1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 11 // The class in this file generates structures that follow the Microsoft 12 // Visual C++ ABI, which is actually not very well documented at all outside 13 // of Microsoft. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CGCXXABI.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/VTableBuilder.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringSet.h" 25 #include "llvm/IR/CallSite.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 namespace { 31 32 /// Holds all the vbtable globals for a given class. 33 struct VBTableGlobals { 34 const VPtrInfoVector *VBTables; 35 SmallVector<llvm::GlobalVariable *, 2> Globals; 36 }; 37 38 class MicrosoftCXXABI : public CGCXXABI { 39 public: 40 MicrosoftCXXABI(CodeGenModule &CGM) 41 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 42 ClassHierarchyDescriptorType(nullptr), 43 CompleteObjectLocatorType(nullptr) {} 44 45 bool HasThisReturn(GlobalDecl GD) const override; 46 47 bool classifyReturnType(CGFunctionInfo &FI) const override; 48 49 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 50 51 bool isSRetParameterAfterThis() const override { return true; } 52 53 StringRef GetPureVirtualCallName() override { return "_purecall"; } 54 // No known support for deleted functions in MSVC yet, so this choice is 55 // arbitrary. 56 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 57 58 bool isInlineInitializedStaticDataMemberLinkOnce() override { return true; } 59 60 llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, 61 llvm::Value *ptr, 62 QualType type) override; 63 64 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 65 const VPtrInfo *Info); 66 67 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 68 69 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 70 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 71 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 72 llvm::Value *ThisPtr, 73 llvm::Type *StdTypeInfoPtrTy) override; 74 75 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 76 QualType SrcRecordTy) override; 77 78 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 79 QualType SrcRecordTy, QualType DestTy, 80 QualType DestRecordTy, 81 llvm::BasicBlock *CastEnd) override; 82 83 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value, 84 QualType SrcRecordTy, 85 QualType DestTy) override; 86 87 bool EmitBadCastCall(CodeGenFunction &CGF) override; 88 89 llvm::Value * 90 GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This, 91 const CXXRecordDecl *ClassDecl, 92 const CXXRecordDecl *BaseClassDecl) override; 93 94 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 95 CXXCtorType Type, CanQualType &ResTy, 96 SmallVectorImpl<CanQualType> &ArgTys) override; 97 98 llvm::BasicBlock * 99 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 100 const CXXRecordDecl *RD) override; 101 102 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 103 const CXXRecordDecl *RD) override; 104 105 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 106 107 // Background on MSVC destructors 108 // ============================== 109 // 110 // Both Itanium and MSVC ABIs have destructor variants. The variant names 111 // roughly correspond in the following way: 112 // Itanium Microsoft 113 // Base -> no name, just ~Class 114 // Complete -> vbase destructor 115 // Deleting -> scalar deleting destructor 116 // vector deleting destructor 117 // 118 // The base and complete destructors are the same as in Itanium, although the 119 // complete destructor does not accept a VTT parameter when there are virtual 120 // bases. A separate mechanism involving vtordisps is used to ensure that 121 // virtual methods of destroyed subobjects are not called. 122 // 123 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 124 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 125 // pointer points to an array. The scalar deleting destructor assumes that 126 // bit 2 is zero, and therefore does not contain a loop. 127 // 128 // For virtual destructors, only one entry is reserved in the vftable, and it 129 // always points to the vector deleting destructor. The vector deleting 130 // destructor is the most general, so it can be used to destroy objects in 131 // place, delete single heap objects, or delete arrays. 132 // 133 // A TU defining a non-inline destructor is only guaranteed to emit a base 134 // destructor, and all of the other variants are emitted on an as-needed basis 135 // in COMDATs. Because a non-base destructor can be emitted in a TU that 136 // lacks a definition for the destructor, non-base destructors must always 137 // delegate to or alias the base destructor. 138 139 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 140 CXXDtorType Type, 141 CanQualType &ResTy, 142 SmallVectorImpl<CanQualType> &ArgTys) override; 143 144 /// Non-base dtors should be emitted as delegating thunks in this ABI. 145 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 146 CXXDtorType DT) const override { 147 return DT != Dtor_Base; 148 } 149 150 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 151 152 const CXXRecordDecl * 153 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 154 MD = MD->getCanonicalDecl(); 155 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 156 MicrosoftVTableContext::MethodVFTableLocation ML = 157 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 158 // The vbases might be ordered differently in the final overrider object 159 // and the complete object, so the "this" argument may sometimes point to 160 // memory that has no particular type (e.g. past the complete object). 161 // In this case, we just use a generic pointer type. 162 // FIXME: might want to have a more precise type in the non-virtual 163 // multiple inheritance case. 164 if (ML.VBase || !ML.VFPtrOffset.isZero()) 165 return nullptr; 166 } 167 return MD->getParent(); 168 } 169 170 llvm::Value * 171 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 172 llvm::Value *This, 173 bool VirtualCall) override; 174 175 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 176 FunctionArgList &Params) override; 177 178 llvm::Value *adjustThisParameterInVirtualFunctionPrologue( 179 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override; 180 181 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 182 183 unsigned addImplicitConstructorArgs(CodeGenFunction &CGF, 184 const CXXConstructorDecl *D, 185 CXXCtorType Type, bool ForVirtualBase, 186 bool Delegating, 187 CallArgList &Args) override; 188 189 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 190 CXXDtorType Type, bool ForVirtualBase, 191 bool Delegating, llvm::Value *This) override; 192 193 void emitVTableDefinitions(CodeGenVTables &CGVT, 194 const CXXRecordDecl *RD) override; 195 196 llvm::Value *getVTableAddressPointInStructor( 197 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 198 BaseSubobject Base, const CXXRecordDecl *NearestVBase, 199 bool &NeedsVirtualOffset) override; 200 201 llvm::Constant * 202 getVTableAddressPointForConstExpr(BaseSubobject Base, 203 const CXXRecordDecl *VTableClass) override; 204 205 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 206 CharUnits VPtrOffset) override; 207 208 llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 209 llvm::Value *This, 210 llvm::Type *Ty) override; 211 212 void EmitVirtualDestructorCall(CodeGenFunction &CGF, 213 const CXXDestructorDecl *Dtor, 214 CXXDtorType DtorType, SourceLocation CallLoc, 215 llvm::Value *This) override; 216 217 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 218 CallArgList &CallArgs) override { 219 assert(GD.getDtorType() == Dtor_Deleting && 220 "Only deleting destructor thunks are available in this ABI"); 221 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 222 CGM.getContext().IntTy); 223 } 224 225 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 226 227 llvm::GlobalVariable * 228 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 229 llvm::GlobalVariable::LinkageTypes Linkage); 230 231 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 232 llvm::GlobalVariable *GV) const; 233 234 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 235 GlobalDecl GD, bool ReturnAdjustment) override { 236 // Never dllimport/dllexport thunks. 237 Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 238 239 GVALinkage Linkage = 240 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 241 242 if (Linkage == GVA_Internal) 243 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 244 else if (ReturnAdjustment) 245 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 246 else 247 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 248 } 249 250 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This, 251 const ThisAdjustment &TA) override; 252 253 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret, 254 const ReturnAdjustment &RA) override; 255 256 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 257 llvm::GlobalVariable *DeclPtr, 258 bool PerformInit) override; 259 260 // ==== Notes on array cookies ========= 261 // 262 // MSVC seems to only use cookies when the class has a destructor; a 263 // two-argument usual array deallocation function isn't sufficient. 264 // 265 // For example, this code prints "100" and "1": 266 // struct A { 267 // char x; 268 // void *operator new[](size_t sz) { 269 // printf("%u\n", sz); 270 // return malloc(sz); 271 // } 272 // void operator delete[](void *p, size_t sz) { 273 // printf("%u\n", sz); 274 // free(p); 275 // } 276 // }; 277 // int main() { 278 // A *p = new A[100]; 279 // delete[] p; 280 // } 281 // Whereas it prints "104" and "104" if you give A a destructor. 282 283 bool requiresArrayCookie(const CXXDeleteExpr *expr, 284 QualType elementType) override; 285 bool requiresArrayCookie(const CXXNewExpr *expr) override; 286 CharUnits getArrayCookieSizeImpl(QualType type) override; 287 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 288 llvm::Value *NewPtr, 289 llvm::Value *NumElements, 290 const CXXNewExpr *expr, 291 QualType ElementType) override; 292 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 293 llvm::Value *allocPtr, 294 CharUnits cookieSize) override; 295 296 friend struct MSRTTIBuilder; 297 298 bool isImageRelative() const { 299 return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64; 300 } 301 302 // 5 routines for constructing the llvm types for MS RTTI structs. 303 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 304 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 305 TDTypeName += llvm::utostr(TypeInfoString.size()); 306 llvm::StructType *&TypeDescriptorType = 307 TypeDescriptorTypeMap[TypeInfoString.size()]; 308 if (TypeDescriptorType) 309 return TypeDescriptorType; 310 llvm::Type *FieldTypes[] = { 311 CGM.Int8PtrPtrTy, 312 CGM.Int8PtrTy, 313 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 314 TypeDescriptorType = 315 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 316 return TypeDescriptorType; 317 } 318 319 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 320 if (!isImageRelative()) 321 return PtrType; 322 return CGM.IntTy; 323 } 324 325 llvm::StructType *getBaseClassDescriptorType() { 326 if (BaseClassDescriptorType) 327 return BaseClassDescriptorType; 328 llvm::Type *FieldTypes[] = { 329 getImageRelativeType(CGM.Int8PtrTy), 330 CGM.IntTy, 331 CGM.IntTy, 332 CGM.IntTy, 333 CGM.IntTy, 334 CGM.IntTy, 335 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 336 }; 337 BaseClassDescriptorType = llvm::StructType::create( 338 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 339 return BaseClassDescriptorType; 340 } 341 342 llvm::StructType *getClassHierarchyDescriptorType() { 343 if (ClassHierarchyDescriptorType) 344 return ClassHierarchyDescriptorType; 345 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 346 ClassHierarchyDescriptorType = llvm::StructType::create( 347 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 348 llvm::Type *FieldTypes[] = { 349 CGM.IntTy, 350 CGM.IntTy, 351 CGM.IntTy, 352 getImageRelativeType( 353 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 354 }; 355 ClassHierarchyDescriptorType->setBody(FieldTypes); 356 return ClassHierarchyDescriptorType; 357 } 358 359 llvm::StructType *getCompleteObjectLocatorType() { 360 if (CompleteObjectLocatorType) 361 return CompleteObjectLocatorType; 362 CompleteObjectLocatorType = llvm::StructType::create( 363 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 364 llvm::Type *FieldTypes[] = { 365 CGM.IntTy, 366 CGM.IntTy, 367 CGM.IntTy, 368 getImageRelativeType(CGM.Int8PtrTy), 369 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 370 getImageRelativeType(CompleteObjectLocatorType), 371 }; 372 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 373 if (!isImageRelative()) 374 FieldTypesRef = FieldTypesRef.drop_back(); 375 CompleteObjectLocatorType->setBody(FieldTypesRef); 376 return CompleteObjectLocatorType; 377 } 378 379 llvm::GlobalVariable *getImageBase() { 380 StringRef Name = "__ImageBase"; 381 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 382 return GV; 383 384 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 385 /*isConstant=*/true, 386 llvm::GlobalValue::ExternalLinkage, 387 /*Initializer=*/nullptr, Name); 388 } 389 390 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 391 if (!isImageRelative()) 392 return PtrVal; 393 394 llvm::Constant *ImageBaseAsInt = 395 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 396 llvm::Constant *PtrValAsInt = 397 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 398 llvm::Constant *Diff = 399 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 400 /*HasNUW=*/true, /*HasNSW=*/true); 401 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 402 } 403 404 private: 405 MicrosoftMangleContext &getMangleContext() { 406 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 407 } 408 409 llvm::Constant *getZeroInt() { 410 return llvm::ConstantInt::get(CGM.IntTy, 0); 411 } 412 413 llvm::Constant *getAllOnesInt() { 414 return llvm::Constant::getAllOnesValue(CGM.IntTy); 415 } 416 417 llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) { 418 return C ? C : getZeroInt(); 419 } 420 421 llvm::Value *getValueOrZeroInt(llvm::Value *C) { 422 return C ? C : getZeroInt(); 423 } 424 425 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD); 426 427 void 428 GetNullMemberPointerFields(const MemberPointerType *MPT, 429 llvm::SmallVectorImpl<llvm::Constant *> &fields); 430 431 /// \brief Shared code for virtual base adjustment. Returns the offset from 432 /// the vbptr to the virtual base. Optionally returns the address of the 433 /// vbptr itself. 