1 // Copyright 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "cc/base/math_util.h" 6 7 #include <algorithm> 8 #include <cmath> 9 #include <limits> 10 11 #include "base/debug/trace_event_argument.h" 12 #include "base/values.h" 13 #include "ui/gfx/quad_f.h" 14 #include "ui/gfx/rect.h" 15 #include "ui/gfx/rect_conversions.h" 16 #include "ui/gfx/rect_f.h" 17 #include "ui/gfx/transform.h" 18 #include "ui/gfx/vector2d_f.h" 19 20 namespace cc { 21 22 const double MathUtil::kPiDouble = 3.14159265358979323846; 23 const float MathUtil::kPiFloat = 3.14159265358979323846f; 24 25 static HomogeneousCoordinate ProjectHomogeneousPoint( 26 const gfx::Transform& transform, 27 const gfx::PointF& p) { 28 // In this case, the layer we are trying to project onto is perpendicular to 29 // ray (point p and z-axis direction) that we are trying to project. This 30 // happens when the layer is rotated so that it is infinitesimally thin, or 31 // when it is co-planar with the camera origin -- i.e. when the layer is 32 // invisible anyway. 33 if (!transform.matrix().get(2, 2)) 34 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0); 35 36 SkMScalar z = -(transform.matrix().get(2, 0) * p.x() + 37 transform.matrix().get(2, 1) * p.y() + 38 transform.matrix().get(2, 3)) / 39 transform.matrix().get(2, 2); 40 HomogeneousCoordinate result(p.x(), p.y(), z, 1.0); 41 transform.matrix().mapMScalars(result.vec, result.vec); 42 return result; 43 } 44 45 static HomogeneousCoordinate ProjectHomogeneousPoint( 46 const gfx::Transform& transform, 47 const gfx::PointF& p, 48 bool* clipped) { 49 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p); 50 *clipped = h.w() <= 0; 51 return h; 52 } 53 54 static HomogeneousCoordinate MapHomogeneousPoint( 55 const gfx::Transform& transform, 56 const gfx::Point3F& p) { 57 HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0); 58 transform.matrix().mapMScalars(result.vec, result.vec); 59 return result; 60 } 61 62 static HomogeneousCoordinate ComputeClippedPointForEdge( 63 const HomogeneousCoordinate& h1, 64 const HomogeneousCoordinate& h2) { 65 // Points h1 and h2 form a line in 4d, and any point on that line can be 66 // represented as an interpolation between h1 and h2: 67 // p = (1-t) h1 + (t) h2 68 // 69 // We want to compute point p such that p.w == epsilon, where epsilon is a 70 // small non-zero number. (but the smaller the number is, the higher the risk 71 // of overflow) 72 // To do this, we solve for t in the following equation: 73 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w 74 // 75 // Once paramter t is known, the rest of p can be computed via 76 // p = (1-t) h1 + (t) h2. 77 78 // Technically this is a special case of the following assertion, but its a 79 // good idea to keep it an explicit sanity check here. 80 DCHECK_NE(h2.w(), h1.w()); 81 // Exactly one of h1 or h2 (but not both) must be on the negative side of the 82 // w plane when this is called. 83 DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped()); 84 85 // ...or any positive non-zero small epsilon 86 SkMScalar w = 0.00001f; 87 SkMScalar t = (w - h1.w()) / (h2.w() - h1.w()); 88 89 SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x(); 90 SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y(); 91 SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z(); 92 93 return HomogeneousCoordinate(x, y, z, w); 94 } 95 96 static inline void ExpandBoundsToIncludePoint(float* xmin, 97 float* xmax, 98 float* ymin, 99 float* ymax, 100 const gfx::PointF& p) { 101 *xmin = std::min(p.x(), *xmin); 102 *xmax = std::max(p.x(), *xmax); 103 *ymin = std::min(p.y(), *ymin); 104 *ymax = std::max(p.y(), *ymax); 105 } 106 107 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex, 108 gfx::PointF clipped_quad[8], 109 int* num_vertices_in_clipped_quad) { 110 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex; 111 (*num_vertices_in_clipped_quad)++; 112 } 113 114 static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex, 115 gfx::Point3F clipped_quad[8], 