter: 4995 case InitializedEntity::EK_Parameter_CF_Audited: 4996 case InitializedEntity::EK_Temporary: 4997 case InitializedEntity::EK_New: 4998 case InitializedEntity::EK_Base: 4999 case InitializedEntity::EK_Delegating: 5000 case InitializedEntity::EK_VectorElement: 5001 case InitializedEntity::EK_ComplexElement: 5002 case InitializedEntity::EK_BlockElement: 5003 case InitializedEntity::EK_CompoundLiteralInit: 5004 case InitializedEntity::EK_RelatedResult: 5005 return Initializer->getLocStart(); 5006 } 5007 llvm_unreachable("missed an InitializedEntity kind?"); 5008 } 5009 5010 /// \brief Make a (potentially elidable) temporary copy of the object 5011 /// provided by the given initializer by calling the appropriate copy 5012 /// constructor. 5013 /// 5014 /// \param S The Sema object used for type-checking. 5015 /// 5016 /// \param T The type of the temporary object, which must either be 5017 /// the type of the initializer expression or a superclass thereof. 5018 /// 5019 /// \param Entity The entity being initialized. 5020 /// 5021 /// \param CurInit The initializer expression. 5022 /// 5023 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5024 /// is permitted in C++03 (but not C++0x) when binding a reference to 5025 /// an rvalue. 5026 /// 5027 /// \returns An expression that copies the initializer expression into 5028 /// a temporary object, or an error expression if a copy could not be 5029 /// created. 5030 static ExprResult CopyObject(Sema &S, 5031 QualType T, 5032 const InitializedEntity &Entity, 5033 ExprResult CurInit, 5034 bool IsExtraneousCopy) { 5035 // Determine which class type we're copying to. 5036 Expr *CurInitExpr = (Expr *)CurInit.get(); 5037 CXXRecordDecl *Class = nullptr; 5038 if (const RecordType *Record = T->getAs<RecordType>()) 5039 Class = cast<CXXRecordDecl>(Record->getDecl()); 5040 if (!Class) 5041 return CurInit; 5042 5043 // C++0x [class.copy]p32: 5044 // When certain criteria are met, an implementation is allowed to 5045 // omit the copy/move construction of a class object, even if the 5046 // copy/move constructor and/or destructor for the object have 5047 // side effects. [...] 5048 // - when a temporary class object that has not been bound to a 5049 // reference (12.2) would be copied/moved to a class object 5050 // with the same cv-unqualified type, the copy/move operation 5051 // can be omitted by constructing the temporary object 5052 // directly into the target of the omitted copy/move 5053 // 5054 // Note that the other three bullets are handled elsewhere. Copy 5055 // elision for return statements and throw expressions are handled as part 5056 // of constructor initialization, while copy elision for exception handlers 5057 // is handled by the run-time. 5058 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); 5059 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5060 5061 // Make sure that the type we are copying is complete. 5062 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5063 return CurInit; 5064 5065 // Perform overload resolution using the class's copy/move constructors. 5066 // Only consider constructors and constructor templates. Per 5067 // C++0x [dcl.init]p16, second bullet to class types, this initialization 5068 // is direct-initialization. 5069 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5070 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); 5071 5072 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5073 5074 OverloadCandidateSet::iterator Best; 5075 switch (CandidateSet.BestViableFunction(S, Loc, Best)) { 5076 case OR_Success: 5077 break; 5078 5079 case OR_No_Viable_Function: 5080 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 5081 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5082 : diag::err_temp_copy_no_viable) 5083 << (int)Entity.getKind() << CurInitExpr->getType() 5084 << CurInitExpr->getSourceRange(); 5085 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5086 if (!IsExtraneousCopy || S.isSFINAEContext()) 5087 return ExprError(); 5088 return CurInit; 5089 5090 case OR_Ambiguous: 5091 S.Diag(Loc, diag::err_temp_copy_ambiguous) 5092 << (int)Entity.getKind() << CurInitExpr->getType() 5093 << CurInitExpr->getSourceRange(); 5094 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5095 return ExprError(); 5096 5097 case OR_Deleted: 5098 S.Diag(Loc, diag::err_temp_copy_deleted) 5099 << (int)Entity.getKind() << CurInitExpr->getType() 5100 << CurInitExpr->getSourceRange(); 5101 S.NoteDeletedFunction(Best->Function); 5102 return ExprError(); 5103 } 5104 5105 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 5106 SmallVector<Expr*, 8> ConstructorArgs; 5107 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5108 5109 S.CheckConstructorAccess(Loc, Constructor, Entity, 5110 Best->FoundDecl.getAccess(), IsExtraneousCopy); 5111 5112 if (IsExtraneousCopy) { 5113 // If this is a totally extraneous copy for C++03 reference 5114 // binding purposes, just return the original initialization 5115 // expression. We don't generate an (elided) copy operation here 5116 // because doing so would require us to pass down a flag to avoid 5117 // infinite recursion, where each step adds another extraneous, 5118 // elidable copy. 5119 5120 // Instantiate the default arguments of any extra parameters in 5121 // the selected copy constructor, as if we were going to create a 5122 // proper call to the copy constructor. 5123 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 5124 ParmVarDecl *Parm = Constructor->getParamDecl(I); 5125 if (S.RequireCompleteType(Loc, Parm->getType(), 5126 diag::err_call_incomplete_argument)) 5127 break; 5128 5129 // Build the default argument expression; we don't actually care 5130 // if this succeeds or not, because this routine will complain 5131 // if there was a problem. 5132 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 5133 } 5134 5135 return CurInitExpr; 5136 } 5137 5138 // Determine the arguments required to actually perform the 5139 // constructor call (we might have derived-to-base conversions, or 5140 // the copy constructor may have default arguments). 5141 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 5142 return ExprError(); 5143 5144 // Actually perform the constructor call. 5145 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, 5146 ConstructorArgs, 5147 HadMultipleCandidates, 5148 /*ListInit*/ false, 5149 /*ZeroInit*/ false, 5150 CXXConstructExpr::CK_Complete, 5151 SourceRange()); 5152 5153 // If we're supposed to bind temporaries, do so. 5154 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 5155 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5156 return CurInit; 5157 } 5158 5159 /// \brief Check whether elidable copy construction for binding a reference to 5160 /// a temporary would have succeeded if we were building in C++98 mode, for 5161 /// -Wc++98-compat. 5162 static void CheckCXX98CompatAccessibleCopy(Sema &S, 5163 const InitializedEntity &Entity, 5164 Expr *CurInitExpr) { 5165 assert(S.getLangOpts().CPlusPlus11); 5166 5167 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 5168 if (!Record) 5169 return; 5170 5171 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 5172 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 5173 return; 5174 5175 // Find constructors which would have been considered. 5176 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5177 LookupCopyAndMoveConstructors( 5178 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); 5179 5180 // Perform overload resolution. 5181 OverloadCandidateSet::iterator Best; 5182 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); 5183 5184 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 5185 << OR << (int)Entity.getKind() << CurInitExpr->getType() 5186 << CurInitExpr->getSourceRange(); 5187 5188 switch (OR) { 5189 case OR_Success: 5190 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 5191 Entity, Best->FoundDecl.getAccess(), Diag); 5192 // FIXME: Check default arguments as far as that's possible. 5193 break; 5194 5195 case OR_No_Viable_Function: 5196 S.Diag(Loc, Diag); 5197 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5198 break; 5199 5200 case OR_Ambiguous: 5201 S.Diag(Loc, Diag); 5202 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5203 break; 5204 5205 case OR_Deleted: 5206 S.Diag(Loc, Diag); 5207 S.NoteDeletedFunction(Best->Function); 5208 break; 5209 } 5210 } 5211 5212 void InitializationSequence::PrintInitLocationNote(Sema &S, 5213 const InitializedEntity &Entity) { 5214 if (Entity.isParameterKind() && Entity.getDecl()) { 5215 if (Entity.getDecl()->getLocation().isInvalid()) 5216 return; 5217 5218 if (Entity.getDecl()->getDeclName()) 5219 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 5220 << Entity.getDecl()->getDeclName(); 5221 else 5222 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 5223 } 5224 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 5225 Entity.getMethodDecl()) 5226 S.Diag(Entity.getMethodDecl()->getLocation(), 5227 diag::note_method_return_type_change) 5228 << Entity.getMethodDecl()->getDeclName(); 5229 } 5230 5231 static bool isReferenceBinding(const InitializationSequence::Step &s) { 5232 return s.Kind == InitializationSequence::SK_BindReference || 5233 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 5234 } 5235 5236 /// Returns true if the parameters describe a constructor initialization of 5237 /// an explicit temporary object, e.g. "Point(x, y)". 5238 static bool isExplicitTemporary(const InitializedEntity &Entity, 5239 const InitializationKind &Kind, 5240 unsigned NumArgs) { 5241 switch (Entity.getKind()) { 5242 case InitializedEntity::EK_Temporary: 5243 case InitializedEntity::EK_CompoundLiteralInit: 5244 case InitializedEntity::EK_RelatedResult: 5245 break; 5246 default: 5247 return false; 5248 } 5249 5250 switch (Kind.getKind()) { 5251 case InitializationKind::IK_DirectList: 5252 return true; 5253 // FIXME: Hack to work around cast weirdness. 