Home | History | Annotate | Download | only in CodeGen
      1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
     11 // The class in this file generates structures that follow the Microsoft
     12 // Visual C++ ABI, which is actually not very well documented at all outside
     13 // of Microsoft.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CGCXXABI.h"
     18 #include "CGVTables.h"
     19 #include "CodeGenModule.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/VTableBuilder.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/ADT/StringSet.h"
     25 #include "llvm/IR/CallSite.h"
     26 
     27 using namespace clang;
     28 using namespace CodeGen;
     29 
     30 namespace {
     31 
     32 /// Holds all the vbtable globals for a given class.
     33 struct VBTableGlobals {
     34   const VPtrInfoVector *VBTables;
     35   SmallVector<llvm::GlobalVariable *, 2> Globals;
     36 };
     37 
     38 class MicrosoftCXXABI : public CGCXXABI {
     39 public:
     40   MicrosoftCXXABI(CodeGenModule &CGM)
     41       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
     42         ClassHierarchyDescriptorType(nullptr),
     43         CompleteObjectLocatorType(nullptr) {}
     44 
     45   bool HasThisReturn(GlobalDecl GD) const override;
     46 
     47   bool classifyReturnType(CGFunctionInfo &FI) const override;
     48 
     49   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
     50 
     51   bool isSRetParameterAfterThis() const override { return true; }
     52 
     53   StringRef GetPureVirtualCallName() override { return "_purecall"; }
     54   // No known support for deleted functions in MSVC yet, so this choice is
     55   // arbitrary.
     56   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
     57 
     58   bool isInlineInitializedStaticDataMemberLinkOnce() override { return true; }
     59 
     60   llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF,
     61                                       llvm::Value *ptr,
     62                                       QualType type) override;
     63 
     64   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
     65                                                    const VPtrInfo *Info);
     66 
     67   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
     68 
     69   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
     70   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
     71   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
     72                           llvm::Value *ThisPtr,
     73                           llvm::Type *StdTypeInfoPtrTy) override;
     74 
     75   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
     76                                           QualType SrcRecordTy) override;
     77 
     78   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
     79                                    QualType SrcRecordTy, QualType DestTy,
     80                                    QualType DestRecordTy,
     81                                    llvm::BasicBlock *CastEnd) override;
     82 
     83   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
     84                                      QualType SrcRecordTy,
     85                                      QualType DestTy) override;
     86 
     87   bool EmitBadCastCall(CodeGenFunction &CGF) override;
     88 
     89   llvm::Value *
     90   GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
     91                             const CXXRecordDecl *ClassDecl,
     92                             const CXXRecordDecl *BaseClassDecl) override;
     93 
     94   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
     95                                  CXXCtorType Type, CanQualType &ResTy,
     96                                  SmallVectorImpl<CanQualType> &ArgTys) override;
     97 
     98   llvm::BasicBlock *
     99   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
    100                                 const CXXRecordDecl *RD) override;
    101 
    102   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
    103                                               const CXXRecordDecl *RD) override;
    104 
    105   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
    106 
    107   // Background on MSVC destructors
    108   // ==============================
    109   //
    110   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
    111   // roughly correspond in the following way:
    112   //   Itanium       Microsoft
    113   //   Base       -> no name, just ~Class
    114   //   Complete   -> vbase destructor
    115   //   Deleting   -> scalar deleting destructor
    116   //                 vector deleting destructor
    117   //
    118   // The base and complete destructors are the same as in Itanium, although the
    119   // complete destructor does not accept a VTT parameter when there are virtual
    120   // bases.  A separate mechanism involving vtordisps is used to ensure that
    121   // virtual methods of destroyed subobjects are not called.
    122   //
    123   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
    124   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
    125   // pointer points to an array.  The scalar deleting destructor assumes that
    126   // bit 2 is zero, and therefore does not contain a loop.
    127   //
    128   // For virtual destructors, only one entry is reserved in the vftable, and it
    129   // always points to the vector deleting destructor.  The vector deleting
    130   // destructor is the most general, so it can be used to destroy objects in
    131   // place, delete single heap objects, or delete arrays.
    132   //
    133   // A TU defining a non-inline destructor is only guaranteed to emit a base
    134   // destructor, and all of the other variants are emitted on an as-needed basis
    135   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
    136   // lacks a definition for the destructor, non-base destructors must always
    137   // delegate to or alias the base destructor.
    138 
    139   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    140                                 CXXDtorType Type,
    141                                 CanQualType &ResTy,
    142                                 SmallVectorImpl<CanQualType> &ArgTys) override;
    143 
    144   /// Non-base dtors should be emitted as delegating thunks in this ABI.
    145   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
    146                               CXXDtorType DT) const override {
    147     return DT != Dtor_Base;
    148   }
    149 
    150   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
    151 
    152   const CXXRecordDecl *
    153   getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
    154     MD = MD->getCanonicalDecl();
    155     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
    156       MicrosoftVTableContext::MethodVFTableLocation ML =
    157           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
    158       // The vbases might be ordered differently in the final overrider object
    159       // and the complete object, so the "this" argument may sometimes point to
    160       // memory that has no particular type (e.g. past the complete object).
    161       // In this case, we just use a generic pointer type.
    162       // FIXME: might want to have a more precise type in the non-virtual
    163       // multiple inheritance case.
    164       if (ML.VBase || !ML.VFPtrOffset.isZero())
    165         return nullptr;
    166     }
    167     return MD->getParent();
    168   }
    169 
    170   llvm::Value *
    171   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
    172                                            llvm::Value *This,
    173                                            bool VirtualCall) override;
    174 
    175   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
    176                                  FunctionArgList &Params) override;
    177 
    178   llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
    179       CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
    180 
    181   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
    182 
    183   unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
    184                                       const CXXConstructorDecl *D,
    185                                       CXXCtorType Type, bool ForVirtualBase,
    186                                       bool Delegating,
    187                                       CallArgList &Args) override;
    188 
    189   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
    190                           CXXDtorType Type, bool ForVirtualBase,
    191                           bool Delegating, llvm::Value *This) override;
    192 
    193   void emitVTableDefinitions(CodeGenVTables &CGVT,
    194                              const CXXRecordDecl *RD) override;
    195 
    196   llvm::Value *getVTableAddressPointInStructor(
    197       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
    198       BaseSubobject Base, const CXXRecordDecl *NearestVBase,
    199       bool &NeedsVirtualOffset) override;
    200 
    201   llvm::Constant *
    202   getVTableAddressPointForConstExpr(BaseSubobject Base,
    203                                     const CXXRecordDecl *VTableClass) override;
    204 
    205   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
    206                                         CharUnits VPtrOffset) override;
    207 
    208   llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
    209                                          llvm::Value *This,
    210                                          llvm::Type *Ty) override;
    211 
    212   void EmitVirtualDestructorCall(CodeGenFunction &CGF,
    213                                  const CXXDestructorDecl *Dtor,
    214                                  CXXDtorType DtorType, SourceLocation CallLoc,
    215                                  llvm::Value *This) override;
    216 
    217   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
    218                                         CallArgList &CallArgs) override {
    219     assert(GD.getDtorType() == Dtor_Deleting &&
    220            "Only deleting destructor thunks are available in this ABI");
    221     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
    222                              CGM.getContext().IntTy);
    223   }
    224 
    225   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
    226 
    227   llvm::GlobalVariable *
    228   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
    229                    llvm::GlobalVariable::LinkageTypes Linkage);
    230 
    231   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
    232                              llvm::GlobalVariable *GV) const;
    233 
    234   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
    235                        GlobalDecl GD, bool ReturnAdjustment) override {
    236     // Never dllimport/dllexport thunks.
    237     Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
    238 
    239     GVALinkage Linkage =
    240         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
    241 
    242     if (Linkage == GVA_Internal)
    243       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
    244     else if (ReturnAdjustment)
    245       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
    246     else
    247       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
    248   }
    249 
    250   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
    251                                      const ThisAdjustment &TA) override;
    252 
    253   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
    254                                        const ReturnAdjustment &RA) override;
    255 
    256   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
    257                        llvm::GlobalVariable *DeclPtr,
    258                        bool PerformInit) override;
    259 
    260   // ==== Notes on array cookies =========
    261   //
    262   // MSVC seems to only use cookies when the class has a destructor; a
    263   // two-argument usual array deallocation function isn't sufficient.
    264   //
    265   // For example, this code prints "100" and "1":
    266   //   struct A {
    267   //     char x;
    268   //     void *operator new[](size_t sz) {
    269   //       printf("%u\n", sz);
    270   //       return malloc(sz);
    271   //     }
    272   //     void operator delete[](void *p, size_t sz) {
    273   //       printf("%u\n", sz);
    274   //       free(p);
    275   //     }
    276   //   };
    277   //   int main() {
    278   //     A *p = new A[100];
    279   //     delete[] p;
    280   //   }
    281   // Whereas it prints "104" and "104" if you give A a destructor.
    282 
    283   bool requiresArrayCookie(const CXXDeleteExpr *expr,
    284                            QualType elementType) override;
    285   bool requiresArrayCookie(const CXXNewExpr *expr) override;
    286   CharUnits getArrayCookieSizeImpl(QualType type) override;
    287   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    288                                      llvm::Value *NewPtr,
    289                                      llvm::Value *NumElements,
    290                                      const CXXNewExpr *expr,
    291                                      QualType ElementType) override;
    292   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
    293                                    llvm::Value *allocPtr,
    294                                    CharUnits cookieSize) override;
    295 
    296   friend struct MSRTTIBuilder;
    297 
    298   bool isImageRelative() const {
    299     return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
    300   }
    301 
    302   // 5 routines for constructing the llvm types for MS RTTI structs.
    303   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
    304     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
    305     TDTypeName += llvm::utostr(TypeInfoString.size());
    306     llvm::StructType *&TypeDescriptorType =
    307         TypeDescriptorTypeMap[TypeInfoString.size()];
    308     if (TypeDescriptorType)
    309       return TypeDescriptorType;
    310     llvm::Type *FieldTypes[] = {
    311         CGM.Int8PtrPtrTy,
    312         CGM.Int8PtrTy,
    313         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
    314     TypeDescriptorType =
    315         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
    316     return TypeDescriptorType;
    317   }
    318 
    319   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
    320     if (!isImageRelative())
    321       return PtrType;
    322     return CGM.IntTy;
    323   }
    324 
    325   llvm::StructType *getBaseClassDescriptorType() {
    326     if (BaseClassDescriptorType)
    327       return BaseClassDescriptorType;
    328     llvm::Type *FieldTypes[] = {
    329         getImageRelativeType(CGM.Int8PtrTy),
    330         CGM.IntTy,
    331         CGM.IntTy,
    332         CGM.IntTy,
    333         CGM.IntTy,
    334         CGM.IntTy,
    335         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
    336     };
    337     BaseClassDescriptorType = llvm::StructType::create(
    338         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
    339     return BaseClassDescriptorType;
    340   }
    341 
    342   llvm::StructType *getClassHierarchyDescriptorType() {
    343     if (ClassHierarchyDescriptorType)
    344       return ClassHierarchyDescriptorType;
    345     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
    346     ClassHierarchyDescriptorType = llvm::StructType::create(
    347         CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
    348     llvm::Type *FieldTypes[] = {
    349         CGM.IntTy,
    350         CGM.IntTy,
    351         CGM.IntTy,
    352         getImageRelativeType(
    353             getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
    354     };
    355     ClassHierarchyDescriptorType->setBody(FieldTypes);
    356     return ClassHierarchyDescriptorType;
    357   }
    358 
    359   llvm::StructType *getCompleteObjectLocatorType() {
    360     if (CompleteObjectLocatorType)
    361       return CompleteObjectLocatorType;
    362     CompleteObjectLocatorType = llvm::StructType::create(
    363         CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
    364     llvm::Type *FieldTypes[] = {
    365         CGM.IntTy,
    366         CGM.IntTy,
    367         CGM.IntTy,
    368         getImageRelativeType(CGM.Int8PtrTy),
    369         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
    370         getImageRelativeType(CompleteObjectLocatorType),
    371     };
    372     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
    373     if (!isImageRelative())
    374       FieldTypesRef = FieldTypesRef.drop_back();
    375     CompleteObjectLocatorType->setBody(FieldTypesRef);
    376     return CompleteObjectLocatorType;
    377   }
    378 
    379   llvm::GlobalVariable *getImageBase() {
    380     StringRef Name = "__ImageBase";
    381     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
    382       return GV;
    383 
    384     return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
    385                                     /*isConstant=*/true,
    386                                     llvm::GlobalValue::ExternalLinkage,
    387                                     /*Initializer=*/nullptr, Name);
    388   }
    389 
    390   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
    391     if (!isImageRelative())
    392       return PtrVal;
    393 
    394     llvm::Constant *ImageBaseAsInt =
    395         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
    396     llvm::Constant *PtrValAsInt =
    397         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
    398     llvm::Constant *Diff =
    399         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
    400                                    /*HasNUW=*/true, /*HasNSW=*/true);
    401     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
    402   }
    403 
    404 private:
    405   MicrosoftMangleContext &getMangleContext() {
    406     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
    407   }
    408 
    409   llvm::Constant *getZeroInt() {
    410     return llvm::ConstantInt::get(CGM.IntTy, 0);
    411   }
    412 
    413   llvm::Constant *getAllOnesInt() {
    414     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
    415   }
    416 
    417   llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
    418     return C ? C : getZeroInt();
    419   }
    420 
    421   llvm::Value *getValueOrZeroInt(llvm::Value *C) {
    422     return C ? C : getZeroInt();
    423   }
    424 
    425   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
    426 
    427   void
    428   GetNullMemberPointerFields(const MemberPointerType *MPT,
    429                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
    430 
    431   /// \brief Shared code for virtual base adjustment.  Returns the offset from
    432   /// the vbptr to the virtual base.  Optionally returns the address of the
    433   /// vbptr itself.
