1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/ADT/DepthFirstIterator.h" 42 #include "llvm/ADT/SetOperations.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/DependenceAnalysis.h" 48 #include "llvm/Analysis/InstructionSimplify.h" 49 #include "llvm/Analysis/LoopInfo.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 using namespace llvm; 65 66 #define DEBUG_TYPE "loop-simplify" 67 68 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 69 STATISTIC(NumNested , "Number of nested loops split out"); 70 71 // If the block isn't already, move the new block to right after some 'outside 72 // block' block. This prevents the preheader from being placed inside the loop 73 // body, e.g. when the loop hasn't been rotated. 74 static void placeSplitBlockCarefully(BasicBlock *NewBB, 75 SmallVectorImpl<BasicBlock *> &SplitPreds, 76 Loop *L) { 77 // Check to see if NewBB is already well placed. 78 Function::iterator BBI = NewBB; --BBI; 79 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 80 if (&*BBI == SplitPreds[i]) 81 return; 82 } 83 84 // If it isn't already after an outside block, move it after one. This is 85 // always good as it makes the uncond branch from the outside block into a 86 // fall-through. 87 88 // Figure out *which* outside block to put this after. Prefer an outside 89 // block that neighbors a BB actually in the loop. 90 BasicBlock *FoundBB = nullptr; 91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 92 Function::iterator BBI = SplitPreds[i]; 93 if (++BBI != NewBB->getParent()->end() && 94 L->contains(BBI)) { 95 FoundBB = SplitPreds[i]; 96 break; 97 } 98 } 99 100 // If our heuristic for a *good* bb to place this after doesn't find 101 // anything, just pick something. It's likely better than leaving it within 102 // the loop. 103 if (!FoundBB) 104 FoundBB = SplitPreds[0]; 105 NewBB->moveAfter(FoundBB); 106 } 107 108 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 109 /// preheader, this method is called to insert one. This method has two phases: 110 /// preheader insertion and analysis updating. 111 /// 112 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) { 113 BasicBlock *Header = L->getHeader(); 114 115 // Compute the set of predecessors of the loop that are not in the loop. 116 SmallVector<BasicBlock*, 8> OutsideBlocks; 117 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 118 PI != PE; ++PI) { 119 BasicBlock *P = *PI; 120 if (!L->contains(P)) { // Coming in from outside the loop? 121 // If the loop is branched to from an indirect branch, we won't 122 // be able to fully transform the loop, because it prohibits 123 // edge splitting. 124 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 125 126 // Keep track of it. 127 OutsideBlocks.push_back(P); 128 } 129 } 130 131 // Split out the loop pre-header. 132 BasicBlock *PreheaderBB; 133 if (!Header->isLandingPad()) { 134 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", 135 PP); 136 } else { 137 SmallVector<BasicBlock*, 2> NewBBs; 138 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", 139 ".split-lp", PP, NewBBs); 140 PreheaderBB = NewBBs[0]; 141 } 142 143 PreheaderBB->getTerminator()->setDebugLoc( 144 Header->getFirstNonPHI()->getDebugLoc()); 145 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 146 << PreheaderBB->getName() << "\n"); 147 148 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 149 // code layout too horribly. 150 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 151 152 return PreheaderBB; 153 } 154 155 /// \brief Ensure that the loop preheader dominates all exit blocks. 156 /// 157 /// This method is used to split exit blocks that have predecessors outside of 158 /// the loop. 159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) { 160 SmallVector<BasicBlock*, 8> LoopBlocks; 161 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 162 BasicBlock *P = *I; 163 if (L->contains(P)) { 164 // Don't do this if the loop is exited via an indirect branch. 165 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; 166 167 LoopBlocks.push_back(P); 168 } 169 } 170 171 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 172 BasicBlock *NewExitBB = nullptr; 173 174 if (Exit->isLandingPad()) { 175 SmallVector<BasicBlock*, 2> NewBBs; 176 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], 177 LoopBlocks.size()), 178 ".loopexit", ".nonloopexit", 179 PP, NewBBs); 180 NewExitBB = NewBBs[0]; 181 } else { 182 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP); 183 } 184 185 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 186 << NewExitBB->getName() << "\n"); 187 return NewExitBB; 188 } 189 190 /// Add the specified block, and all of its predecessors, to the specified set, 191 /// if it's not already in there. Stop predecessor traversal when we reach 192 /// StopBlock. 