116 int* num_vertices_in_clipped_quad) { 117 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex; 118 (*num_vertices_in_clipped_quad)++; 119 } 120 121 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform, 122 const gfx::Rect& src_rect) { 123 if (transform.IsIdentityOrIntegerTranslation()) { 124 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)), 125 static_cast<int>(transform.matrix().getFloat(1, 3))); 126 return src_rect + offset; 127 } 128 return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect))); 129 } 130 131 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform, 132 const gfx::RectF& src_rect) { 133 if (transform.IsIdentityOrTranslation()) { 134 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3), 135 transform.matrix().getFloat(1, 3)); 136 return src_rect + offset; 137 } 138 139 // Apply the transform, but retain the result in homogeneous coordinates. 140 141 SkMScalar quad[4 * 2]; // input: 4 x 2D points 142 quad[0] = src_rect.x(); 143 quad[1] = src_rect.y(); 144 quad[2] = src_rect.right(); 145 quad[3] = src_rect.y(); 146 quad[4] = src_rect.right(); 147 quad[5] = src_rect.bottom(); 148 quad[6] = src_rect.x(); 149 quad[7] = src_rect.bottom(); 150 151 SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points 152 transform.matrix().map2(quad, 4, result); 153 154 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); 155 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); 156 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]); 157 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]); 158 return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3); 159 } 160 161 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform, 162 const gfx::Rect& src_rect) { 163 if (transform.IsIdentityOrIntegerTranslation()) { 164 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)), 165 static_cast<int>(transform.matrix().getFloat(1, 3))); 166 return src_rect + offset; 167 } 168 return gfx::ToEnclosingRect( 169 ProjectClippedRect(transform, gfx::RectF(src_rect))); 170 } 171 172 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform, 173 const gfx::RectF& src_rect) { 174 if (transform.IsIdentityOrTranslation()) { 175 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3), 176 transform.matrix().getFloat(1, 3)); 177 return src_rect + offset; 178 } 179 180 // Perform the projection, but retain the result in homogeneous coordinates. 181 gfx::QuadF q = gfx::QuadF(src_rect); 182 HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1()); 183 HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2()); 184 HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3()); 185 HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4()); 186 187 return ComputeEnclosingClippedRect(h1, h2, h3, h4); 188 } 189 190 gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform( 191 const gfx::Transform& transform, 192 const gfx::Rect& rect) { 193 DCHECK(transform.Preserves2dAxisAlignment()); 194 195 if (transform.IsIdentityOrIntegerTranslation()) { 196 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)), 197 static_cast<int>(transform.matrix().getFloat(1, 3))); 198 return rect + offset; 199 } 200 if (transform.IsIdentityOrTranslation()) { 201 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3), 202 transform.matrix().getFloat(1, 3)); 203 return gfx::ToEnclosedRect(rect + offset); 204 } 205 206 SkMScalar quad[2 * 2]; // input: 2 x 2D points 207 quad[0] = rect.x(); 208 quad[1] = rect.y(); 209 quad[2] = rect.right(); 210 quad[3] = rect.bottom(); 211 212 SkMScalar result[4 * 2]; // output: 2 x 4D homogeneous points 213 transform.matrix().map2(quad, 2, result); 214 215 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); 216 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); 217 DCHECK(!hc0.ShouldBeClipped()); 218 DCHECK(!hc1.ShouldBeClipped()); 219 220 gfx::PointF top_left(hc0.CartesianPoint2d()); 221 gfx::PointF bottom_right(hc1.CartesianPoint2d()); 222 return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right)); 