    434   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
    435                                        llvm::Value *Base,
    436                                        llvm::Value *VBPtrOffset,
    437                                        llvm::Value *VBTableOffset,
    438                                        llvm::Value **VBPtr = nullptr);
    439 
    440   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
    441                                        llvm::Value *Base,
    442                                        int32_t VBPtrOffset,
    443                                        int32_t VBTableOffset,
    444                                        llvm::Value **VBPtr = nullptr) {
    445     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
    446                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
    447     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
    448   }
    449 
    450   /// \brief Performs a full virtual base adjustment.  Used to dereference
    451   /// pointers to members of virtual bases.
    452   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
    453                                  const CXXRecordDecl *RD, llvm::Value *Base,
    454                                  llvm::Value *VirtualBaseAdjustmentOffset,
    455                                  llvm::Value *VBPtrOffset /* optional */);
    456 
    457   /// \brief Emits a full member pointer with the fields common to data and
    458   /// function member pointers.
    459   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
    460                                         bool IsMemberFunction,
    461                                         const CXXRecordDecl *RD,
    462                                         CharUnits NonVirtualBaseAdjustment);
    463 
    464   llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
    465                                      const CXXMethodDecl *MD,
    466                                      CharUnits NonVirtualBaseAdjustment);
    467 
    468   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
    469                                    llvm::Constant *MP);
    470 
    471   /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
    472   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
    473 
    474   /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
    475   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
    476 
    477   /// \brief Generate a thunk for calling a virtual member function MD.
    478   llvm::Function *EmitVirtualMemPtrThunk(
    479       const CXXMethodDecl *MD,
    480       const MicrosoftVTableContext::MethodVFTableLocation &ML);
    481 
    482 public:
    483   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
    484 
    485   bool isZeroInitializable(const MemberPointerType *MPT) override;
    486 
    487   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
    488 
    489   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
    490                                         CharUnits offset) override;
    491   llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
    492   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
    493 
    494   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
    495                                            llvm::Value *L,
    496                                            llvm::Value *R,
    497                                            const MemberPointerType *MPT,
    498                                            bool Inequality) override;
    499 
    500   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
    501                                           llvm::Value *MemPtr,
    502                                           const MemberPointerType *MPT) override;
    503 
    504   llvm::Value *
    505   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
    506                                llvm::Value *Base, llvm::Value *MemPtr,
    507                                const MemberPointerType *MPT) override;
    508 
    509   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
    510                                            const CastExpr *E,
    511                                            llvm::Value *Src) override;
    512 
    513   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
    514                                               llvm::Constant *Src) override;
    515 
    516   llvm::Value *
    517   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
    518                                   llvm::Value *&This, llvm::Value *MemPtr,
    519                                   const MemberPointerType *MPT) override;
    520 
    521 private:
    522   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
    523   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
    524   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
    525   /// \brief All the vftables that have been referenced.
    526   VFTablesMapTy VFTablesMap;
    527   VTablesMapTy VTablesMap;
    528 
    529   /// \brief This set holds the record decls we've deferred vtable emission for.
    530   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
    531 
    532 
    533   /// \brief All the vbtables which have been referenced.
    534   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
    535 
    536   /// Info on the global variable used to guard initialization of static locals.
    537   /// The BitIndex field is only used for externally invisible declarations.
    538   struct GuardInfo {
    539     GuardInfo() : Guard(nullptr), BitIndex(0) {}
    540     llvm::GlobalVariable *Guard;
    541     unsigned BitIndex;
    542   };
    543 
    544   /// Map from DeclContext to the current guard variable.  We assume that the
    545   /// AST is visited in source code order.
    546   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
    547 
    548   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
    549   llvm::StructType *BaseClassDescriptorType;
    550   llvm::StructType *ClassHierarchyDescriptorType;
    551   llvm::StructType *CompleteObjectLocatorType;
    552 };
    553 
    554 }
    555 
    556 CGCXXABI::RecordArgABI
    557 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
    558   switch (CGM.getTarget().getTriple().getArch()) {
    559   default:
    560     // FIXME: Implement for other architectures.
    561     return RAA_Default;
    562 
    563   case llvm::Triple::x86:
    564     // All record arguments are passed in memory on x86.  Decide whether to
    565     // construct the object directly in argument memory, or to construct the
    566     // argument elsewhere and copy the bytes during the call.
    567 
    568     // If C++ prohibits us from making a copy, construct the arguments directly
    569     // into argument memory.
    570     if (!canCopyArgument(RD))
    571       return RAA_DirectInMemory;
    572 
    573     // Otherwise, construct the argument into a temporary and copy the bytes
    574     // into the outgoing argument memory.
    575     return RAA_Default;
    576 
    577   case llvm::Triple::x86_64:
    578     // Win64 passes objects with non-trivial copy ctors indirectly.
    579     if (RD->hasNonTrivialCopyConstructor())
    580       return RAA_Indirect;
    581 
    582     // Win64 passes objects larger than 8 bytes indirectly.
    583     if (getContext().getTypeSize(RD->getTypeForDecl()) > 64)
    584       return RAA_Indirect;
    585 
    586     // We have a trivial copy constructor or no copy constructors, but we have
    587     // to make sure it isn't deleted.
    588     bool CopyDeleted = false;
    589     for (const CXXConstructorDecl *CD : RD->ctors()) {
    590       if (CD->isCopyConstructor()) {
    591         assert(CD->isTrivial());
    592         // We had at least one undeleted trivial copy ctor.  Return directly.
    593         if (!CD->isDeleted())
    594           return RAA_Default;
    595         CopyDeleted = true;
    596       }
    597     }
    598 
    599     // The trivial copy constructor was deleted.  Return indirectly.
    600     if (CopyDeleted)
    601       return RAA_Indirect;
    602 
    603     // There were no copy ctors.  Return in RAX.
    604     return RAA_Default;
    605   }
    606 
    607   llvm_unreachable("invalid enum");
    608 }
    609 
    610 llvm::Value *MicrosoftCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
    611                                                      llvm::Value *ptr,
    612                                                      QualType type) {
    613   // FIXME: implement
    614   return ptr;
    615 }
    616 
    617 /// \brief Gets the offset to the virtual base that contains the vfptr for
    618 /// MS-ABI polymorphic types.
    619 static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF,
    620                                          const CXXRecordDecl *RD,
    621                                          llvm::Value *Value) {
    622   const ASTContext &Context = RD->getASTContext();
    623   for (const CXXBaseSpecifier &Base : RD->vbases())
    624     if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl())
    625             .hasExtendableVFPtr())
    626       return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset(
    627           CGF, Value, RD, Base.getType()->getAsCXXRecordDecl());
    628   llvm_unreachable("One of our vbases should be polymorphic.");
    629 }
    630 
    631 static std::pair<llvm::Value *, llvm::Value *>
    632 performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
    633                       QualType SrcRecordTy) {
    634   Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
    635   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
    636 
    637   if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
    638     return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
    639 
    640   // Perform a base adjustment.
    641   llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value);
    642   Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
    643   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
    644   return std::make_pair(Value, Offset);
    645 }
    646 
    647 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
    648                                                 QualType SrcRecordTy) {
    649   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
    650   return IsDeref &&
    651          !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
    652 }
    653 
    654 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
    655                                        llvm::Value *Argument) {
    656   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
    657   llvm::FunctionType *FTy =
    658       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
    659   llvm::Value *Args[] = {Argument};
    660   llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
    661   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
    662 }
    663 
    664 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
    665   llvm::CallSite Call =
    666       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
    667   Call.setDoesNotReturn();
    668   CGF.Builder.CreateUnreachable();
    669 }
    670 
    671 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
    672                                          QualType SrcRecordTy,
    673                                          llvm::Value *ThisPtr,
    674                                          llvm::Type *StdTypeInfoPtrTy) {
    675   llvm::Value *Offset;
    676   std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
    677   return CGF.Builder.CreateBitCast(
    678       emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
    679 }
    680 
    681 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
    682                                                          QualType SrcRecordTy) {
    683   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
    684   return SrcIsPtr &&
    685          !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
    686 }
    687 
    688 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
    689     CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
    690     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
    691   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
    692 
    693   llvm::Value *SrcRTTI =
    694       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
    695   llvm::Value *DestRTTI =
    696       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
    697 
    698   llvm::Value *Offset;
    699   std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
    700 
    701   // PVOID __RTDynamicCast(
    702   //   PVOID inptr,
    703   //   LONG VfDelta,
    704   //   PVOID SrcType,
    705   //   PVOID TargetType,
    706   //   BOOL isReference)
    707   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
    708                             CGF.Int8PtrTy, CGF.Int32Ty};
    709   llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
    710       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
    711       "__RTDynamicCast");
    712   llvm::Value *Args[] = {
    713       Value, Offset, SrcRTTI, DestRTTI,
    714       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
    715   Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
    716   return CGF.Builder.CreateBitCast(Value, DestLTy);
    717 }
    718 
    719 llvm::Value *
    720 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
    721                                        QualType SrcRecordTy,
    722                                        QualType DestTy) {
    723   llvm::Value *Offset;
    724   std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
    725 
    726   // PVOID __RTCastToVoid(
    727   //   PVOID inptr)
    728   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
    729   llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
    730       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
    731       "__RTCastToVoid");
    732   llvm::Value *Args[] = {Value};
    733   return CGF.EmitRuntimeCall(Function, Args);
    734 }
    735 
    736 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
    737   return false;
    738 }
    739 
    740 llvm::Value *
    741 MicrosoftCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
    742                                            llvm::Value *This,
    743                                            const CXXRecordDecl *ClassDecl,
    744                                            const CXXRecordDecl *BaseClassDecl) {
    745   int64_t VBPtrChars =
    746       getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
    747   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
    748   CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy);
    749   CharUnits VBTableChars =
    750       IntSize *
    751       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
    752   llvm::Value *VBTableOffset =
    753     llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
    754 
    755   llvm::Value *VBPtrToNewBase =
    756     GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
    757   VBPtrToNewBase =
    758     CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
    759   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
    760 }
    761 
    762 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
    763   return isa<CXXConstructorDecl>(GD.getDecl());
    764 }
    765 
    766 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
    767   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
    768   if (!RD)
    769     return false;
    770 
    771   if (FI.isInstanceMethod()) {
    772     // If it's an instance method, aggregates are always returned indirectly via
    773     // the second parameter.
    774     FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
    775     FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
    776     return true;
    777   } else if (!RD->isPOD()) {
    778     // If it's a free function, non-POD types are returned indirectly.
    779     FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
    780     return true;
    781   }
    782 
    783   // Otherwise, use the C ABI rules.
    784   return false;
    785 }
    786 
    787 void MicrosoftCXXABI::BuildConstructorSignature(
    788     const CXXConstructorDecl *Ctor, CXXCtorType Type, CanQualType &ResTy,
    789     SmallVectorImpl<CanQualType> &ArgTys) {
    790 
    791   // All parameters are already in place except is_most_derived, which goes
    792   // after 'this' if it's variadic and last if it's not.
