Home | History | Annotate | Download | only in IR
      1 //===-- Value.cpp - Implement the Value class -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Value, ValueHandle, and User classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Value.h"
     15 #include "LLVMContextImpl.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/IR/Constant.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/DataLayout.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/GetElementPtrTypeIterator.h"
     23 #include "llvm/IR/InstrTypes.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/LeakDetector.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/IR/Operator.h"
     28 #include "llvm/IR/ValueHandle.h"
     29 #include "llvm/IR/ValueSymbolTable.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include <algorithm>
     34 using namespace llvm;
     35 
     36 //===----------------------------------------------------------------------===//
     37 //                                Value Class
     38 //===----------------------------------------------------------------------===//
     39 
     40 static inline Type *checkType(Type *Ty) {
     41   assert(Ty && "Value defined with a null type: Error!");
     42   return Ty;
     43 }
     44 
     45 Value::Value(Type *ty, unsigned scid)
     46     : VTy(checkType(ty)), UseList(nullptr), Name(nullptr), SubclassID(scid),
     47       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0) {
     48   // FIXME: Why isn't this in the subclass gunk??
     49   // Note, we cannot call isa<CallInst> before the CallInst has been
     50   // constructed.
     51   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
     52     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
     53            "invalid CallInst type!");
     54   else if (SubclassID != BasicBlockVal &&
     55            (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
     56     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
     57            "Cannot create non-first-class values except for constants!");
     58 }
     59 
     60 Value::~Value() {
     61   // Notify all ValueHandles (if present) that this value is going away.
     62   if (HasValueHandle)
     63     ValueHandleBase::ValueIsDeleted(this);
     64 
     65 #ifndef NDEBUG      // Only in -g mode...
     66   // Check to make sure that there are no uses of this value that are still
     67   // around when the value is destroyed.  If there are, then we have a dangling
     68   // reference and something is wrong.  This code is here to print out what is
     69   // still being referenced.  The value in question should be printed as
     70   // a <badref>
     71   //
     72   if (!use_empty()) {
     73     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
     74     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
     75       dbgs() << "Use still stuck around after Def is destroyed:"
     76            << **I << "\n";
     77   }
     78 #endif
     79   assert(use_empty() && "Uses remain when a value is destroyed!");
     80 
     81   // If this value is named, destroy the name.  This should not be in a symtab
     82   // at this point.
     83   if (Name && SubclassID != MDStringVal)
     84     Name->Destroy();
     85 
     86   // There should be no uses of this object anymore, remove it.
     87   LeakDetector::removeGarbageObject(this);
     88 }
     89 
     90 /// hasNUses - Return true if this Value has exactly N users.
     91 ///
     92 bool Value::hasNUses(unsigned N) const {
     93   const_use_iterator UI = use_begin(), E = use_end();
     94 
     95   for (; N; --N, ++UI)
     96     if (UI == E) return false;  // Too few.
     97   return UI == E;
     98 }
     99 
    100 /// hasNUsesOrMore - Return true if this value has N users or more.  This is
    101 /// logically equivalent to getNumUses() >= N.
    102 ///
    103 bool Value::hasNUsesOrMore(unsigned N) const {
    104   const_use_iterator UI = use_begin(), E = use_end();
    105 
    106   for (; N; --N, ++UI)
    107     if (UI == E) return false;  // Too few.
    108 
    109   return true;
    110 }
    111 
    112 /// isUsedInBasicBlock - Return true if this value is used in the specified
    113 /// basic block.
    114 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
    115   // This can be computed either by scanning the instructions in BB, or by
    116   // scanning the use list of this Value. Both lists can be very long, but
    117   // usually one is quite short.
    118   //
    119   // Scan both lists simultaneously until one is exhausted. This limits the
    120   // search to the shorter list.
    121   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
    122   const_user_iterator UI = user_begin(), UE = user_end();
    123   for (; BI != BE && UI != UE; ++BI, ++UI) {
    124     // Scan basic block: Check if this Value is used by the instruction at BI.
    125     if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
    126       return true;
    127     // Scan use list: Check if the use at UI is in BB.
    128     const Instruction *User = dyn_cast<Instruction>(*UI);
    129     if (User && User->getParent() == BB)
    130       return true;
    131   }
    132   return false;
    133 }
    134 
    135 
    136 /// getNumUses - This method computes the number of uses of this Value.  This
    137 /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
    138 /// values.