223 } 224 225 void MathUtil::MapClippedQuad(const gfx::Transform& transform, 226 const gfx::QuadF& src_quad, 227 gfx::PointF clipped_quad[8], 228 int* num_vertices_in_clipped_quad) { 229 HomogeneousCoordinate h1 = 230 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1())); 231 HomogeneousCoordinate h2 = 232 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2())); 233 HomogeneousCoordinate h3 = 234 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3())); 235 HomogeneousCoordinate h4 = 236 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4())); 237 238 // The order of adding the vertices to the array is chosen so that 239 // clockwise / counter-clockwise orientation is retained. 240 241 *num_vertices_in_clipped_quad = 0; 242 243 if (!h1.ShouldBeClipped()) { 244 AddVertexToClippedQuad( 245 h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); 246 } 247 248 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) { 249 AddVertexToClippedQuad( 250 ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(), 251 clipped_quad, 252 num_vertices_in_clipped_quad); 253 } 254 255 if (!h2.ShouldBeClipped()) { 256 AddVertexToClippedQuad( 257 h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); 258 } 259 260 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) { 261 AddVertexToClippedQuad( 262 ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(), 263 clipped_quad, 264 num_vertices_in_clipped_quad); 265 } 266 267 if (!h3.ShouldBeClipped()) { 268 AddVertexToClippedQuad( 269 h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); 270 } 271 272 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) { 273 AddVertexToClippedQuad( 274 ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(), 275 clipped_quad, 276 num_vertices_in_clipped_quad); 277 } 278 279 if (!h4.ShouldBeClipped()) { 280 AddVertexToClippedQuad( 281 h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); 282 } 283 284 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) { 285 AddVertexToClippedQuad( 286 ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(), 287 clipped_quad, 288 num_vertices_in_clipped_quad); 289 } 290 291 DCHECK_LE(*num_vertices_in_clipped_quad, 8); 292 } 293 294 bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform, 295 const gfx::QuadF& src_quad, 296 gfx::Point3F clipped_quad[8], 297 int* num_vertices_in_clipped_quad) { 298 HomogeneousCoordinate h1 = 299 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1())); 300 HomogeneousCoordinate h2 = 301 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2())); 302 HomogeneousCoordinate h3 = 303 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3())); 304 HomogeneousCoordinate h4 = 305 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4())); 306 307 // The order of adding the vertices to the array is chosen so that 308 // clockwise / counter-clockwise orientation is retained. 309 310 *num_vertices_in_clipped_quad = 0; 311 312 if (!h1.ShouldBeClipped()) { 313 AddVertexToClippedQuad3d( 314 h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); 315 } 316 317 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) { 318 AddVertexToClippedQuad3d( 319 ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(), 320 clipped_quad, 321 num_vertices_in_clipped_quad); 322 } 323 324 if (!h2.ShouldBeClipped()) { 325 AddVertexToClippedQuad3d( 326 h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); 327 } 328 329 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) { 330 AddVertexToClippedQuad3d( 331 ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(), 332 clipped_quad, 333 num_vertices_in_clipped_quad); 334 } 335 336 if (!h3.ShouldBeClipped()) { 337 AddVertexToClippedQuad3d( 338 h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); 339 } 340 341 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) { 342 AddVertexToClippedQuad3d( 343 ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(), 344 clipped_quad, 345 num_vertices_in_clipped_quad); 346 } 347 348 if (!h4.ShouldBeClipped()) { 349 