    793 
    794   const CXXRecordDecl *Class = Ctor->getParent();
    795   const FunctionProtoType *FPT = Ctor->getType()->castAs<FunctionProtoType>();
    796   if (Class->getNumVBases()) {
    797     if (FPT->isVariadic())
    798       ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy);
    799     else
    800       ArgTys.push_back(CGM.getContext().IntTy);
    801   }
    802 }
    803 
    804 llvm::BasicBlock *
    805 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
    806                                                const CXXRecordDecl *RD) {
    807   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
    808   assert(IsMostDerivedClass &&
    809          "ctor for a class with virtual bases must have an implicit parameter");
    810   llvm::Value *IsCompleteObject =
    811     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
    812 
    813   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
    814   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
    815   CGF.Builder.CreateCondBr(IsCompleteObject,
    816                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
    817 
    818   CGF.EmitBlock(CallVbaseCtorsBB);
    819 
    820   // Fill in the vbtable pointers here.
    821   EmitVBPtrStores(CGF, RD);
    822 
    823   // CGF will put the base ctor calls in this basic block for us later.
    824 
    825   return SkipVbaseCtorsBB;
    826 }
    827 
    828 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
    829     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
    830   // In most cases, an override for a vbase virtual method can adjust
    831   // the "this" parameter by applying a constant offset.
    832   // However, this is not enough while a constructor or a destructor of some
    833   // class X is being executed if all the following conditions are met:
    834   //  - X has virtual bases, (1)
    835   //  - X overrides a virtual method M of a vbase Y, (2)
    836   //  - X itself is a vbase of the most derived class.
    837   //
    838   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
    839   // which holds the extra amount of "this" adjustment we must do when we use
    840   // the X vftables (i.e. during X ctor or dtor).
    841   // Outside the ctors and dtors, the values of vtorDisps are zero.
    842 
    843   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    844   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
    845   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
    846   CGBuilderTy &Builder = CGF.Builder;
    847 
    848   unsigned AS =
    849       cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
    850   llvm::Value *Int8This = nullptr;  // Initialize lazily.
    851 
    852   for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
    853         I != E; ++I) {
    854     if (!I->second.hasVtorDisp())
    855       continue;
    856 
    857     llvm::Value *VBaseOffset =
    858         GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
    859     // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
    860     // just to Trunc back immediately.
    861     VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
    862     uint64_t ConstantVBaseOffset =
    863         Layout.getVBaseClassOffset(I->first).getQuantity();
    864 
    865     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
    866     llvm::Value *VtorDispValue = Builder.CreateSub(
    867         VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
    868         "vtordisp.value");
    869 
    870     if (!Int8This)
    871       Int8This = Builder.CreateBitCast(getThisValue(CGF),
    872                                        CGF.Int8Ty->getPointerTo(AS));
    873     llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
    874     // vtorDisp is always the 32-bits before the vbase in the class layout.
    875     VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
    876     VtorDispPtr = Builder.CreateBitCast(
    877         VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
    878 
    879     Builder.CreateStore(VtorDispValue, VtorDispPtr);
    880   }
    881 }
    882 
    883 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
    884   // There's only one constructor type in this ABI.
    885   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
    886 }
    887 
    888 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
    889                                       const CXXRecordDecl *RD) {
    890   llvm::Value *ThisInt8Ptr =
    891     CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
    892   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
    893 
    894   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
    895   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
    896     const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
    897     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
    898     const ASTRecordLayout &SubobjectLayout =
    899         CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr);
    900     CharUnits Offs = VBT->NonVirtualOffset;
    901     Offs += SubobjectLayout.getVBPtrOffset();
    902     if (VBT->getVBaseWithVPtr())
    903       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
    904     llvm::Value *VBPtr =
    905         CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
    906     VBPtr = CGF.Builder.CreateBitCast(VBPtr, GV->getType()->getPointerTo(0),
    907                                       "vbptr." + VBT->ReusingBase->getName());
    908     CGF.Builder.CreateStore(GV, VBPtr);
    909   }
    910 }
    911 
    912 void MicrosoftCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    913                                                CXXDtorType Type,
    914                                                CanQualType &ResTy,
    915                                         SmallVectorImpl<CanQualType> &ArgTys) {
    916   // 'this' is already in place
    917 
    918   // TODO: 'for base' flag
    919 
    920   if (Type == Dtor_Deleting) {
    921     // The scalar deleting destructor takes an implicit int parameter.
    922     ArgTys.push_back(CGM.getContext().IntTy);
    923   }
    924 }
    925 
    926 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
    927   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
    928   // other destructor variants are delegating thunks.
    929   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
    930 }
    931 
    932 CharUnits
    933 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
    934   GD = GD.getCanonicalDecl();
    935   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    936 
    937   GlobalDecl LookupGD = GD;
    938   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
    939     // Complete destructors take a pointer to the complete object as a
    940     // parameter, thus don't need this adjustment.
    941     if (GD.getDtorType() == Dtor_Complete)
    942       return CharUnits();
    943 
    944     // There's no Dtor_Base in vftable but it shares the this adjustment with
    945     // the deleting one, so look it up instead.
    946     LookupGD = GlobalDecl(DD, Dtor_Deleting);
    947   }
    948 
    949   MicrosoftVTableContext::MethodVFTableLocation ML =
    950       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
    951   CharUnits Adjustment = ML.VFPtrOffset;
    952 
    953   // Normal virtual instance methods need to adjust from the vfptr that first
    954   // defined the virtual method to the virtual base subobject, but destructors
    955   // do not.  The vector deleting destructor thunk applies this adjustment for
    956   // us if necessary.
    957   if (isa<CXXDestructorDecl>(MD))
    958     Adjustment = CharUnits::Zero();
    959 
    960   if (ML.VBase) {
    961     const ASTRecordLayout &DerivedLayout =
    962         CGM.getContext().getASTRecordLayout(MD->getParent());
    963     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
    964   }
    965 
    966   return Adjustment;
    967 }
    968 
    969 llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
    970     CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
    971   if (!VirtualCall) {
    972     // If the call of a virtual function is not virtual, we just have to
    973     // compensate for the adjustment the virtual function does in its prologue.
    974     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
    975     if (Adjustment.isZero())
    976       return This;
    977 
    978     unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
    979     llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
    980     This = CGF.Builder.CreateBitCast(This, charPtrTy);
    981     assert(Adjustment.isPositive());
    982     return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
    983   }
    984 
    985   GD = GD.getCanonicalDecl();
    986   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    987 
    988   GlobalDecl LookupGD = GD;
    989   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
    990     // Complete dtors take a pointer to the complete object,
    991     // thus don't need adjustment.
    992     if (GD.getDtorType() == Dtor_Complete)
    993       return This;
    994 
    995     // There's only Dtor_Deleting in vftable but it shares the this adjustment
    996     // with the base one, so look up the deleting one instead.
    997     LookupGD = GlobalDecl(DD, Dtor_Deleting);
    998   }
    999   MicrosoftVTableContext::MethodVFTableLocation ML =
   1000       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
   1001 
   1002   unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
   1003   llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
   1004   CharUnits StaticOffset = ML.VFPtrOffset;
   1005 
   1006   // Base destructors expect 'this' to point to the beginning of the base
   1007   // subobject, not the first vfptr that happens to contain the virtual dtor.
   1008   // However, we still need to apply the virtual base adjustment.
   1009   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
   1010     StaticOffset = CharUnits::Zero();
   1011 
   1012   if (ML.VBase) {
   1013     This = CGF.Builder.CreateBitCast(This, charPtrTy);
   1014     llvm::Value *VBaseOffset =
   1015         GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
   1016     This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
   1017   }
   1018   if (!StaticOffset.isZero()) {
   1019     assert(StaticOffset.isPositive());
   1020     This = CGF.Builder.CreateBitCast(This, charPtrTy);
   1021     if (ML.VBase) {
   1022       // Non-virtual adjustment might result in a pointer outside the allocated
   1023       // object, e.g. if the final overrider class is laid out after the virtual
   1024       // base that declares a method in the most derived class.
   1025       // FIXME: Update the code that emits this adjustment in thunks prologues.
   1026       This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
   1027     } else {
   1028       This = CGF.Builder.CreateConstInBoundsGEP1_32(This,
   1029                                                     StaticOffset.getQuantity());
   1030     }
   1031   }
   1032   return This;
   1033 }
   1034 
   1035 static bool IsDeletingDtor(GlobalDecl GD) {
   1036   const CXXMethodDecl* MD = cast<CXXMethodDecl>(GD.getDecl());
   1037   if (isa<CXXDestructorDecl>(MD)) {
   1038     return GD.getDtorType() == Dtor_Deleting;
   1039   }
   1040   return false;
   1041 }
   1042 
   1043 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
   1044                                                 QualType &ResTy,
   1045                                                 FunctionArgList &Params) {
   1046   ASTContext &Context = getContext();
   1047   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
   1048   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
   1049   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
   1050     ImplicitParamDecl *IsMostDerived
   1051       = ImplicitParamDecl::Create(Context, nullptr,
   1052                                   CGF.CurGD.getDecl()->getLocation(),
   1053                                   &Context.Idents.get("is_most_derived"),
   1054                                   Context.IntTy);
   1055     // The 'most_derived' parameter goes second if the ctor is variadic and last
   1056     // if it's not.  Dtors can't be variadic.
   1057     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
   1058     if (FPT->isVariadic())
   1059       Params.insert(Params.begin() + 1, IsMostDerived);
   1060     else
   1061       Params.push_back(IsMostDerived);
   1062     getStructorImplicitParamDecl(CGF) = IsMostDerived;
   1063   } else if (IsDeletingDtor(CGF.CurGD)) {
   1064     ImplicitParamDecl *ShouldDelete
   1065       = ImplicitParamDecl::Create(Context, nullptr,
   1066                                   CGF.CurGD.getDecl()->getLocation(),
   1067                                   &Context.Idents.get("should_call_delete"),
   1068                                   Context.IntTy);
   1069     Params.push_back(ShouldDelete);
   1070     getStructorImplicitParamDecl(CGF) = ShouldDelete;
   1071   }
   1072 }
   1073 
   1074 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
   1075     CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
   1076   // In this ABI, every virtual function takes a pointer to one of the
   1077   // subobjects that first defines it as the 'this' parameter, rather than a
   1078   // pointer to the final overrider subobject. Thus, we need to adjust it back
   1079   // to the final overrider subobject before use.
   1080   // See comments in the MicrosoftVFTableContext implementation for the details.
   1081   CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
   1082   if (Adjustment.isZero())
   1083     return This;
   1084 
   1085   unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
   1086   llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
   1087              *thisTy = This->getType();
   1088 
   1089   This = CGF.Builder.CreateBitCast(This, charPtrTy);
   1090   assert(Adjustment.isPositive());
   1091   This =
   1092       CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity());
   1093   return CGF.Builder.CreateBitCast(This, thisTy);
   1094 }
   1095 
   1096 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
   1097   EmitThisParam(CGF);
   1098 
   1099   /// If this is a function that the ABI specifies returns 'this', initialize
   1100   /// the return slot to 'this' at the start of the function.
   1101   ///
   1102   /// Unlike the setting of return types, this is done within the ABI
   1103   /// implementation instead of by clients of CGCXXABI because:
   1104   /// 1) getThisValue is currently protected
   1105   /// 2) in theory, an ABI could implement 'this' returns some other way;
   1106   ///    HasThisReturn only specifies a contract, not the implementation
   1107   if (HasThisReturn(CGF.CurGD))
   1108     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
   1109 
   1110   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
   1111   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
   1112     assert(getStructorImplicitParamDecl(CGF) &&
   1113            "no implicit parameter for a constructor with virtual bases?");
   1114     getStructorImplicitParamValue(CGF)
   1115       = CGF.Builder.CreateLoad(
   1116           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
   1117           "is_most_derived");
   1118   }
   1119 
   1120   if (IsDeletingDtor(CGF.CurGD)) {
   1121     assert(getStructorImplicitParamDecl(CGF) &&
   1122            "no implicit parameter for a deleting destructor?");
   1123     getStructorImplicitParamValue(CGF)
   1124       = CGF.Builder.CreateLoad(
   1125           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
   1126           "should_call_delete");
   1127   }
   1128 }
   1129 
   1130 unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
   1131     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
   1132     bool ForVirtualBase, bool Delegating, CallArgList &Args) {
   1133   assert(Type == Ctor_Complete || Type == Ctor_Base);
   1134 
   1135   // Check if we need a 'most_derived' parameter.