    139 unsigned Value::getNumUses() const {
    140   return (unsigned)std::distance(use_begin(), use_end());
    141 }
    142 
    143 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
    144   ST = nullptr;
    145   if (Instruction *I = dyn_cast<Instruction>(V)) {
    146     if (BasicBlock *P = I->getParent())
    147       if (Function *PP = P->getParent())
    148         ST = &PP->getValueSymbolTable();
    149   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    150     if (Function *P = BB->getParent())
    151       ST = &P->getValueSymbolTable();
    152   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    153     if (Module *P = GV->getParent())
    154       ST = &P->getValueSymbolTable();
    155   } else if (Argument *A = dyn_cast<Argument>(V)) {
    156     if (Function *P = A->getParent())
    157       ST = &P->getValueSymbolTable();
    158   } else if (isa<MDString>(V))
    159     return true;
    160   else {
    161     assert(isa<Constant>(V) && "Unknown value type!");
    162     return true;  // no name is setable for this.
    163   }
    164   return false;
    165 }
    166 
    167 StringRef Value::getName() const {
    168   // Make sure the empty string is still a C string. For historical reasons,
    169   // some clients want to call .data() on the result and expect it to be null
    170   // terminated.
    171   if (!Name) return StringRef("", 0);
    172   return Name->getKey();
    173 }
    174 
    175 void Value::setName(const Twine &NewName) {
    176   assert(SubclassID != MDStringVal &&
    177          "Cannot set the name of MDString with this method!");
    178 
    179   // Fast path for common IRBuilder case of setName("") when there is no name.
    180   if (NewName.isTriviallyEmpty() && !hasName())
    181     return;
    182 
    183   SmallString<256> NameData;
    184   StringRef NameRef = NewName.toStringRef(NameData);
    185   assert(NameRef.find_first_of(0) == StringRef::npos &&
    186          "Null bytes are not allowed in names");
    187 
    188   // Name isn't changing?
    189   if (getName() == NameRef)
    190     return;
    191 
    192   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
    193 
    194   // Get the symbol table to update for this object.
    195   ValueSymbolTable *ST;
    196   if (getSymTab(this, ST))
    197     return;  // Cannot set a name on this value (e.g. constant).
    198 
    199   if (Function *F = dyn_cast<Function>(this))
    200     getContext().pImpl->IntrinsicIDCache.erase(F);
    201 
    202   if (!ST) { // No symbol table to update?  Just do the change.
    203     if (NameRef.empty()) {
    204       // Free the name for this value.
    205       Name->Destroy();
    206       Name = nullptr;
    207       return;
    208     }
    209 
    210     if (Name)
    211       Name->Destroy();
    212 
    213     // NOTE: Could optimize for the case the name is shrinking to not deallocate
    214     // then reallocated.
    215 
    216     // Create the new name.
    217     Name = ValueName::Create(NameRef);
    218     Name->setValue(this);
    219     return;
    220   }
    221 
    222   // NOTE: Could optimize for the case the name is shrinking to not deallocate
    223   // then reallocated.
    224   if (hasName()) {
    225     // Remove old name.
    226     ST->removeValueName(Name);
    227     Name->Destroy();
    228     Name = nullptr;
    229 
    230     if (NameRef.empty())
    231       return;
    232   }
    233 
    234   // Name is changing to something new.
    235   Name = ST->createValueName(NameRef, this);
    236 }
    237 
    238 
    239 /// takeName - transfer the name from V to this value, setting V's name to
    240 /// empty.  It is an error to call V->takeName(V).
    241 void Value::takeName(Value *V) {
    242   assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
    243 
    244   ValueSymbolTable *ST = nullptr;
    245   // If this value has a name, drop it.
    246   if (hasName()) {
    247     // Get the symtab this is in.
    248     if (getSymTab(this, ST)) {
    249       // We can't set a name on this value, but we need to clear V's name if
    250       // it has one.
    251       if (V->hasName()) V->setName("");
    252       return;  // Cannot set a name on this value (e.g. constant).
    253     }
    254 
    255     // Remove old name.
    256     if (ST)
    257       ST->removeValueName(Name);
    258     Name->Destroy();
    259     Name = nullptr;
    260   }
    261 
    262   // Now we know that this has no name.
    263 
    264   // If V has no name either, we're done.
    265   if (!V->hasName()) return;
    266 
    267   // Get this's symtab if we didn't before.