193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 194 std::set<BasicBlock*> &Blocks) { 195 SmallVector<BasicBlock *, 8> Worklist; 196 Worklist.push_back(InputBB); 197 do { 198 BasicBlock *BB = Worklist.pop_back_val(); 199 if (Blocks.insert(BB).second && BB != StopBlock) 200 // If BB is not already processed and it is not a stop block then 201 // insert its predecessor in the work list 202 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 203 BasicBlock *WBB = *I; 204 Worklist.push_back(WBB); 205 } 206 } while (!Worklist.empty()); 207 } 208 209 /// \brief The first part of loop-nestification is to find a PHI node that tells 210 /// us how to partition the loops. 211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA, 212 DominatorTree *DT) { 213 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 214 PHINode *PN = cast<PHINode>(I); 215 ++I; 216 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) { 217 // This is a degenerate PHI already, don't modify it! 218 PN->replaceAllUsesWith(V); 219 if (AA) AA->deleteValue(PN); 220 PN->eraseFromParent(); 221 continue; 222 } 223 224 // Scan this PHI node looking for a use of the PHI node by itself. 225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 226 if (PN->getIncomingValue(i) == PN && 227 L->contains(PN->getIncomingBlock(i))) 228 // We found something tasty to remove. 229 return PN; 230 } 231 return nullptr; 232 } 233 234 /// \brief If this loop has multiple backedges, try to pull one of them out into 235 /// a nested loop. 236 /// 237 /// This is important for code that looks like 238 /// this: 239 /// 240 /// Loop: 241 /// ... 242 /// br cond, Loop, Next 243 /// ... 244 /// br cond2, Loop, Out 245 /// 246 /// To identify this common case, we look at the PHI nodes in the header of the 247 /// loop. PHI nodes with unchanging values on one backedge correspond to values 248 /// that change in the "outer" loop, but not in the "inner" loop. 249 /// 250 /// If we are able to separate out a loop, return the new outer loop that was 251 /// created. 252 /// 253 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 254 AliasAnalysis *AA, DominatorTree *DT, 255 LoopInfo *LI, ScalarEvolution *SE, Pass *PP) { 256 // Don't try to separate loops without a preheader. 257 if (!Preheader) 258 return nullptr; 259 260 // The header is not a landing pad; preheader insertion should ensure this. 261 assert(!L->getHeader()->isLandingPad() && 262 "Can't insert backedge to landing pad"); 263 264 PHINode *PN = findPHIToPartitionLoops(L, AA, DT); 265 if (!PN) return nullptr; // No known way to partition. 266 267 // Pull out all predecessors that have varying values in the loop. This 268 // handles the case when a PHI node has multiple instances of itself as 269 // arguments. 270 SmallVector<BasicBlock*, 8> OuterLoopPreds; 271 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 272 if (PN->getIncomingValue(i) != PN || 273 !L->contains(PN->getIncomingBlock(i))) { 274 // We can't split indirectbr edges. 275 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 276 return nullptr; 277 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 278 } 279 } 280 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 281 282 // If ScalarEvolution is around and knows anything about values in 283 // this loop, tell it to forget them, because we're about to 284 // substantially change it. 285 if (SE) 286 SE->forgetLoop(L); 287 288 BasicBlock *Header = L->getHeader(); 289 BasicBlock *NewBB = 290 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP); 291 292 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 293 // code layout too horribly. 294 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 295 296 // Create the new outer loop. 297 Loop *NewOuter = new Loop(); 298 299 // Change the parent loop to use the outer loop as its child now. 300 if (Loop *Parent = L->getParentLoop()) 301 Parent->replaceChildLoopWith(L, NewOuter); 302 else 303 LI->changeTopLevelLoop(L, NewOuter); 304 305 // L is now a subloop of our outer loop. 306 NewOuter->addChildLoop(L); 307 308 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 309 I != E; ++I) 310 NewOuter->addBlockEntry(*I); 311 312 // Now reset the header in L, which had been moved by 313 // SplitBlockPredecessors for the outer loop. 314 L->moveToHeader(Header); 315 316 // Determine which blocks should stay in L and which should be moved out to 317 // the Outer loop now. 318 std::set<BasicBlock*> BlocksInL; 319 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 320 BasicBlock *P = *PI; 321 if (DT->dominates(Header, P)) 322 addBlockAndPredsToSet(P, Header, BlocksInL); 323 } 324 325 // Scan all of the loop children of L, moving them to OuterLoop if they are 326 // not part of the inner loop. 327 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 328 for (size_t I = 0; I != SubLoops.size(); ) 329 if (BlocksInL.count(SubLoops[I]->getHeader())) 