5254 case InitializationKind::IK_Direct: 5255 case InitializationKind::IK_Value: 5256 return NumArgs != 1; 5257 default: 5258 return false; 5259 } 5260 } 5261 5262 static ExprResult 5263 PerformConstructorInitialization(Sema &S, 5264 const InitializedEntity &Entity, 5265 const InitializationKind &Kind, 5266 MultiExprArg Args, 5267 const InitializationSequence::Step& Step, 5268 bool &ConstructorInitRequiresZeroInit, 5269 bool IsListInitialization, 5270 SourceLocation LBraceLoc, 5271 SourceLocation RBraceLoc) { 5272 unsigned NumArgs = Args.size(); 5273 CXXConstructorDecl *Constructor 5274 = cast<CXXConstructorDecl>(Step.Function.Function); 5275 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 5276 5277 // Build a call to the selected constructor. 5278 SmallVector<Expr*, 8> ConstructorArgs; 5279 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 5280 ? Kind.getEqualLoc() 5281 : Kind.getLocation(); 5282 5283 if (Kind.getKind() == InitializationKind::IK_Default) { 5284 // Force even a trivial, implicit default constructor to be 5285 // semantically checked. We do this explicitly because we don't build 5286 // the definition for completely trivial constructors. 5287 assert(Constructor->getParent() && "No parent class for constructor."); 5288 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 5289 Constructor->isTrivial() && !Constructor->isUsed(false)) 5290 S.DefineImplicitDefaultConstructor(Loc, Constructor); 5291 } 5292 5293 ExprResult CurInit((Expr *)nullptr); 5294 5295 // C++ [over.match.copy]p1: 5296 // - When initializing a temporary to be bound to the first parameter 5297 // of a constructor that takes a reference to possibly cv-qualified 5298 // T as its first argument, called with a single argument in the 5299 // context of direct-initialization, explicit conversion functions 5300 // are also considered. 5301 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() && 5302 Args.size() == 1 && 5303 Constructor->isCopyOrMoveConstructor(); 5304 5305 // Determine the arguments required to actually perform the constructor 5306 // call. 5307 if (S.CompleteConstructorCall(Constructor, Args, 5308 Loc, ConstructorArgs, 5309 AllowExplicitConv, 5310 IsListInitialization)) 5311 return ExprError(); 5312 5313 5314 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 5315 // An explicitly-constructed temporary, e.g., X(1, 2). 5316 S.MarkFunctionReferenced(Loc, Constructor); 5317 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 5318 return ExprError(); 5319 5320 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5321 if (!TSInfo) 5322 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 5323 SourceRange ParenOrBraceRange = 5324 (Kind.getKind() == InitializationKind::IK_DirectList) 5325 ? SourceRange(LBraceLoc, RBraceLoc) 5326 : Kind.getParenRange(); 5327 5328 CurInit = new (S.Context) CXXTemporaryObjectExpr( 5329 S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange, 5330 HadMultipleCandidates, IsListInitialization, 5331 ConstructorInitRequiresZeroInit); 5332 } else { 5333 CXXConstructExpr::ConstructionKind ConstructKind = 5334 CXXConstructExpr::CK_Complete; 5335 5336 if (Entity.getKind() == InitializedEntity::EK_Base) { 5337 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 5338 CXXConstructExpr::CK_VirtualBase : 5339 CXXConstructExpr::CK_NonVirtualBase; 5340 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 5341 ConstructKind = CXXConstructExpr::CK_Delegating; 5342 } 5343 5344 // Only get the parenthesis or brace range if it is a list initialization or 5345 // direct construction. 5346 SourceRange ParenOrBraceRange; 5347 if (IsListInitialization) 5348 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 5349 else if (Kind.getKind() == InitializationKind::IK_Direct) 5350 ParenOrBraceRange = Kind.getParenRange(); 5351 5352 // If the entity allows NRVO, mark the construction as elidable 5353 // unconditionally. 5354 if (Entity.allowsNRVO()) 5355 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5356 Constructor, /*Elidable=*/true, 5357 ConstructorArgs, 5358 HadMultipleCandidates, 5359 IsListInitialization, 5360 ConstructorInitRequiresZeroInit, 5361 ConstructKind, 5362 ParenOrBraceRange); 5363 else 5364 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5365 Constructor, 5366 ConstructorArgs, 5367 HadMultipleCandidates, 5368 IsListInitialization, 5369 ConstructorInitRequiresZeroInit, 5370 ConstructKind, 5371 ParenOrBraceRange); 5372 } 5373 if (CurInit.isInvalid()) 5374 return ExprError(); 5375 5376 // Only check access if all of that succeeded. 5377 S.CheckConstructorAccess(Loc, Constructor, Entity, 5378 Step.Function.FoundDecl.getAccess()); 5379 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 5380 return ExprError(); 5381 5382 if (shouldBindAsTemporary(Entity)) 5383 CurInit = S.MaybeBindToTemporary(CurInit.get()); 5384 5385 return CurInit; 5386 } 5387 5388 /// Determine whether the specified InitializedEntity definitely has a lifetime 5389 /// longer than the current full-expression. Conservatively returns false if 5390 /// it's unclear. 5391 static bool 5392 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) { 5393 const InitializedEntity *Top = &Entity; 5394 while (Top->getParent()) 5395 Top = Top->getParent(); 5396 5397 switch (Top->getKind()) { 5398 case InitializedEntity::EK_Variable: 5399 case InitializedEntity::EK_Result: 5400 case InitializedEntity::EK_Exception: 5401 case InitializedEntity::EK_Member: 5402 case InitializedEntity::EK_New: 5403 case InitializedEntity::EK_Base: 5404 case InitializedEntity::EK_Delegating: 5405 return true; 5406 5407 case InitializedEntity::EK_ArrayElement: 5408 case InitializedEntity::EK_VectorElement: 5409 case InitializedEntity::EK_BlockElement: 5410 case InitializedEntity::EK_ComplexElement: 5411 // Could not determine what the full initialization is. Assume it might not 5412 // outlive the full-expression. 5413 return false; 5414 5415 case InitializedEntity::EK_Parameter: 5416 case InitializedEntity::EK_Parameter_CF_Audited: 5417 case InitializedEntity::EK_Temporary: 5418 case InitializedEntity::EK_LambdaCapture: 5419 case InitializedEntity::EK_CompoundLiteralInit: 5420 case InitializedEntity::EK_RelatedResult: 5421 // The entity being initialized might not outlive the full-expression. 5422 return false; 5423 } 5424 5425 llvm_unreachable("unknown entity kind"); 5426 } 5427 5428 /// Determine the declaration which an initialized entity ultimately refers to, 5429 /// for the purpose of lifetime-extending a temporary bound to a reference in 5430 /// the initialization of \p Entity. 5431 static const InitializedEntity *getEntityForTemporaryLifetimeExtension( 5432 const InitializedEntity *Entity, 5433 const InitializedEntity *FallbackDecl = nullptr) { 5434 // C++11 [class.temporary]p5: 5435 switch (Entity->getKind()) { 5436 case InitializedEntity::EK_Variable: 5437 // The temporary [...] persists for the lifetime of the reference 5438 return Entity; 5439 5440 case InitializedEntity::EK_Member: 5441 // For subobjects, we look at the complete object. 5442 if (Entity->getParent()) 5443 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5444 Entity); 5445 5446 // except: 5447 // -- A temporary bound to a reference member in a constructor's 5448 // ctor-initializer persists until the constructor exits. 5449 return Entity; 5450 5451 case InitializedEntity::EK_Parameter: 5452 case InitializedEntity::EK_Parameter_CF_Audited: 5453 // -- A temporary bound to a reference parameter in a function call 5454 // persists until the completion of the full-expression containing 5455 // the call. 5456 case InitializedEntity::EK_Result: 5457 // -- The lifetime of a temporary bound to the returned value in a 5458 // function return statement is not extended; the temporary is 5459 // destroyed at the end of the full-expression in the return statement. 5460 case InitializedEntity::EK_New: 5461 // -- A temporary bound to a reference in a new-initializer persists 5462 // until the completion of the full-expression containing the 5463 // new-initializer. 5464 return nullptr; 5465 5466 case InitializedEntity::EK_Temporary: 5467 case InitializedEntity::EK_CompoundLiteralInit: 5468 case InitializedEntity::EK_RelatedResult: 5469 // We don't yet know the storage duration of the surrounding temporary. 5470 // Assume it's got full-expression duration for now, it will patch up our 5471 // storage duration if that's not correct. 5472 return nullptr; 5473 5474 case InitializedEntity::EK_ArrayElement: 5475 // For subobjects, we look at the complete object. 5476 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5477 FallbackDecl); 5478 5479 case InitializedEntity::EK_Base: 5480 case InitializedEntity::EK_Delegating: 5481 // We can reach this case for aggregate initialization in a constructor: 5482 // struct A { int &&r; }; 5483 // struct B : A { B() : A{0} {} }; 5484 // In this case, use the innermost field decl as the context. 5485 return FallbackDecl; 5486 5487 case InitializedEntity::EK_BlockElement: 5488 case InitializedEntity::EK_LambdaCapture: 5489 case InitializedEntity::EK_Exception: 5490 case InitializedEntity::EK_VectorElement: 5491 case InitializedEntity::EK_ComplexElement: 5492 return nullptr; 5493 } 5494 llvm_unreachable("unknown entity kind"); 5495 } 5496 5497 static void performLifetimeExtension(Expr *Init, 5498 const InitializedEntity *ExtendingEntity); 5499 5500 /// Update a glvalue expression that is used as the initializer of a reference 5501 /// to note that its lifetime is extended. 