AddVertexToClippedQuad3d( 350 h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); 351 } 352 353 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) { 354 AddVertexToClippedQuad3d( 355 ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(), 356 clipped_quad, 357 num_vertices_in_clipped_quad); 358 } 359 360 DCHECK_LE(*num_vertices_in_clipped_quad, 8); 361 return (*num_vertices_in_clipped_quad >= 4); 362 } 363 364 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices( 365 const gfx::PointF vertices[], 366 int num_vertices) { 367 if (num_vertices < 2) 368 return gfx::RectF(); 369 370 float xmin = std::numeric_limits<float>::max(); 371 float xmax = -std::numeric_limits<float>::max(); 372 float ymin = std::numeric_limits<float>::max(); 373 float ymax = -std::numeric_limits<float>::max(); 374 375 for (int i = 0; i < num_vertices; ++i) 376 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]); 377 378 return gfx::RectF(gfx::PointF(xmin, ymin), 379 gfx::SizeF(xmax - xmin, ymax - ymin)); 380 } 381 382 gfx::RectF MathUtil::ComputeEnclosingClippedRect( 383 const HomogeneousCoordinate& h1, 384 const HomogeneousCoordinate& h2, 385 const HomogeneousCoordinate& h3, 386 const HomogeneousCoordinate& h4) { 387 // This function performs clipping as necessary and computes the enclosing 2d 388 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us 389 // to avoid the overhead of storing an unknown number of clipped vertices. 390 391 // If no vertices on the quad are clipped, then we can simply return the 392 // enclosing rect directly. 393 bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || 394 h3.ShouldBeClipped() || h4.ShouldBeClipped(); 395 if (!something_clipped) { 396 gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(), 397 h2.CartesianPoint2d(), 398 h3.CartesianPoint2d(), 399 h4.CartesianPoint2d()); 400 return mapped_quad.BoundingBox(); 401 } 402 403 bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() && 404 h3.ShouldBeClipped() && h4.ShouldBeClipped(); 405 if (everything_clipped) 406 return gfx::RectF(); 407 408 float xmin = std::numeric_limits<float>::max(); 409 float xmax = -std::numeric_limits<float>::max(); 410 float ymin = std::numeric_limits<float>::max(); 411 float ymax = -std::numeric_limits<float>::max(); 412 413 if (!h1.ShouldBeClipped()) 414 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, 415 h1.CartesianPoint2d()); 416 417 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) 418 ExpandBoundsToIncludePoint(&xmin, 419 &xmax, 420 &ymin, 421 &ymax, 422 ComputeClippedPointForEdge(h1, h2) 423 .CartesianPoint2d()); 424 425 if (!h2.ShouldBeClipped()) 426 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, 427 h2.CartesianPoint2d()); 428 429 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) 430 ExpandBoundsToIncludePoint(&xmin, 431 &xmax, 432 &ymin, 433 &ymax, 434 ComputeClippedPointForEdge(h2, h3) 435 .CartesianPoint2d()); 436 437 if (!h3.ShouldBeClipped()) 438 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, 439 h3.CartesianPoint2d()); 440 441 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) 442 ExpandBoundsToIncludePoint(&xmin, 443 &xmax, 444 &ymin, 445 &ymax, 446 ComputeClippedPointForEdge(h3, h4) 447 .CartesianPoint2d()); 448 449 if (!h4.ShouldBeClipped()) 450 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, 451 h4.CartesianPoint2d()); 452 453 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) 454 ExpandBoundsToIncludePoint(&xmin, 455 &xmax, 456 &ymin, 457 &ymax, 458 ComputeClippedPointForEdge(h4, h1) 459 .CartesianPoint2d()); 460 461 return gfx::RectF(gfx::PointF(xmin, ymin), 462 gfx::SizeF(xmax - xmin, ymax - ymin)); 463 } 464 465 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform, 466 const gfx::QuadF& q, 467 bool* clipped) { 468 if (transform.IsIdentityOrTranslation()) { 469 gfx::QuadF mapped_quad(q); 470 mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3), 471 transform.matrix().getFloat(1, 3)); 472 *clipped = false; 473 return mapped_quad; 474 } 475 476 HomogeneousCoordinate h1 = 477 MapHomogeneousPoint(transform, gfx::Point3F(q.p1())); 478 HomogeneousCoordinate h2 = 479 MapHomogeneousPoint(transform, gfx::Point3F(q.p2())); 480 HomogeneousCoordinate h3 = 481 MapHomogeneousPoint(transform, gfx::Point3F(q.p3())); 482 HomogeneousCoordinate h4 = 483 MapHomogeneousPoint(transform, gfx::Point3F(q.p4())); 484 485 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || 486 h3.ShouldBeClipped() || h4.ShouldBeClipped(); 487 488 // Result will be invalid if clipped == true. But, compute it anyway just in 489 // case, to emulate existing behavior. 