    268   if (!ST) {
    269     if (getSymTab(this, ST)) {
    270       // Clear V's name.
    271       V->setName("");
    272       return;  // Cannot set a name on this value (e.g. constant).
    273     }
    274   }
    275 
    276   // Get V's ST, this should always succed, because V has a name.
    277   ValueSymbolTable *VST;
    278   bool Failure = getSymTab(V, VST);
    279   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
    280 
    281   // If these values are both in the same symtab, we can do this very fast.
    282   // This works even if both values have no symtab yet.
    283   if (ST == VST) {
    284     // Take the name!
    285     Name = V->Name;
    286     V->Name = nullptr;
    287     Name->setValue(this);
    288     return;
    289   }
    290 
    291   // Otherwise, things are slightly more complex.  Remove V's name from VST and
    292   // then reinsert it into ST.
    293 
    294   if (VST)
    295     VST->removeValueName(V->Name);
    296   Name = V->Name;
    297   V->Name = nullptr;
    298   Name->setValue(this);
    299 
    300   if (ST)
    301     ST->reinsertValue(this);
    302 }
    303 
    304 #ifndef NDEBUG
    305 static bool contains(SmallPtrSet<ConstantExpr *, 4> &Cache, ConstantExpr *Expr,
    306                      Constant *C) {
    307   if (!Cache.insert(Expr))
    308     return false;
    309 
    310   for (auto &O : Expr->operands()) {
    311     if (O == C)
    312       return true;
    313     auto *CE = dyn_cast<ConstantExpr>(O);
    314     if (!CE)
    315       continue;
    316     if (contains(Cache, CE, C))
    317       return true;
    318   }
    319   return false;
    320 }
    321 
    322 static bool contains(Value *Expr, Value *V) {
    323   if (Expr == V)
    324     return true;
    325 
    326   auto *C = dyn_cast<Constant>(V);
    327   if (!C)
    328     return false;
    329 
    330   auto *CE = dyn_cast<ConstantExpr>(Expr);
    331   if (!CE)
    332     return false;
    333 
    334   SmallPtrSet<ConstantExpr *, 4> Cache;
    335   return contains(Cache, CE, C);
    336 }
    337 #endif
    338 
    339 void Value::replaceAllUsesWith(Value *New) {
    340   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
    341   assert(!contains(New, this) &&
    342          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
    343   assert(New->getType() == getType() &&
    344          "replaceAllUses of value with new value of different type!");
    345 
    346   // Notify all ValueHandles (if present) that this value is going away.
    347   if (HasValueHandle)
    348     ValueHandleBase::ValueIsRAUWd(this, New);
    349 
    350   while (!use_empty()) {
    351     Use &U = *UseList;
    352     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    353     // constant because they are uniqued.
    354     if (auto *C = dyn_cast<Constant>(U.getUser())) {
    355       if (!isa<GlobalValue>(C)) {
    356         C->replaceUsesOfWithOnConstant(this, New, &U);
    357         continue;
    358       }
    359     }
    360 
    361     U.set(New);
    362   }
    363 
    364   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    365     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
    366 }
    367 
    368 namespace {
    369 // Various metrics for how much to strip off of pointers.
    370 enum PointerStripKind {
    371   PSK_ZeroIndices,
    372   PSK_ZeroIndicesAndAliases,
    373   PSK_InBoundsConstantIndices,
    374   PSK_InBounds
    375 };
    376 
    377 template <PointerStripKind StripKind>
    378 static Value *stripPointerCastsAndOffsets(Value *V) {
    379   if (!V->getType()->isPointerTy())
    380     return V;
    381 
    382   // Even though we don't look through PHI nodes, we could be called on an
    383   // instruction in an unreachable block, which may be on a cycle.