5502 /// \return \c true if any temporary had its lifetime extended. 5503 static bool 5504 performReferenceExtension(Expr *Init, 5505 const InitializedEntity *ExtendingEntity) { 5506 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5507 if (ILE->getNumInits() == 1 && ILE->isGLValue()) { 5508 // This is just redundant braces around an initializer. Step over it. 5509 Init = ILE->getInit(0); 5510 } 5511 } 5512 5513 // Walk past any constructs which we can lifetime-extend across. 5514 Expr *Old; 5515 do { 5516 Old = Init; 5517 5518 // Step over any subobject adjustments; we may have a materialized 5519 // temporary inside them. 5520 SmallVector<const Expr *, 2> CommaLHSs; 5521 SmallVector<SubobjectAdjustment, 2> Adjustments; 5522 Init = const_cast<Expr *>( 5523 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5524 5525 // Per current approach for DR1376, look through casts to reference type 5526 // when performing lifetime extension. 5527 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 5528 if (CE->getSubExpr()->isGLValue()) 5529 Init = CE->getSubExpr(); 5530 5531 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue. 5532 // It's unclear if binding a reference to that xvalue extends the array 5533 // temporary. 5534 } while (Init != Old); 5535 5536 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) { 5537 // Update the storage duration of the materialized temporary. 5538 // FIXME: Rebuild the expression instead of mutating it. 5539 ME->setExtendingDecl(ExtendingEntity->getDecl(), 5540 ExtendingEntity->allocateManglingNumber()); 5541 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity); 5542 return true; 5543 } 5544 5545 return false; 5546 } 5547 5548 /// Update a prvalue expression that is going to be materialized as a 5549 /// lifetime-extended temporary. 5550 static void performLifetimeExtension(Expr *Init, 5551 const InitializedEntity *ExtendingEntity) { 5552 // Dig out the expression which constructs the extended temporary. 5553 SmallVector<const Expr *, 2> CommaLHSs; 5554 SmallVector<SubobjectAdjustment, 2> Adjustments; 5555 Init = const_cast<Expr *>( 5556 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5557 5558 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 5559 Init = BTE->getSubExpr(); 5560 5561 if (CXXStdInitializerListExpr *ILE = 5562 dyn_cast<CXXStdInitializerListExpr>(Init)) { 5563 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity); 5564 return; 5565 } 5566 5567 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5568 if (ILE->getType()->isArrayType()) { 5569 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 5570 performLifetimeExtension(ILE->getInit(I), ExtendingEntity); 5571 return; 5572 } 5573 5574 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 5575 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 5576 5577 // If we lifetime-extend a braced initializer which is initializing an 5578 // aggregate, and that aggregate contains reference members which are 5579 // bound to temporaries, those temporaries are also lifetime-extended. 5580 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 5581 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 5582 performReferenceExtension(ILE->getInit(0), ExtendingEntity); 5583 else { 5584 unsigned Index = 0; 5585 for (const auto *I : RD->fields()) { 5586 if (Index >= ILE->getNumInits()) 5587 break; 5588 if (I->isUnnamedBitfield()) 5589 continue; 5590 Expr *SubInit = ILE->getInit(Index); 5591 if (I->getType()->isReferenceType()) 5592 performReferenceExtension(SubInit, ExtendingEntity); 5593 else if (isa<InitListExpr>(SubInit) || 5594 isa<CXXStdInitializerListExpr>(SubInit)) 5595 // This may be either aggregate-initialization of a member or 5596 // initialization of a std::initializer_list object. Either way, 5597 // we should recursively lifetime-extend that initializer. 5598 performLifetimeExtension(SubInit, ExtendingEntity); 5599 ++Index; 5600 } 5601 } 5602 } 5603 } 5604 } 5605 5606 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity, 5607 const Expr *Init, bool IsInitializerList, 5608 const ValueDecl *ExtendingDecl) { 5609 // Warn if a field lifetime-extends a temporary. 5610 if (isa<FieldDecl>(ExtendingDecl)) { 5611 if (IsInitializerList) { 5612 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list) 5613 << /*at end of constructor*/true; 5614 return; 5615 } 5616 5617 bool IsSubobjectMember = false; 5618 for (const InitializedEntity *Ent = Entity.getParent(); Ent; 5619 Ent = Ent->getParent()) { 5620 if (Ent->getKind() != InitializedEntity::EK_Base) { 5621 IsSubobjectMember = true; 5622 break; 5623 } 5624 } 5625 S.Diag(Init->getExprLoc(), 5626 diag::warn_bind_ref_member_to_temporary) 5627 << ExtendingDecl << Init->getSourceRange() 5628 << IsSubobjectMember << IsInitializerList; 5629 if (IsSubobjectMember) 5630 S.Diag(ExtendingDecl->getLocation(), 5631 diag::note_ref_subobject_of_member_declared_here); 5632 else 5633 S.Diag(ExtendingDecl->getLocation(), 5634 diag::note_ref_or_ptr_member_declared_here) 5635 << /*is pointer*/false; 5636 } 5637 } 5638 5639 static void DiagnoseNarrowingInInitList(Sema &S, 5640 const ImplicitConversionSequence &ICS, 5641 QualType PreNarrowingType, 5642 QualType EntityType, 5643 const Expr *PostInit); 5644 5645 ExprResult 5646 InitializationSequence::Perform(Sema &S, 5647 const InitializedEntity &Entity, 5648 const InitializationKind &Kind, 5649 MultiExprArg Args, 5650 QualType *ResultType) { 5651 if (Failed()) { 5652 Diagnose(S, Entity, Kind, Args); 5653 return ExprError(); 5654 } 5655 5656 if (getKind() == DependentSequence) { 5657 // If the declaration is a non-dependent, incomplete array type 5658 // that has an initializer, then its type will be completed once 5659 // the initializer is instantiated. 5660 if (ResultType && !Entity.getType()->isDependentType() && 5661 Args.size() == 1) { 5662 QualType DeclType = Entity.getType(); 5663 if (const IncompleteArrayType *ArrayT 5664 = S.Context.getAsIncompleteArrayType(DeclType)) { 5665 // FIXME: We don't currently have the ability to accurately 5666 // compute the length of an initializer list without 5667 // performing full type-checking of the initializer list 5668 // (since we have to determine where braces are implicitly 5669 // introduced and such). So, we fall back to making the array 5670 // type a dependently-sized array type with no specified 5671 // bound. 5672 if (isa<InitListExpr>((Expr *)Args[0])) { 5673 SourceRange Brackets; 5674 5675 // Scavange the location of the brackets from the entity, if we can. 5676 if (DeclaratorDecl *DD = Entity.getDecl()) { 5677 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 5678 TypeLoc TL = TInfo->getTypeLoc(); 5679 if (IncompleteArrayTypeLoc ArrayLoc = 5680 TL.getAs<IncompleteArrayTypeLoc>()) 5681 Brackets = ArrayLoc.getBracketsRange(); 5682 } 5683 } 5684 5685 *ResultType 5686 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 5687 /*NumElts=*/nullptr, 5688 ArrayT->getSizeModifier(), 5689 ArrayT->getIndexTypeCVRQualifiers(), 5690 Brackets); 5691 } 5692 5693 } 5694 } 5695 if (Kind.getKind() == InitializationKind::IK_Direct && 5696 !Kind.isExplicitCast()) { 5697 // Rebuild the ParenListExpr. 5698 SourceRange ParenRange = Kind.getParenRange(); 5699 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 5700 Args); 5701 } 5702 assert(Kind.getKind() == InitializationKind::IK_Copy || 5703 Kind.isExplicitCast() || 5704 Kind.getKind() == InitializationKind::IK_DirectList); 5705 return ExprResult(Args[0]); 5706 } 5707 5708 // No steps means no initialization. 5709 if (Steps.empty()) 5710 return ExprResult((Expr *)nullptr); 5711 5712 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 5713 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 5714 !Entity.isParameterKind()) { 5715 // Produce a C++98 compatibility warning if we are initializing a reference 5716 // from an initializer list. For parameters, we produce a better warning 5717 // elsewhere. 5718 Expr *Init = Args[0]; 5719 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) 5720 << Init->getSourceRange(); 5721 } 5722 5723 // Diagnose cases where we initialize a pointer to an array temporary, and the 5724 // pointer obviously outlives the temporary. 5725 if (Args.size() == 1 && Args[0]->getType()->isArrayType() && 5726 Entity.getType()->isPointerType() && 5727 InitializedEntityOutlivesFullExpression(Entity)) { 5728 Expr *Init = Args[0]; 5729 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context); 5730 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary) 5731 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay) 5732 << Init->getSourceRange(); 5733 } 5734 5735 QualType DestType = Entity.getType().getNonReferenceType(); 5736 // FIXME: Ugly hack around the fact that Entity.getType() is not 5737 // the same as Entity.getDecl()->getType() in cases involving type merging, 5738 // and we want latter when it makes sense. 5739 if (ResultType) 5740 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 5741 Entity.getType(); 5742 5743 ExprResult CurInit((Expr *)nullptr); 5744 5745 // For initialization steps that start with a single initializer, 5746 // grab the only argument out the Args and place it into the "current" 5747 // initializer. 