490 return gfx::QuadF(h1.CartesianPoint2d(), 491 h2.CartesianPoint2d(), 492 h3.CartesianPoint2d(), 493 h4.CartesianPoint2d()); 494 } 495 496 gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform, 497 const gfx::QuadF& q, 498 gfx::Point3F* p, 499 bool* clipped) { 500 if (transform.IsIdentityOrTranslation()) { 501 gfx::QuadF mapped_quad(q); 502 mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3), 503 transform.matrix().getFloat(1, 3)); 504 *clipped = false; 505 p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f); 506 p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f); 507 p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f); 508 p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f); 509 return mapped_quad; 510 } 511 512 HomogeneousCoordinate h1 = 513 MapHomogeneousPoint(transform, gfx::Point3F(q.p1())); 514 HomogeneousCoordinate h2 = 515 MapHomogeneousPoint(transform, gfx::Point3F(q.p2())); 516 HomogeneousCoordinate h3 = 517 MapHomogeneousPoint(transform, gfx::Point3F(q.p3())); 518 HomogeneousCoordinate h4 = 519 MapHomogeneousPoint(transform, gfx::Point3F(q.p4())); 520 521 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || 522 h3.ShouldBeClipped() || h4.ShouldBeClipped(); 523 524 // Result will be invalid if clipped == true. But, compute it anyway just in 525 // case, to emulate existing behavior. 526 p[0] = h1.CartesianPoint3d(); 527 p[1] = h2.CartesianPoint3d(); 528 p[2] = h3.CartesianPoint3d(); 529 p[3] = h4.CartesianPoint3d(); 530 531 return gfx::QuadF(h1.CartesianPoint2d(), 532 h2.CartesianPoint2d(), 533 h3.CartesianPoint2d(), 534 h4.CartesianPoint2d()); 535 } 536 537 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform, 538 const gfx::PointF& p, 539 bool* clipped) { 540 HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p)); 541 542 if (h.w() > 0) { 543 *clipped = false; 544 return h.CartesianPoint2d(); 545 } 546 547 // The cartesian coordinates will be invalid after dividing by w. 548 *clipped = true; 549 550 // Avoid dividing by w if w == 0. 551 if (!h.w()) 552 return gfx::PointF(); 553 554 // This return value will be invalid because clipped == true, but (1) users of 555 // this code should be ignoring the return value when clipped == true anyway, 556 // and (2) this behavior is more consistent with existing behavior of WebKit 557 // transforms if the user really does not ignore the return value. 558 return h.CartesianPoint2d(); 559 } 560 561 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform, 562 const gfx::Point3F& p, 563 bool* clipped) { 564 HomogeneousCoordinate h = MapHomogeneousPoint(transform, p); 565 566 if (h.w() > 0) { 567 *clipped = false; 568 return h.CartesianPoint3d(); 569 } 570 571 // The cartesian coordinates will be invalid after dividing by w. 572 *clipped = true; 573 574 // Avoid dividing by w if w == 0. 575 if (!h.w()) 576 return gfx::Point3F(); 577 578 // This return value will be invalid because clipped == true, but (1) users of 579 // this code should be ignoring the return value when clipped == true anyway, 580 // and (2) this behavior is more consistent with existing behavior of WebKit 581 // transforms if the user really does not ignore the return value. 