    384   SmallPtrSet<Value *, 4> Visited;
    385 
    386   Visited.insert(V);
    387   do {
    388     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    389       switch (StripKind) {
    390       case PSK_ZeroIndicesAndAliases:
    391       case PSK_ZeroIndices:
    392         if (!GEP->hasAllZeroIndices())
    393           return V;
    394         break;
    395       case PSK_InBoundsConstantIndices:
    396         if (!GEP->hasAllConstantIndices())
    397           return V;
    398         // fallthrough
    399       case PSK_InBounds:
    400         if (!GEP->isInBounds())
    401           return V;
    402         break;
    403       }
    404       V = GEP->getPointerOperand();
    405     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
    406                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
    407       V = cast<Operator>(V)->getOperand(0);
    408     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    409       if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
    410         return V;
    411       V = GA->getAliasee();
    412     } else {
    413       return V;
    414     }
    415     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    416   } while (Visited.insert(V));
    417 
    418   return V;
    419 }
    420 } // namespace
    421 
    422 Value *Value::stripPointerCasts() {
    423   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
    424 }
    425 
    426 Value *Value::stripPointerCastsNoFollowAliases() {
    427   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
    428 }
    429 
    430 Value *Value::stripInBoundsConstantOffsets() {
    431   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
    432 }
    433 
    434 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
    435                                                         APInt &Offset) {
    436   if (!getType()->isPointerTy())
    437     return this;
    438 
    439   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
    440                                      getType())->getAddressSpace()) &&
    441          "The offset must have exactly as many bits as our pointer.");
    442 
    443   // Even though we don't look through PHI nodes, we could be called on an
    444   // instruction in an unreachable block, which may be on a cycle.
    445   SmallPtrSet<Value *, 4> Visited;
    446   Visited.insert(this);
    447   Value *V = this;
    448   do {
    449     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    450       if (!GEP->isInBounds())
    451         return V;
    452       APInt GEPOffset(Offset);
    453       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
    454         return V;
    455       Offset = GEPOffset;
    456       V = GEP->getPointerOperand();
    457     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    458       V = cast<Operator>(V)->getOperand(0);
    459     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    460       V = GA->getAliasee();
    461     } else {
    462       return V;
    463     }
    464     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    465   } while (Visited.insert(V));
    466 
    467   return V;
    468 }
    469 
    470 Value *Value::stripInBoundsOffsets() {
    471   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
    472 }
    473 
    474 /// isDereferenceablePointer - Test if this value is always a pointer to
    475 /// allocated and suitably aligned memory for a simple load or store.
    476 static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
    477                                      SmallPtrSet<const Value *, 32> &Visited) {
    478   // Note that it is not safe to speculate into a malloc'd region because
    479   // malloc may return null.
    480 
    481   // These are obviously ok.
    482   if (isa<AllocaInst>(V)) return true;
    483 
    484   // It's not always safe to follow a bitcast, for example:
    485   //   bitcast i8* (alloca i8) to i32*
    486   // would result in a 4-byte load from a 1-byte alloca. However,
    487   // if we're casting from a pointer from a type of larger size
    488   // to a type of smaller size (or the same size), and the alignment
    489   // is at least as large as for the resulting pointer type, then
    490   // we can look through the bitcast.
    491   if (DL)
    492     if (const BitCastInst* BC = dyn_cast<BitCastInst>(V)) {
    493       Type *STy = BC->getSrcTy()->getPointerElementType(),
    494            *DTy = BC->getDestTy()->getPointerElementType();
    495       if (STy->isSized() && DTy->isSized() &&
    496           (DL->getTypeStoreSize(STy) >=
    497            DL->getTypeStoreSize(DTy)) &&
    498           (DL->getABITypeAlignment(STy) >=
    499            DL->getABITypeAlignment(DTy)))
    500         return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
    501     }
    502 
    503   // Global variables which can't collapse to null are ok.
    504   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    505     return !GV->hasExternalWeakLinkage();
    506 
    507   // byval arguments are ok.
    508   if (const Argument *A = dyn_cast<Argument>(V))
    509     return A->hasByValAttr();
    510 
    511   // For GEPs, determine if the indexing lands within the allocated object.
    512   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    513     // Conservatively require that the base pointer be fully dereferenceable.
    514     if (!Visited.insert(GEP->getOperand(0)))
    515       return false;
    516     if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
    517       return false;
    518     // Check the indices.
    519     gep_type_iterator GTI = gep_type_begin(GEP);
    520     for (User::const_op_iterator I = GEP->op_begin()+1,
    521          E = GEP->op_end(); I != E; ++I) {
    522       Value *Index = *I;
    523       Type *Ty = *GTI++;
    524       // Struct indices can't be out of bounds.
    525       if (isa<StructType>(Ty))
    526         continue;
    527       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
    528       if (!CI)
    529         return false;
    530       // Zero is always ok.
    531       if (CI->isZero())
    532         continue;
    533       // Check to see that it's within the bounds of an array.
    534       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
    535       if (!ATy)
    536         return false;
    537       if (CI->getValue().getActiveBits() > 64)
    538         return false;
    539       if (CI->getZExtValue() >= ATy->getNumElements())
    540         return false;
    541     }
    542     // Indices check out; this is dereferenceable.