5748 switch (Steps.front().Kind) { 5749 case SK_ResolveAddressOfOverloadedFunction: 5750 case SK_CastDerivedToBaseRValue: 5751 case SK_CastDerivedToBaseXValue: 5752 case SK_CastDerivedToBaseLValue: 5753 case SK_BindReference: 5754 case SK_BindReferenceToTemporary: 5755 case SK_ExtraneousCopyToTemporary: 5756 case SK_UserConversion: 5757 case SK_QualificationConversionLValue: 5758 case SK_QualificationConversionXValue: 5759 case SK_QualificationConversionRValue: 5760 case SK_LValueToRValue: 5761 case SK_ConversionSequence: 5762 case SK_ConversionSequenceNoNarrowing: 5763 case SK_ListInitialization: 5764 case SK_UnwrapInitList: 5765 case SK_RewrapInitList: 5766 case SK_CAssignment: 5767 case SK_StringInit: 5768 case SK_ObjCObjectConversion: 5769 case SK_ArrayInit: 5770 case SK_ParenthesizedArrayInit: 5771 case SK_PassByIndirectCopyRestore: 5772 case SK_PassByIndirectRestore: 5773 case SK_ProduceObjCObject: 5774 case SK_StdInitializerList: 5775 case SK_OCLSamplerInit: 5776 case SK_OCLZeroEvent: { 5777 assert(Args.size() == 1); 5778 CurInit = Args[0]; 5779 if (!CurInit.get()) return ExprError(); 5780 break; 5781 } 5782 5783 case SK_ConstructorInitialization: 5784 case SK_ListConstructorCall: 5785 case SK_ZeroInitialization: 5786 break; 5787 } 5788 5789 // Walk through the computed steps for the initialization sequence, 5790 // performing the specified conversions along the way. 5791 bool ConstructorInitRequiresZeroInit = false; 5792 for (step_iterator Step = step_begin(), StepEnd = step_end(); 5793 Step != StepEnd; ++Step) { 5794 if (CurInit.isInvalid()) 5795 return ExprError(); 5796 5797 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 5798 5799 switch (Step->Kind) { 5800 case SK_ResolveAddressOfOverloadedFunction: 5801 // Overload resolution determined which function invoke; update the 5802 // initializer to reflect that choice. 5803 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 5804 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 5805 return ExprError(); 5806 CurInit = S.FixOverloadedFunctionReference(CurInit, 5807 Step->Function.FoundDecl, 5808 Step->Function.Function); 5809 break; 5810 5811 case SK_CastDerivedToBaseRValue: 5812 case SK_CastDerivedToBaseXValue: 5813 case SK_CastDerivedToBaseLValue: { 5814 // We have a derived-to-base cast that produces either an rvalue or an 5815 // lvalue. Perform that cast. 5816 5817 CXXCastPath BasePath; 5818 5819 // Casts to inaccessible base classes are allowed with C-style casts. 5820 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 5821 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 5822 CurInit.get()->getLocStart(), 5823 CurInit.get()->getSourceRange(), 5824 &BasePath, IgnoreBaseAccess)) 5825 return ExprError(); 5826 5827 if (S.BasePathInvolvesVirtualBase(BasePath)) { 5828 QualType T = SourceType; 5829 if (const PointerType *Pointer = T->getAs<PointerType>()) 5830 T = Pointer->getPointeeType(); 5831 if (const RecordType *RecordTy = T->getAs<RecordType>()) 5832 S.MarkVTableUsed(CurInit.get()->getLocStart(), 5833 cast<CXXRecordDecl>(RecordTy->getDecl())); 5834 } 5835 5836 ExprValueKind VK = 5837 Step->Kind == SK_CastDerivedToBaseLValue ? 5838 VK_LValue : 5839 (Step->Kind == SK_CastDerivedToBaseXValue ? 5840 VK_XValue : 5841 VK_RValue); 5842 CurInit = 5843 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 5844 CurInit.get(), &BasePath, VK); 5845 break; 5846 } 5847 5848 case SK_BindReference: 5849 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5). 5850 if (CurInit.get()->refersToBitField()) { 5851 // We don't necessarily have an unambiguous source bit-field. 5852 FieldDecl *BitField = CurInit.get()->getSourceBitField(); 5853 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 5854 << Entity.getType().isVolatileQualified() 5855 << (BitField ? BitField->getDeclName() : DeclarationName()) 5856 << (BitField != nullptr) 5857 << CurInit.get()->getSourceRange(); 5858 if (BitField) 5859 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 5860 5861 return ExprError(); 5862 } 5863 5864 if (CurInit.get()->refersToVectorElement()) { 5865 // References cannot bind to vector elements. 5866 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 5867 << Entity.getType().isVolatileQualified() 5868 << CurInit.get()->getSourceRange(); 5869 PrintInitLocationNote(S, Entity); 5870 return ExprError(); 5871 } 5872 5873 // Reference binding does not have any corresponding ASTs. 5874 5875 // Check exception specifications 5876 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 5877 return ExprError(); 5878 5879 // Even though we didn't materialize a temporary, the binding may still 5880 // extend the lifetime of a temporary. This happens if we bind a reference 5881 // to the result of a cast to reference type. 5882 if (const InitializedEntity *ExtendingEntity = 5883 getEntityForTemporaryLifetimeExtension(&Entity)) 5884 if (performReferenceExtension(CurInit.get(), ExtendingEntity)) 5885 warnOnLifetimeExtension(S, Entity, CurInit.get(), 5886 /*IsInitializerList=*/false, 5887 ExtendingEntity->getDecl()); 5888 5889 break; 5890 5891 case SK_BindReferenceToTemporary: { 5892 // Make sure the "temporary" is actually an rvalue. 5893 assert(CurInit.get()->isRValue() && "not a temporary"); 5894 5895 // Check exception specifications 5896 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 5897 return ExprError(); 5898 5899 // Materialize the temporary into memory. 5900 MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr( 5901 Entity.getType().getNonReferenceType(), CurInit.get(), 5902 Entity.getType()->isLValueReferenceType()); 5903 5904 // Maybe lifetime-extend the temporary's subobjects to match the 5905 // entity's lifetime. 5906 if (const InitializedEntity *ExtendingEntity = 5907 getEntityForTemporaryLifetimeExtension(&Entity)) 5908 if (performReferenceExtension(MTE, ExtendingEntity)) 5909 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false, 5910 ExtendingEntity->getDecl()); 5911 5912 // If we're binding to an Objective-C object that has lifetime, we 5913 // need cleanups. Likewise if we're extending this temporary to automatic 5914 // storage duration -- we need to register its cleanup during the 5915 // full-expression's cleanups. 5916 if ((S.getLangOpts().ObjCAutoRefCount && 5917 MTE->getType()->isObjCLifetimeType()) || 5918 (MTE->getStorageDuration() == SD_Automatic && 5919 MTE->getType().isDestructedType())) 5920 S.ExprNeedsCleanups = true; 5921 5922 CurInit = MTE; 5923 break; 5924 } 5925 5926 case SK_ExtraneousCopyToTemporary: 5927 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 5928 /*IsExtraneousCopy=*/true); 5929 break; 5930 5931 case SK_UserConversion: { 5932 // We have a user-defined conversion that invokes either a constructor 5933 // or a conversion function. 5934 CastKind CastKind; 5935 bool IsCopy = false; 5936 FunctionDecl *Fn = Step->Function.Function; 5937 DeclAccessPair FoundFn = Step->Function.FoundDecl; 5938 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 5939 bool CreatedObject = false; 5940 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 5941 // Build a call to the selected constructor. 5942 SmallVector<Expr*, 8> ConstructorArgs; 5943 SourceLocation Loc = CurInit.get()->getLocStart(); 5944 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5945 5946 // Determine the arguments required to actually perform the constructor 5947 // call. 5948 Expr *Arg = CurInit.get(); 5949 if (S.CompleteConstructorCall(Constructor, 5950 MultiExprArg(&Arg, 1), 5951 Loc, ConstructorArgs)) 5952 return ExprError(); 5953 5954 // Build an expression that constructs a temporary. 5955 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 5956 ConstructorArgs, 5957 HadMultipleCandidates, 5958 /*ListInit*/ false, 5959 /*ZeroInit*/ false, 5960 CXXConstructExpr::CK_Complete, 5961 SourceRange()); 5962 if (CurInit.isInvalid()) 5963 return ExprError(); 5964 5965 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, 5966 FoundFn.getAccess()); 5967 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 5968 return ExprError(); 5969 5970 CastKind = CK_ConstructorConversion; 5971 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 5972 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 5973 S.IsDerivedFrom(SourceType, Class)) 5974 IsCopy = true; 5975 5976 CreatedObject = true; 5977 } else { 5978 // Build a call to the conversion function. 5979 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 5980 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 5981 FoundFn); 5982 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 5983 return ExprError(); 5984 5985 // FIXME: Should we move this initialization into a separate 5986 // derived-to-base conversion? I believe the answer is "no", because 5987 // we don't want to turn off access control here for c-style casts. 5988 ExprResult CurInitExprRes = 5989 S.PerformObjectArgumentInitialization(CurInit.get(), 5990 /*Qualifier=*/nullptr, 5991 FoundFn, Conversion); 5992 if(CurInitExprRes.isInvalid()) 5993 return ExprError(); 5994 CurInit = CurInitExprRes; 5995 5996 // Build the actual call to the conversion function. 5997 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 5998 HadMultipleCandidates); 5999 if (CurInit.isInvalid() || !CurInit.get()) 6000 return ExprError(); 6001 6002 CastKind = CK_UserDefinedConversion; 6003 6004 CreatedObject = Conversion->getReturnType()->isRecordType(); 6005 } 6006 6007 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 6008 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 6009 6010 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 6011 QualType T = CurInit.get()->getType(); 6012 if (const RecordType *Record = T->getAs<RecordType>()) { 6013 CXXDestructorDecl *Destructor 6014 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 6015 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 6016 S.PDiag(diag::err_access_dtor_temp) << T); 6017 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); 6018 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) 6019 return ExprError(); 6020 } 6021 } 6022 6023 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 6024 CastKind, CurInit.get(), nullptr, 6025 CurInit.get()->getValueKind()); 6026 if (MaybeBindToTemp) 6027 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6028 if (RequiresCopy) 6029 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 6030 CurInit, /*IsExtraneousCopy=*/false); 6031 break; 6032 } 6033 6034 case SK_QualificationConversionLValue: 6035 case SK_QualificationConversionXValue: 6036 case SK_QualificationConversionRValue: { 6037 // Perform a qualification conversion; these can never go wrong. 