434 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 435 llvm::Value *Base, 436 llvm::Value *VBPtrOffset, 437 llvm::Value *VBTableOffset, 438 llvm::Value **VBPtr = nullptr); 439 440 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 441 llvm::Value *Base, 442 int32_t VBPtrOffset, 443 int32_t VBTableOffset, 444 llvm::Value **VBPtr = nullptr) { 445 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 446 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 447 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 448 } 449 450 /// \brief Performs a full virtual base adjustment. Used to dereference 451 /// pointers to members of virtual bases. 452 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 453 const CXXRecordDecl *RD, llvm::Value *Base, 454 llvm::Value *VirtualBaseAdjustmentOffset, 455 llvm::Value *VBPtrOffset /* optional */); 456 457 /// \brief Emits a full member pointer with the fields common to data and 458 /// function member pointers. 459 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 460 bool IsMemberFunction, 461 const CXXRecordDecl *RD, 462 CharUnits NonVirtualBaseAdjustment); 463 464 llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD, 465 const CXXMethodDecl *MD, 466 CharUnits NonVirtualBaseAdjustment); 467 468 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 469 llvm::Constant *MP); 470 471 /// \brief - Initialize all vbptrs of 'this' with RD as the complete type. 472 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 473 474 /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables(). 475 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 476 477 /// \brief Generate a thunk for calling a virtual member function MD. 478 llvm::Function *EmitVirtualMemPtrThunk( 479 const CXXMethodDecl *MD, 480 const MicrosoftVTableContext::MethodVFTableLocation &ML); 481 482 public: 483 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 484 485 bool isZeroInitializable(const MemberPointerType *MPT) override; 486 487 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 488 489 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 490 CharUnits offset) override; 491 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override; 492 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 493 494 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 495 llvm::Value *L, 496 llvm::Value *R, 497 const MemberPointerType *MPT, 498 bool Inequality) override; 499 500 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 501 llvm::Value *MemPtr, 502 const MemberPointerType *MPT) override; 503 504 llvm::Value * 505 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 506 llvm::Value *Base, llvm::Value *MemPtr, 507 const MemberPointerType *MPT) override; 508 509 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 510 const CastExpr *E, 511 llvm::Value *Src) override; 512 513 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 514 llvm::Constant *Src) override; 515 516 llvm::Value * 517 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 518 llvm::Value *&This, llvm::Value *MemPtr, 519 const MemberPointerType *MPT) override; 520 521 private: 522 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 523 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 524 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 525 /// \brief All the vftables that have been referenced. 526 VFTablesMapTy VFTablesMap; 527 VTablesMapTy VTablesMap; 528 529 /// \brief This set holds the record decls we've deferred vtable emission for. 530 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 531 532 533 /// \brief All the vbtables which have been referenced. 534 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 535 536 /// Info on the global variable used to guard initialization of static locals. 537 /// The BitIndex field is only used for externally invisible declarations. 538 struct GuardInfo { 539 GuardInfo() : Guard(nullptr), BitIndex(0) {} 540 llvm::GlobalVariable *Guard; 541 unsigned BitIndex; 542 }; 543 544 /// Map from DeclContext to the current guard variable. We assume that the 545 /// AST is visited in source code order. 546 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 547 548 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 549 llvm::StructType *BaseClassDescriptorType; 550 llvm::StructType *ClassHierarchyDescriptorType; 551 llvm::StructType *CompleteObjectLocatorType; 552 }; 553 554 } 555 556 CGCXXABI::RecordArgABI 557 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 558 switch (CGM.getTarget().getTriple().getArch()) { 559 default: 560 // FIXME: Implement for other architectures. 561 return RAA_Default; 562 563 case llvm::Triple::x86: 564 // All record arguments are passed in memory on x86. Decide whether to 565 // construct the object directly in argument memory, or to construct the 566 // argument elsewhere and copy the bytes during the call. 567 568 // If C++ prohibits us from making a copy, construct the arguments directly 569 // into argument memory. 570 if (!canCopyArgument(RD)) 571 return RAA_DirectInMemory; 572 573 // Otherwise, construct the argument into a temporary and copy the bytes 574 // into the outgoing argument memory. 575 return RAA_Default; 576 577 case llvm::Triple::x86_64: 578 // Win64 passes objects with non-trivial copy ctors indirectly. 579 if (RD->hasNonTrivialCopyConstructor()) 580 return RAA_Indirect; 581 582 // Win64 passes objects larger than 8 bytes indirectly. 583 if (getContext().getTypeSize(RD->getTypeForDecl()) > 64) 584 return RAA_Indirect; 585 586 // We have a trivial copy constructor or no copy constructors, but we have 587 // to make sure it isn't deleted. 588 bool CopyDeleted = false; 589 for (const CXXConstructorDecl *CD : RD->ctors()) { 590 if (CD->isCopyConstructor()) { 591 assert(CD->isTrivial()); 592 // We had at least one undeleted trivial copy ctor. Return directly. 593 if (!CD->isDeleted()) 594 return RAA_Default; 595 CopyDeleted = true; 596 } 597 } 598 599 // The trivial copy constructor was deleted. Return indirectly. 600 if (CopyDeleted) 601 return RAA_Indirect; 602 603 // There were no copy ctors. Return in RAX. 604 return RAA_Default; 605 } 606 607 llvm_unreachable("invalid enum"); 608 } 609 610 llvm::Value *MicrosoftCXXABI::adjustToCompleteObject(CodeGenFunction &CGF, 611 llvm::Value *ptr, 612 QualType type) { 613 // FIXME: implement 614 return ptr; 615 } 616 617 /// \brief Gets the offset to the virtual base that contains the vfptr for 618 /// MS-ABI polymorphic types. 619 static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF, 620 const CXXRecordDecl *RD, 621 llvm::Value *Value) { 622 const ASTContext &Context = RD->getASTContext(); 623 for (const CXXBaseSpecifier &Base : RD->vbases()) 624 if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl()) 625 .hasExtendableVFPtr()) 626 return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset( 627 CGF, Value, RD, Base.getType()->getAsCXXRecordDecl()); 628 llvm_unreachable("One of our vbases should be polymorphic."); 629 } 630 631 static std::pair<llvm::Value *, llvm::Value *> 632 performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value, 633 QualType SrcRecordTy) { 634 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); 635 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 636 637 if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 638 return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 639 640 // Perform a base adjustment. 641 llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value); 642 Value = CGF.Builder.CreateInBoundsGEP(Value, Offset); 643 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 644 return std::make_pair(Value, Offset); 645 } 646 647 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 648 QualType SrcRecordTy) { 649 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 650 return IsDeref && 651 !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 652 } 653 654 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF, 655 llvm::Value *Argument) { 656 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 657 llvm::FunctionType *FTy = 658 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 659 llvm::Value *Args[] = {Argument}; 660 llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 661 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 662 } 663 664 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 665 llvm::CallSite Call = 666 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 667 Call.setDoesNotReturn(); 668 CGF.Builder.CreateUnreachable(); 669 } 670 671 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 672 QualType SrcRecordTy, 673 llvm::Value *ThisPtr, 674 llvm::Type *StdTypeInfoPtrTy) { 675 llvm::Value *Offset; 676 std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 677 return CGF.Builder.CreateBitCast( 678 emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy); 679 } 680 681 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 682 QualType SrcRecordTy) { 683 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 684 return SrcIsPtr && 685 !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 686 } 687 688 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 689 CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy, 690 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 691 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 692 693 llvm::Value *SrcRTTI = 694 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 695 llvm::Value *DestRTTI = 696 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 697 698 llvm::Value *Offset; 699 std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy); 700 701 // PVOID __RTDynamicCast( 702 // PVOID inptr, 703 // LONG VfDelta, 704 // PVOID SrcType, 705 // PVOID TargetType, 706 // BOOL isReference) 707 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 708 CGF.Int8PtrTy, CGF.Int32Ty}; 709 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction( 710 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 711 "__RTDynamicCast"); 712 llvm::Value *Args[] = { 713 Value, Offset, SrcRTTI, DestRTTI, 714 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 715 Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction(); 716 return CGF.Builder.CreateBitCast(Value, DestLTy); 717 } 718 719 llvm::Value * 720 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value, 721 QualType SrcRecordTy, 722 QualType DestTy) { 723 llvm::Value *Offset; 724 std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy); 725 726 // PVOID __RTCastToVoid( 727 // PVOID inptr) 728 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 729 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction( 730 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 731 "__RTCastToVoid"); 732 llvm::Value *Args[] = {Value}; 733 return CGF.EmitRuntimeCall(Function, Args); 734 } 735 736 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 737 return false; 738 } 739 740 llvm::Value * 741 MicrosoftCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, 742 llvm::Value *This, 743 const CXXRecordDecl *ClassDecl, 744 const CXXRecordDecl *BaseClassDecl) { 745 int64_t VBPtrChars = 746 getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 747 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 748 CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy); 749 CharUnits VBTableChars = 750 IntSize * 751 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 752 llvm::Value *VBTableOffset = 753 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 754 755 llvm::Value *VBPtrToNewBase = 756 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 757 VBPtrToNewBase = 758 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 759 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 760 } 761 762 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 763 return isa<CXXConstructorDecl>(GD.getDecl()); 764 } 765 766 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 767 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 768 if (!RD) 769 return false; 770 771 if (FI.isInstanceMethod()) { 772 // If it's an instance method, aggregates are always returned indirectly via 773 // the second parameter. 774 FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false); 775 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 776 return true; 777 } else if (!RD->isPOD()) { 778 // If it's a free function, non-POD types are returned indirectly. 779 FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false); 780 return true; 781 } 782 783 // Otherwise, use the C ABI rules. 