   1136   if (!D->getParent()->getNumVBases())
   1137     return 0;
   1138 
   1139   // Add the 'most_derived' argument second if we are variadic or last if not.
   1140   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   1141   llvm::Value *MostDerivedArg =
   1142       llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
   1143   RValue RV = RValue::get(MostDerivedArg);
   1144   if (MostDerivedArg) {
   1145     if (FPT->isVariadic())
   1146       Args.insert(Args.begin() + 1,
   1147                   CallArg(RV, getContext().IntTy, /*needscopy=*/false));
   1148     else
   1149       Args.add(RV, getContext().IntTy);
   1150   }
   1151 
   1152   return 1;  // Added one arg.
   1153 }
   1154 
   1155 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
   1156                                          const CXXDestructorDecl *DD,
   1157                                          CXXDtorType Type, bool ForVirtualBase,
   1158                                          bool Delegating, llvm::Value *This) {
   1159   llvm::Value *Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
   1160 
   1161   if (DD->isVirtual()) {
   1162     assert(Type != CXXDtorType::Dtor_Deleting &&
   1163            "The deleting destructor should only be called via a virtual call");
   1164     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
   1165                                                     This, false);
   1166   }
   1167 
   1168   // FIXME: Provide a source location here.
   1169   CGF.EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
   1170                         /*ImplicitParam=*/nullptr,
   1171                         /*ImplicitParamTy=*/QualType(), nullptr, nullptr);
   1172 }
   1173 
   1174 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
   1175                                             const CXXRecordDecl *RD) {
   1176   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
   1177   VPtrInfoVector VFPtrs = VFTContext.getVFPtrOffsets(RD);
   1178 
   1179   for (VPtrInfo *Info : VFPtrs) {
   1180     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
   1181     if (VTable->hasInitializer())
   1182       continue;
   1183 
   1184     llvm::Constant *RTTI = getMSCompleteObjectLocator(RD, Info);
   1185 
   1186     const VTableLayout &VTLayout =
   1187       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
   1188     llvm::Constant *Init = CGVT.CreateVTableInitializer(
   1189         RD, VTLayout.vtable_component_begin(),
   1190         VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
   1191         VTLayout.getNumVTableThunks(), RTTI);
   1192 
   1193     VTable->setInitializer(Init);
   1194   }
   1195 }
   1196 
   1197 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
   1198     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
   1199     const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
   1200   NeedsVirtualOffset = (NearestVBase != nullptr);
   1201 
   1202   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
   1203   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
   1204   llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
   1205   if (!VTableAddressPoint) {
   1206     assert(Base.getBase()->getNumVBases() &&
   1207            !CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
   1208   }
   1209   return VTableAddressPoint;
   1210 }
   1211 
   1212 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
   1213                               const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
   1214                               SmallString<256> &Name) {
   1215   llvm::raw_svector_ostream Out(Name);
   1216   MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
   1217 }
   1218 
   1219 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
   1220     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
   1221   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
   1222   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
   1223   llvm::GlobalValue *VFTable = VFTablesMap[ID];
   1224   assert(VFTable && "Couldn't find a vftable for the given base?");
   1225   return VFTable;
   1226 }
   1227 
   1228 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
   1229                                                        CharUnits VPtrOffset) {
   1230   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
   1231   // shouldn't be used in the given record type. We want to cache this result in
   1232   // VFTablesMap, thus a simple zero check is not sufficient.
   1233   VFTableIdTy ID(RD, VPtrOffset);
   1234   VTablesMapTy::iterator I;
   1235   bool Inserted;
   1236   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
   1237   if (!Inserted)
   1238     return I->second;
   1239 
   1240   llvm::GlobalVariable *&VTable = I->second;
   1241 
   1242   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
   1243   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
   1244 
   1245   if (DeferredVFTables.insert(RD)) {
   1246     // We haven't processed this record type before.
   1247     // Queue up this v-table for possible deferred emission.
   1248     CGM.addDeferredVTable(RD);
   1249 
   1250 #ifndef NDEBUG
   1251     // Create all the vftables at once in order to make sure each vftable has
   1252     // a unique mangled name.
   1253     llvm::StringSet<> ObservedMangledNames;
   1254     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
   1255       SmallString<256> Name;
   1256       mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
   1257       if (!ObservedMangledNames.insert(Name.str()))
   1258         llvm_unreachable("Already saw this mangling before?");
   1259     }
   1260 #endif
   1261   }
   1262 
   1263   for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
   1264     if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset)
   1265       continue;
   1266     SmallString<256> VFTableName;
   1267     mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName);
   1268     StringRef VTableName = VFTableName;
   1269 
   1270     uint64_t NumVTableSlots =
   1271         VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC)
   1272             .getNumVTableComponents();
   1273     llvm::GlobalValue::LinkageTypes VTableLinkage =
   1274         llvm::GlobalValue::ExternalLinkage;
   1275     llvm::ArrayType *VTableType =
   1276         llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
   1277     if (getContext().getLangOpts().RTTIData) {
   1278       VTableLinkage = llvm::GlobalValue::PrivateLinkage;
   1279       VTableName = "";
   1280     }
   1281 
   1282     VTable = CGM.getModule().getNamedGlobal(VFTableName);
   1283     if (!VTable) {
   1284       // Create a backing variable for the contents of VTable.  The VTable may
   1285       // or may not include space for a pointer to RTTI data.
   1286       llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable(
   1287           CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage,
   1288           /*Initializer=*/nullptr, VTableName);
   1289       VTable->setUnnamedAddr(true);
   1290 
   1291       // Only insert a pointer into the VFTable for RTTI data if we are not
   1292       // importing it.  We never reference the RTTI data directly so there is no
   1293       // need to make room for it.
   1294       if (getContext().getLangOpts().RTTIData &&
   1295           !RD->hasAttr<DLLImportAttr>()) {
   1296         llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
   1297                                      llvm::ConstantInt::get(CGM.IntTy, 1)};
   1298         // Create a GEP which points just after the first entry in the VFTable,
   1299         // this should be the location of the first virtual method.
   1300         llvm::Constant *VTableGEP =
   1301             llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices);
   1302         // The symbol for the VFTable is an alias to the GEP.  It is
   1303         // transparent, to other modules, what the nature of this symbol is; all
   1304         // that matters is that the alias be the address of the first virtual
   1305         // method.
   1306         VFTable = llvm::GlobalAlias::create(
   1307             cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(),
   1308             /*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage,
   1309             VFTableName.str(), VTableGEP, &CGM.getModule());
   1310       } else {
   1311         // We don't need a GlobalAlias to be a symbol for the VTable if we won't
   1312         // be referencing any RTTI data.  The GlobalVariable will end up being
   1313         // an appropriate definition of the VFTable.
   1314         VTable->setName(VFTableName.str());
   1315       }
   1316 
   1317       VFTable->setUnnamedAddr(true);
   1318       if (RD->hasAttr<DLLImportAttr>())
   1319         VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
   1320       else if (RD->hasAttr<DLLExportAttr>())
   1321         VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
   1322 
   1323       llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
   1324       if (VFTable != VTable) {
   1325         if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) {
   1326           // AvailableExternally implies that we grabbed the data from another
   1327           // executable.  No need to stick the alias in a Comdat.
   1328         } else if (llvm::GlobalValue::isLocalLinkage(VFTableLinkage)) {
   1329           // If it's local, it means that the virtual function table can't be
   1330           // referenced in another translation unit. No need to stick the alias
   1331           // in a Comdat.
   1332         } else if (llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) ||
   1333                    llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) {
   1334           // The alias is going to be dropped into a Comdat, no need to make it
   1335           // weak.
   1336           VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
   1337           llvm::Comdat *C =
   1338               CGM.getModule().getOrInsertComdat(VFTable->getName());
   1339           // We must indicate which VFTable is larger to support linking between
   1340           // translation units which do and do not have RTTI data.  The largest
   1341           // VFTable contains the RTTI data; translation units which reference
   1342           // the smaller VFTable always reference it relative to the first
   1343           // virtual method.
   1344           C->setSelectionKind(llvm::Comdat::Largest);
   1345           VTable->setComdat(C);
   1346         } else {
   1347           llvm_unreachable("unexpected linkage for vftable!");
   1348         }
   1349       }
   1350       VFTable->setLinkage(VFTableLinkage);
   1351       CGM.setGlobalVisibility(VFTable, RD);
   1352       VFTablesMap[ID] = VFTable;
   1353     }
   1354     break;
   1355   }
   1356 
   1357   return VTable;
   1358 }
   1359 
   1360 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
   1361                                                         GlobalDecl GD,
   1362                                                         llvm::Value *This,
   1363                                                         llvm::Type *Ty) {
   1364   GD = GD.getCanonicalDecl();
   1365   CGBuilderTy &Builder = CGF.Builder;
   1366 
   1367   Ty = Ty->getPointerTo()->getPointerTo();
   1368   llvm::Value *VPtr =
   1369       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
   1370   llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
   1371 
   1372   MicrosoftVTableContext::MethodVFTableLocation ML =
   1373       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
   1374   llvm::Value *VFuncPtr =
   1375       Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
   1376   return Builder.CreateLoad(VFuncPtr);
   1377 }
   1378 
   1379 void MicrosoftCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
   1380                                                 const CXXDestructorDecl *Dtor,
   1381                                                 CXXDtorType DtorType,
   1382                                                 SourceLocation CallLoc,
   1383                                                 llvm::Value *This) {
   1384   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
   1385 
   1386   // We have only one destructor in the vftable but can get both behaviors
   1387   // by passing an implicit int parameter.
   1388   GlobalDecl GD(Dtor, Dtor_Deleting);
   1389   const CGFunctionInfo *FInfo =
   1390       &CGM.getTypes().arrangeCXXDestructor(Dtor, Dtor_Deleting);
   1391   llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
   1392   llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
   1393 
   1394   ASTContext &Context = CGF.getContext();
   1395   llvm::Value *ImplicitParam =
   1396       llvm::ConstantInt::get(llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
   1397                              DtorType == Dtor_Deleting);
   1398 
   1399   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
   1400   CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This,
   1401                         ImplicitParam, Context.IntTy, nullptr, nullptr);
   1402 }
   1403 
   1404 const VBTableGlobals &
   1405 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
   1406   // At this layer, we can key the cache off of a single class, which is much
   1407   // easier than caching each vbtable individually.
   1408   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
   1409   bool Added;
   1410   std::tie(Entry, Added) =
   1411       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
   1412   VBTableGlobals &VBGlobals = Entry->second;
   1413   if (!Added)
   1414     return VBGlobals;
   1415 
   1416   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
   1417   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
   1418 
   1419   // Cache the globals for all vbtables so we don't have to recompute the
   1420   // mangled names.
   1421   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
   1422   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
   1423                                       E = VBGlobals.VBTables->end();
   1424        I != E; ++I) {
   1425     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
   1426   }
   1427 
   1428   return VBGlobals;
   1429 }
   1430 
   1431 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
   1432     const CXXMethodDecl *MD,
   1433     const MicrosoftVTableContext::MethodVFTableLocation &ML) {
   1434   // Calculate the mangled name.
   1435   SmallString<256> ThunkName;
   1436   llvm::raw_svector_ostream Out(ThunkName);
   1437   getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
   1438   Out.flush();
   1439 
   1440   // If the thunk has been generated previously, just return it.
   1441   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
   1442     return cast<llvm::Function>(GV);
   1443 
   1444   // Create the llvm::Function.
   1445   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(MD);
   1446   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
   1447   llvm::Function *ThunkFn =
   1448       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
   1449                              ThunkName.str(), &CGM.getModule());
   1450   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
   1451 
   1452   ThunkFn->setLinkage(MD->isExternallyVisible()
   1453                           ? llvm::GlobalValue::LinkOnceODRLinkage
   1454                           : llvm::GlobalValue::InternalLinkage);
   1455 
   1456   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
   1457   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
   1458 
   1459   // Start codegen.
   1460   CodeGenFunction CGF(CGM);
   1461   CGF.StartThunk(ThunkFn, MD, FnInfo);
   1462 
   1463   // Load the vfptr and then callee from the vftable.  The callee should have
   1464   // adjusted 'this' so that the vfptr is at offset zero.