582 return h.CartesianPoint3d(); 583 } 584 585 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform, 586 const gfx::QuadF& q, 587 bool* clipped) { 588 gfx::QuadF projected_quad; 589 bool clipped_point; 590 projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point)); 591 *clipped = clipped_point; 592 projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point)); 593 *clipped |= clipped_point; 594 projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point)); 595 *clipped |= clipped_point; 596 projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point)); 597 *clipped |= clipped_point; 598 599 return projected_quad; 600 } 601 602 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform, 603 const gfx::PointF& p, 604 bool* clipped) { 605 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); 606 // Avoid dividing by w if w == 0. 607 if (!h.w()) 608 return gfx::PointF(); 609 610 // This return value will be invalid if clipped == true, but (1) users of 611 // this code should be ignoring the return value when clipped == true anyway, 612 // and (2) this behavior is more consistent with existing behavior of WebKit 613 // transforms if the user really does not ignore the return value. 614 return h.CartesianPoint2d(); 615 } 616 617 gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform, 618 const gfx::PointF& p, 619 bool* clipped) { 620 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); 621 if (!h.w()) 622 return gfx::Point3F(); 623 return h.CartesianPoint3d(); 624 } 625 626 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect, 627 const gfx::RectF& scale_outer_rect, 628 const gfx::RectF& scale_inner_rect) { 629 gfx::RectF output_inner_rect = input_outer_rect; 630 float scale_rect_to_input_scale_x = 631 scale_outer_rect.width() / input_outer_rect.width(); 632 float scale_rect_to_input_scale_y = 633 scale_outer_rect.height() / input_outer_rect.height(); 634 635 gfx::Vector2dF top_left_diff = 636 scale_inner_rect.origin() - scale_outer_rect.origin(); 637 gfx::Vector2dF bottom_right_diff = 638 scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right(); 639 output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x, 640 top_left_diff.y() / scale_rect_to_input_scale_y, 641 -bottom_right_diff.x() / scale_rect_to_input_scale_x, 642 -bottom_right_diff.y() / scale_rect_to_input_scale_y); 643 return output_inner_rect; 644 } 645 646 static inline bool NearlyZero(double value) { 647 return std::abs(value) < std::numeric_limits<double>::epsilon(); 648 } 649 650 static inline float ScaleOnAxis(double a, double b, double c) { 651 if (NearlyZero(b) && NearlyZero(c)) 652 return std::abs(a); 653 if (NearlyZero(a) && NearlyZero(c)) 654 return std::abs(b); 655 if (NearlyZero(a) && NearlyZero(b)) 656 return std::abs(c); 657 658 // Do the sqrt as a double to not lose precision. 659 return static_cast<float>(std::sqrt(a * a + b * b + c * c)); 660 } 661 662 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents( 663 const gfx::Transform& transform, 664 float fallback_value) { 665 if (transform.HasPerspective()) 666 return gfx::Vector2dF(fallback_value, fallback_value); 667 float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0), 668 transform.matrix().getDouble(1, 0), 669 transform.matrix().getDouble(2, 0)); 670 float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1), 671 transform.matrix().getDouble(1, 1), 672 transform.matrix().getDouble(2, 1)); 673 return gfx::Vector2dF(x_scale, y_scale); 674 } 675 676 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1, 677 const gfx::Vector2dF& v2) { 678 double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); 679 // Clamp to compensate for rounding errors. 