784 return false; 785 } 786 787 void MicrosoftCXXABI::BuildConstructorSignature( 788 const CXXConstructorDecl *Ctor, CXXCtorType Type, CanQualType &ResTy, 789 SmallVectorImpl<CanQualType> &ArgTys) { 790 791 // All parameters are already in place except is_most_derived, which goes 792 // after 'this' if it's variadic and last if it's not. 793 794 const CXXRecordDecl *Class = Ctor->getParent(); 795 const FunctionProtoType *FPT = Ctor->getType()->castAs<FunctionProtoType>(); 796 if (Class->getNumVBases()) { 797 if (FPT->isVariadic()) 798 ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy); 799 else 800 ArgTys.push_back(CGM.getContext().IntTy); 801 } 802 } 803 804 llvm::BasicBlock * 805 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 806 const CXXRecordDecl *RD) { 807 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 808 assert(IsMostDerivedClass && 809 "ctor for a class with virtual bases must have an implicit parameter"); 810 llvm::Value *IsCompleteObject = 811 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 812 813 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 814 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 815 CGF.Builder.CreateCondBr(IsCompleteObject, 816 CallVbaseCtorsBB, SkipVbaseCtorsBB); 817 818 CGF.EmitBlock(CallVbaseCtorsBB); 819 820 // Fill in the vbtable pointers here. 821 EmitVBPtrStores(CGF, RD); 822 823 // CGF will put the base ctor calls in this basic block for us later. 824 825 return SkipVbaseCtorsBB; 826 } 827 828 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 829 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 830 // In most cases, an override for a vbase virtual method can adjust 831 // the "this" parameter by applying a constant offset. 832 // However, this is not enough while a constructor or a destructor of some 833 // class X is being executed if all the following conditions are met: 834 // - X has virtual bases, (1) 835 // - X overrides a virtual method M of a vbase Y, (2) 836 // - X itself is a vbase of the most derived class. 837 // 838 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 839 // which holds the extra amount of "this" adjustment we must do when we use 840 // the X vftables (i.e. during X ctor or dtor). 841 // Outside the ctors and dtors, the values of vtorDisps are zero. 842 843 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 844 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 845 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 846 CGBuilderTy &Builder = CGF.Builder; 847 848 unsigned AS = 849 cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace(); 850 llvm::Value *Int8This = nullptr; // Initialize lazily. 851 852 for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end(); 853 I != E; ++I) { 854 if (!I->second.hasVtorDisp()) 855 continue; 856 857 llvm::Value *VBaseOffset = 858 GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first); 859 // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset() 860 // just to Trunc back immediately. 861 VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty); 862 uint64_t ConstantVBaseOffset = 863 Layout.getVBaseClassOffset(I->first).getQuantity(); 864 865 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 866 llvm::Value *VtorDispValue = Builder.CreateSub( 867 VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset), 868 "vtordisp.value"); 869 870 if (!Int8This) 871 Int8This = Builder.CreateBitCast(getThisValue(CGF), 872 CGF.Int8Ty->getPointerTo(AS)); 873 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); 874 // vtorDisp is always the 32-bits before the vbase in the class layout. 875 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); 876 VtorDispPtr = Builder.CreateBitCast( 877 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 878 879 Builder.CreateStore(VtorDispValue, VtorDispPtr); 880 } 881 } 882 883 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 884 // There's only one constructor type in this ABI. 885 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 886 } 887 888 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 889 const CXXRecordDecl *RD) { 890 llvm::Value *ThisInt8Ptr = 891 CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8"); 892 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 893 894 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 895 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 896 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I]; 897 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 898 const ASTRecordLayout &SubobjectLayout = 899 CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr); 900 CharUnits Offs = VBT->NonVirtualOffset; 901 Offs += SubobjectLayout.getVBPtrOffset(); 902 if (VBT->getVBaseWithVPtr()) 903 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 904 llvm::Value *VBPtr = 905 CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity()); 906 VBPtr = CGF.Builder.CreateBitCast(VBPtr, GV->getType()->getPointerTo(0), 907 "vbptr." + VBT->ReusingBase->getName()); 908 CGF.Builder.CreateStore(GV, VBPtr); 909 } 910 } 911 912 void MicrosoftCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 913 CXXDtorType Type, 914 CanQualType &ResTy, 915 SmallVectorImpl<CanQualType> &ArgTys) { 916 // 'this' is already in place 917 918 // TODO: 'for base' flag 919 920 if (Type == Dtor_Deleting) { 921 // The scalar deleting destructor takes an implicit int parameter. 922 ArgTys.push_back(CGM.getContext().IntTy); 923 } 924 } 925 926 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 927 // The TU defining a dtor is only guaranteed to emit a base destructor. All 928 // other destructor variants are delegating thunks. 929 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 930 } 931 932 CharUnits 933 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 934 GD = GD.getCanonicalDecl(); 935 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 936 937 GlobalDecl LookupGD = GD; 938 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 939 // Complete destructors take a pointer to the complete object as a 940 // parameter, thus don't need this adjustment. 941 if (GD.getDtorType() == Dtor_Complete) 942 return CharUnits(); 943 944 // There's no Dtor_Base in vftable but it shares the this adjustment with 945 // the deleting one, so look it up instead. 946 LookupGD = GlobalDecl(DD, Dtor_Deleting); 947 } 948 949 MicrosoftVTableContext::MethodVFTableLocation ML = 950 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 951 CharUnits Adjustment = ML.VFPtrOffset; 952 953 // Normal virtual instance methods need to adjust from the vfptr that first 954 // defined the virtual method to the virtual base subobject, but destructors 955 // do not. The vector deleting destructor thunk applies this adjustment for 956 // us if necessary. 957 if (isa<CXXDestructorDecl>(MD)) 958 Adjustment = CharUnits::Zero(); 959 960 if (ML.VBase) { 961 const ASTRecordLayout &DerivedLayout = 962 CGM.getContext().getASTRecordLayout(MD->getParent()); 963 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 964 } 965 966 return Adjustment; 967 } 968 969 llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 970 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) { 971 if (!VirtualCall) { 972 // If the call of a virtual function is not virtual, we just have to 973 // compensate for the adjustment the virtual function does in its prologue. 974 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 975 if (Adjustment.isZero()) 976 return This; 977 978 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 979 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS); 980 This = CGF.Builder.CreateBitCast(This, charPtrTy); 981 assert(Adjustment.isPositive()); 982 return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity()); 983 } 984 985 GD = GD.getCanonicalDecl(); 986 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 987 988 GlobalDecl LookupGD = GD; 989 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 990 // Complete dtors take a pointer to the complete object, 991 // thus don't need adjustment. 992 if (GD.getDtorType() == Dtor_Complete) 993 return This; 994 995 // There's only Dtor_Deleting in vftable but it shares the this adjustment 996 // with the base one, so look up the deleting one instead. 997 LookupGD = GlobalDecl(DD, Dtor_Deleting); 998 } 999 MicrosoftVTableContext::MethodVFTableLocation ML = 1000 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1001 1002 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1003 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS); 1004 CharUnits StaticOffset = ML.VFPtrOffset; 1005 1006 // Base destructors expect 'this' to point to the beginning of the base 1007 // subobject, not the first vfptr that happens to contain the virtual dtor. 1008 // However, we still need to apply the virtual base adjustment. 1009 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1010 StaticOffset = CharUnits::Zero(); 1011 1012 if (ML.VBase) { 1013 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1014 llvm::Value *VBaseOffset = 1015 GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase); 1016 This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset); 1017 } 1018 if (!StaticOffset.isZero()) { 1019 assert(StaticOffset.isPositive()); 1020 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1021 if (ML.VBase) { 1022 // Non-virtual adjustment might result in a pointer outside the allocated 1023 // object, e.g. if the final overrider class is laid out after the virtual 1024 // base that declares a method in the most derived class. 1025 // FIXME: Update the code that emits this adjustment in thunks prologues. 1026 This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity()); 1027 } else { 1028 This = CGF.Builder.CreateConstInBoundsGEP1_32(This, 1029 StaticOffset.getQuantity()); 1030 } 1031 } 1032 return This; 1033 } 1034 1035 static bool IsDeletingDtor(GlobalDecl GD) { 1036 const CXXMethodDecl* MD = cast<CXXMethodDecl>(GD.getDecl()); 1037 if (isa<CXXDestructorDecl>(MD)) { 1038 return GD.getDtorType() == Dtor_Deleting; 1039 } 1040 return false; 1041 } 1042 1043 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1044 QualType &ResTy, 1045 FunctionArgList &Params) { 1046 ASTContext &Context = getContext(); 1047 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1048 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1049 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1050 ImplicitParamDecl *IsMostDerived 1051 = ImplicitParamDecl::Create(Context, nullptr, 1052 CGF.CurGD.getDecl()->getLocation(), 1053 &Context.Idents.get("is_most_derived"), 1054 Context.IntTy); 1055 // The 'most_derived' parameter goes second if the ctor is variadic and last 1056 // if it's not. Dtors can't be variadic. 1057 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1058 if (FPT->isVariadic()) 1059 Params.insert(Params.begin() + 1, IsMostDerived); 1060 else 1061 Params.push_back(IsMostDerived); 1062 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1063 } else if (IsDeletingDtor(CGF.CurGD)) { 1064 ImplicitParamDecl *ShouldDelete 1065 = ImplicitParamDecl::Create(Context, nullptr, 1066 CGF.CurGD.getDecl()->getLocation(), 1067 &Context.Idents.get("should_call_delete"), 1068 Context.IntTy); 1069 Params.push_back(ShouldDelete); 1070 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1071 } 1072 } 1073 1074 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue( 1075 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) { 1076 // In this ABI, every virtual function takes a pointer to one of the 1077 // subobjects that first defines it as the 'this' parameter, rather than a 1078 // pointer to the final overrider subobject. Thus, we need to adjust it back 1079 // to the final overrider subobject before use. 1080 // See comments in the MicrosoftVFTableContext implementation for the details. 1081 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1082 if (Adjustment.isZero()) 1083 return This; 1084 1085 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1086 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1087 *thisTy = This->getType(); 1088 1089 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1090 assert(Adjustment.isPositive()); 1091 This = 1092 CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity()); 1093 return CGF.Builder.CreateBitCast(This, thisTy); 1094 } 1095 1096 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1097 EmitThisParam(CGF); 1098 1099 /// If this is a function that the ABI specifies returns 'this', initialize 1100 /// the return slot to 'this' at the start of the function. 1101 /// 1102 /// Unlike the setting of return types, this is done within the ABI 1103 /// implementation instead of by clients of CGCXXABI because: 1104 /// 1) getThisValue is currently protected 1105 /// 2) in theory, an ABI could implement 'this' returns some other way; 1106 /// HasThisReturn only specifies a contract, not the implementation 1107 if (HasThisReturn(CGF.CurGD)) 1108 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1109 1110 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1111 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1112 assert(getStructorImplicitParamDecl(CGF) && 1113 "no implicit parameter for a constructor with virtual bases?"); 1114 getStructorImplicitParamValue(CGF) 1115 = CGF.Builder.CreateLoad( 1116 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1117 "is_most_derived"); 1118 } 1119 1120 if (IsDeletingDtor(CGF.CurGD)) { 1121 assert(getStructorImplicitParamDecl(CGF) && 1122 "no implicit parameter for a deleting destructor?"); 1123 getStructorImplicitParamValue(CGF) 1124 = CGF.Builder.CreateLoad( 1125 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1126 "should_call_delete"); 1127 } 1128 } 1129 1130 unsigned MicrosoftCXXABI::addImplicitConstructorArgs( 1131 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1132 bool ForVirtualBase, bool Delegating, CallArgList &Args) { 1133 assert(Type == Ctor_Complete || Type == Ctor_Base); 1134 1135 // Check if we need a 'most_derived' parameter. 