   1465   llvm::Value *This = CGF.LoadCXXThis();
   1466   llvm::Value *VTable =
   1467       CGF.GetVTablePtr(This, ThunkTy->getPointerTo()->getPointerTo());
   1468   llvm::Value *VFuncPtr =
   1469       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
   1470   llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
   1471 
   1472   unsigned CallingConv;
   1473   CodeGen::AttributeListType AttributeList;
   1474   CGM.ConstructAttributeList(FnInfo, MD, AttributeList, CallingConv, true);
   1475   llvm::AttributeSet Attrs =
   1476       llvm::AttributeSet::get(CGF.getLLVMContext(), AttributeList);
   1477 
   1478   // Do a musttail call with perfect argument forwarding.  Any inalloca argument
   1479   // will be forwarded in place without any copy.
   1480   SmallVector<llvm::Value *, 8> Args;
   1481   for (llvm::Argument &A : ThunkFn->args())
   1482     Args.push_back(&A);
   1483   llvm::CallInst *Call = CGF.Builder.CreateCall(Callee, Args);
   1484   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
   1485   Call->setAttributes(Attrs);
   1486   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   1487 
   1488   if (Call->getType()->isVoidTy())
   1489     CGF.Builder.CreateRetVoid();
   1490   else
   1491     CGF.Builder.CreateRet(Call);
   1492 
   1493   // Finish the function to maintain CodeGenFunction invariants.
   1494   // FIXME: Don't emit unreachable code.
   1495   CGF.EmitBlock(CGF.createBasicBlock());
   1496   CGF.FinishFunction();
   1497 
   1498   return ThunkFn;
   1499 }
   1500 
   1501 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
   1502   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
   1503   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
   1504     const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
   1505     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
   1506     emitVBTableDefinition(*VBT, RD, GV);
   1507   }
   1508 }
   1509 
   1510 llvm::GlobalVariable *
   1511 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
   1512                                   llvm::GlobalVariable::LinkageTypes Linkage) {
   1513   SmallString<256> OutName;
   1514   llvm::raw_svector_ostream Out(OutName);
   1515   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
   1516   Out.flush();
   1517   StringRef Name = OutName.str();
   1518 
   1519   llvm::ArrayType *VBTableType =
   1520       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
   1521 
   1522   assert(!CGM.getModule().getNamedGlobal(Name) &&
   1523          "vbtable with this name already exists: mangling bug?");
   1524   llvm::GlobalVariable *GV =
   1525       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
   1526   GV->setUnnamedAddr(true);
   1527 
   1528   if (RD->hasAttr<DLLImportAttr>())
   1529     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
   1530   else if (RD->hasAttr<DLLExportAttr>())
   1531     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
   1532 
   1533   return GV;
   1534 }
   1535 
   1536 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
   1537                                             const CXXRecordDecl *RD,
   1538                                             llvm::GlobalVariable *GV) const {
   1539   const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
   1540 
   1541   assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
   1542          "should only emit vbtables for classes with vbtables");
   1543 
   1544   const ASTRecordLayout &BaseLayout =
   1545       CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr);
   1546   const ASTRecordLayout &DerivedLayout =
   1547     CGM.getContext().getASTRecordLayout(RD);
   1548 
   1549   SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
   1550                                            nullptr);
   1551 
   1552   // The offset from ReusingBase's vbptr to itself always leads.
   1553   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
   1554   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
   1555 
   1556   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
   1557   for (const auto &I : ReusingBase->vbases()) {
   1558     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
   1559     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
   1560     assert(!Offset.isNegative());
   1561 
   1562     // Make it relative to the subobject vbptr.
   1563     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
   1564     if (VBT.getVBaseWithVPtr())
   1565       CompleteVBPtrOffset +=
   1566           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
   1567     Offset -= CompleteVBPtrOffset;
   1568 
   1569     unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
   1570     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
   1571     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
   1572   }
   1573 
   1574   assert(Offsets.size() ==
   1575          cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
   1576                                ->getElementType())->getNumElements());
   1577   llvm::ArrayType *VBTableType =
   1578     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
   1579   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
   1580   GV->setInitializer(Init);
   1581 
   1582   // Set the right visibility.
   1583   CGM.setGlobalVisibility(GV, RD);
   1584 }
   1585 
   1586 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
   1587                                                     llvm::Value *This,
   1588                                                     const ThisAdjustment &TA) {
   1589   if (TA.isEmpty())
   1590     return This;
   1591 
   1592   llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
   1593 
   1594   if (!TA.Virtual.isEmpty()) {
   1595     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
   1596     // Adjust the this argument based on the vtordisp value.
   1597     llvm::Value *VtorDispPtr =
   1598         CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
   1599     VtorDispPtr =
   1600         CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
   1601     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
   1602     V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
   1603 
   1604     if (TA.Virtual.Microsoft.VBPtrOffset) {
   1605       // If the final overrider is defined in a virtual base other than the one
   1606       // that holds the vfptr, we have to use a vtordispex thunk which looks up
   1607       // the vbtable of the derived class.
   1608       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
   1609       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
   1610       llvm::Value *VBPtr;
   1611       llvm::Value *VBaseOffset =
   1612           GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
   1613                                   TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
   1614       V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
   1615     }
   1616   }
   1617 
   1618   if (TA.NonVirtual) {
   1619     // Non-virtual adjustment might result in a pointer outside the allocated
   1620     // object, e.g. if the final overrider class is laid out after the virtual
   1621     // base that declares a method in the most derived class.
   1622     V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
   1623   }
   1624 
   1625   // Don't need to bitcast back, the call CodeGen will handle this.
   1626   return V;
   1627 }
   1628 
   1629 llvm::Value *
   1630 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
   1631                                          const ReturnAdjustment &RA) {
   1632   if (RA.isEmpty())
   1633     return Ret;
   1634 
   1635   llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
   1636 
   1637   if (RA.Virtual.Microsoft.VBIndex) {
   1638     assert(RA.Virtual.Microsoft.VBIndex > 0);
   1639     int32_t IntSize =
   1640         getContext().getTypeSizeInChars(getContext().IntTy).getQuantity();
   1641     llvm::Value *VBPtr;
   1642     llvm::Value *VBaseOffset =
   1643         GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
   1644                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
   1645     V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
   1646   }
   1647 
   1648   if (RA.NonVirtual)
   1649     V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual);
   1650 
   1651   // Cast back to the original type.
   1652   return CGF.Builder.CreateBitCast(V, Ret->getType());
   1653 }
   1654 
   1655 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
   1656                                    QualType elementType) {
   1657   // Microsoft seems to completely ignore the possibility of a
   1658   // two-argument usual deallocation function.
   1659   return elementType.isDestructedType();
   1660 }
   1661 
   1662 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
   1663   // Microsoft seems to completely ignore the possibility of a
   1664   // two-argument usual deallocation function.
   1665   return expr->getAllocatedType().isDestructedType();
   1666 }
   1667 
   1668 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
   1669   // The array cookie is always a size_t; we then pad that out to the
   1670   // alignment of the element type.
   1671   ASTContext &Ctx = getContext();
   1672   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
   1673                   Ctx.getTypeAlignInChars(type));
   1674 }
   1675 
   1676 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
   1677                                                   llvm::Value *allocPtr,
   1678                                                   CharUnits cookieSize) {
   1679   unsigned AS = allocPtr->getType()->getPointerAddressSpace();
   1680   llvm::Value *numElementsPtr =
   1681     CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
   1682   return CGF.Builder.CreateLoad(numElementsPtr);
   1683 }
   1684 
   1685 llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
   1686                                                     llvm::Value *newPtr,
   1687                                                     llvm::Value *numElements,
   1688                                                     const CXXNewExpr *expr,
   1689                                                     QualType elementType) {
   1690   assert(requiresArrayCookie(expr));
   1691 
   1692   // The size of the cookie.
   1693   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
   1694 
   1695   // Compute an offset to the cookie.
   1696   llvm::Value *cookiePtr = newPtr;
   1697 
   1698   // Write the number of elements into the appropriate slot.
   1699   unsigned AS = newPtr->getType()->getPointerAddressSpace();
   1700   llvm::Value *numElementsPtr
   1701     = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
   1702   CGF.Builder.CreateStore(numElements, numElementsPtr);
   1703 
   1704   // Finally, compute a pointer to the actual data buffer by skipping
   1705   // over the cookie completely.
   1706   return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
   1707                                                 cookieSize.getQuantity());
   1708 }
   1709 
   1710 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
   1711                                       llvm::GlobalVariable *GV,
   1712                                       bool PerformInit) {
   1713   // MSVC only uses guards for static locals.
   1714   if (!D.isStaticLocal()) {
   1715     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
   1716     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
   1717     CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
   1718     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
   1719     return;
   1720   }
   1721 
   1722   // MSVC always uses an i32 bitfield to guard initialization, which is *not*
   1723   // threadsafe.  Since the user may be linking in inline functions compiled by
   1724   // cl.exe, there's no reason to provide a false sense of security by using
   1725   // critical sections here.
   1726 
   1727   if (D.getTLSKind())
   1728     CGM.ErrorUnsupported(&D, "dynamic TLS initialization");
   1729 
   1730   CGBuilderTy &Builder = CGF.Builder;
   1731   llvm::IntegerType *GuardTy = CGF.Int32Ty;
   1732   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
   1733 
   1734   // Get the guard variable for this function if we have one already.
   1735   GuardInfo *GI = &GuardVariableMap[D.getDeclContext()];
   1736 
   1737   unsigned BitIndex;
   1738   if (D.isStaticLocal() && D.isExternallyVisible()) {
   1739     // Externally visible variables have to be numbered in Sema to properly
   1740     // handle unreachable VarDecls.
   1741     BitIndex = getContext().getStaticLocalNumber(&D);
   1742     assert(BitIndex > 0);
   1743     BitIndex--;
   1744   } else {
   1745     // Non-externally visible variables are numbered here in CodeGen.
   1746     BitIndex = GI->BitIndex++;
   1747   }
   1748 
   1749   if (BitIndex >= 32) {
   1750     if (D.isExternallyVisible())
   1751       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
   1752     BitIndex %= 32;
   1753     GI->Guard = nullptr;
   1754   }
   1755 
   1756   // Lazily create the i32 bitfield for this function.
   1757   if (!GI->Guard) {
   1758     // Mangle the name for the guard.
   1759     SmallString<256> GuardName;
   1760     {
   1761       llvm::raw_svector_ostream Out(GuardName);
   1762       getMangleContext().mangleStaticGuardVariable(&D, Out);
   1763       Out.flush();
   1764     }
   1765 
   1766     // Create the guard variable with a zero-initializer. Just absorb linkage,
   1767     // visibility and dll storage class from the guarded variable.
   1768     GI->Guard =
   1769         new llvm::GlobalVariable(CGM.getModule(), GuardTy, false,
   1770                                  GV->getLinkage(), Zero, GuardName.str());
   1771     GI->Guard->setVisibility(GV->getVisibility());
   1772     GI->Guard->setDLLStorageClass(GV->getDLLStorageClass());
   1773   } else {
   1774     assert(GI->Guard->getLinkage() == GV->getLinkage() &&
   1775            "static local from the same function had different linkage");
   1776   }
   1777 
   1778   // Pseudo code for the test:
   1779   // if (!(GuardVar & MyGuardBit)) {
   1780   //   GuardVar |= MyGuardBit;
   1781   //   ... initialize the object ...;
   1782   // }
   1783 
   1784   // Test our bit from the guard variable.
   1785   llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex);
   1786   llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard);
   1787   llvm::Value *IsInitialized =
   1788       Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
   1789   llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
   1790   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
   1791   Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
   1792 
   1793   // Set our bit in the guard variable and emit the initializer and add a global
   1794   // destructor if appropriate.
   1795   CGF.EmitBlock(InitBlock);
   1796   Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard);
   1797   CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
   1798   Builder.CreateBr(EndBlock);
   1799 
   1800   // Continue.
   1801   CGF.EmitBlock(EndBlock);
   1802 }
   1803 
   1804 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
   1805   // Null-ness for function memptrs only depends on the first field, which is
   1806   // the function pointer.  The rest don't matter, so we can zero initialize.
   1807   if (MPT->isMemberFunctionPointer())
   1808     return true;
   1809 
   1810   // The virtual base adjustment field is always -1 for null, so if we have one
   1811   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
   1812   // valid field offset.