6038 ExprValueKind VK = 6039 Step->Kind == SK_QualificationConversionLValue ? 6040 VK_LValue : 6041 (Step->Kind == SK_QualificationConversionXValue ? 6042 VK_XValue : 6043 VK_RValue); 6044 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); 6045 break; 6046 } 6047 6048 case SK_LValueToRValue: { 6049 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 6050 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 6051 CK_LValueToRValue, CurInit.get(), 6052 /*BasePath=*/nullptr, VK_RValue); 6053 break; 6054 } 6055 6056 case SK_ConversionSequence: 6057 case SK_ConversionSequenceNoNarrowing: { 6058 Sema::CheckedConversionKind CCK 6059 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 6060 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 6061 : Kind.isExplicitCast()? Sema::CCK_OtherCast 6062 : Sema::CCK_ImplicitConversion; 6063 ExprResult CurInitExprRes = 6064 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 6065 getAssignmentAction(Entity), CCK); 6066 if (CurInitExprRes.isInvalid()) 6067 return ExprError(); 6068 CurInit = CurInitExprRes; 6069 6070 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 6071 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent()) 6072 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 6073 CurInit.get()); 6074 break; 6075 } 6076 6077 case SK_ListInitialization: { 6078 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 6079 // If we're not initializing the top-level entity, we need to create an 6080 // InitializeTemporary entity for our target type. 6081 QualType Ty = Step->Type; 6082 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 6083 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 6084 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 6085 InitListChecker PerformInitList(S, InitEntity, 6086 InitList, Ty, /*VerifyOnly=*/false); 6087 if (PerformInitList.HadError()) 6088 return ExprError(); 6089 6090 // Hack: We must update *ResultType if available in order to set the 6091 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 6092 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 6093 if (ResultType && 6094 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 6095 if ((*ResultType)->isRValueReferenceType()) 6096 Ty = S.Context.getRValueReferenceType(Ty); 6097 else if ((*ResultType)->isLValueReferenceType()) 6098 Ty = S.Context.getLValueReferenceType(Ty, 6099 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 6100 *ResultType = Ty; 6101 } 6102 6103 InitListExpr *StructuredInitList = 6104 PerformInitList.getFullyStructuredList(); 6105 CurInit.get(); 6106 CurInit = shouldBindAsTemporary(InitEntity) 6107 ? S.MaybeBindToTemporary(StructuredInitList) 6108 : StructuredInitList; 6109 break; 6110 } 6111 6112 case SK_ListConstructorCall: { 6113 // When an initializer list is passed for a parameter of type "reference 6114 // to object", we don't get an EK_Temporary entity, but instead an 6115 // EK_Parameter entity with reference type. 6116 // FIXME: This is a hack. What we really should do is create a user 6117 // conversion step for this case, but this makes it considerably more 6118 // complicated. For now, this will do. 6119 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6120 Entity.getType().getNonReferenceType()); 6121 bool UseTemporary = Entity.getType()->isReferenceType(); 6122 assert(Args.size() == 1 && "expected a single argument for list init"); 6123 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6124 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 6125 << InitList->getSourceRange(); 6126 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 6127 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 6128 Entity, 6129 Kind, Arg, *Step, 6130 ConstructorInitRequiresZeroInit, 6131 /*IsListInitialization*/ true, 6132 InitList->getLBraceLoc(), 6133 InitList->getRBraceLoc()); 6134 break; 6135 } 6136 6137 case SK_UnwrapInitList: 6138 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 6139 break; 6140 6141 case SK_RewrapInitList: { 6142 Expr *E = CurInit.get(); 6143 InitListExpr *Syntactic = Step->WrappingSyntacticList; 6144 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 6145 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 6146 ILE->setSyntacticForm(Syntactic); 6147 ILE->setType(E->getType()); 6148 ILE->setValueKind(E->getValueKind()); 6149 CurInit = ILE; 6150 break; 6151 } 6152 6153 case SK_ConstructorInitialization: { 6154 // When an initializer list is passed for a parameter of type "reference 6155 // to object", we don't get an EK_Temporary entity, but instead an 6156 // EK_Parameter entity with reference type. 6157 // FIXME: This is a hack. What we really should do is create a user 6158 // conversion step for this case, but this makes it considerably more 6159 // complicated. For now, this will do. 6160 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6161 Entity.getType().getNonReferenceType()); 6162 bool UseTemporary = Entity.getType()->isReferenceType(); 6163 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity 6164 : Entity, 6165 Kind, Args, *Step, 6166 ConstructorInitRequiresZeroInit, 6167 /*IsListInitialization*/ false, 6168 /*LBraceLoc*/ SourceLocation(), 6169 /*RBraceLoc*/ SourceLocation()); 6170 break; 6171 } 6172 6173 case SK_ZeroInitialization: { 6174 step_iterator NextStep = Step; 6175 ++NextStep; 6176 if (NextStep != StepEnd && 6177 (NextStep->Kind == SK_ConstructorInitialization || 6178 NextStep->Kind == SK_ListConstructorCall)) { 6179 // The need for zero-initialization is recorded directly into 6180 // the call to the object's constructor within the next step. 6181 ConstructorInitRequiresZeroInit = true; 6182 } else if (Kind.getKind() == InitializationKind::IK_Value && 6183 S.getLangOpts().CPlusPlus && 6184 !Kind.isImplicitValueInit()) { 6185 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6186 if (!TSInfo) 6187 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 6188 Kind.getRange().getBegin()); 6189 6190 CurInit = new (S.Context) CXXScalarValueInitExpr( 6191 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo, 6192 Kind.getRange().getEnd()); 6193 } else { 6194 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 6195 } 6196 break; 6197 } 6198 6199 case SK_CAssignment: { 6200 QualType SourceType = CurInit.get()->getType(); 6201 ExprResult Result = CurInit; 6202 Sema::AssignConvertType ConvTy = 6203 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 6204 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 6205 if (Result.isInvalid()) 6206 return ExprError(); 6207 CurInit = Result; 6208 6209 // If this is a call, allow conversion to a transparent union. 6210 ExprResult CurInitExprRes = CurInit; 6211 if (ConvTy != Sema::Compatible && 6212 Entity.isParameterKind() && 6213 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 6214 == Sema::Compatible) 6215 ConvTy = Sema::Compatible; 6216 if (CurInitExprRes.isInvalid()) 6217 return ExprError(); 6218 CurInit = CurInitExprRes; 6219 6220 bool Complained; 6221 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 6222 Step->Type, SourceType, 6223 CurInit.get(), 6224 getAssignmentAction(Entity, true), 6225 &Complained)) { 6226 PrintInitLocationNote(S, Entity); 6227 return ExprError(); 6228 } else if (Complained) 6229 PrintInitLocationNote(S, Entity); 6230 break; 6231 } 6232 6233 case SK_StringInit: { 6234 QualType Ty = Step->Type; 6235 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 6236 S.Context.getAsArrayType(Ty), S); 6237 break; 6238 } 6239 6240 case SK_ObjCObjectConversion: 6241 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6242 CK_ObjCObjectLValueCast, 6243 CurInit.get()->getValueKind()); 6244 break; 6245 6246 case SK_ArrayInit: 6247 // Okay: we checked everything before creating this step. Note that 6248 // this is a GNU extension. 6249 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 6250 << Step->Type << CurInit.get()->getType() 6251 << CurInit.get()->getSourceRange(); 6252 6253 // If the destination type is an incomplete array type, update the 6254 // type accordingly. 6255 if (ResultType) { 6256 if (const IncompleteArrayType *IncompleteDest 6257 = S.Context.getAsIncompleteArrayType(Step->Type)) { 6258 if (const ConstantArrayType *ConstantSource 6259 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 6260 *ResultType = S.Context.getConstantArrayType( 6261 IncompleteDest->getElementType(), 6262 ConstantSource->getSize(), 6263 ArrayType::Normal, 0); 6264 } 6265 } 6266 } 6267 break; 6268 6269 case SK_ParenthesizedArrayInit: 6270 // Okay: we checked everything before creating this step. Note that 6271 // this is a GNU extension. 6272 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 6273 << CurInit.get()->getSourceRange(); 6274 break; 6275 6276 case SK_PassByIndirectCopyRestore: 6277 case SK_PassByIndirectRestore: 6278 checkIndirectCopyRestoreSource(S, CurInit.get()); 6279 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 6280 CurInit.get(), Step->Type, 6281 Step->Kind == SK_PassByIndirectCopyRestore); 6282 break; 6283 6284 case SK_ProduceObjCObject: 6285 CurInit = 6286 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 6287 CurInit.get(), nullptr, VK_RValue); 6288 break; 6289 6290 case SK_StdInitializerList: { 6291 S.Diag(CurInit.get()->getExprLoc(), 6292 diag::warn_cxx98_compat_initializer_list_init) 6293 << CurInit.get()->getSourceRange(); 6294 6295 // Materialize the temporary into memory. 