1136 if (!D->getParent()->getNumVBases()) 1137 return 0; 1138 1139 // Add the 'most_derived' argument second if we are variadic or last if not. 1140 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1141 llvm::Value *MostDerivedArg = 1142 llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1143 RValue RV = RValue::get(MostDerivedArg); 1144 if (MostDerivedArg) { 1145 if (FPT->isVariadic()) 1146 Args.insert(Args.begin() + 1, 1147 CallArg(RV, getContext().IntTy, /*needscopy=*/false)); 1148 else 1149 Args.add(RV, getContext().IntTy); 1150 } 1151 1152 return 1; // Added one arg. 1153 } 1154 1155 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1156 const CXXDestructorDecl *DD, 1157 CXXDtorType Type, bool ForVirtualBase, 1158 bool Delegating, llvm::Value *This) { 1159 llvm::Value *Callee = CGM.GetAddrOfCXXDestructor(DD, Type); 1160 1161 if (DD->isVirtual()) { 1162 assert(Type != CXXDtorType::Dtor_Deleting && 1163 "The deleting destructor should only be called via a virtual call"); 1164 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1165 This, false); 1166 } 1167 1168 // FIXME: Provide a source location here. 1169 CGF.EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This, 1170 /*ImplicitParam=*/nullptr, 1171 /*ImplicitParamTy=*/QualType(), nullptr, nullptr); 1172 } 1173 1174 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1175 const CXXRecordDecl *RD) { 1176 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1177 VPtrInfoVector VFPtrs = VFTContext.getVFPtrOffsets(RD); 1178 1179 for (VPtrInfo *Info : VFPtrs) { 1180 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1181 if (VTable->hasInitializer()) 1182 continue; 1183 1184 llvm::Constant *RTTI = getMSCompleteObjectLocator(RD, Info); 1185 1186 const VTableLayout &VTLayout = 1187 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1188 llvm::Constant *Init = CGVT.CreateVTableInitializer( 1189 RD, VTLayout.vtable_component_begin(), 1190 VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(), 1191 VTLayout.getNumVTableThunks(), RTTI); 1192 1193 VTable->setInitializer(Init); 1194 } 1195 } 1196 1197 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1198 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1199 const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) { 1200 NeedsVirtualOffset = (NearestVBase != nullptr); 1201 1202 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1203 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1204 llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID]; 1205 if (!VTableAddressPoint) { 1206 assert(Base.getBase()->getNumVBases() && 1207 !CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1208 } 1209 return VTableAddressPoint; 1210 } 1211 1212 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1213 const CXXRecordDecl *RD, const VPtrInfo *VFPtr, 1214 SmallString<256> &Name) { 1215 llvm::raw_svector_ostream Out(Name); 1216 MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out); 1217 } 1218 1219 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1220 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1221 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1222 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1223 llvm::GlobalValue *VFTable = VFTablesMap[ID]; 1224 assert(VFTable && "Couldn't find a vftable for the given base?"); 1225 return VFTable; 1226 } 1227 1228 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1229 CharUnits VPtrOffset) { 1230 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1231 // shouldn't be used in the given record type. We want to cache this result in 1232 // VFTablesMap, thus a simple zero check is not sufficient. 1233 VFTableIdTy ID(RD, VPtrOffset); 1234 VTablesMapTy::iterator I; 1235 bool Inserted; 1236 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1237 if (!Inserted) 1238 return I->second; 1239 1240 llvm::GlobalVariable *&VTable = I->second; 1241 1242 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1243 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1244 1245 if (DeferredVFTables.insert(RD)) { 1246 // We haven't processed this record type before. 1247 // Queue up this v-table for possible deferred emission. 1248 CGM.addDeferredVTable(RD); 1249 1250 #ifndef NDEBUG 1251 // Create all the vftables at once in order to make sure each vftable has 1252 // a unique mangled name. 1253 llvm::StringSet<> ObservedMangledNames; 1254 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1255 SmallString<256> Name; 1256 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name); 1257 if (!ObservedMangledNames.insert(Name.str())) 1258 llvm_unreachable("Already saw this mangling before?"); 1259 } 1260 #endif 1261 } 1262 1263 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1264 if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset) 1265 continue; 1266 SmallString<256> VFTableName; 1267 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName); 1268 StringRef VTableName = VFTableName; 1269 1270 uint64_t NumVTableSlots = 1271 VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC) 1272 .getNumVTableComponents(); 1273 llvm::GlobalValue::LinkageTypes VTableLinkage = 1274 llvm::GlobalValue::ExternalLinkage; 1275 llvm::ArrayType *VTableType = 1276 llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots); 1277 if (getContext().getLangOpts().RTTIData) { 1278 VTableLinkage = llvm::GlobalValue::PrivateLinkage; 1279 VTableName = ""; 1280 } 1281 1282 VTable = CGM.getModule().getNamedGlobal(VFTableName); 1283 if (!VTable) { 1284 // Create a backing variable for the contents of VTable. The VTable may 1285 // or may not include space for a pointer to RTTI data. 1286 llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable( 1287 CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage, 1288 /*Initializer=*/nullptr, VTableName); 1289 VTable->setUnnamedAddr(true); 1290 1291 // Only insert a pointer into the VFTable for RTTI data if we are not 1292 // importing it. We never reference the RTTI data directly so there is no 1293 // need to make room for it. 1294 if (getContext().getLangOpts().RTTIData && 1295 !RD->hasAttr<DLLImportAttr>()) { 1296 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 1297 llvm::ConstantInt::get(CGM.IntTy, 1)}; 1298 // Create a GEP which points just after the first entry in the VFTable, 1299 // this should be the location of the first virtual method. 1300 llvm::Constant *VTableGEP = 1301 llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices); 1302 // The symbol for the VFTable is an alias to the GEP. It is 1303 // transparent, to other modules, what the nature of this symbol is; all 1304 // that matters is that the alias be the address of the first virtual 1305 // method. 1306 VFTable = llvm::GlobalAlias::create( 1307 cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(), 1308 /*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage, 1309 VFTableName.str(), VTableGEP, &CGM.getModule()); 1310 } else { 1311 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1312 // be referencing any RTTI data. The GlobalVariable will end up being 1313 // an appropriate definition of the VFTable. 1314 VTable->setName(VFTableName.str()); 1315 } 1316 1317 VFTable->setUnnamedAddr(true); 1318 if (RD->hasAttr<DLLImportAttr>()) 1319 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1320 else if (RD->hasAttr<DLLExportAttr>()) 1321 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1322 1323 llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD); 1324 if (VFTable != VTable) { 1325 if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) { 1326 // AvailableExternally implies that we grabbed the data from another 1327 // executable. No need to stick the alias in a Comdat. 1328 } else if (llvm::GlobalValue::isLocalLinkage(VFTableLinkage)) { 1329 // If it's local, it means that the virtual function table can't be 1330 // referenced in another translation unit. No need to stick the alias 1331 // in a Comdat. 1332 } else if (llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) || 1333 llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) { 1334 // The alias is going to be dropped into a Comdat, no need to make it 1335 // weak. 1336 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1337 llvm::Comdat *C = 1338 CGM.getModule().getOrInsertComdat(VFTable->getName()); 1339 // We must indicate which VFTable is larger to support linking between 1340 // translation units which do and do not have RTTI data. The largest 1341 // VFTable contains the RTTI data; translation units which reference 1342 // the smaller VFTable always reference it relative to the first 1343 // virtual method. 1344 C->setSelectionKind(llvm::Comdat::Largest); 1345 VTable->setComdat(C); 1346 } else { 1347 llvm_unreachable("unexpected linkage for vftable!"); 1348 } 1349 } 1350 VFTable->setLinkage(VFTableLinkage); 1351 CGM.setGlobalVisibility(VFTable, RD); 1352 VFTablesMap[ID] = VFTable; 1353 } 1354 break; 1355 } 1356 1357 return VTable; 1358 } 1359 1360 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1361 GlobalDecl GD, 1362 llvm::Value *This, 1363 llvm::Type *Ty) { 1364 GD = GD.getCanonicalDecl(); 1365 CGBuilderTy &Builder = CGF.Builder; 1366 1367 Ty = Ty->getPointerTo()->getPointerTo(); 1368 llvm::Value *VPtr = 1369 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1370 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty); 1371 1372 MicrosoftVTableContext::MethodVFTableLocation ML = 1373 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1374 llvm::Value *VFuncPtr = 1375 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1376 return Builder.CreateLoad(VFuncPtr); 1377 } 1378 1379 void MicrosoftCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF, 1380 const CXXDestructorDecl *Dtor, 1381 CXXDtorType DtorType, 1382 SourceLocation CallLoc, 1383 llvm::Value *This) { 1384 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1385 1386 // We have only one destructor in the vftable but can get both behaviors 1387 // by passing an implicit int parameter. 1388 GlobalDecl GD(Dtor, Dtor_Deleting); 1389 const CGFunctionInfo *FInfo = 1390 &CGM.getTypes().arrangeCXXDestructor(Dtor, Dtor_Deleting); 1391 llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1392 llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty); 1393 1394 ASTContext &Context = CGF.getContext(); 1395 llvm::Value *ImplicitParam = 1396 llvm::ConstantInt::get(llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1397 DtorType == Dtor_Deleting); 1398 1399 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1400 CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This, 1401 ImplicitParam, Context.IntTy, nullptr, nullptr); 1402 } 1403 1404 const VBTableGlobals & 1405 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 1406 // At this layer, we can key the cache off of a single class, which is much 1407 // easier than caching each vbtable individually. 1408 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 1409 bool Added; 1410 std::tie(Entry, Added) = 1411 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 1412 VBTableGlobals &VBGlobals = Entry->second; 1413 if (!Added) 1414 return VBGlobals; 1415 1416 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 1417 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 1418 1419 // Cache the globals for all vbtables so we don't have to recompute the 1420 // mangled names. 1421 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 1422 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 1423 E = VBGlobals.VBTables->end(); 1424 I != E; ++I) { 1425 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 1426 } 1427 1428 return VBGlobals; 1429 } 1430 1431 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk( 1432 const CXXMethodDecl *MD, 1433 const MicrosoftVTableContext::MethodVFTableLocation &ML) { 1434 // Calculate the mangled name. 1435 SmallString<256> ThunkName; 1436 llvm::raw_svector_ostream Out(ThunkName); 1437 getMangleContext().mangleVirtualMemPtrThunk(MD, Out); 1438 Out.flush(); 1439 1440 // If the thunk has been generated previously, just return it. 1441 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 1442 return cast<llvm::Function>(GV); 1443 1444 // Create the llvm::Function. 1445 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(MD); 1446 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 1447 llvm::Function *ThunkFn = 1448 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 1449 ThunkName.str(), &CGM.getModule()); 1450 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 1451 1452 ThunkFn->setLinkage(MD->isExternallyVisible() 1453 ? llvm::GlobalValue::LinkOnceODRLinkage 1454 : llvm::GlobalValue::InternalLinkage); 1455 1456 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 1457 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 1458 1459 // Start codegen. 1460 CodeGenFunction CGF(CGM); 1461 CGF.StartThunk(ThunkFn, MD, FnInfo); 1462 1463 // Load the vfptr and then callee from the vftable. The callee should have 1464 // adjusted 'this' so that the vfptr is at offset zero. 1465 llvm::Value *This = CGF.LoadCXXThis(); 1466 llvm::Value *VTable = 1467 CGF.GetVTablePtr(This, ThunkTy->getPointerTo()->getPointerTo()); 1468 llvm::Value *VFuncPtr = 1469 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1470 llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr); 1471 1472 unsigned CallingConv; 1473 CodeGen::AttributeListType AttributeList; 1474 CGM.ConstructAttributeList(FnInfo, MD, AttributeList, CallingConv, true); 1475 llvm::AttributeSet Attrs = 1476 llvm::AttributeSet::get(CGF.getLLVMContext(), AttributeList); 1477 1478 // Do a musttail call with perfect argument forwarding. Any inalloca argument 1479 // will be forwarded in place without any copy. 1480 SmallVector<llvm::Value *, 8> Args; 1481 for (llvm::Argument &A : ThunkFn->args()) 1482 Args.push_back(&A); 1483 llvm::CallInst *Call = CGF.Builder.CreateCall(Callee, Args); 1484 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 1485 Call->setAttributes(Attrs); 1486 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1487 1488 if (Call->getType()->isVoidTy()) 1489 CGF.Builder.CreateRetVoid(); 1490 else 1491 CGF.Builder.CreateRet(Call); 1492 1493 // Finish the function to maintain CodeGenFunction invariants. 