330 ++I; // Loop remains in L 331 else 332 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 333 334 // Now that we know which blocks are in L and which need to be moved to 335 // OuterLoop, move any blocks that need it. 336 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 337 BasicBlock *BB = L->getBlocks()[i]; 338 if (!BlocksInL.count(BB)) { 339 // Move this block to the parent, updating the exit blocks sets 340 L->removeBlockFromLoop(BB); 341 if ((*LI)[BB] == L) 342 LI->changeLoopFor(BB, NewOuter); 343 --i; 344 } 345 } 346 347 return NewOuter; 348 } 349 350 /// \brief This method is called when the specified loop has more than one 351 /// backedge in it. 352 /// 353 /// If this occurs, revector all of these backedges to target a new basic block 354 /// and have that block branch to the loop header. This ensures that loops 355 /// have exactly one backedge. 356 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 357 AliasAnalysis *AA, 358 DominatorTree *DT, LoopInfo *LI) { 359 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 360 361 // Get information about the loop 362 BasicBlock *Header = L->getHeader(); 363 Function *F = Header->getParent(); 364 365 // Unique backedge insertion currently depends on having a preheader. 366 if (!Preheader) 367 return nullptr; 368 369 // The header is not a landing pad; preheader insertion should ensure this. 370 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); 371 372 // Figure out which basic blocks contain back-edges to the loop header. 373 std::vector<BasicBlock*> BackedgeBlocks; 374 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 375 BasicBlock *P = *I; 376 377 // Indirectbr edges cannot be split, so we must fail if we find one. 378 if (isa<IndirectBrInst>(P->getTerminator())) 379 return nullptr; 380 381 if (P != Preheader) BackedgeBlocks.push_back(P); 382 } 383 384 // Create and insert the new backedge block... 385 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 386 Header->getName()+".backedge", F); 387 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 388 389 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 390 << BEBlock->getName() << "\n"); 391 392 // Move the new backedge block to right after the last backedge block. 393 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 394 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 395 396 // Now that the block has been inserted into the function, create PHI nodes in 397 // the backedge block which correspond to any PHI nodes in the header block. 398 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 399 PHINode *PN = cast<PHINode>(I); 400 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 401 PN->getName()+".be", BETerminator); 402 if (AA) AA->copyValue(PN, NewPN); 403 404 // Loop over the PHI node, moving all entries except the one for the 405 // preheader over to the new PHI node. 406 unsigned PreheaderIdx = ~0U; 407 bool HasUniqueIncomingValue = true; 408 Value *UniqueValue = nullptr; 409 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 410 BasicBlock *IBB = PN->getIncomingBlock(i); 411 Value *IV = PN->getIncomingValue(i); 412 if (IBB == Preheader) { 413 PreheaderIdx = i; 414 } else { 415 NewPN->addIncoming(IV, IBB); 416 if (HasUniqueIncomingValue) { 417 if (!UniqueValue) 418 UniqueValue = IV; 419 else if (UniqueValue != IV) 420 HasUniqueIncomingValue = false; 421 } 422 } 423 } 424 425 // Delete all of the incoming values from the old PN except the preheader's 426 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 427 if (PreheaderIdx != 0) { 428 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 429 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 430 } 431 // Nuke all entries except the zero'th. 432 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 433 PN->removeIncomingValue(e-i, false); 434 435 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 436 PN->addIncoming(NewPN, BEBlock); 437 438 // As an optimization, if all incoming values in the new PhiNode (which is a 439 // subset of the incoming values of the old PHI node) have the same value, 440 // eliminate the PHI Node. 441 if (HasUniqueIncomingValue) { 442 NewPN->replaceAllUsesWith(UniqueValue); 443 if (AA) AA->deleteValue(NewPN); 444 BEBlock->getInstList().erase(NewPN); 445 } 446 } 447 448 // Now that all of the PHI nodes have been inserted and adjusted, modify the 449 // backedge blocks to just to the BEBlock instead of the header. 450 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 451 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 452 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 453 if (TI->getSuccessor(Op) == Header) 454 TI->setSuccessor(Op, BEBlock); 455 } 456 457 //===--- Update all analyses which we must preserve now -----------------===// 458 459 // Update Loop Information - we know that this block is now in the current 460 // loop and all parent loops. 