6296 MaterializeTemporaryExpr *MTE = new (S.Context) 6297 MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(), 6298 /*BoundToLvalueReference=*/false); 6299 6300 // Maybe lifetime-extend the array temporary's subobjects to match the 6301 // entity's lifetime. 6302 if (const InitializedEntity *ExtendingEntity = 6303 getEntityForTemporaryLifetimeExtension(&Entity)) 6304 if (performReferenceExtension(MTE, ExtendingEntity)) 6305 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6306 /*IsInitializerList=*/true, 6307 ExtendingEntity->getDecl()); 6308 6309 // Wrap it in a construction of a std::initializer_list<T>. 6310 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 6311 6312 // Bind the result, in case the library has given initializer_list a 6313 // non-trivial destructor. 6314 if (shouldBindAsTemporary(Entity)) 6315 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6316 break; 6317 } 6318 6319 case SK_OCLSamplerInit: { 6320 assert(Step->Type->isSamplerT() && 6321 "Sampler initialization on non-sampler type."); 6322 6323 QualType SourceType = CurInit.get()->getType(); 6324 6325 if (Entity.isParameterKind()) { 6326 if (!SourceType->isSamplerT()) 6327 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 6328 << SourceType; 6329 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 6330 llvm_unreachable("Invalid EntityKind!"); 6331 } 6332 6333 break; 6334 } 6335 case SK_OCLZeroEvent: { 6336 assert(Step->Type->isEventT() && 6337 "Event initialization on non-event type."); 6338 6339 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6340 CK_ZeroToOCLEvent, 6341 CurInit.get()->getValueKind()); 6342 break; 6343 } 6344 } 6345 } 6346 6347 // Diagnose non-fatal problems with the completed initialization. 6348 if (Entity.getKind() == InitializedEntity::EK_Member && 6349 cast<FieldDecl>(Entity.getDecl())->isBitField()) 6350 S.CheckBitFieldInitialization(Kind.getLocation(), 6351 cast<FieldDecl>(Entity.getDecl()), 6352 CurInit.get()); 6353 6354 return CurInit; 6355 } 6356 6357 /// Somewhere within T there is an uninitialized reference subobject. 6358 /// Dig it out and diagnose it. 6359 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 6360 QualType T) { 6361 if (T->isReferenceType()) { 6362 S.Diag(Loc, diag::err_reference_without_init) 6363 << T.getNonReferenceType(); 6364 return true; 6365 } 6366 6367 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6368 if (!RD || !RD->hasUninitializedReferenceMember()) 6369 return false; 6370 6371 for (const auto *FI : RD->fields()) { 6372 if (FI->isUnnamedBitfield()) 6373 continue; 6374 6375 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 6376 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6377 return true; 6378 } 6379 } 6380 6381 for (const auto &BI : RD->bases()) { 6382 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) { 6383 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6384 return true; 6385 } 6386 } 6387 6388 return false; 6389 } 6390 6391 6392 //===----------------------------------------------------------------------===// 6393 // Diagnose initialization failures 6394 //===----------------------------------------------------------------------===// 6395 6396 /// Emit notes associated with an initialization that failed due to a 6397 /// "simple" conversion failure. 6398 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 6399 Expr *op) { 6400 QualType destType = entity.getType(); 6401 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 6402 op->getType()->isObjCObjectPointerType()) { 6403 6404 // Emit a possible note about the conversion failing because the 6405 // operand is a message send with a related result type. 6406 S.EmitRelatedResultTypeNote(op); 6407 6408 // Emit a possible note about a return failing because we're 6409 // expecting a related result type. 6410 if (entity.getKind() == InitializedEntity::EK_Result) 6411 S.EmitRelatedResultTypeNoteForReturn(destType); 6412 } 6413 } 6414 6415 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 6416 InitListExpr *InitList) { 6417 QualType DestType = Entity.getType(); 6418 6419 QualType E; 6420 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 6421 QualType ArrayType = S.Context.getConstantArrayType( 6422 E.withConst(), 6423 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 6424 InitList->getNumInits()), 6425 clang::ArrayType::Normal, 0); 6426 InitializedEntity HiddenArray = 6427 InitializedEntity::InitializeTemporary(ArrayType); 6428 return diagnoseListInit(S, HiddenArray, InitList); 6429 } 6430 6431 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 6432 /*VerifyOnly=*/false); 6433 assert(DiagnoseInitList.HadError() && 6434 "Inconsistent init list check result."); 6435 } 6436 6437 bool InitializationSequence::Diagnose(Sema &S, 6438 const InitializedEntity &Entity, 6439 const InitializationKind &Kind, 6440 ArrayRef<Expr *> Args) { 6441 if (!Failed()) 6442 return false; 6443 6444 QualType DestType = Entity.getType(); 6445 switch (Failure) { 6446 case FK_TooManyInitsForReference: 6447 // FIXME: Customize for the initialized entity? 6448 if (Args.empty()) { 6449 // Dig out the reference subobject which is uninitialized and diagnose it. 6450 // If this is value-initialization, this could be nested some way within 6451 // the target type. 6452 assert(Kind.getKind() == InitializationKind::IK_Value || 6453 DestType->isReferenceType()); 6454 bool Diagnosed = 6455 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 6456 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 6457 (void)Diagnosed; 6458 } else // FIXME: diagnostic below could be better! 6459 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 6460 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); 6461 break; 6462 6463 case FK_ArrayNeedsInitList: 6464 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 6465 break; 6466 case FK_ArrayNeedsInitListOrStringLiteral: 6467 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 6468 break; 6469 case FK_ArrayNeedsInitListOrWideStringLiteral: 6470 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 6471 break; 6472 case FK_NarrowStringIntoWideCharArray: 6473 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 6474 break; 6475 case FK_WideStringIntoCharArray: 6476 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 6477 break; 6478 case FK_IncompatWideStringIntoWideChar: 6479 S.Diag(Kind.getLocation(), 6480 diag::err_array_init_incompat_wide_string_into_wchar); 6481 break; 6482 case FK_ArrayTypeMismatch: 6483 case FK_NonConstantArrayInit: 6484 S.Diag(Kind.getLocation(), 6485 (Failure == FK_ArrayTypeMismatch 6486 ? diag::err_array_init_different_type 6487 : diag::err_array_init_non_constant_array)) 6488 << DestType.getNonReferenceType() 6489 << Args[0]->getType() 6490 << Args[0]->getSourceRange(); 6491 break; 6492 6493 case FK_VariableLengthArrayHasInitializer: 6494 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 6495 << Args[0]->getSourceRange(); 6496 break; 6497 6498 case FK_AddressOfOverloadFailed: { 6499 DeclAccessPair Found; 6500 S.ResolveAddressOfOverloadedFunction(Args[0], 6501 DestType.getNonReferenceType(), 6502 true, 6503 Found); 6504 break; 6505 } 6506 6507 case FK_ReferenceInitOverloadFailed: 6508 case FK_UserConversionOverloadFailed: 6509 switch (FailedOverloadResult) { 6510 case OR_Ambiguous: 6511 if (Failure == FK_UserConversionOverloadFailed) 6512 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 6513 << Args[0]->getType() << DestType 6514 << Args[0]->getSourceRange(); 6515 else 6516 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 6517 << DestType << Args[0]->getType() 6518 << Args[0]->getSourceRange(); 6519 6520 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6521 break; 6522 6523 case OR_No_Viable_Function: 6524 if (!S.RequireCompleteType(Kind.getLocation(), 6525 DestType.getNonReferenceType(), 6526 diag::err_typecheck_nonviable_condition_incomplete, 6527 Args[0]->getType(), Args[0]->getSourceRange())) 6528 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 6529 << Args[0]->getType() << Args[0]->getSourceRange() 6530 << DestType.getNonReferenceType(); 6531 6532 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6533 break; 6534 6535 case OR_Deleted: { 6536 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 6537 << Args[0]->getType() << DestType.getNonReferenceType() 6538 << Args[0]->getSourceRange(); 6539 OverloadCandidateSet::iterator Best; 6540 OverloadingResult Ovl 6541 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 6542 true); 6543 if (Ovl == OR_Deleted) { 6544 S.NoteDeletedFunction(Best->Function); 6545 } else { 6546 llvm_unreachable("Inconsistent overload resolution?"); 6547 } 6548 break; 6549 } 6550 6551 case OR_Success: 6552 llvm_unreachable("Conversion did not fail!"); 6553 } 6554 break; 6555 6556 case FK_NonConstLValueReferenceBindingToTemporary: 6557 if (isa<InitListExpr>(Args[0])) { 6558 S.Diag(Kind.getLocation(), 6559 diag::err_lvalue_reference_bind_to_initlist) 6560 << DestType.getNonReferenceType().isVolatileQualified() 6561 << DestType.getNonReferenceType() 6562 << Args[0]->getSourceRange(); 6563 break; 6564 } 6565 // Intentional fallthrough 6566 6567 case FK_NonConstLValueReferenceBindingToUnrelated: 6568 S.Diag(Kind.getLocation(), 6569 Failure == FK_NonConstLValueReferenceBindingToTemporary 6570 ? diag::err_lvalue_reference_bind_to_temporary 6571 : diag::err_lvalue_reference_bind_to_unrelated) 6572 << DestType.getNonReferenceType().isVolatileQualified() 6573 << DestType.getNonReferenceType() 6574 << Args[0]->getType() 6575 << Args[0]->getSourceRange(); 6576 break; 6577 6578 case FK_RValueReferenceBindingToLValue: 6579 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 6580 << DestType.getNonReferenceType() << Args[0]->getType() 6581 << Args[0]->getSourceRange(); 6582 break; 6583 6584 case FK_ReferenceInitDropsQualifiers: 6585 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 6586 << DestType.getNonReferenceType() 6587 << Args[0]->getType() 6588 << Args[0]->getSourceRange(); 6589 break; 6590 6591 case FK_ReferenceInitFailed: 6592 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 6593 << DestType.getNonReferenceType() 6594 << Args[0]->isLValue() 6595 << Args[0]->getType() 6596 << Args[0]->getSourceRange(); 6597 emitBadConversionNotes(S, Entity, Args[0]); 6598 break; 6599 6600 case FK_ConversionFailed: { 6601 QualType FromType = Args[0]->getType(); 6602 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 6603 << (int)Entity.getKind() 6604 << DestType 6605 << Args[0]->isLValue() 6606 << FromType 6607 << Args[0]->getSourceRange(); 6608 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 6609 S.Diag(Kind.getLocation(), PDiag); 6610 emitBadConversionNotes(S, Entity, Args[0]); 6611 break; 6612 } 6613 6614 case FK_ConversionFromPropertyFailed: 6615 // No-op. This error has already been reported. 