1494 // FIXME: Don't emit unreachable code. 1495 CGF.EmitBlock(CGF.createBasicBlock()); 1496 CGF.FinishFunction(); 1497 1498 return ThunkFn; 1499 } 1500 1501 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 1502 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1503 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1504 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I]; 1505 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1506 emitVBTableDefinition(*VBT, RD, GV); 1507 } 1508 } 1509 1510 llvm::GlobalVariable * 1511 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 1512 llvm::GlobalVariable::LinkageTypes Linkage) { 1513 SmallString<256> OutName; 1514 llvm::raw_svector_ostream Out(OutName); 1515 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 1516 Out.flush(); 1517 StringRef Name = OutName.str(); 1518 1519 llvm::ArrayType *VBTableType = 1520 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases()); 1521 1522 assert(!CGM.getModule().getNamedGlobal(Name) && 1523 "vbtable with this name already exists: mangling bug?"); 1524 llvm::GlobalVariable *GV = 1525 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage); 1526 GV->setUnnamedAddr(true); 1527 1528 if (RD->hasAttr<DLLImportAttr>()) 1529 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1530 else if (RD->hasAttr<DLLExportAttr>()) 1531 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1532 1533 return GV; 1534 } 1535 1536 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 1537 const CXXRecordDecl *RD, 1538 llvm::GlobalVariable *GV) const { 1539 const CXXRecordDecl *ReusingBase = VBT.ReusingBase; 1540 1541 assert(RD->getNumVBases() && ReusingBase->getNumVBases() && 1542 "should only emit vbtables for classes with vbtables"); 1543 1544 const ASTRecordLayout &BaseLayout = 1545 CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr); 1546 const ASTRecordLayout &DerivedLayout = 1547 CGM.getContext().getASTRecordLayout(RD); 1548 1549 SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(), 1550 nullptr); 1551 1552 // The offset from ReusingBase's vbptr to itself always leads. 1553 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 1554 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 1555 1556 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 1557 for (const auto &I : ReusingBase->vbases()) { 1558 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 1559 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 1560 assert(!Offset.isNegative()); 1561 1562 // Make it relative to the subobject vbptr. 1563 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 1564 if (VBT.getVBaseWithVPtr()) 1565 CompleteVBPtrOffset += 1566 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 1567 Offset -= CompleteVBPtrOffset; 1568 1569 unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase); 1570 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 1571 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 1572 } 1573 1574 assert(Offsets.size() == 1575 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) 1576 ->getElementType())->getNumElements()); 1577 llvm::ArrayType *VBTableType = 1578 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 1579 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 1580 GV->setInitializer(Init); 1581 1582 // Set the right visibility. 1583 CGM.setGlobalVisibility(GV, RD); 1584 } 1585 1586 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 1587 llvm::Value *This, 1588 const ThisAdjustment &TA) { 1589 if (TA.isEmpty()) 1590 return This; 1591 1592 llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy); 1593 1594 if (!TA.Virtual.isEmpty()) { 1595 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 1596 // Adjust the this argument based on the vtordisp value. 1597 llvm::Value *VtorDispPtr = 1598 CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset); 1599 VtorDispPtr = 1600 CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo()); 1601 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 1602 V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp)); 1603 1604 if (TA.Virtual.Microsoft.VBPtrOffset) { 1605 // If the final overrider is defined in a virtual base other than the one 1606 // that holds the vfptr, we have to use a vtordispex thunk which looks up 1607 // the vbtable of the derived class. 1608 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 1609 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 1610 llvm::Value *VBPtr; 1611 llvm::Value *VBaseOffset = 1612 GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset, 1613 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 1614 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 1615 } 1616 } 1617 1618 if (TA.NonVirtual) { 1619 // Non-virtual adjustment might result in a pointer outside the allocated 1620 // object, e.g. if the final overrider class is laid out after the virtual 1621 // base that declares a method in the most derived class. 1622 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); 1623 } 1624 1625 // Don't need to bitcast back, the call CodeGen will handle this. 1626 return V; 1627 } 1628 1629 llvm::Value * 1630 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret, 1631 const ReturnAdjustment &RA) { 1632 if (RA.isEmpty()) 1633 return Ret; 1634 1635 llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy); 1636 1637 if (RA.Virtual.Microsoft.VBIndex) { 1638 assert(RA.Virtual.Microsoft.VBIndex > 0); 1639 int32_t IntSize = 1640 getContext().getTypeSizeInChars(getContext().IntTy).getQuantity(); 1641 llvm::Value *VBPtr; 1642 llvm::Value *VBaseOffset = 1643 GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset, 1644 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 1645 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 1646 } 1647 1648 if (RA.NonVirtual) 1649 V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual); 1650 1651 // Cast back to the original type. 1652 return CGF.Builder.CreateBitCast(V, Ret->getType()); 1653 } 1654 1655 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 1656 QualType elementType) { 1657 // Microsoft seems to completely ignore the possibility of a 1658 // two-argument usual deallocation function. 1659 return elementType.isDestructedType(); 1660 } 1661 1662 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 1663 // Microsoft seems to completely ignore the possibility of a 1664 // two-argument usual deallocation function. 1665 return expr->getAllocatedType().isDestructedType(); 1666 } 1667 1668 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 1669 // The array cookie is always a size_t; we then pad that out to the 1670 // alignment of the element type. 1671 ASTContext &Ctx = getContext(); 1672 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 1673 Ctx.getTypeAlignInChars(type)); 1674 } 1675 1676 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 1677 llvm::Value *allocPtr, 1678 CharUnits cookieSize) { 1679 unsigned AS = allocPtr->getType()->getPointerAddressSpace(); 1680 llvm::Value *numElementsPtr = 1681 CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS)); 1682 return CGF.Builder.CreateLoad(numElementsPtr); 1683 } 1684 1685 llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 1686 llvm::Value *newPtr, 1687 llvm::Value *numElements, 1688 const CXXNewExpr *expr, 1689 QualType elementType) { 1690 assert(requiresArrayCookie(expr)); 1691 1692 // The size of the cookie. 1693 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 1694 1695 // Compute an offset to the cookie. 1696 llvm::Value *cookiePtr = newPtr; 1697 1698 // Write the number of elements into the appropriate slot. 1699 unsigned AS = newPtr->getType()->getPointerAddressSpace(); 1700 llvm::Value *numElementsPtr 1701 = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS)); 1702 CGF.Builder.CreateStore(numElements, numElementsPtr); 1703 1704 // Finally, compute a pointer to the actual data buffer by skipping 1705 // over the cookie completely. 1706 return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr, 1707 cookieSize.getQuantity()); 1708 } 1709 1710 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 1711 llvm::GlobalVariable *GV, 1712 bool PerformInit) { 1713 // MSVC only uses guards for static locals. 1714 if (!D.isStaticLocal()) { 1715 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 1716 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 1717 CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 1718 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 1719 return; 1720 } 1721 1722 // MSVC always uses an i32 bitfield to guard initialization, which is *not* 1723 // threadsafe. Since the user may be linking in inline functions compiled by 1724 // cl.exe, there's no reason to provide a false sense of security by using 1725 // critical sections here. 1726 1727 if (D.getTLSKind()) 1728 CGM.ErrorUnsupported(&D, "dynamic TLS initialization"); 1729 1730 CGBuilderTy &Builder = CGF.Builder; 1731 llvm::IntegerType *GuardTy = CGF.Int32Ty; 1732 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 1733 1734 // Get the guard variable for this function if we have one already. 1735 GuardInfo *GI = &GuardVariableMap[D.getDeclContext()]; 1736 1737 unsigned BitIndex; 1738 if (D.isStaticLocal() && D.isExternallyVisible()) { 1739 // Externally visible variables have to be numbered in Sema to properly 1740 // handle unreachable VarDecls. 1741 BitIndex = getContext().getStaticLocalNumber(&D); 1742 assert(BitIndex > 0); 1743 BitIndex--; 1744 } else { 1745 // Non-externally visible variables are numbered here in CodeGen. 1746 BitIndex = GI->BitIndex++; 1747 } 1748 1749 if (BitIndex >= 32) { 1750 if (D.isExternallyVisible()) 1751 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 1752 BitIndex %= 32; 1753 GI->Guard = nullptr; 1754 } 1755 1756 // Lazily create the i32 bitfield for this function. 1757 if (!GI->Guard) { 1758 // Mangle the name for the guard. 1759 SmallString<256> GuardName; 1760 { 1761 llvm::raw_svector_ostream Out(GuardName); 1762 getMangleContext().mangleStaticGuardVariable(&D, Out); 1763 Out.flush(); 1764 } 1765 1766 // Create the guard variable with a zero-initializer. Just absorb linkage, 1767 // visibility and dll storage class from the guarded variable. 1768 GI->Guard = 1769 new llvm::GlobalVariable(CGM.getModule(), GuardTy, false, 1770 GV->getLinkage(), Zero, GuardName.str()); 1771 GI->Guard->setVisibility(GV->getVisibility()); 1772 GI->Guard->setDLLStorageClass(GV->getDLLStorageClass()); 1773 } else { 1774 assert(GI->Guard->getLinkage() == GV->getLinkage() && 1775 "static local from the same function had different linkage"); 1776 } 1777 1778 // Pseudo code for the test: 1779 // if (!(GuardVar & MyGuardBit)) { 1780 // GuardVar |= MyGuardBit; 1781 // ... initialize the object ...; 1782 // } 1783 1784 // Test our bit from the guard variable. 1785 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex); 1786 llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard); 1787 llvm::Value *IsInitialized = 1788 Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero); 1789 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 1790 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 1791 Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock); 1792 1793 // Set our bit in the guard variable and emit the initializer and add a global 1794 // destructor if appropriate. 1795 CGF.EmitBlock(InitBlock); 1796 Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard); 1797 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 1798 Builder.CreateBr(EndBlock); 1799 1800 // Continue. 1801 CGF.EmitBlock(EndBlock); 1802 } 1803 1804 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 1805 // Null-ness for function memptrs only depends on the first field, which is 1806 // the function pointer. The rest don't matter, so we can zero initialize. 1807 if (MPT->isMemberFunctionPointer()) 1808 return true; 1809 1810 // The virtual base adjustment field is always -1 for null, so if we have one 1811 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 1812 // valid field offset. 