461 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 462 463 // Update dominator information 464 DT->splitBlock(BEBlock); 465 466 return BEBlock; 467 } 468 469 /// \brief Simplify one loop and queue further loops for simplification. 470 /// 471 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw 472 /// Pass pointer. The Pass pointer is used by numerous utilities to update 473 /// specific analyses. Rather than a pass it would be much cleaner and more 474 /// explicit if they accepted the analysis directly and then updated it. 475 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 476 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 477 ScalarEvolution *SE, Pass *PP, 478 const DataLayout *DL) { 479 bool Changed = false; 480 ReprocessLoop: 481 482 // Check to see that no blocks (other than the header) in this loop have 483 // predecessors that are not in the loop. This is not valid for natural 484 // loops, but can occur if the blocks are unreachable. Since they are 485 // unreachable we can just shamelessly delete those CFG edges! 486 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 487 BB != E; ++BB) { 488 if (*BB == L->getHeader()) continue; 489 490 SmallPtrSet<BasicBlock*, 4> BadPreds; 491 for (pred_iterator PI = pred_begin(*BB), 492 PE = pred_end(*BB); PI != PE; ++PI) { 493 BasicBlock *P = *PI; 494 if (!L->contains(P)) 495 BadPreds.insert(P); 496 } 497 498 // Delete each unique out-of-loop (and thus dead) predecessor. 499 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), 500 E = BadPreds.end(); I != E; ++I) { 501 502 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 503 << (*I)->getName() << "\n"); 504 505 // Inform each successor of each dead pred. 506 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 507 (*SI)->removePredecessor(*I); 508 // Zap the dead pred's terminator and replace it with unreachable. 509 TerminatorInst *TI = (*I)->getTerminator(); 510 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 511 (*I)->getTerminator()->eraseFromParent(); 512 new UnreachableInst((*I)->getContext(), *I); 513 Changed = true; 514 } 515 } 516 517 // If there are exiting blocks with branches on undef, resolve the undef in 518 // the direction which will exit the loop. This will help simplify loop 519 // trip count computations. 520 SmallVector<BasicBlock*, 8> ExitingBlocks; 521 L->getExitingBlocks(ExitingBlocks); 522 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 523 E = ExitingBlocks.end(); I != E; ++I) 524 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 525 if (BI->isConditional()) { 526 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 527 528 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 529 << (*I)->getName() << "\n"); 530 531 BI->setCondition(ConstantInt::get(Cond->getType(), 532 !L->contains(BI->getSuccessor(0)))); 533 534 // This may make the loop analyzable, force SCEV recomputation. 535 if (SE) 536 SE->forgetLoop(L); 537 538 Changed = true; 539 } 540 } 541 542 // Does the loop already have a preheader? If so, don't insert one. 543 BasicBlock *Preheader = L->getLoopPreheader(); 544 if (!Preheader) { 545 Preheader = InsertPreheaderForLoop(L, PP); 546 if (Preheader) { 547 ++NumInserted; 548 Changed = true; 549 } 550 } 551 552 // Next, check to make sure that all exit nodes of the loop only have 553 // predecessors that are inside of the loop. This check guarantees that the 554 // loop preheader/header will dominate the exit blocks. If the exit block has 555 // predecessors from outside of the loop, split the edge now. 556 SmallVector<BasicBlock*, 8> ExitBlocks; 557 L->getExitBlocks(ExitBlocks); 558 559 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 560 ExitBlocks.end()); 561 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 562 E = ExitBlockSet.end(); I != E; ++I) { 563 BasicBlock *ExitBlock = *I; 564 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 565 PI != PE; ++PI) 566 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 567 // allowed. 568 if (!L->contains(*PI)) { 569 if (rewriteLoopExitBlock(L, ExitBlock, PP)) { 570 ++NumInserted; 571 Changed = true; 572 } 573 break; 574 } 575 } 576 577 // If the header has more than two predecessors at this point (from the 578 // preheader and from multiple backedges), we must adjust the loop. 579 BasicBlock *LoopLatch = L->getLoopLatch(); 580 if (!LoopLatch) { 581 // If this is really a nested loop, rip it out into a child loop. Don't do 582 // this for loops with a giant number of backedges, just factor them into a 583 // common backedge instead. 