   1813   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   1814   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   1815   return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
   1816           RD->nullFieldOffsetIsZero());
   1817 }
   1818 
   1819 llvm::Type *
   1820 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
   1821   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   1822   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   1823   llvm::SmallVector<llvm::Type *, 4> fields;
   1824   if (MPT->isMemberFunctionPointer())
   1825     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
   1826   else
   1827     fields.push_back(CGM.IntTy);  // FieldOffset
   1828 
   1829   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
   1830                                           Inheritance))
   1831     fields.push_back(CGM.IntTy);
   1832   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   1833     fields.push_back(CGM.IntTy);
   1834   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   1835     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
   1836 
   1837   if (fields.size() == 1)
   1838     return fields[0];
   1839   return llvm::StructType::get(CGM.getLLVMContext(), fields);
   1840 }
   1841 
   1842 void MicrosoftCXXABI::
   1843 GetNullMemberPointerFields(const MemberPointerType *MPT,
   1844                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
   1845   assert(fields.empty());
   1846   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   1847   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   1848   if (MPT->isMemberFunctionPointer()) {
   1849     // FunctionPointerOrVirtualThunk
   1850     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
   1851   } else {
   1852     if (RD->nullFieldOffsetIsZero())
   1853       fields.push_back(getZeroInt());  // FieldOffset
   1854     else
   1855       fields.push_back(getAllOnesInt());  // FieldOffset
   1856   }
   1857 
   1858   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
   1859                                           Inheritance))
   1860     fields.push_back(getZeroInt());
   1861   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   1862     fields.push_back(getZeroInt());
   1863   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   1864     fields.push_back(getAllOnesInt());
   1865 }
   1866 
   1867 llvm::Constant *
   1868 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
   1869   llvm::SmallVector<llvm::Constant *, 4> fields;
   1870   GetNullMemberPointerFields(MPT, fields);
   1871   if (fields.size() == 1)
   1872     return fields[0];
   1873   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
   1874   assert(Res->getType() == ConvertMemberPointerType(MPT));
   1875   return Res;
   1876 }
   1877 
   1878 llvm::Constant *
   1879 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
   1880                                        bool IsMemberFunction,
   1881                                        const CXXRecordDecl *RD,
   1882                                        CharUnits NonVirtualBaseAdjustment)
   1883 {
   1884   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   1885 
   1886   // Single inheritance class member pointer are represented as scalars instead
   1887   // of aggregates.
   1888   if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
   1889     return FirstField;
   1890 
   1891   llvm::SmallVector<llvm::Constant *, 4> fields;
   1892   fields.push_back(FirstField);
   1893 
   1894   if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
   1895     fields.push_back(llvm::ConstantInt::get(
   1896       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
   1897 
   1898   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
   1899     CharUnits Offs = CharUnits::Zero();
   1900     if (RD->getNumVBases())
   1901       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
   1902     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
   1903   }
   1904 
   1905   // The rest of the fields are adjusted by conversions to a more derived class.
   1906   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   1907     fields.push_back(getZeroInt());
   1908 
   1909   return llvm::ConstantStruct::getAnon(fields);
   1910 }
   1911 
   1912 llvm::Constant *
   1913 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
   1914                                        CharUnits offset) {
   1915   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   1916   llvm::Constant *FirstField =
   1917     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
   1918   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
   1919                                CharUnits::Zero());
   1920 }
   1921 
   1922 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
   1923   return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
   1924 }
   1925 
   1926 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
   1927                                                    QualType MPType) {
   1928   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
   1929   const ValueDecl *MPD = MP.getMemberPointerDecl();
   1930   if (!MPD)
   1931     return EmitNullMemberPointer(MPT);
   1932 
   1933   CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
   1934 
   1935   // FIXME PR15713: Support virtual inheritance paths.
   1936 
   1937   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
   1938     return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
   1939                               ThisAdjustment);
   1940 
   1941   CharUnits FieldOffset =
   1942     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
   1943   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
   1944 }
   1945 
   1946 llvm::Constant *
   1947 MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
   1948                                     const CXXMethodDecl *MD,
   1949                                     CharUnits NonVirtualBaseAdjustment) {
   1950   assert(MD->isInstance() && "Member function must not be static!");
   1951   MD = MD->getCanonicalDecl();
   1952   RD = RD->getMostRecentDecl();
   1953   CodeGenTypes &Types = CGM.getTypes();
   1954 
   1955   llvm::Constant *FirstField;
   1956   if (!MD->isVirtual()) {
   1957     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
   1958     llvm::Type *Ty;
   1959     // Check whether the function has a computable LLVM signature.
   1960     if (Types.isFuncTypeConvertible(FPT)) {
   1961       // The function has a computable LLVM signature; use the correct type.
   1962       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
   1963     } else {
   1964       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
   1965       // function type is incomplete.
   1966       Ty = CGM.PtrDiffTy;
   1967     }
   1968     FirstField = CGM.GetAddrOfFunction(MD, Ty);
   1969     FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
   1970   } else {
   1971     MicrosoftVTableContext::MethodVFTableLocation ML =
   1972         CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
   1973     if (MD->isVariadic()) {
   1974       CGM.ErrorUnsupported(MD, "pointer to variadic virtual member function");
   1975       FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
   1976     } else if (!CGM.getTypes().isFuncTypeConvertible(
   1977                     MD->getType()->castAs<FunctionType>())) {
   1978       CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
   1979                                "incomplete return or parameter type");
   1980       FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
   1981     } else if (ML.VBase) {
   1982       CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding "
   1983                                "member function in virtual base class");
   1984       FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
   1985     } else {
   1986       llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
   1987       FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
   1988       // Include the vfptr adjustment if the method is in a non-primary vftable.
   1989       NonVirtualBaseAdjustment += ML.VFPtrOffset;
   1990     }
   1991   }
   1992 
   1993   // The rest of the fields are common with data member pointers.
   1994   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
   1995                                NonVirtualBaseAdjustment);
   1996 }
   1997 
   1998 /// Member pointers are the same if they're either bitwise identical *or* both
   1999 /// null.  Null-ness for function members is determined by the first field,
   2000 /// while for data member pointers we must compare all fields.
   2001 llvm::Value *
   2002 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
   2003                                              llvm::Value *L,
   2004                                              llvm::Value *R,
   2005                                              const MemberPointerType *MPT,
   2006                                              bool Inequality) {
   2007   CGBuilderTy &Builder = CGF.Builder;
   2008 
   2009   // Handle != comparisons by switching the sense of all boolean operations.
   2010   llvm::ICmpInst::Predicate Eq;
   2011   llvm::Instruction::BinaryOps And, Or;
   2012   if (Inequality) {
   2013     Eq = llvm::ICmpInst::ICMP_NE;
   2014     And = llvm::Instruction::Or;
   2015     Or = llvm::Instruction::And;
   2016   } else {
   2017     Eq = llvm::ICmpInst::ICMP_EQ;
   2018     And = llvm::Instruction::And;
   2019     Or = llvm::Instruction::Or;
   2020   }
   2021 
   2022   // If this is a single field member pointer (single inheritance), this is a
   2023   // single icmp.
   2024   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2025   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2026   if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
   2027                                          Inheritance))
   2028     return Builder.CreateICmp(Eq, L, R);
   2029 
   2030   // Compare the first field.
   2031   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
   2032   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
   2033   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
   2034 
   2035   // Compare everything other than the first field.
   2036   llvm::Value *Res = nullptr;
   2037   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
   2038   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
   2039     llvm::Value *LF = Builder.CreateExtractValue(L, I);
   2040     llvm::Value *RF = Builder.CreateExtractValue(R, I);
   2041     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
   2042     if (Res)
   2043       Res = Builder.CreateBinOp(And, Res, Cmp);
   2044     else
   2045       Res = Cmp;
   2046   }
   2047 
   2048   // Check if the first field is 0 if this is a function pointer.
   2049   if (MPT->isMemberFunctionPointer()) {
   2050     // (l1 == r1 && ...) || l0 == 0
   2051     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
   2052     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
   2053     Res = Builder.CreateBinOp(Or, Res, IsZero);
   2054   }
   2055 
   2056   // Combine the comparison of the first field, which must always be true for
   2057   // this comparison to succeeed.
   2058   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
   2059 }
   2060 
   2061 llvm::Value *
   2062 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
   2063                                             llvm::Value *MemPtr,
   2064                                             const MemberPointerType *MPT) {
   2065   CGBuilderTy &Builder = CGF.Builder;
   2066   llvm::SmallVector<llvm::Constant *, 4> fields;
   2067   // We only need one field for member functions.
   2068   if (MPT->isMemberFunctionPointer())
   2069     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
   2070   else
   2071     GetNullMemberPointerFields(MPT, fields);
   2072   assert(!fields.empty());
   2073   llvm::Value *FirstField = MemPtr;
   2074   if (MemPtr->getType()->isStructTy())
   2075     FirstField = Builder.CreateExtractValue(MemPtr, 0);
   2076   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
   2077 
   2078   // For function member pointers, we only need to test the function pointer
   2079   // field.  The other fields if any can be garbage.
   2080   if (MPT->isMemberFunctionPointer())
   2081     return Res;
   2082 
   2083   // Otherwise, emit a series of compares and combine the results.
   2084   for (int I = 1, E = fields.size(); I < E; ++I) {
   2085     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
   2086     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
   2087     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
   2088   }
   2089   return Res;
   2090 }
   2091 
   2092 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
   2093                                                   llvm::Constant *Val) {
   2094   // Function pointers are null if the pointer in the first field is null.
   2095   if (MPT->isMemberFunctionPointer()) {
   2096     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
   2097       Val->getAggregateElement(0U) : Val;
   2098     return FirstField->isNullValue();
   2099   }
   2100 
   2101   // If it's not a function pointer and it's zero initializable, we can easily
   2102   // check zero.
   2103   if (isZeroInitializable(MPT) && Val->isNullValue())
   2104     return true;
   2105 
   2106   // Otherwise, break down all the fields for comparison.  Hopefully these
   2107   // little Constants are reused, while a big null struct might not be.
   2108   llvm::SmallVector<llvm::Constant *, 4> Fields;
   2109   GetNullMemberPointerFields(MPT, Fields);
   2110   if (Fields.size() == 1) {
   2111     assert(Val->getType()->isIntegerTy());
   2112     return Val == Fields[0];
   2113   }
   2114 
   2115   unsigned I, E;
   2116   for (I = 0, E = Fields.size(); I != E; ++I) {
   2117     if (Val->getAggregateElement(I) != Fields[I])
   2118       break;
   2119   }
   2120   return I == E;
   2121 }
   2122 
   2123 llvm::Value *
   2124 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
   2125                                          llvm::Value *This,
   2126                                          llvm::Value *VBPtrOffset,
   2127                                          llvm::Value *VBTableOffset,
   2128                                          llvm::Value **VBPtrOut) {
   2129   CGBuilderTy &Builder = CGF.Builder;
   2130   // Load the vbtable pointer from the vbptr in the instance.
   2131   This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
   2132   llvm::Value *VBPtr =
   2133     Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
   2134   if (VBPtrOut) *VBPtrOut = VBPtr;
   2135   VBPtr = Builder.CreateBitCast(VBPtr, CGM.Int8PtrTy->getPointerTo(0));
   2136   llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
   2137 
   2138   // Load an i32 offset from the vb-table.
   2139   llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableOffset);
   2140   VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
   2141   return Builder.CreateLoad(VBaseOffs, "vbase_offs");
   2142 }
   2143 
   2144 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
   2145 // it.
   2146 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
   2147     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
   2148     llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
   2149   CGBuilderTy &Builder = CGF.Builder;
   2150   Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
   2151   llvm::BasicBlock *OriginalBB = nullptr;
   2152   llvm::BasicBlock *SkipAdjustBB = nullptr;
   2153   llvm::BasicBlock *VBaseAdjustBB = nullptr;
   2154 
   2155   // In the unspecified inheritance model, there might not be a vbtable at all,
   2156   // in which case we need to skip the virtual base lookup.  If there is a
   2157   // vbtable, the first entry is a no-op entry that gives back the original
   2158   // base, so look for a virtual base adjustment offset of zero.
   2159   if (VBPtrOffset) {
   2160     OriginalBB = Builder.GetInsertBlock();
   2161     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
   2162     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
   2163     llvm::Value *IsVirtual =
   2164       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
   2165                            "memptr.is_vbase");
   2166     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
   2167     CGF.EmitBlock(VBaseAdjustBB);
   2168   }
   2169 
   2170   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
   2171   // know the vbptr offset.