1813 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1814 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 1815 return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) && 1816 RD->nullFieldOffsetIsZero()); 1817 } 1818 1819 llvm::Type * 1820 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 1821 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1822 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 1823 llvm::SmallVector<llvm::Type *, 4> fields; 1824 if (MPT->isMemberFunctionPointer()) 1825 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 1826 else 1827 fields.push_back(CGM.IntTy); // FieldOffset 1828 1829 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), 1830 Inheritance)) 1831 fields.push_back(CGM.IntTy); 1832 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 1833 fields.push_back(CGM.IntTy); 1834 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 1835 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 1836 1837 if (fields.size() == 1) 1838 return fields[0]; 1839 return llvm::StructType::get(CGM.getLLVMContext(), fields); 1840 } 1841 1842 void MicrosoftCXXABI:: 1843 GetNullMemberPointerFields(const MemberPointerType *MPT, 1844 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 1845 assert(fields.empty()); 1846 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1847 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 1848 if (MPT->isMemberFunctionPointer()) { 1849 // FunctionPointerOrVirtualThunk 1850 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 1851 } else { 1852 if (RD->nullFieldOffsetIsZero()) 1853 fields.push_back(getZeroInt()); // FieldOffset 1854 else 1855 fields.push_back(getAllOnesInt()); // FieldOffset 1856 } 1857 1858 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), 1859 Inheritance)) 1860 fields.push_back(getZeroInt()); 1861 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 1862 fields.push_back(getZeroInt()); 1863 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 1864 fields.push_back(getAllOnesInt()); 1865 } 1866 1867 llvm::Constant * 1868 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 1869 llvm::SmallVector<llvm::Constant *, 4> fields; 1870 GetNullMemberPointerFields(MPT, fields); 1871 if (fields.size() == 1) 1872 return fields[0]; 1873 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 1874 assert(Res->getType() == ConvertMemberPointerType(MPT)); 1875 return Res; 1876 } 1877 1878 llvm::Constant * 1879 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 1880 bool IsMemberFunction, 1881 const CXXRecordDecl *RD, 1882 CharUnits NonVirtualBaseAdjustment) 1883 { 1884 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 1885 1886 // Single inheritance class member pointer are represented as scalars instead 1887 // of aggregates. 1888 if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance)) 1889 return FirstField; 1890 1891 llvm::SmallVector<llvm::Constant *, 4> fields; 1892 fields.push_back(FirstField); 1893 1894 if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance)) 1895 fields.push_back(llvm::ConstantInt::get( 1896 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 1897 1898 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) { 1899 CharUnits Offs = CharUnits::Zero(); 1900 if (RD->getNumVBases()) 1901 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 1902 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 1903 } 1904 1905 // The rest of the fields are adjusted by conversions to a more derived class. 1906 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 1907 fields.push_back(getZeroInt()); 1908 1909 return llvm::ConstantStruct::getAnon(fields); 1910 } 1911 1912 llvm::Constant * 1913 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 1914 CharUnits offset) { 1915 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1916 llvm::Constant *FirstField = 1917 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 1918 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 1919 CharUnits::Zero()); 1920 } 1921 1922 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { 1923 return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero()); 1924 } 1925 1926 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 1927 QualType MPType) { 1928 const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); 1929 const ValueDecl *MPD = MP.getMemberPointerDecl(); 1930 if (!MPD) 1931 return EmitNullMemberPointer(MPT); 1932 1933 CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); 1934 1935 // FIXME PR15713: Support virtual inheritance paths. 1936 1937 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) 1938 return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD, 1939 ThisAdjustment); 1940 1941 CharUnits FieldOffset = 1942 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); 1943 return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); 1944 } 1945 1946 llvm::Constant * 1947 MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD, 1948 const CXXMethodDecl *MD, 1949 CharUnits NonVirtualBaseAdjustment) { 1950 assert(MD->isInstance() && "Member function must not be static!"); 1951 MD = MD->getCanonicalDecl(); 1952 RD = RD->getMostRecentDecl(); 1953 CodeGenTypes &Types = CGM.getTypes(); 1954 1955 llvm::Constant *FirstField; 1956 if (!MD->isVirtual()) { 1957 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1958 llvm::Type *Ty; 1959 // Check whether the function has a computable LLVM signature. 1960 if (Types.isFuncTypeConvertible(FPT)) { 1961 // The function has a computable LLVM signature; use the correct type. 1962 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 1963 } else { 1964 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 1965 // function type is incomplete. 1966 Ty = CGM.PtrDiffTy; 1967 } 1968 FirstField = CGM.GetAddrOfFunction(MD, Ty); 1969 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 1970 } else { 1971 MicrosoftVTableContext::MethodVFTableLocation ML = 1972 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 1973 if (MD->isVariadic()) { 1974 CGM.ErrorUnsupported(MD, "pointer to variadic virtual member function"); 1975 FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy); 1976 } else if (!CGM.getTypes().isFuncTypeConvertible( 1977 MD->getType()->castAs<FunctionType>())) { 1978 CGM.ErrorUnsupported(MD, "pointer to virtual member function with " 1979 "incomplete return or parameter type"); 1980 FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy); 1981 } else if (ML.VBase) { 1982 CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding " 1983 "member function in virtual base class"); 1984 FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy); 1985 } else { 1986 llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML); 1987 FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy); 1988 // Include the vfptr adjustment if the method is in a non-primary vftable. 1989 NonVirtualBaseAdjustment += ML.VFPtrOffset; 1990 } 1991 } 1992 1993 // The rest of the fields are common with data member pointers. 1994 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 1995 NonVirtualBaseAdjustment); 1996 } 1997 1998 /// Member pointers are the same if they're either bitwise identical *or* both 1999 /// null. Null-ness for function members is determined by the first field, 2000 /// while for data member pointers we must compare all fields. 2001 llvm::Value * 2002 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2003 llvm::Value *L, 2004 llvm::Value *R, 2005 const MemberPointerType *MPT, 2006 bool Inequality) { 2007 CGBuilderTy &Builder = CGF.Builder; 2008 2009 // Handle != comparisons by switching the sense of all boolean operations. 2010 llvm::ICmpInst::Predicate Eq; 2011 llvm::Instruction::BinaryOps And, Or; 2012 if (Inequality) { 2013 Eq = llvm::ICmpInst::ICMP_NE; 2014 And = llvm::Instruction::Or; 2015 Or = llvm::Instruction::And; 2016 } else { 2017 Eq = llvm::ICmpInst::ICMP_EQ; 2018 And = llvm::Instruction::And; 2019 Or = llvm::Instruction::Or; 2020 } 2021 2022 // If this is a single field member pointer (single inheritance), this is a 2023 // single icmp. 2024 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2025 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2026 if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(), 2027 Inheritance)) 2028 return Builder.CreateICmp(Eq, L, R); 2029 2030 // Compare the first field. 2031 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 2032 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 2033 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 2034 2035 // Compare everything other than the first field. 2036 llvm::Value *Res = nullptr; 2037 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 2038 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 2039 llvm::Value *LF = Builder.CreateExtractValue(L, I); 2040 llvm::Value *RF = Builder.CreateExtractValue(R, I); 2041 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 2042 if (Res) 2043 Res = Builder.CreateBinOp(And, Res, Cmp); 2044 else 2045 Res = Cmp; 2046 } 2047 2048 // Check if the first field is 0 if this is a function pointer. 2049 if (MPT->isMemberFunctionPointer()) { 2050 // (l1 == r1 && ...) || l0 == 0 2051 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 2052 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 2053 Res = Builder.CreateBinOp(Or, Res, IsZero); 2054 } 2055 2056 // Combine the comparison of the first field, which must always be true for 2057 // this comparison to succeeed. 2058 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 2059 } 2060 2061 llvm::Value * 2062 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 2063 llvm::Value *MemPtr, 2064 const MemberPointerType *MPT) { 2065 CGBuilderTy &Builder = CGF.Builder; 2066 llvm::SmallVector<llvm::Constant *, 4> fields; 2067 // We only need one field for member functions. 2068 if (MPT->isMemberFunctionPointer()) 2069 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2070 else 2071 GetNullMemberPointerFields(MPT, fields); 2072 assert(!fields.empty()); 2073 llvm::Value *FirstField = MemPtr; 2074 if (MemPtr->getType()->isStructTy()) 2075 FirstField = Builder.CreateExtractValue(MemPtr, 0); 2076 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 2077 2078 // For function member pointers, we only need to test the function pointer 2079 // field. The other fields if any can be garbage. 2080 if (MPT->isMemberFunctionPointer()) 2081 return Res; 2082 2083 // Otherwise, emit a series of compares and combine the results. 2084 for (int I = 1, E = fields.size(); I < E; ++I) { 2085 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 2086 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 2087 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 2088 } 2089 return Res; 2090 } 2091 2092 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 2093 llvm::Constant *Val) { 2094 // Function pointers are null if the pointer in the first field is null. 2095 if (MPT->isMemberFunctionPointer()) { 2096 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 2097 Val->getAggregateElement(0U) : Val; 2098 return FirstField->isNullValue(); 2099 } 2100 2101 // If it's not a function pointer and it's zero initializable, we can easily 2102 // check zero. 2103 if (isZeroInitializable(MPT) && Val->isNullValue()) 2104 return true; 2105 2106 // Otherwise, break down all the fields for comparison. Hopefully these 2107 // little Constants are reused, while a big null struct might not be. 2108 llvm::SmallVector<llvm::Constant *, 4> Fields; 2109 GetNullMemberPointerFields(MPT, Fields); 2110 if (Fields.size() == 1) { 2111 assert(Val->getType()->isIntegerTy()); 2112 return Val == Fields[0]; 2113 } 2114 2115 unsigned I, E; 2116 for (I = 0, E = Fields.size(); I != E; ++I) { 2117 if (Val->getAggregateElement(I) != Fields[I]) 2118 break; 2119 } 2120 return I == E; 2121 } 2122 2123 llvm::Value * 2124 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 2125 llvm::Value *This, 2126 llvm::Value *VBPtrOffset, 2127 llvm::Value *VBTableOffset, 2128 llvm::Value **VBPtrOut) { 2129 CGBuilderTy &Builder = CGF.Builder; 2130 // Load the vbtable pointer from the vbptr in the instance. 2131 This = Builder.CreateBitCast(This, CGM.Int8PtrTy); 2132 llvm::Value *VBPtr = 2133 Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr"); 2134 if (VBPtrOut) *VBPtrOut = VBPtr; 2135 VBPtr = Builder.CreateBitCast(VBPtr, CGM.Int8PtrTy->getPointerTo(0)); 2136 llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable"); 2137 2138 // Load an i32 offset from the vb-table. 2139 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableOffset); 2140 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 2141 return Builder.CreateLoad(VBaseOffs, "vbase_offs"); 2142 } 2143 2144 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 2145 // it. 2146 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 2147 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 2148 llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 2149 CGBuilderTy &Builder = CGF.Builder; 2150 Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy); 2151 llvm::BasicBlock *OriginalBB = nullptr; 2152 llvm::BasicBlock *SkipAdjustBB = nullptr; 2153 llvm::BasicBlock *VBaseAdjustBB = nullptr; 2154 2155 // In the unspecified inheritance model, there might not be a vbtable at all, 2156 // in which case we need to skip the virtual base lookup. If there is a 2157 // vbtable, the first entry is a no-op entry that gives back the original 2158 // base, so look for a virtual base adjustment offset of zero. 2159 if (VBPtrOffset) { 2160 OriginalBB = Builder.GetInsertBlock(); 2161 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 2162 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 2163 llvm::Value *IsVirtual = 2164 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 2165 "memptr.is_vbase"); 2166 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 2167 CGF.EmitBlock(VBaseAdjustBB); 2168 } 2169 2170 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 2171 // know the vbptr offset. 2172 if (!VBPtrOffset) { 2173 CharUnits offs = CharUnits::Zero(); 2174 if (!RD->hasDefinition()) { 2175 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 2176 unsigned DiagID = Diags.getCustomDiagID( 2177 DiagnosticsEngine::Error, 2178 "member pointer representation requires a " 2179 "complete class type for %0 to perform this expression"); 2180 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 2181 } else if (RD->getNumVBases()) 2182 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2183 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 2184 } 2185 llvm::Value *VBPtr = nullptr; 2186 llvm::Value *VBaseOffs = 2187 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 2188 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); 2189 2190 // Merge control flow with the case where we didn't have to adjust. 