584 if (L->getNumBackEdges() < 8) { 585 if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) { 586 ++NumNested; 587 // Enqueue the outer loop as it should be processed next in our 588 // depth-first nest walk. 589 Worklist.push_back(OuterL); 590 591 // This is a big restructuring change, reprocess the whole loop. 592 Changed = true; 593 // GCC doesn't tail recursion eliminate this. 594 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 595 goto ReprocessLoop; 596 } 597 } 598 599 // If we either couldn't, or didn't want to, identify nesting of the loops, 600 // insert a new block that all backedges target, then make it jump to the 601 // loop header. 602 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI); 603 if (LoopLatch) { 604 ++NumInserted; 605 Changed = true; 606 } 607 } 608 609 // Scan over the PHI nodes in the loop header. Since they now have only two 610 // incoming values (the loop is canonicalized), we may have simplified the PHI 611 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 612 PHINode *PN; 613 for (BasicBlock::iterator I = L->getHeader()->begin(); 614 (PN = dyn_cast<PHINode>(I++)); ) 615 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) { 616 if (AA) AA->deleteValue(PN); 617 if (SE) SE->forgetValue(PN); 618 PN->replaceAllUsesWith(V); 619 PN->eraseFromParent(); 620 } 621 622 // If this loop has multiple exits and the exits all go to the same 623 // block, attempt to merge the exits. This helps several passes, such 624 // as LoopRotation, which do not support loops with multiple exits. 625 // SimplifyCFG also does this (and this code uses the same utility 626 // function), however this code is loop-aware, where SimplifyCFG is 627 // not. That gives it the advantage of being able to hoist 628 // loop-invariant instructions out of the way to open up more 629 // opportunities, and the disadvantage of having the responsibility 630 // to preserve dominator information. 631 bool UniqueExit = true; 632 if (!ExitBlocks.empty()) 633 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 634 if (ExitBlocks[i] != ExitBlocks[0]) { 635 UniqueExit = false; 636 break; 637 } 638 if (UniqueExit) { 639 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 640 BasicBlock *ExitingBlock = ExitingBlocks[i]; 641 if (!ExitingBlock->getSinglePredecessor()) continue; 642 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 643 if (!BI || !BI->isConditional()) continue; 644 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 645 if (!CI || CI->getParent() != ExitingBlock) continue; 646 647 // Attempt to hoist out all instructions except for the 648 // comparison and the branch. 649 bool AllInvariant = true; 650 bool AnyInvariant = false; 651 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 652 Instruction *Inst = I++; 653 // Skip debug info intrinsics. 654 if (isa<DbgInfoIntrinsic>(Inst)) 655 continue; 656 if (Inst == CI) 657 continue; 658 if (!L->makeLoopInvariant(Inst, AnyInvariant, 659 Preheader ? Preheader->getTerminator() 660 : nullptr)) { 661 AllInvariant = false; 662 break; 663 } 664 } 665 if (AnyInvariant) { 666 Changed = true; 667 // The loop disposition of all SCEV expressions that depend on any 668 // hoisted values have also changed. 669 if (SE) 670 SE->forgetLoopDispositions(L); 671 } 672 if (!AllInvariant) continue; 673 674 // The block has now been cleared of all instructions except for 675 // a comparison and a conditional branch. SimplifyCFG may be able 676 // to fold it now. 677 if (!FoldBranchToCommonDest(BI, DL)) continue; 678 679 // Success. The block is now dead, so remove it from the loop, 680 // update the dominator tree and delete it. 681 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 682 << ExitingBlock->getName() << "\n"); 683 684 // Notify ScalarEvolution before deleting this block. Currently assume the 685 // parent loop doesn't change (spliting edges doesn't count). If blocks, 686 // CFG edges, or other values in the parent loop change, then we need call 687 // to forgetLoop() for the parent instead. 688 if (SE) 689 SE->forgetLoop(L); 690 691 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 692 Changed = true; 693 LI->removeBlock(ExitingBlock); 694 695 DomTreeNode *Node = DT->getNode(ExitingBlock); 696 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 697 Node->getChildren(); 698 while (!Children.empty()) { 699 DomTreeNode *Child = Children.front(); 700 DT->changeImmediateDominator(Child, Node->getIDom()); 701 } 702 DT->eraseNode(ExitingBlock); 703 704 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 705 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 706 ExitingBlock->eraseFromParent(); 707 } 708 } 709 710 return Changed; 711 } 712 713 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP, 714 AliasAnalysis *AA, ScalarEvolution *SE, 715 const DataLayout *DL) { 716 bool Changed = false; 717 718 // Worklist maintains our depth-first queue of loops in this nest to process. 