6616 break; 6617 6618 case FK_TooManyInitsForScalar: { 6619 SourceRange R; 6620 6621 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0])) 6622 R = SourceRange(InitList->getInit(0)->getLocEnd(), 6623 InitList->getLocEnd()); 6624 else 6625 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); 6626 6627 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 6628 if (Kind.isCStyleOrFunctionalCast()) 6629 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 6630 << R; 6631 else 6632 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 6633 << /*scalar=*/2 << R; 6634 break; 6635 } 6636 6637 case FK_ReferenceBindingToInitList: 6638 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 6639 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 6640 break; 6641 6642 case FK_InitListBadDestinationType: 6643 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 6644 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 6645 break; 6646 6647 case FK_ListConstructorOverloadFailed: 6648 case FK_ConstructorOverloadFailed: { 6649 SourceRange ArgsRange; 6650 if (Args.size()) 6651 ArgsRange = SourceRange(Args.front()->getLocStart(), 6652 Args.back()->getLocEnd()); 6653 6654 if (Failure == FK_ListConstructorOverloadFailed) { 6655 assert(Args.size() == 1 && 6656 "List construction from other than 1 argument."); 6657 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6658 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 6659 } 6660 6661 // FIXME: Using "DestType" for the entity we're printing is probably 6662 // bad. 6663 switch (FailedOverloadResult) { 6664 case OR_Ambiguous: 6665 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 6666 << DestType << ArgsRange; 6667 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6668 break; 6669 6670 case OR_No_Viable_Function: 6671 if (Kind.getKind() == InitializationKind::IK_Default && 6672 (Entity.getKind() == InitializedEntity::EK_Base || 6673 Entity.getKind() == InitializedEntity::EK_Member) && 6674 isa<CXXConstructorDecl>(S.CurContext)) { 6675 // This is implicit default initialization of a member or 6676 // base within a constructor. If no viable function was 6677 // found, notify the user that she needs to explicitly 6678 // initialize this base/member. 6679 CXXConstructorDecl *Constructor 6680 = cast<CXXConstructorDecl>(S.CurContext); 6681 if (Entity.getKind() == InitializedEntity::EK_Base) { 6682 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 6683 << (Constructor->getInheritedConstructor() ? 2 : 6684 Constructor->isImplicit() ? 1 : 0) 6685 << S.Context.getTypeDeclType(Constructor->getParent()) 6686 << /*base=*/0 6687 << Entity.getType(); 6688 6689 RecordDecl *BaseDecl 6690 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 6691 ->getDecl(); 6692 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 6693 << S.Context.getTagDeclType(BaseDecl); 6694 } else { 6695 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 6696 << (Constructor->getInheritedConstructor() ? 2 : 6697 Constructor->isImplicit() ? 1 : 0) 6698 << S.Context.getTypeDeclType(Constructor->getParent()) 6699 << /*member=*/1 6700 << Entity.getName(); 6701 S.Diag(Entity.getDecl()->getLocation(), 6702 diag::note_member_declared_at); 6703 6704 if (const RecordType *Record 6705 = Entity.getType()->getAs<RecordType>()) 6706 S.Diag(Record->getDecl()->getLocation(), 6707 diag::note_previous_decl) 6708 << S.Context.getTagDeclType(Record->getDecl()); 6709 } 6710 break; 6711 } 6712 6713 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 6714 << DestType << ArgsRange; 6715 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6716 break; 6717 6718 case OR_Deleted: { 6719 OverloadCandidateSet::iterator Best; 6720 OverloadingResult Ovl 6721 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 6722 if (Ovl != OR_Deleted) { 6723 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 6724 << true << DestType << ArgsRange; 6725 llvm_unreachable("Inconsistent overload resolution?"); 6726 break; 6727 } 6728 6729 // If this is a defaulted or implicitly-declared function, then 6730 // it was implicitly deleted. Make it clear that the deletion was 6731 // implicit. 6732 if (S.isImplicitlyDeleted(Best->Function)) 6733 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 6734 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 6735 << DestType << ArgsRange; 6736 else 6737 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 6738 << true << DestType << ArgsRange; 6739 6740 S.NoteDeletedFunction(Best->Function); 6741 break; 6742 } 6743 6744 case OR_Success: 6745 llvm_unreachable("Conversion did not fail!"); 6746 } 6747 } 6748 break; 6749 6750 case FK_DefaultInitOfConst: 6751 if (Entity.getKind() == InitializedEntity::EK_Member && 6752 isa<CXXConstructorDecl>(S.CurContext)) { 6753 // This is implicit default-initialization of a const member in 6754 // a constructor. Complain that it needs to be explicitly 6755 // initialized. 6756 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 6757 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 6758 << (Constructor->getInheritedConstructor() ? 2 : 6759 Constructor->isImplicit() ? 1 : 0) 6760 << S.Context.getTypeDeclType(Constructor->getParent()) 6761 << /*const=*/1 6762 << Entity.getName(); 6763 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 6764 << Entity.getName(); 6765 } else { 6766 S.Diag(Kind.getLocation(), diag::err_default_init_const) 6767 << DestType << (bool)DestType->getAs<RecordType>(); 6768 } 6769 break; 6770 6771 case FK_Incomplete: 6772 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 6773 diag::err_init_incomplete_type); 6774 break; 6775 6776 case FK_ListInitializationFailed: { 6777 // Run the init list checker again to emit diagnostics. 6778 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6779 diagnoseListInit(S, Entity, InitList); 6780 break; 6781 } 6782 6783 case FK_PlaceholderType: { 6784 // FIXME: Already diagnosed! 6785 break; 6786 } 6787 6788 case FK_ExplicitConstructor: { 6789 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 6790 << Args[0]->getSourceRange(); 6791 OverloadCandidateSet::iterator Best; 6792 OverloadingResult Ovl 6793 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 6794 (void)Ovl; 6795 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 6796 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 6797 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here); 6798 break; 6799 } 6800 } 6801 6802 PrintInitLocationNote(S, Entity); 6803 return true; 6804 } 6805 6806 void InitializationSequence::dump(raw_ostream &OS) const { 6807 switch (SequenceKind) { 6808 case FailedSequence: { 6809 OS << "Failed sequence: "; 6810 switch (Failure) { 6811 case FK_TooManyInitsForReference: 6812 OS << "too many initializers for reference"; 6813 break; 6814 6815 case FK_ArrayNeedsInitList: 6816 OS << "array requires initializer list"; 6817 break; 6818 6819 case FK_ArrayNeedsInitListOrStringLiteral: 6820 OS << "array requires initializer list or string literal"; 6821 break; 6822 6823 case FK_ArrayNeedsInitListOrWideStringLiteral: 6824 OS << "array requires initializer list or wide string literal"; 6825 break; 6826 6827 case FK_NarrowStringIntoWideCharArray: 6828 OS << "narrow string into wide char array"; 6829 break; 6830 6831 case FK_WideStringIntoCharArray: 6832 OS << "wide string into char array"; 6833 break; 6834 6835 case FK_IncompatWideStringIntoWideChar: 6836 OS << "incompatible wide string into wide char array"; 6837 break; 6838 6839 case FK_ArrayTypeMismatch: 6840 OS << "array type mismatch"; 6841 break; 6842 6843 case FK_NonConstantArrayInit: 6844 OS << "non-constant array initializer"; 6845 break; 6846 6847 case FK_AddressOfOverloadFailed: 6848 OS << "address of overloaded function failed"; 6849 break; 6850 6851 case FK_ReferenceInitOverloadFailed: 6852 OS << "overload resolution for reference initialization failed"; 6853 break; 6854 6855 case FK_NonConstLValueReferenceBindingToTemporary: 6856 OS << "non-const lvalue reference bound to temporary"; 6857 break; 6858 6859 case FK_NonConstLValueReferenceBindingToUnrelated: 6860 OS << "non-const lvalue reference bound to unrelated type"; 6861 break; 6862 6863 case FK_RValueReferenceBindingToLValue: 6864 OS << "rvalue reference bound to an lvalue"; 6865 break; 6866 6867 case FK_ReferenceInitDropsQualifiers: 6868 OS << "reference initialization drops qualifiers"; 6869 break; 6870 6871 case FK_ReferenceInitFailed: 6872 OS << "reference initialization failed"; 6873 break; 6874 6875 case FK_ConversionFailed: 6876 OS << "conversion failed"; 6877 break; 6878 6879 case FK_ConversionFromPropertyFailed: 6880 