2191 if (VBaseAdjustBB) { 2192 Builder.CreateBr(SkipAdjustBB); 2193 CGF.EmitBlock(SkipAdjustBB); 2194 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 2195 Phi->addIncoming(Base, OriginalBB); 2196 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 2197 return Phi; 2198 } 2199 return AdjustedBase; 2200 } 2201 2202 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 2203 CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr, 2204 const MemberPointerType *MPT) { 2205 assert(MPT->isMemberDataPointer()); 2206 unsigned AS = Base->getType()->getPointerAddressSpace(); 2207 llvm::Type *PType = 2208 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 2209 CGBuilderTy &Builder = CGF.Builder; 2210 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2211 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2212 2213 // Extract the fields we need, regardless of model. We'll apply them if we 2214 // have them. 2215 llvm::Value *FieldOffset = MemPtr; 2216 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 2217 llvm::Value *VBPtrOffset = nullptr; 2218 if (MemPtr->getType()->isStructTy()) { 2219 // We need to extract values. 2220 unsigned I = 0; 2221 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 2222 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2223 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 2224 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2225 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 2226 } 2227 2228 if (VirtualBaseAdjustmentOffset) { 2229 Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 2230 VBPtrOffset); 2231 } 2232 2233 // Cast to char*. 2234 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); 2235 2236 // Apply the offset, which we assume is non-null. 2237 llvm::Value *Addr = 2238 Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset"); 2239 2240 // Cast the address to the appropriate pointer type, adopting the address 2241 // space of the base pointer. 2242 return Builder.CreateBitCast(Addr, PType); 2243 } 2244 2245 static MSInheritanceAttr::Spelling 2246 getInheritanceFromMemptr(const MemberPointerType *MPT) { 2247 return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel(); 2248 } 2249 2250 llvm::Value * 2251 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 2252 const CastExpr *E, 2253 llvm::Value *Src) { 2254 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 2255 E->getCastKind() == CK_BaseToDerivedMemberPointer || 2256 E->getCastKind() == CK_ReinterpretMemberPointer); 2257 2258 // Use constant emission if we can. 2259 if (isa<llvm::Constant>(Src)) 2260 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 2261 2262 // We may be adding or dropping fields from the member pointer, so we need 2263 // both types and the inheritance models of both records. 2264 const MemberPointerType *SrcTy = 2265 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 2266 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 2267 bool IsFunc = SrcTy->isMemberFunctionPointer(); 2268 2269 // If the classes use the same null representation, reinterpret_cast is a nop. 2270 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 2271 if (IsReinterpret && IsFunc) 2272 return Src; 2273 2274 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 2275 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 2276 if (IsReinterpret && 2277 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 2278 return Src; 2279 2280 CGBuilderTy &Builder = CGF.Builder; 2281 2282 // Branch past the conversion if Src is null. 2283 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 2284 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 2285 2286 // C++ 5.2.10p9: The null member pointer value is converted to the null member 2287 // pointer value of the destination type. 2288 if (IsReinterpret) { 2289 // For reinterpret casts, sema ensures that src and dst are both functions 2290 // or data and have the same size, which means the LLVM types should match. 2291 assert(Src->getType() == DstNull->getType()); 2292 return Builder.CreateSelect(IsNotNull, Src, DstNull); 2293 } 2294 2295 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 2296 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 2297 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 2298 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 2299 CGF.EmitBlock(ConvertBB); 2300 2301 // Decompose src. 2302 llvm::Value *FirstField = Src; 2303 llvm::Value *NonVirtualBaseAdjustment = nullptr; 2304 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 2305 llvm::Value *VBPtrOffset = nullptr; 2306 MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel(); 2307 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { 2308 // We need to extract values. 2309 unsigned I = 0; 2310 FirstField = Builder.CreateExtractValue(Src, I++); 2311 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) 2312 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 2313 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) 2314 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 2315 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) 2316 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 2317 } 2318 2319 // For data pointers, we adjust the field offset directly. For functions, we 2320 // have a separate field. 2321 llvm::Constant *Adj = getMemberPointerAdjustment(E); 2322 if (Adj) { 2323 Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy); 2324 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 2325 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 2326 if (!NVAdjustField) // If this field didn't exist in src, it's zero. 2327 NVAdjustField = getZeroInt(); 2328 if (isDerivedToBase) 2329 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj"); 2330 else 2331 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj"); 2332 } 2333 2334 // FIXME PR15713: Support conversions through virtually derived classes. 2335 2336 // Recompose dst from the null struct and the adjusted fields from src. 2337 MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel(); 2338 llvm::Value *Dst; 2339 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) { 2340 Dst = FirstField; 2341 } else { 2342 Dst = llvm::UndefValue::get(DstNull->getType()); 2343 unsigned Idx = 0; 2344 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 2345 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) 2346 Dst = Builder.CreateInsertValue( 2347 Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++); 2348 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) 2349 Dst = Builder.CreateInsertValue( 2350 Dst, getValueOrZeroInt(VBPtrOffset), Idx++); 2351 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) 2352 Dst = Builder.CreateInsertValue( 2353 Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++); 2354 } 2355 Builder.CreateBr(ContinueBB); 2356 2357 // In the continuation, choose between DstNull and Dst. 2358 CGF.EmitBlock(ContinueBB); 2359 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 2360 Phi->addIncoming(DstNull, OriginalBB); 2361 Phi->addIncoming(Dst, ConvertBB); 2362 return Phi; 2363 } 2364 2365 llvm::Constant * 2366 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 2367 llvm::Constant *Src) { 2368 const MemberPointerType *SrcTy = 2369 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 2370 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 2371 2372 // If src is null, emit a new null for dst. We can't return src because dst 2373 // might have a new representation. 2374 if (MemberPointerConstantIsNull(SrcTy, Src)) 2375 return EmitNullMemberPointer(DstTy); 2376 2377 // We don't need to do anything for reinterpret_casts of non-null member 2378 // pointers. We should only get here when the two type representations have 2379 // the same size. 2380 if (E->getCastKind() == CK_ReinterpretMemberPointer) 2381 return Src; 2382 2383 MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy); 2384 MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy); 2385 2386 // Decompose src. 2387 llvm::Constant *FirstField = Src; 2388 llvm::Constant *NonVirtualBaseAdjustment = nullptr; 2389 llvm::Constant *VirtualBaseAdjustmentOffset = nullptr; 2390 llvm::Constant *VBPtrOffset = nullptr; 2391 bool IsFunc = SrcTy->isMemberFunctionPointer(); 2392 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { 2393 // We need to extract values. 2394 unsigned I = 0; 2395 FirstField = Src->getAggregateElement(I++); 2396 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) 2397 NonVirtualBaseAdjustment = Src->getAggregateElement(I++); 2398 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) 2399 VBPtrOffset = Src->getAggregateElement(I++); 2400 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) 2401 VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++); 2402 } 2403 2404 // For data pointers, we adjust the field offset directly. For functions, we 2405 // have a separate field. 2406 llvm::Constant *Adj = getMemberPointerAdjustment(E); 2407 if (Adj) { 2408 Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy); 2409 llvm::Constant *&NVAdjustField = 2410 IsFunc ? NonVirtualBaseAdjustment : FirstField; 2411 bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 2412 if (!NVAdjustField) // If this field didn't exist in src, it's zero. 2413 NVAdjustField = getZeroInt(); 2414 if (IsDerivedToBase) 2415 NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj); 2416 else 2417 NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj); 2418 } 2419 2420 // FIXME PR15713: Support conversions through virtually derived classes. 2421 2422 // Recompose dst from the null struct and the adjusted fields from src. 2423 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) 2424 return FirstField; 2425 2426 llvm::SmallVector<llvm::Constant *, 4> Fields; 2427 Fields.push_back(FirstField); 2428 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) 2429 Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment)); 2430 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) 2431 Fields.push_back(getConstantOrZeroInt(VBPtrOffset)); 2432 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) 2433 Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset)); 2434 return llvm::ConstantStruct::getAnon(Fields); 2435 } 2436 2437 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 2438 CodeGenFunction &CGF, const Expr *E, llvm::Value *&This, 2439 llvm::Value *MemPtr, const MemberPointerType *MPT) { 2440 assert(MPT->isMemberFunctionPointer()); 2441 const FunctionProtoType *FPT = 2442 MPT->getPointeeType()->castAs<FunctionProtoType>(); 2443 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2444 llvm::FunctionType *FTy = 2445 CGM.getTypes().GetFunctionType( 2446 CGM.getTypes().arrangeCXXMethodType(RD, FPT)); 2447 CGBuilderTy &Builder = CGF.Builder; 2448 2449 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2450 2451 // Extract the fields we need, regardless of model. We'll apply them if we 2452 // have them. 2453 llvm::Value *FunctionPointer = MemPtr; 2454 llvm::Value *NonVirtualBaseAdjustment = nullptr; 2455 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 2456 llvm::Value *VBPtrOffset = nullptr; 2457 if (MemPtr->getType()->isStructTy()) { 2458 // We need to extract values. 2459 unsigned I = 0; 2460 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 2461 if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance)) 2462 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 2463 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2464 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 2465 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2466 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 2467 } 2468 2469 if (VirtualBaseAdjustmentOffset) { 2470 This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset, 2471 VBPtrOffset); 2472 } 2473 2474 if (NonVirtualBaseAdjustment) { 2475 // Apply the adjustment and cast back to the original struct type. 2476 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); 2477 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); 2478 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); 2479 } 2480 2481 return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 2482 } 2483 2484 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 2485 return new MicrosoftCXXABI(CGM); 2486 } 2487 2488 // MS RTTI Overview: 2489 // The run time type information emitted by cl.exe contains 5 distinct types of 2490 // structures. Many of them reference each other. 2491 // 2492 // TypeInfo: Static classes that are returned by typeid. 2493 // 2494 // CompleteObjectLocator: Referenced by vftables. They contain information 2495 // required for dynamic casting, including OffsetFromTop. They also contain 2496 // a reference to the TypeInfo for the type and a reference to the 2497 // CompleteHierarchyDescriptor for the type. 2498 // 2499 // ClassHieararchyDescriptor: Contains information about a class hierarchy. 2500 // Used during dynamic_cast to walk a class hierarchy. References a base 2501 // class array and the size of said array. 2502 // 2503 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 2504 // somewhat of a misnomer because the most derived class is also in the list 2505 // as well as multiple copies of virtual bases (if they occur multiple times 2506 // in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for 2507 // every path in the hierarchy, in pre-order depth first order. Note, we do 2508 // not declare a specific llvm type for BaseClassArray, it's merely an array 2509 // of BaseClassDescriptor pointers. 2510 // 2511 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 2512 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 2513 // BaseClassArray is. It contains information about a class within a 2514 // hierarchy such as: is this base is ambiguous and what is its offset in the 2515 // vbtable. The names of the BaseClassDescriptors have all of their fields 2516 // mangled into them so they can be aggressively deduplicated by the linker. 