719 SmallVector<Loop *, 4> Worklist; 720 Worklist.push_back(L); 721 722 // Walk the worklist from front to back, pushing newly found sub loops onto 723 // the back. This will let us process loops from back to front in depth-first 724 // order. We can use this simple process because loops form a tree. 725 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 726 Loop *L2 = Worklist[Idx]; 727 for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I) 728 Worklist.push_back(*I); 729 } 730 731 while (!Worklist.empty()) 732 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, 733 SE, PP, DL); 734 735 return Changed; 736 } 737 738 namespace { 739 struct LoopSimplify : public FunctionPass { 740 static char ID; // Pass identification, replacement for typeid 741 LoopSimplify() : FunctionPass(ID) { 742 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 743 } 744 745 // AA - If we have an alias analysis object to update, this is it, otherwise 746 // this is null. 747 AliasAnalysis *AA; 748 DominatorTree *DT; 749 LoopInfo *LI; 750 ScalarEvolution *SE; 751 const DataLayout *DL; 752 753 bool runOnFunction(Function &F) override; 754 755 void getAnalysisUsage(AnalysisUsage &AU) const override { 756 // We need loop information to identify the loops... 757 AU.addRequired<DominatorTreeWrapperPass>(); 758 AU.addPreserved<DominatorTreeWrapperPass>(); 759 760 AU.addRequired<LoopInfo>(); 761 AU.addPreserved<LoopInfo>(); 762 763 AU.addPreserved<AliasAnalysis>(); 764 AU.addPreserved<ScalarEvolution>(); 765 AU.addPreserved<DependenceAnalysis>(); 766 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 767 } 768 769 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 770 void verifyAnalysis() const override; 771 }; 772 } 773 774 char LoopSimplify::ID = 0; 775 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 776 "Canonicalize natural loops", true, false) 777 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 778 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 779 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 780 "Canonicalize natural loops", true, false) 781 782 // Publicly exposed interface to pass... 783 char &llvm::LoopSimplifyID = LoopSimplify::ID; 784 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 785 786 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 787 /// it in any convenient order) inserting preheaders... 788 /// 789 bool LoopSimplify::runOnFunction(Function &F) { 790 bool Changed = false; 791 AA = getAnalysisIfAvailable<AliasAnalysis>(); 792 LI = &getAnalysis<LoopInfo>(); 793 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 794 SE = getAnalysisIfAvailable<ScalarEvolution>(); 795 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 796 DL = DLP ? &DLP->getDataLayout() : nullptr; 797 798 // Simplify each loop nest in the function. 799 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 800 Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL); 801 802 return Changed; 803 } 804 805 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 806 // below. 807 #if 0 808 static void verifyLoop(Loop *L) { 809 // Verify subloops. 810 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 811 verifyLoop(*I); 812 813 // It used to be possible to just assert L->isLoopSimplifyForm(), however 814 // with the introduction of indirectbr, there are now cases where it's 815 // not possible to transform a loop as necessary. We can at least check 816 // that there is an indirectbr near any time there's trouble. 817 818 // Indirectbr can interfere with preheader and unique backedge insertion. 819 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 820 bool HasIndBrPred = false; 821 for (pred_iterator PI = pred_begin(L->getHeader()), 822 PE = pred_end(L->getHeader()); PI != PE; ++PI) 823 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 824 HasIndBrPred = true; 825 break; 826 } 827 assert(HasIndBrPred && 828 "LoopSimplify has no excuse for missing loop header info!"); 829 (void)HasIndBrPred; 830 } 831 832 // Indirectbr can interfere with exit block canonicalization. 833 if (!L->hasDedicatedExits()) { 834 bool HasIndBrExiting = false; 835 SmallVector<BasicBlock*, 8> ExitingBlocks; 836 L->getExitingBlocks(ExitingBlocks); 837 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 838 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 839 HasIndBrExiting = true; 840 break; 841 } 842 } 843 844 assert(HasIndBrExiting && 845 "LoopSimplify has no excuse for missing exit block info!"); 846 (void)HasIndBrExiting; 847 } 848 } 849 #endif 850 851 void LoopSimplify::verifyAnalysis() const { 852 // FIXME: This routine is being called mid-way through the loop pass manager 853 // as loop passes destroy this analysis. That's actually fine, but we have no 854 // way of expressing that here. Once all of the passes that destroy this are 855 // hoisted out of the loop pass manager we can add back verification here. 856 #if 0 857 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 858 verifyLoop(*I); 859 #endif 860 } 861