    543     return true;
    544   }
    545 
    546   // If we don't know, assume the worst.
    547   return false;
    548 }
    549 
    550 /// isDereferenceablePointer - Test if this value is always a pointer to
    551 /// allocated and suitably aligned memory for a simple load or store.
    552 bool Value::isDereferenceablePointer(const DataLayout *DL) const {
    553   SmallPtrSet<const Value *, 32> Visited;
    554   return ::isDereferenceablePointer(this, DL, Visited);
    555 }
    556 
    557 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
    558 /// return the value in the PHI node corresponding to PredBB.  If not, return
    559 /// ourself.  This is useful if you want to know the value something has in a
    560 /// predecessor block.
    561 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
    562                                const BasicBlock *PredBB) {
    563   PHINode *PN = dyn_cast<PHINode>(this);
    564   if (PN && PN->getParent() == CurBB)
    565     return PN->getIncomingValueForBlock(PredBB);
    566   return this;
    567 }
    568 
    569 LLVMContext &Value::getContext() const { return VTy->getContext(); }
    570 
    571 //===----------------------------------------------------------------------===//
    572 //                             ValueHandleBase Class
    573 //===----------------------------------------------------------------------===//
    574 
    575 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
    576 /// List is known to point into the existing use list.
    577 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
    578   assert(List && "Handle list is null?");
    579 
    580   // Splice ourselves into the list.
    581   Next = *List;
    582   *List = this;
    583   setPrevPtr(List);
    584   if (Next) {
    585     Next->setPrevPtr(&Next);
    586     assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
    587   }
    588 }
    589 
    590 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
    591   assert(List && "Must insert after existing node");
    592 
    593   Next = List->Next;
    594   setPrevPtr(&List->Next);
    595   List->Next = this;
    596   if (Next)
    597     Next->setPrevPtr(&Next);
    598 }
    599 
    600 /// AddToUseList - Add this ValueHandle to the use list for VP.
    601 void ValueHandleBase::AddToUseList() {
    602   assert(VP.getPointer() && "Null pointer doesn't have a use list!");
    603 
    604   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
    605 
    606   if (VP.getPointer()->HasValueHandle) {
    607     // If this value already has a ValueHandle, then it must be in the
    608     // ValueHandles map already.
    609     ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
    610     assert(Entry && "Value doesn't have any handles?");
    611     AddToExistingUseList(&Entry);
    612     return;
    613   }
    614 
    615   // Ok, it doesn't have any handles yet, so we must insert it into the
    616   // DenseMap.  However, doing this insertion could cause the DenseMap to
    617   // reallocate itself, which would invalidate all of the PrevP pointers that
    618   // point into the old table.  Handle this by checking for reallocation and
    619   // updating the stale pointers only if needed.
    620   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    621   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
    622 
    623   ValueHandleBase *&Entry = Handles[VP.getPointer()];
    624   assert(!Entry && "Value really did already have handles?");
    625   AddToExistingUseList(&Entry);
    626   VP.getPointer()->HasValueHandle = true;
    627 
    628   // If reallocation didn't happen or if this was the first insertion, don't
    629   // walk the table.
    630   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
    631       Handles.size() == 1) {
    632     return;
    633   }
    634 
    635   // Okay, reallocation did happen.  Fix the Prev Pointers.
    636   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
    637        E = Handles.end(); I != E; ++I) {
    638     assert(I->second && I->first == I->second->VP.getPointer() &&
    639            "List invariant broken!");
    640     I->second->setPrevPtr(&I->second);
    641   }
    642 }
    643 
    644 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
    645 void ValueHandleBase::RemoveFromUseList() {
    646   assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
    647          "Pointer doesn't have a use list!");
    648 
    649   // Unlink this from its use list.
    650   ValueHandleBase **PrevPtr = getPrevPtr();
    651   assert(*PrevPtr == this && "List invariant broken");
    652 
    653   *PrevPtr = Next;
    654   if (Next) {
    655     assert(Next->getPrevPtr() == &Next && "List invariant broken");
    656     Next->setPrevPtr(PrevPtr);
    657     return;
    658   }
    659 
    660   // If the Next pointer was null, then it is possible that this was the last
    661   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
    662   // map.