   2172   if (!VBPtrOffset) {
   2173     CharUnits offs = CharUnits::Zero();
   2174     if (!RD->hasDefinition()) {
   2175       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
   2176       unsigned DiagID = Diags.getCustomDiagID(
   2177           DiagnosticsEngine::Error,
   2178           "member pointer representation requires a "
   2179           "complete class type for %0 to perform this expression");
   2180       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
   2181     } else if (RD->getNumVBases())
   2182       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
   2183     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
   2184   }
   2185   llvm::Value *VBPtr = nullptr;
   2186   llvm::Value *VBaseOffs =
   2187     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
   2188   llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
   2189 
   2190   // Merge control flow with the case where we didn't have to adjust.
   2191   if (VBaseAdjustBB) {
   2192     Builder.CreateBr(SkipAdjustBB);
   2193     CGF.EmitBlock(SkipAdjustBB);
   2194     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
   2195     Phi->addIncoming(Base, OriginalBB);
   2196     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
   2197     return Phi;
   2198   }
   2199   return AdjustedBase;
   2200 }
   2201 
   2202 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
   2203     CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
   2204     const MemberPointerType *MPT) {
   2205   assert(MPT->isMemberDataPointer());
   2206   unsigned AS = Base->getType()->getPointerAddressSpace();
   2207   llvm::Type *PType =
   2208       CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
   2209   CGBuilderTy &Builder = CGF.Builder;
   2210   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2211   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2212 
   2213   // Extract the fields we need, regardless of model.  We'll apply them if we
   2214   // have them.
   2215   llvm::Value *FieldOffset = MemPtr;
   2216   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
   2217   llvm::Value *VBPtrOffset = nullptr;
   2218   if (MemPtr->getType()->isStructTy()) {
   2219     // We need to extract values.
   2220     unsigned I = 0;
   2221     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
   2222     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   2223       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
   2224     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   2225       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
   2226   }
   2227 
   2228   if (VirtualBaseAdjustmentOffset) {
   2229     Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
   2230                              VBPtrOffset);
   2231   }
   2232 
   2233   // Cast to char*.
   2234   Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
   2235 
   2236   // Apply the offset, which we assume is non-null.
   2237   llvm::Value *Addr =
   2238     Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
   2239 
   2240   // Cast the address to the appropriate pointer type, adopting the address
   2241   // space of the base pointer.
   2242   return Builder.CreateBitCast(Addr, PType);
   2243 }
   2244 
   2245 static MSInheritanceAttr::Spelling
   2246 getInheritanceFromMemptr(const MemberPointerType *MPT) {
   2247   return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
   2248 }
   2249 
   2250 llvm::Value *
   2251 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
   2252                                              const CastExpr *E,
   2253                                              llvm::Value *Src) {
   2254   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
   2255          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
   2256          E->getCastKind() == CK_ReinterpretMemberPointer);
   2257 
   2258   // Use constant emission if we can.
   2259   if (isa<llvm::Constant>(Src))
   2260     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
   2261 
   2262   // We may be adding or dropping fields from the member pointer, so we need
   2263   // both types and the inheritance models of both records.
   2264   const MemberPointerType *SrcTy =
   2265     E->getSubExpr()->getType()->castAs<MemberPointerType>();
   2266   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
   2267   bool IsFunc = SrcTy->isMemberFunctionPointer();
   2268 
   2269   // If the classes use the same null representation, reinterpret_cast is a nop.
   2270   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
   2271   if (IsReinterpret && IsFunc)
   2272     return Src;
   2273 
   2274   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
   2275   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
   2276   if (IsReinterpret &&
   2277       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
   2278     return Src;
   2279 
   2280   CGBuilderTy &Builder = CGF.Builder;
   2281 
   2282   // Branch past the conversion if Src is null.
   2283   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
   2284   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
   2285 
   2286   // C++ 5.2.10p9: The null member pointer value is converted to the null member
   2287   //   pointer value of the destination type.
   2288   if (IsReinterpret) {
   2289     // For reinterpret casts, sema ensures that src and dst are both functions
   2290     // or data and have the same size, which means the LLVM types should match.
   2291     assert(Src->getType() == DstNull->getType());
   2292     return Builder.CreateSelect(IsNotNull, Src, DstNull);
   2293   }
   2294 
   2295   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
   2296   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
   2297   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
   2298   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
   2299   CGF.EmitBlock(ConvertBB);
   2300 
   2301   // Decompose src.
   2302   llvm::Value *FirstField = Src;
   2303   llvm::Value *NonVirtualBaseAdjustment = nullptr;
   2304   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
   2305   llvm::Value *VBPtrOffset = nullptr;
   2306   MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
   2307   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
   2308     // We need to extract values.
   2309     unsigned I = 0;
   2310     FirstField = Builder.CreateExtractValue(Src, I++);
   2311     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
   2312       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
   2313     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
   2314       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
   2315     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
   2316       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
   2317   }
   2318 
   2319   // For data pointers, we adjust the field offset directly.  For functions, we
   2320   // have a separate field.
   2321   llvm::Constant *Adj = getMemberPointerAdjustment(E);
   2322   if (Adj) {
   2323     Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
   2324     llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
   2325     bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
   2326     if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
   2327       NVAdjustField = getZeroInt();
   2328     if (isDerivedToBase)
   2329       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
   2330     else
   2331       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
   2332   }
   2333 
   2334   // FIXME PR15713: Support conversions through virtually derived classes.
   2335 
   2336   // Recompose dst from the null struct and the adjusted fields from src.
   2337   MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
   2338   llvm::Value *Dst;
   2339   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
   2340     Dst = FirstField;
   2341   } else {
   2342     Dst = llvm::UndefValue::get(DstNull->getType());
   2343     unsigned Idx = 0;
   2344     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
   2345     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
   2346       Dst = Builder.CreateInsertValue(
   2347         Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
   2348     if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
   2349       Dst = Builder.CreateInsertValue(
   2350         Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
   2351     if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
   2352       Dst = Builder.CreateInsertValue(
   2353         Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
   2354   }
   2355   Builder.CreateBr(ContinueBB);
   2356 
   2357   // In the continuation, choose between DstNull and Dst.
   2358   CGF.EmitBlock(ContinueBB);
   2359   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
   2360   Phi->addIncoming(DstNull, OriginalBB);
   2361   Phi->addIncoming(Dst, ConvertBB);
   2362   return Phi;
   2363 }
   2364 
   2365 llvm::Constant *
   2366 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
   2367                                              llvm::Constant *Src) {
   2368   const MemberPointerType *SrcTy =
   2369     E->getSubExpr()->getType()->castAs<MemberPointerType>();
   2370   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
   2371 
   2372   // If src is null, emit a new null for dst.  We can't return src because dst
   2373   // might have a new representation.
   2374   if (MemberPointerConstantIsNull(SrcTy, Src))
   2375     return EmitNullMemberPointer(DstTy);
   2376 
   2377   // We don't need to do anything for reinterpret_casts of non-null member
   2378   // pointers.  We should only get here when the two type representations have
   2379   // the same size.
   2380   if (E->getCastKind() == CK_ReinterpretMemberPointer)
   2381     return Src;
   2382 
   2383   MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
   2384   MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
   2385 
   2386   // Decompose src.
   2387   llvm::Constant *FirstField = Src;
   2388   llvm::Constant *NonVirtualBaseAdjustment = nullptr;
   2389   llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
   2390   llvm::Constant *VBPtrOffset = nullptr;
   2391   bool IsFunc = SrcTy->isMemberFunctionPointer();
   2392   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
   2393     // We need to extract values.
   2394     unsigned I = 0;
   2395     FirstField = Src->getAggregateElement(I++);
   2396     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
   2397       NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
   2398     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
   2399       VBPtrOffset = Src->getAggregateElement(I++);
   2400     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
   2401       VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
   2402   }
   2403 
   2404   // For data pointers, we adjust the field offset directly.  For functions, we
   2405   // have a separate field.
   2406   llvm::Constant *Adj = getMemberPointerAdjustment(E);
   2407   if (Adj) {
   2408     Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
   2409     llvm::Constant *&NVAdjustField =
   2410       IsFunc ? NonVirtualBaseAdjustment : FirstField;
   2411     bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
   2412     if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
   2413       NVAdjustField = getZeroInt();
   2414     if (IsDerivedToBase)
   2415       NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
   2416     else
   2417       NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
   2418   }
   2419 
   2420   // FIXME PR15713: Support conversions through virtually derived classes.
   2421 
   2422   // Recompose dst from the null struct and the adjusted fields from src.
   2423   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
   2424     return FirstField;
   2425 
   2426   llvm::SmallVector<llvm::Constant *, 4> Fields;
   2427   Fields.push_back(FirstField);
   2428   if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
   2429     Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
   2430   if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
   2431     Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
   2432   if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
   2433     Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
   2434   return llvm::ConstantStruct::getAnon(Fields);
   2435 }
   2436 
   2437 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
   2438     CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
   2439     llvm::Value *MemPtr, const MemberPointerType *MPT) {
   2440   assert(MPT->isMemberFunctionPointer());
   2441   const FunctionProtoType *FPT =
   2442     MPT->getPointeeType()->castAs<FunctionProtoType>();
   2443   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2444   llvm::FunctionType *FTy =
   2445     CGM.getTypes().GetFunctionType(
   2446       CGM.getTypes().arrangeCXXMethodType(RD, FPT));
   2447   CGBuilderTy &Builder = CGF.Builder;
   2448 
   2449   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2450 
   2451   // Extract the fields we need, regardless of model.  We'll apply them if we
   2452   // have them.
   2453   llvm::Value *FunctionPointer = MemPtr;
   2454   llvm::Value *NonVirtualBaseAdjustment = nullptr;
   2455   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
   2456   llvm::Value *VBPtrOffset = nullptr;
   2457   if (MemPtr->getType()->isStructTy()) {
   2458     // We need to extract values.
   2459     unsigned I = 0;
   2460     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
   2461     if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
   2462       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
   2463     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   2464       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
   2465     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   2466       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
   2467   }
   2468 
   2469   if (VirtualBaseAdjustmentOffset) {
   2470     This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
   2471                              VBPtrOffset);
   2472   }
   2473 
   2474   if (NonVirtualBaseAdjustment) {
   2475     // Apply the adjustment and cast back to the original struct type.
   2476     llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
   2477     Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
   2478     This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
   2479   }
   2480 
   2481   return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
   2482 }
   2483 
   2484 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
   2485   return new MicrosoftCXXABI(CGM);
   2486 }
   2487 
   2488 // MS RTTI Overview:
   2489 // The run time type information emitted by cl.exe contains 5 distinct types of
   2490 // structures.  Many of them reference each other.
   2491 //
   2492 // TypeInfo:  Static classes that are returned by typeid.
   2493 //
   2494 // CompleteObjectLocator:  Referenced by vftables.  They contain information
   2495 //   required for dynamic casting, including OffsetFromTop.  They also contain
   2496 //   a reference to the TypeInfo for the type and a reference to the
   2497 //   CompleteHierarchyDescriptor for the type.
   2498 //
   2499 // ClassHieararchyDescriptor: Contains information about a class hierarchy.
   2500 //   Used during dynamic_cast to walk a class hierarchy.  References a base
   2501 //   class array and the size of said array.
   2502 //
   2503 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
   2504 //   somewhat of a misnomer because the most derived class is also in the list
   2505 //   as well as multiple copies of virtual bases (if they occur multiple times
   2506 //   in the hiearchy.)  The BaseClassArray contains one BaseClassDescriptor for
   2507 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
   2508 //   not declare a specific llvm type for BaseClassArray, it's merely an array
   2509 //   of BaseClassDescriptor pointers.
   2510 //
   2511 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
   2512 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
   2513 //   BaseClassArray is.  It contains information about a class within a
   2514 //   hierarchy such as: is this base is ambiguous and what is its offset in the
   2515 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
   2516 //   mangled into them so they can be aggressively deduplicated by the linker.
   2517 
   2518 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
   2519   StringRef MangledName("\01??_7type_info@@6B@");
   2520   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
   2521     return VTable;
   2522   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
   2523                                   /*Constant=*/true,
   2524                                   llvm::GlobalVariable::ExternalLinkage,
   2525                                   /*Initializer=*/nullptr, MangledName);
   2526 }
   2527 
   2528 namespace {
   2529 
   2530 /// \brief A Helper struct that stores information about a class in a class
   2531 /// hierarchy.  The information stored in these structs struct is used during
   2532 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
   2533 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
   2534 // implicit depth first pre-order tree connectivity.  getFirstChild and
   2535 // getNextSibling allow us to walk the tree efficiently.