OS << "conversion from property failed"; 6881 break; 6882 6883 case FK_TooManyInitsForScalar: 6884 OS << "too many initializers for scalar"; 6885 break; 6886 6887 case FK_ReferenceBindingToInitList: 6888 OS << "referencing binding to initializer list"; 6889 break; 6890 6891 case FK_InitListBadDestinationType: 6892 OS << "initializer list for non-aggregate, non-scalar type"; 6893 break; 6894 6895 case FK_UserConversionOverloadFailed: 6896 OS << "overloading failed for user-defined conversion"; 6897 break; 6898 6899 case FK_ConstructorOverloadFailed: 6900 OS << "constructor overloading failed"; 6901 break; 6902 6903 case FK_DefaultInitOfConst: 6904 OS << "default initialization of a const variable"; 6905 break; 6906 6907 case FK_Incomplete: 6908 OS << "initialization of incomplete type"; 6909 break; 6910 6911 case FK_ListInitializationFailed: 6912 OS << "list initialization checker failure"; 6913 break; 6914 6915 case FK_VariableLengthArrayHasInitializer: 6916 OS << "variable length array has an initializer"; 6917 break; 6918 6919 case FK_PlaceholderType: 6920 OS << "initializer expression isn't contextually valid"; 6921 break; 6922 6923 case FK_ListConstructorOverloadFailed: 6924 OS << "list constructor overloading failed"; 6925 break; 6926 6927 case FK_ExplicitConstructor: 6928 OS << "list copy initialization chose explicit constructor"; 6929 break; 6930 } 6931 OS << '\n'; 6932 return; 6933 } 6934 6935 case DependentSequence: 6936 OS << "Dependent sequence\n"; 6937 return; 6938 6939 case NormalSequence: 6940 OS << "Normal sequence: "; 6941 break; 6942 } 6943 6944 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 6945 if (S != step_begin()) { 6946 OS << " -> "; 6947 } 6948 6949 switch (S->Kind) { 6950 case SK_ResolveAddressOfOverloadedFunction: 6951 OS << "resolve address of overloaded function"; 6952 break; 6953 6954 case SK_CastDerivedToBaseRValue: 6955 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 6956 break; 6957 6958 case SK_CastDerivedToBaseXValue: 6959 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 6960 break; 6961 6962 case SK_CastDerivedToBaseLValue: 6963 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 6964 break; 6965 6966 case SK_BindReference: 6967 OS << "bind reference to lvalue"; 6968 break; 6969 6970 case SK_BindReferenceToTemporary: 6971 OS << "bind reference to a temporary"; 6972 break; 6973 6974 case SK_ExtraneousCopyToTemporary: 6975 OS << "extraneous C++03 copy to temporary"; 6976 break; 6977 6978 case SK_UserConversion: 6979 OS << "user-defined conversion via " << *S->Function.Function; 6980 break; 6981 6982 case SK_QualificationConversionRValue: 6983 OS << "qualification conversion (rvalue)"; 6984 break; 6985 6986 case SK_QualificationConversionXValue: 6987 OS << "qualification conversion (xvalue)"; 6988 break; 6989 6990 case SK_QualificationConversionLValue: 6991 OS << "qualification conversion (lvalue)"; 6992 break; 6993 6994 case SK_LValueToRValue: 6995 OS << "load (lvalue to rvalue)"; 6996 break; 6997 6998 case SK_ConversionSequence: 6999 OS << "implicit conversion sequence ("; 7000 S->ICS->dump(); // FIXME: use OS 7001 OS << ")"; 7002 break; 7003 7004 case SK_ConversionSequenceNoNarrowing: 7005 OS << "implicit conversion sequence with narrowing prohibited ("; 7006 S->ICS->dump(); // FIXME: use OS 7007 OS << ")"; 7008 break; 7009 7010 case SK_ListInitialization: 7011 OS << "list aggregate initialization"; 7012 break; 7013 7014 case SK_ListConstructorCall: 7015 OS << "list initialization via constructor"; 7016 break; 7017 7018 case SK_UnwrapInitList: 7019 OS << "unwrap reference initializer list"; 7020 break; 7021 7022 case SK_RewrapInitList: 7023 OS << "rewrap reference initializer list"; 7024 break; 7025 7026 case SK_ConstructorInitialization: 7027 OS << "constructor initialization"; 7028 break; 7029 7030 case SK_ZeroInitialization: 7031 OS << "zero initialization"; 7032 break; 7033 7034 case SK_CAssignment: 7035 OS << "C assignment"; 7036 break; 7037 7038 case SK_StringInit: 7039 OS << "string initialization"; 7040 break; 7041 7042 case SK_ObjCObjectConversion: 7043 OS << "Objective-C object conversion"; 7044 break; 7045 7046 case SK_ArrayInit: 7047 OS << "array initialization"; 7048 break; 7049 7050 case SK_ParenthesizedArrayInit: 7051 OS << "parenthesized array initialization"; 7052 break; 7053 7054 case SK_PassByIndirectCopyRestore: 7055 OS << "pass by indirect copy and restore"; 7056 break; 7057 7058 case SK_PassByIndirectRestore: 7059 OS << "pass by indirect restore"; 7060 break; 7061 7062 case SK_ProduceObjCObject: 7063 OS << "Objective-C object retension"; 7064 break; 7065 7066 case SK_StdInitializerList: 7067 OS << "std::initializer_list from initializer list"; 7068 break; 7069 7070 case SK_OCLSamplerInit: 7071 OS << "OpenCL sampler_t from integer constant"; 7072 break; 7073 7074 case SK_OCLZeroEvent: 7075 OS << "OpenCL event_t from zero"; 7076 break; 7077 } 7078 7079 OS << " [" << S->Type.getAsString() << ']'; 7080 } 7081 7082 OS << '\n'; 7083 } 7084 7085 void InitializationSequence::dump() const { 7086 dump(llvm::errs()); 7087 } 7088 7089 static void DiagnoseNarrowingInInitList(Sema &S, 7090 const ImplicitConversionSequence &ICS, 7091 QualType PreNarrowingType, 7092 QualType EntityType, 7093 const Expr *PostInit) { 7094 const StandardConversionSequence *SCS = nullptr; 7095 switch (ICS.getKind()) { 7096 case ImplicitConversionSequence::StandardConversion: 7097 SCS = &ICS.Standard; 7098 break; 7099 case ImplicitConversionSequence::UserDefinedConversion: 7100 SCS = &ICS.UserDefined.After; 7101 break; 7102 case ImplicitConversionSequence::AmbiguousConversion: 7103 case ImplicitConversionSequence::EllipsisConversion: 7104 case ImplicitConversionSequence::BadConversion: 7105 return; 7106 } 7107 7108 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 7109 APValue ConstantValue; 7110 QualType ConstantType; 7111 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 7112 ConstantType)) { 7113 case NK_Not_Narrowing: 7114 // No narrowing occurred. 7115 return; 7116 7117 case NK_Type_Narrowing: 7118 // This was a floating-to-integer conversion, which is always considered a 7119 // narrowing conversion even if the value is a constant and can be 7120 // represented exactly as an integer. 7121 S.Diag(PostInit->getLocStart(), 7122 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7123 ? diag::warn_init_list_type_narrowing 7124 : diag::ext_init_list_type_narrowing) 7125 << PostInit->getSourceRange() 7126 << PreNarrowingType.getLocalUnqualifiedType() 7127 << EntityType.getLocalUnqualifiedType(); 7128 break; 7129 7130 case NK_Constant_Narrowing: 7131 // A constant value was narrowed. 7132 S.Diag(PostInit->getLocStart(), 7133 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7134 ? diag::warn_init_list_constant_narrowing 7135 : diag::ext_init_list_constant_narrowing) 7136 << PostInit->getSourceRange() 7137 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 7138 << EntityType.getLocalUnqualifiedType(); 7139 break; 7140 7141 case NK_Variable_Narrowing: 7142 // A variable's value may have been narrowed. 7143 S.Diag(PostInit->getLocStart(), 7144 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7145 ? diag::warn_init_list_variable_narrowing 7146 : diag::ext_init_list_variable_narrowing) 7147 << PostInit->getSourceRange() 7148 << PreNarrowingType.getLocalUnqualifiedType() 7149 << EntityType.getLocalUnqualifiedType(); 7150 break; 7151 } 7152 7153 SmallString<128> StaticCast; 7154 llvm::raw_svector_ostream OS(StaticCast); 7155 OS << "static_cast<"; 7156 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 7157 // It's important to use the typedef's name if there is one so that the 7158 // fixit doesn't break code using types like int64_t. 7159 // 7160 // FIXME: This will break if the typedef requires qualification. But 7161 // getQualifiedNameAsString() includes non-machine-parsable components. 7162 OS << *TT->getDecl(); 7163 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 7164 OS << BT->getName(S.getLangOpts()); 7165 else { 7166 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 7167 // with a broken cast. 7168 return; 7169 } 7170 OS << ">("; 7171 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence) 7172 << PostInit->getSourceRange() 7173 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) 7174 << FixItHint::CreateInsertion( 7175 S.getLocForEndOfToken(PostInit->getLocEnd()), ")"); 7176 } 7177 7178 //===----------------------------------------------------------------------===// 7179 // Initialization helper functions 7180 //===----------------------------------------------------------------------===// 7181 bool 7182 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 7183 ExprResult Init) { 7184 if (Init.isInvalid()) 7185 return false; 7186 7187 Expr *InitE = Init.get(); 7188 assert(InitE && "No initialization expression"); 7189 7190 InitializationKind Kind 7191 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); 7192 InitializationSequence Seq(*this, Entity, Kind, InitE); 7193 return !Seq.Failed(); 7194 } 7195 7196 ExprResult 7197 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 7198 SourceLocation EqualLoc, 7199 ExprResult Init, 7200 bool TopLevelOfInitList, 7201 bool AllowExplicit) { 7202 if (Init.isInvalid()) 7203 return ExprError(); 7204 7205 Expr *InitE = Init.get(); 7206 assert(InitE && "No initialization expression?"); 7207 7208 if (EqualLoc.isInvalid()) 7209 EqualLoc = InitE->getLocStart(); 7210 7211 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 7212 EqualLoc, 7213 AllowExplicit); 7214 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 7215 Init.get(); 7216 7217 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 7218 7219 return Result; 7220 } 7221