    663   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
    664   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    665   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    666     Handles.erase(VP.getPointer());
    667     VP.getPointer()->HasValueHandle = false;
    668   }
    669 }
    670 
    671 
    672 void ValueHandleBase::ValueIsDeleted(Value *V) {
    673   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
    674 
    675   // Get the linked list base, which is guaranteed to exist since the
    676   // HasValueHandle flag is set.
    677   LLVMContextImpl *pImpl = V->getContext().pImpl;
    678   ValueHandleBase *Entry = pImpl->ValueHandles[V];
    679   assert(Entry && "Value bit set but no entries exist");
    680 
    681   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
    682   // and remove themselves from the list without breaking our iteration.  This
    683   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
    684   // Note that we deliberately do not the support the case when dropping a value
    685   // handle results in a new value handle being permanently added to the list
    686   // (as might occur in theory for CallbackVH's): the new value handle will not
    687   // be processed and the checking code will mete out righteous punishment if
    688   // the handle is still present once we have finished processing all the other
    689   // value handles (it is fine to momentarily add then remove a value handle).
    690   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    691     Iterator.RemoveFromUseList();
    692     Iterator.AddToExistingUseListAfter(Entry);
    693     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    694 
    695     switch (Entry->getKind()) {
    696     case Assert:
    697       break;
    698     case Tracking:
    699       // Mark that this value has been deleted by setting it to an invalid Value
    700       // pointer.
    701       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
    702       break;
    703     case Weak:
    704       // Weak just goes to null, which will unlink it from the list.
    705       Entry->operator=(nullptr);
    706       break;
    707     case Callback:
    708       // Forward to the subclass's implementation.
    709       static_cast<CallbackVH*>(Entry)->deleted();
    710       break;
    711     }
    712   }
    713 
    714   // All callbacks, weak references, and assertingVHs should be dropped by now.
    715   if (V->HasValueHandle) {
    716 #ifndef NDEBUG      // Only in +Asserts mode...
    717     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
    718            << "\n";
    719     if (pImpl->ValueHandles[V]->getKind() == Assert)
    720       llvm_unreachable("An asserting value handle still pointed to this"
    721                        " value!");
    722 
    723 #endif
    724     llvm_unreachable("All references to V were not removed?");
    725   }
    726 }
    727 
    728 
    729 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
    730   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
    731   assert(Old != New && "Changing value into itself!");
    732 
    733   // Get the linked list base, which is guaranteed to exist since the
    734   // HasValueHandle flag is set.
    735   LLVMContextImpl *pImpl = Old->getContext().pImpl;
    736   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
    737 
    738   assert(Entry && "Value bit set but no entries exist");
    739 
    740   // We use a local ValueHandleBase as an iterator so that
    741   // ValueHandles can add and remove themselves from the list without
    742   // breaking our iteration.  This is not really an AssertingVH; we
    743   // just have to give ValueHandleBase some kind.
    744   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    745     Iterator.RemoveFromUseList();
    746     Iterator.AddToExistingUseListAfter(Entry);
    747     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    748 
    749     switch (Entry->getKind()) {
    750     case Assert:
    751       // Asserting handle does not follow RAUW implicitly.
    752       break;
    753     case Tracking:
    754       // Tracking goes to new value like a WeakVH. Note that this may make it
    755       // something incompatible with its templated type. We don't want to have a
    756       // virtual (or inline) interface to handle this though, so instead we make
    757       // the TrackingVH accessors guarantee that a client never sees this value.
    758 
    759       // FALLTHROUGH
    760     case Weak:
    761       // Weak goes to the new value, which will unlink it from Old's list.
    762       Entry->operator=(New);
    763       break;
    764     case Callback:
    765       // Forward to the subclass's implementation.
    766       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
    767       break;
    768     }
    769   }
    770 
    771 #ifndef NDEBUG
    772   // If any new tracking or weak value handles were added while processing the
    773   // list, then complain about it now.
    774   if (Old->HasValueHandle)
    775     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
    776       switch (Entry->getKind()) {
    777       case Tracking:
    778       case Weak:
    779         dbgs() << "After RAUW from " << *Old->getType() << " %"
    780                << Old->getName() << " to " << *New->getType() << " %"
    781                << New->getName() << "\n";
    782         llvm_unreachable("A tracking or weak value handle still pointed to the"
    783                          " old value!\n");
    784       default:
    785         break;
    786       }
    787 #endif
    788 }
    789 
    790 // Pin the vtable to this file.
    791 void CallbackVH::anchor() {}
    792