   2536 struct MSRTTIClass {
   2537   enum {
   2538     IsPrivateOnPath = 1 | 8,
   2539     IsAmbiguous = 2,
   2540     IsPrivate = 4,
   2541     IsVirtual = 16,
   2542     HasHierarchyDescriptor = 64
   2543   };
   2544   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
   2545   uint32_t initialize(const MSRTTIClass *Parent,
   2546                       const CXXBaseSpecifier *Specifier);
   2547 
   2548   MSRTTIClass *getFirstChild() { return this + 1; }
   2549   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
   2550     return Child + 1 + Child->NumBases;
   2551   }
   2552 
   2553   const CXXRecordDecl *RD, *VirtualRoot;
   2554   uint32_t Flags, NumBases, OffsetInVBase;
   2555 };
   2556 
   2557 /// \brief Recursively initialize the base class array.
   2558 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
   2559                                  const CXXBaseSpecifier *Specifier) {
   2560   Flags = HasHierarchyDescriptor;
   2561   if (!Parent) {
   2562     VirtualRoot = nullptr;
   2563     OffsetInVBase = 0;
   2564   } else {
   2565     if (Specifier->getAccessSpecifier() != AS_public)
   2566       Flags |= IsPrivate | IsPrivateOnPath;
   2567     if (Specifier->isVirtual()) {
   2568       Flags |= IsVirtual;
   2569       VirtualRoot = RD;
   2570       OffsetInVBase = 0;
   2571     } else {
   2572       if (Parent->Flags & IsPrivateOnPath)
   2573         Flags |= IsPrivateOnPath;
   2574       VirtualRoot = Parent->VirtualRoot;
   2575       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
   2576           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
   2577     }
   2578   }
   2579   NumBases = 0;
   2580   MSRTTIClass *Child = getFirstChild();
   2581   for (const CXXBaseSpecifier &Base : RD->bases()) {
   2582     NumBases += Child->initialize(this, &Base) + 1;
   2583     Child = getNextChild(Child);
   2584   }
   2585   return NumBases;
   2586 }
   2587 
   2588 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
   2589   switch (Ty->getLinkage()) {
   2590   case NoLinkage:
   2591   case InternalLinkage:
   2592   case UniqueExternalLinkage:
   2593     return llvm::GlobalValue::InternalLinkage;
   2594 
   2595   case VisibleNoLinkage:
   2596   case ExternalLinkage:
   2597     return llvm::GlobalValue::LinkOnceODRLinkage;
   2598   }
   2599   llvm_unreachable("Invalid linkage!");
   2600 }
   2601 
   2602 /// \brief An ephemeral helper class for building MS RTTI types.  It caches some
   2603 /// calls to the module and information about the most derived class in a
   2604 /// hierarchy.
   2605 struct MSRTTIBuilder {
   2606   enum {
   2607     HasBranchingHierarchy = 1,
   2608     HasVirtualBranchingHierarchy = 2,
   2609     HasAmbiguousBases = 4
   2610   };
   2611 
   2612   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
   2613       : CGM(ABI.CGM), Context(CGM.getContext()),
   2614         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
   2615         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
   2616         ABI(ABI) {}
   2617 
   2618   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
   2619   llvm::GlobalVariable *
   2620   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
   2621   llvm::GlobalVariable *getClassHierarchyDescriptor();
   2622   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
   2623 
   2624   CodeGenModule &CGM;
   2625   ASTContext &Context;
   2626   llvm::LLVMContext &VMContext;
   2627   llvm::Module &Module;
   2628   const CXXRecordDecl *RD;
   2629   llvm::GlobalVariable::LinkageTypes Linkage;
   2630   MicrosoftCXXABI &ABI;
   2631 };
   2632 
   2633 } // namespace
   2634 
   2635 /// \brief Recursively serializes a class hierarchy in pre-order depth first
   2636 /// order.
   2637 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
   2638                                     const CXXRecordDecl *RD) {
   2639   Classes.push_back(MSRTTIClass(RD));
   2640   for (const CXXBaseSpecifier &Base : RD->bases())
   2641     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
   2642 }
   2643 
   2644 /// \brief Find ambiguity among base classes.
   2645 static void
   2646 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
   2647   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
   2648   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
   2649   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
   2650   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
   2651     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
   2652         !VirtualBases.insert(Class->RD)) {
   2653       Class = MSRTTIClass::getNextChild(Class);
   2654       continue;
   2655     }
   2656     if (!UniqueBases.insert(Class->RD))
   2657       AmbiguousBases.insert(Class->RD);
   2658     Class++;
   2659   }
   2660   if (AmbiguousBases.empty())
   2661     return;
   2662   for (MSRTTIClass &Class : Classes)
   2663     if (AmbiguousBases.count(Class.RD))
   2664       Class.Flags |= MSRTTIClass::IsAmbiguous;
   2665 }
   2666 
   2667 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
   2668   SmallString<256> MangledName;
   2669   {
   2670     llvm::raw_svector_ostream Out(MangledName);
   2671     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
   2672   }
   2673 
   2674   // Check to see if we've already declared this ClassHierarchyDescriptor.
   2675   if (auto CHD = Module.getNamedGlobal(MangledName))
   2676     return CHD;
   2677 
   2678   // Serialize the class hierarchy and initialize the CHD Fields.
   2679   SmallVector<MSRTTIClass, 8> Classes;
   2680   serializeClassHierarchy(Classes, RD);
   2681   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
   2682   detectAmbiguousBases(Classes);
   2683   int Flags = 0;
   2684   for (auto Class : Classes) {
   2685     if (Class.RD->getNumBases() > 1)
   2686       Flags |= HasBranchingHierarchy;
   2687     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
   2688     // believe the field isn't actually used.
   2689     if (Class.Flags & MSRTTIClass::IsAmbiguous)
   2690       Flags |= HasAmbiguousBases;
   2691   }
   2692   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
   2693     Flags |= HasVirtualBranchingHierarchy;
   2694   // These gep indices are used to get the address of the first element of the
   2695   // base class array.
   2696   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
   2697                                llvm::ConstantInt::get(CGM.IntTy, 0)};
   2698 
   2699   // Forward-declare the class hierarchy descriptor
   2700   auto Type = ABI.getClassHierarchyDescriptorType();
   2701   auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
   2702                                       /*Initializer=*/nullptr,
   2703                                       MangledName.c_str());
   2704 
   2705   // Initialize the base class ClassHierarchyDescriptor.
   2706   llvm::Constant *Fields[] = {
   2707       llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
   2708       llvm::ConstantInt::get(CGM.IntTy, Flags),
   2709       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
   2710       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
   2711           getBaseClassArray(Classes),
   2712           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
   2713   };
   2714   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
   2715   return CHD;
   2716 }
   2717 
   2718 llvm::GlobalVariable *
   2719 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
   2720   SmallString<256> MangledName;
   2721   {
   2722     llvm::raw_svector_ostream Out(MangledName);
   2723     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
   2724   }
   2725 
   2726   // Forward-declare the base class array.
   2727   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
   2728   // mode) bytes of padding.  We provide a pointer sized amount of padding by
   2729   // adding +1 to Classes.size().  The sections have pointer alignment and are
   2730   // marked pick-any so it shouldn't matter.
   2731   llvm::Type *PtrType = ABI.getImageRelativeType(
   2732       ABI.getBaseClassDescriptorType()->getPointerTo());
   2733   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
   2734   auto *BCA = new llvm::GlobalVariable(
   2735       Module, ArrType,
   2736       /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str());
   2737 
   2738   // Initialize the BaseClassArray.
   2739   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
   2740   for (MSRTTIClass &Class : Classes)
   2741     BaseClassArrayData.push_back(
   2742         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
   2743   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
   2744   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
   2745   return BCA;
   2746 }
   2747 
   2748 llvm::GlobalVariable *
   2749 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
   2750   // Compute the fields for the BaseClassDescriptor.  They are computed up front
   2751   // because they are mangled into the name of the object.
   2752   uint32_t OffsetInVBTable = 0;
   2753   int32_t VBPtrOffset = -1;
   2754   if (Class.VirtualRoot) {
   2755     auto &VTableContext = CGM.getMicrosoftVTableContext();
   2756     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
   2757     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
   2758   }
   2759 
   2760   SmallString<256> MangledName;
   2761   {
   2762     llvm::raw_svector_ostream Out(MangledName);
   2763     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
   2764         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
   2765         Class.Flags, Out);
   2766   }
   2767 
   2768   // Check to see if we've already declared this object.
   2769   if (auto BCD = Module.getNamedGlobal(MangledName))
   2770     return BCD;
   2771 
   2772   // Forward-declare the base class descriptor.
   2773   auto Type = ABI.getBaseClassDescriptorType();
   2774   auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
   2775                                       /*Initializer=*/nullptr,
   2776                                       MangledName.c_str());
   2777 
   2778   // Initialize the BaseClassDescriptor.
   2779   llvm::Constant *Fields[] = {
   2780       ABI.getImageRelativeConstant(
   2781           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
   2782       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
   2783       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
   2784       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
   2785       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
   2786       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
   2787       ABI.getImageRelativeConstant(
   2788           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
   2789   };
   2790   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
   2791   return BCD;
   2792 }
   2793 
   2794 llvm::GlobalVariable *
   2795 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
   2796   SmallString<256> MangledName;
   2797   {
   2798     llvm::raw_svector_ostream Out(MangledName);
   2799     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
   2800   }
   2801 
   2802   // Check to see if we've already computed this complete object locator.
   2803   if (auto COL = Module.getNamedGlobal(MangledName))
   2804     return COL;
   2805 
   2806   // Compute the fields of the complete object locator.
   2807   int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
   2808   int VFPtrOffset = 0;
   2809   // The offset includes the vtordisp if one exists.
   2810   if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
   2811     if (Context.getASTRecordLayout(RD)
   2812       .getVBaseOffsetsMap()
   2813       .find(VBase)
   2814       ->second.hasVtorDisp())
   2815       VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
   2816 
   2817   // Forward-declare the complete object locator.
   2818   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
   2819   auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
   2820     /*Initializer=*/nullptr, MangledName.c_str());
   2821 
   2822   // Initialize the CompleteObjectLocator.
   2823   llvm::Constant *Fields[] = {
   2824       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
   2825       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
   2826       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
   2827       ABI.getImageRelativeConstant(
   2828           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
   2829       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
   2830       ABI.getImageRelativeConstant(COL),
   2831   };
   2832   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
   2833   if (!ABI.isImageRelative())
   2834     FieldsRef = FieldsRef.drop_back();
   2835   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
   2836   return COL;
   2837 }
   2838 
   2839 /// \brief Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
   2840 /// llvm::GlobalVariable * because different type descriptors have different
   2841 /// types, and need to be abstracted.  They are abstracting by casting the
   2842 /// address to an Int8PtrTy.
   2843 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
   2844   SmallString<256> MangledName, TypeInfoString;
   2845   {
   2846     llvm::raw_svector_ostream Out(MangledName);
   2847     getMangleContext().mangleCXXRTTI(Type, Out);
   2848   }
   2849 
   2850   // Check to see if we've already declared this TypeDescriptor.
   2851   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
   2852     return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
   2853 
   2854   // Compute the fields for the TypeDescriptor.
   2855   {
   2856     llvm::raw_svector_ostream Out(TypeInfoString);
   2857     getMangleContext().mangleCXXRTTIName(Type, Out);
   2858   }
   2859 
   2860   // Declare and initialize the TypeDescriptor.
   2861   llvm::Constant *Fields[] = {
   2862     getTypeInfoVTable(CGM),                        // VFPtr
   2863     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
   2864     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
   2865   llvm::StructType *TypeDescriptorType =
   2866       getTypeDescriptorType(TypeInfoString);
   2867   return llvm::ConstantExpr::getBitCast(
   2868       new llvm::GlobalVariable(
   2869           CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
   2870           getLinkageForRTTI(Type),
   2871           llvm::ConstantStruct::get(TypeDescriptorType, Fields),
   2872           MangledName.c_str()),
   2873       CGM.Int8PtrTy);
   2874 }
   2875 
   2876 /// \brief Gets or a creates a Microsoft CompleteObjectLocator.
   2877 llvm::GlobalVariable *
   2878 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
   2879                                             const VPtrInfo *Info) {
   2880   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
   2881 }
   2882