2517 2518 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 2519 StringRef MangledName("\01??_7type_info@@6B@"); 2520 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 2521 return VTable; 2522 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 2523 /*Constant=*/true, 2524 llvm::GlobalVariable::ExternalLinkage, 2525 /*Initializer=*/nullptr, MangledName); 2526 } 2527 2528 namespace { 2529 2530 /// \brief A Helper struct that stores information about a class in a class 2531 /// hierarchy. The information stored in these structs struct is used during 2532 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 2533 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 2534 // implicit depth first pre-order tree connectivity. getFirstChild and 2535 // getNextSibling allow us to walk the tree efficiently. 2536 struct MSRTTIClass { 2537 enum { 2538 IsPrivateOnPath = 1 | 8, 2539 IsAmbiguous = 2, 2540 IsPrivate = 4, 2541 IsVirtual = 16, 2542 HasHierarchyDescriptor = 64 2543 }; 2544 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 2545 uint32_t initialize(const MSRTTIClass *Parent, 2546 const CXXBaseSpecifier *Specifier); 2547 2548 MSRTTIClass *getFirstChild() { return this + 1; } 2549 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 2550 return Child + 1 + Child->NumBases; 2551 } 2552 2553 const CXXRecordDecl *RD, *VirtualRoot; 2554 uint32_t Flags, NumBases, OffsetInVBase; 2555 }; 2556 2557 /// \brief Recursively initialize the base class array. 2558 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 2559 const CXXBaseSpecifier *Specifier) { 2560 Flags = HasHierarchyDescriptor; 2561 if (!Parent) { 2562 VirtualRoot = nullptr; 2563 OffsetInVBase = 0; 2564 } else { 2565 if (Specifier->getAccessSpecifier() != AS_public) 2566 Flags |= IsPrivate | IsPrivateOnPath; 2567 if (Specifier->isVirtual()) { 2568 Flags |= IsVirtual; 2569 VirtualRoot = RD; 2570 OffsetInVBase = 0; 2571 } else { 2572 if (Parent->Flags & IsPrivateOnPath) 2573 Flags |= IsPrivateOnPath; 2574 VirtualRoot = Parent->VirtualRoot; 2575 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 2576 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 2577 } 2578 } 2579 NumBases = 0; 2580 MSRTTIClass *Child = getFirstChild(); 2581 for (const CXXBaseSpecifier &Base : RD->bases()) { 2582 NumBases += Child->initialize(this, &Base) + 1; 2583 Child = getNextChild(Child); 2584 } 2585 return NumBases; 2586 } 2587 2588 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 2589 switch (Ty->getLinkage()) { 2590 case NoLinkage: 2591 case InternalLinkage: 2592 case UniqueExternalLinkage: 2593 return llvm::GlobalValue::InternalLinkage; 2594 2595 case VisibleNoLinkage: 2596 case ExternalLinkage: 2597 return llvm::GlobalValue::LinkOnceODRLinkage; 2598 } 2599 llvm_unreachable("Invalid linkage!"); 2600 } 2601 2602 /// \brief An ephemeral helper class for building MS RTTI types. It caches some 2603 /// calls to the module and information about the most derived class in a 2604 /// hierarchy. 2605 struct MSRTTIBuilder { 2606 enum { 2607 HasBranchingHierarchy = 1, 2608 HasVirtualBranchingHierarchy = 2, 2609 HasAmbiguousBases = 4 2610 }; 2611 2612 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 2613 : CGM(ABI.CGM), Context(CGM.getContext()), 2614 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 2615 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 2616 ABI(ABI) {} 2617 2618 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 2619 llvm::GlobalVariable * 2620 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 2621 llvm::GlobalVariable *getClassHierarchyDescriptor(); 2622 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info); 2623 2624 CodeGenModule &CGM; 2625 ASTContext &Context; 2626 llvm::LLVMContext &VMContext; 2627 llvm::Module &Module; 2628 const CXXRecordDecl *RD; 2629 llvm::GlobalVariable::LinkageTypes Linkage; 2630 MicrosoftCXXABI &ABI; 2631 }; 2632 2633 } // namespace 2634 2635 /// \brief Recursively serializes a class hierarchy in pre-order depth first 2636 /// order. 2637 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 2638 const CXXRecordDecl *RD) { 2639 Classes.push_back(MSRTTIClass(RD)); 2640 for (const CXXBaseSpecifier &Base : RD->bases()) 2641 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 2642 } 2643 2644 /// \brief Find ambiguity among base classes. 2645 static void 2646 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 2647 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 2648 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 2649 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 2650 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 2651 if ((Class->Flags & MSRTTIClass::IsVirtual) && 2652 !VirtualBases.insert(Class->RD)) { 2653 Class = MSRTTIClass::getNextChild(Class); 2654 continue; 2655 } 2656 if (!UniqueBases.insert(Class->RD)) 2657 AmbiguousBases.insert(Class->RD); 2658 Class++; 2659 } 2660 if (AmbiguousBases.empty()) 2661 return; 2662 for (MSRTTIClass &Class : Classes) 2663 if (AmbiguousBases.count(Class.RD)) 2664 Class.Flags |= MSRTTIClass::IsAmbiguous; 2665 } 2666 2667 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 2668 SmallString<256> MangledName; 2669 { 2670 llvm::raw_svector_ostream Out(MangledName); 2671 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 2672 } 2673 2674 // Check to see if we've already declared this ClassHierarchyDescriptor. 2675 if (auto CHD = Module.getNamedGlobal(MangledName)) 2676 return CHD; 2677 2678 // Serialize the class hierarchy and initialize the CHD Fields. 2679 SmallVector<MSRTTIClass, 8> Classes; 2680 serializeClassHierarchy(Classes, RD); 2681 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 2682 detectAmbiguousBases(Classes); 2683 int Flags = 0; 2684 for (auto Class : Classes) { 2685 if (Class.RD->getNumBases() > 1) 2686 Flags |= HasBranchingHierarchy; 2687 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 2688 // believe the field isn't actually used. 2689 if (Class.Flags & MSRTTIClass::IsAmbiguous) 2690 Flags |= HasAmbiguousBases; 2691 } 2692 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 2693 Flags |= HasVirtualBranchingHierarchy; 2694 // These gep indices are used to get the address of the first element of the 2695 // base class array. 2696 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 2697 llvm::ConstantInt::get(CGM.IntTy, 0)}; 2698 2699 // Forward-declare the class hierarchy descriptor 2700 auto Type = ABI.getClassHierarchyDescriptorType(); 2701 auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, 2702 /*Initializer=*/nullptr, 2703 MangledName.c_str()); 2704 2705 // Initialize the base class ClassHierarchyDescriptor. 2706 llvm::Constant *Fields[] = { 2707 llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown 2708 llvm::ConstantInt::get(CGM.IntTy, Flags), 2709 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 2710 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 2711 getBaseClassArray(Classes), 2712 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 2713 }; 2714 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 2715 return CHD; 2716 } 2717 2718 llvm::GlobalVariable * 2719 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 2720 SmallString<256> MangledName; 2721 { 2722 llvm::raw_svector_ostream Out(MangledName); 2723 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 2724 } 2725 2726 // Forward-declare the base class array. 2727 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 2728 // mode) bytes of padding. We provide a pointer sized amount of padding by 2729 // adding +1 to Classes.size(). The sections have pointer alignment and are 2730 // marked pick-any so it shouldn't matter. 2731 llvm::Type *PtrType = ABI.getImageRelativeType( 2732 ABI.getBaseClassDescriptorType()->getPointerTo()); 2733 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 2734 auto *BCA = new llvm::GlobalVariable( 2735 Module, ArrType, 2736 /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str()); 2737 2738 // Initialize the BaseClassArray. 2739 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 2740 for (MSRTTIClass &Class : Classes) 2741 BaseClassArrayData.push_back( 2742 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 2743 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 2744 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 2745 return BCA; 2746 } 2747 2748 llvm::GlobalVariable * 2749 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 2750 // Compute the fields for the BaseClassDescriptor. They are computed up front 2751 // because they are mangled into the name of the object. 2752 uint32_t OffsetInVBTable = 0; 2753 int32_t VBPtrOffset = -1; 2754 if (Class.VirtualRoot) { 2755 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2756 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 2757 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 2758 } 2759 2760 SmallString<256> MangledName; 2761 { 2762 llvm::raw_svector_ostream Out(MangledName); 2763 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 2764 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 2765 Class.Flags, Out); 2766 } 2767 2768 // Check to see if we've already declared this object. 2769 if (auto BCD = Module.getNamedGlobal(MangledName)) 2770 return BCD; 2771 2772 // Forward-declare the base class descriptor. 2773 auto Type = ABI.getBaseClassDescriptorType(); 2774 auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, 2775 /*Initializer=*/nullptr, 2776 MangledName.c_str()); 2777 2778 // Initialize the BaseClassDescriptor. 2779 llvm::Constant *Fields[] = { 2780 ABI.getImageRelativeConstant( 2781 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 2782 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 2783 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 2784 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 2785 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 2786 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 2787 ABI.getImageRelativeConstant( 2788 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 2789 }; 2790 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 2791 return BCD; 2792 } 2793 2794 llvm::GlobalVariable * 2795 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) { 2796 SmallString<256> MangledName; 2797 { 2798 llvm::raw_svector_ostream Out(MangledName); 2799 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out); 2800 } 2801 2802 // Check to see if we've already computed this complete object locator. 2803 if (auto COL = Module.getNamedGlobal(MangledName)) 2804 return COL; 2805 2806 // Compute the fields of the complete object locator. 2807 int OffsetToTop = Info->FullOffsetInMDC.getQuantity(); 2808 int VFPtrOffset = 0; 2809 // The offset includes the vtordisp if one exists. 2810 if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr()) 2811 if (Context.getASTRecordLayout(RD) 2812 .getVBaseOffsetsMap() 2813 .find(VBase) 2814 ->second.hasVtorDisp()) 2815 VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4; 2816 2817 // Forward-declare the complete object locator. 2818 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 2819 auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, 2820 /*Initializer=*/nullptr, MangledName.c_str()); 2821 2822 // Initialize the CompleteObjectLocator. 2823 llvm::Constant *Fields[] = { 2824 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 2825 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 2826 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 2827 ABI.getImageRelativeConstant( 2828 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 2829 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 2830 ABI.getImageRelativeConstant(COL), 2831 }; 2832 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 2833 if (!ABI.isImageRelative()) 2834 FieldsRef = FieldsRef.drop_back(); 2835 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 2836 return COL; 2837 } 2838 2839 /// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 2840 /// llvm::GlobalVariable * because different type descriptors have different 2841 /// types, and need to be abstracted. They are abstracting by casting the 2842 /// address to an Int8PtrTy. 2843 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 2844 SmallString<256> MangledName, TypeInfoString; 2845 { 2846 llvm::raw_svector_ostream Out(MangledName); 2847 getMangleContext().mangleCXXRTTI(Type, Out); 2848 } 2849 2850 // Check to see if we've already declared this TypeDescriptor. 2851 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 2852 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 2853 2854 // Compute the fields for the TypeDescriptor. 2855 { 2856 llvm::raw_svector_ostream Out(TypeInfoString); 2857 getMangleContext().mangleCXXRTTIName(Type, Out); 2858 } 2859 2860 // Declare and initialize the TypeDescriptor. 2861 llvm::Constant *Fields[] = { 2862 getTypeInfoVTable(CGM), // VFPtr 2863 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 2864 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 2865 llvm::StructType *TypeDescriptorType = 2866 getTypeDescriptorType(TypeInfoString); 2867 return llvm::ConstantExpr::getBitCast( 2868 new llvm::GlobalVariable( 2869 CGM.getModule(), TypeDescriptorType, /*Constant=*/false, 2870 getLinkageForRTTI(Type), 2871 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 2872 MangledName.c_str()), 2873 CGM.Int8PtrTy); 2874 } 2875 2876 /// \brief Gets or a creates a Microsoft CompleteObjectLocator. 2877 llvm::GlobalVariable * 2878 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 2879 const VPtrInfo *Info) { 2880 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 2881 } 2882