680 dot_product = std::max(-1.0, std::min(1.0, dot_product)); 681 return static_cast<float>(Rad2Deg(std::acos(dot_product))); 682 } 683 684 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source, 685 const gfx::Vector2dF& destination) { 686 float projected_length = 687 gfx::DotProduct(source, destination) / destination.LengthSquared(); 688 return gfx::Vector2dF(projected_length * destination.x(), 689 projected_length * destination.y()); 690 } 691 692 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) { 693 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); 694 res->SetDouble("width", s.width()); 695 res->SetDouble("height", s.height()); 696 return res.PassAs<base::Value>(); 697 } 698 699 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) { 700 scoped_ptr<base::ListValue> res(new base::ListValue()); 701 res->AppendInteger(r.x()); 702 res->AppendInteger(r.y()); 703 res->AppendInteger(r.width()); 704 res->AppendInteger(r.height()); 705 return res.PassAs<base::Value>(); 706 } 707 708 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) { 709 const base::ListValue* value = NULL; 710 if (!raw_value->GetAsList(&value)) 711 return false; 712 713 if (value->GetSize() != 4) 714 return false; 715 716 int x, y, w, h; 717 bool ok = true; 718 ok &= value->GetInteger(0, &x); 719 ok &= value->GetInteger(1, &y); 720 ok &= value->GetInteger(2, &w); 721 ok &= value->GetInteger(3, &h); 722 if (!ok) 723 return false; 724 725 *out_rect = gfx::Rect(x, y, w, h); 726 return true; 727 } 728 729 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) { 730 scoped_ptr<base::ListValue> res(new base::ListValue()); 731 res->AppendDouble(pt.x()); 732 res->AppendDouble(pt.y()); 733 return res.PassAs<base::Value>(); 734 } 735 736 void MathUtil::AddToTracedValue(const gfx::Size& s, 737 base::debug::TracedValue* res) { 738 res->SetDouble("width", s.width()); 739 res->SetDouble("height", s.height()); 740 } 741 742 void MathUtil::AddToTracedValue(const gfx::SizeF& s, 743 base::debug::TracedValue* res) { 744 res->SetDouble("width", s.width()); 745 res->SetDouble("height", s.height()); 746 } 747 748 void MathUtil::AddToTracedValue(const gfx::Rect& r, 749 base::debug::TracedValue* res) { 750 res->AppendInteger(r.x()); 751 res->AppendInteger(r.y()); 752 res->AppendInteger(r.width()); 753 res->AppendInteger(r.height()); 754 } 755 756 void MathUtil::AddToTracedValue(const gfx::PointF& pt, 757 base::debug::TracedValue* res) { 758 res->AppendDouble(pt.x()); 759 res->AppendDouble(pt.y()); 760 } 761 762 void MathUtil::AddToTracedValue(const gfx::Point3F& pt, 763 base::debug::TracedValue* res) { 764 res->AppendDouble(pt.x()); 765 res->AppendDouble(pt.y()); 766 res->AppendDouble(pt.z()); 767 } 768 769 void MathUtil::AddToTracedValue(const gfx::Vector2d& v, 770 base::debug::TracedValue* res) { 771 res->AppendInteger(v.x()); 772 res->AppendInteger(v.y()); 773 } 774 775 void MathUtil::AddToTracedValue(const gfx::Vector2dF& v, 776 base::debug::TracedValue* res) { 777 res->AppendDouble(v.x()); 778 res->AppendDouble(v.y()); 779 } 780 781 void MathUtil::AddToTracedValue(const gfx::QuadF& q, 782 base::debug::TracedValue* res) { 783 res->AppendDouble(q.p1().x()); 784 res->AppendDouble(q.p1().y()); 785 res->AppendDouble(q.p2().x()); 786 res->AppendDouble(q.p2().y()); 787 res->AppendDouble(q.p3().x()); 788 res->AppendDouble(q.p3().y()); 789 res->AppendDouble(q.p4().x()); 790 res->AppendDouble(q.p4().y()); 791 } 792 793 void MathUtil::AddToTracedValue(const gfx::RectF& rect, 794 base::debug::TracedValue* res) { 795 res->AppendDouble(rect.x()); 796 res->AppendDouble(rect.y()); 797 res->AppendDouble(rect.width()); 798 res->AppendDouble(rect.height()); 799 } 800 801 void MathUtil::AddToTracedValue(const gfx::Transform& transform, 802 base::debug::TracedValue* res) { 803 const SkMatrix44& m = transform.matrix(); 804 for (int row = 0; row < 4; ++row) { 805 for (int col = 0; col < 4; ++col) 806 res->AppendDouble(m.getDouble(row, col)); 807 } 808 } 809 810 void MathUtil::AddToTracedValue(const gfx::BoxF& box, 811 base::debug::TracedValue* res) { 812 res->AppendInteger(box.x()); 813 res->AppendInteger(box.y()); 814 res->AppendInteger(box.z()); 815 res->AppendInteger(box.width()); 816 res->AppendInteger(box.height()); 817 res->AppendInteger(box.depth()); 818 } 819 820 double MathUtil::AsDoubleSafely(double value) { 821 return std::min(value, std::numeric_limits<double>::max()); 822 } 823 824 float MathUtil::AsFloatSafely(float value) { 825 return std::min(value, std::numeric_limits<float>::max()); 826 } 827 828 } // namespace cc 829