Home | History | Annotate | Download | only in Core
      1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a basic region store model. In this model, we do have field
     11 // sensitivity. But we assume nothing about the heap shape. So recursive data
     12 // structures are largely ignored. Basically we do 1-limiting analysis.
     13 // Parameter pointers are assumed with no aliasing. Pointee objects of
     14 // parameters are created lazily.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/Analysis/Analyses/LiveVariables.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
     28 #include "llvm/ADT/ImmutableList.h"
     29 #include "llvm/ADT/ImmutableMap.h"
     30 #include "llvm/ADT/Optional.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 
     33 using namespace clang;
     34 using namespace ento;
     35 
     36 //===----------------------------------------------------------------------===//
     37 // Representation of binding keys.
     38 //===----------------------------------------------------------------------===//
     39 
     40 namespace {
     41 class BindingKey {
     42 public:
     43   enum Kind { Default = 0x0, Direct = 0x1 };
     44 private:
     45   enum { Symbolic = 0x2 };
     46 
     47   llvm::PointerIntPair<const MemRegion *, 2> P;
     48   uint64_t Data;
     49 
     50   /// Create a key for a binding to region \p r, which has a symbolic offset
     51   /// from region \p Base.
     52   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
     53     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
     54     assert(r && Base && "Must have known regions.");
     55     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
     56   }
     57 
     58   /// Create a key for a binding at \p offset from base region \p r.
     59   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
     60     : P(r, k), Data(offset) {
     61     assert(r && "Must have known regions.");
     62     assert(getOffset() == offset && "Failed to store offset");
     63     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
     64   }
     65 public:
     66 
     67   bool isDirect() const { return P.getInt() & Direct; }
     68   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
     69 
     70   const MemRegion *getRegion() const { return P.getPointer(); }
     71   uint64_t getOffset() const {
     72     assert(!hasSymbolicOffset());
     73     return Data;
     74   }
     75 
     76   const SubRegion *getConcreteOffsetRegion() const {
     77     assert(hasSymbolicOffset());
     78     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
     79   }
     80 
     81   const MemRegion *getBaseRegion() const {
     82     if (hasSymbolicOffset())
     83       return getConcreteOffsetRegion()->getBaseRegion();
     84     return getRegion()->getBaseRegion();
     85   }
     86 
     87   void Profile(llvm::FoldingSetNodeID& ID) const {
     88     ID.AddPointer(P.getOpaqueValue());
     89     ID.AddInteger(Data);
     90   }
     91 
     92   static BindingKey Make(const MemRegion *R, Kind k);
     93 
     94   bool operator<(const BindingKey &X) const {
     95     if (P.getOpaqueValue() < X.P.getOpaqueValue())
     96       return true;
     97     if (P.getOpaqueValue() > X.P.getOpaqueValue())
     98       return false;
     99     return Data < X.Data;
    100   }
    101 
    102   bool operator==(const BindingKey &X) const {
    103     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
    104            Data == X.Data;
    105   }
    106 
    107   void dump() const;
    108 };
    109 } // end anonymous namespace
    110 
    111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
    112   const RegionOffset &RO = R->getAsOffset();
    113   if (RO.hasSymbolicOffset())
    114     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
    115 
    116   return BindingKey(RO.getRegion(), RO.getOffset(), k);
    117 }
    118 
    119 namespace llvm {
    120   static inline
    121   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
    122     os << '(' << K.getRegion();
    123     if (!K.hasSymbolicOffset())
    124       os << ',' << K.getOffset();
    125     os << ',' << (K.isDirect() ? "direct" : "default")
    126        << ')';
    127     return os;
    128   }
    129 
    130   template <typename T> struct isPodLike;
    131   template <> struct isPodLike<BindingKey> {
    132     static const bool value = true;
    133   };
    134 } // end llvm namespace
    135 
    136 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
    137 
    138 //===----------------------------------------------------------------------===//
    139 // Actual Store type.
    140 //===----------------------------------------------------------------------===//
    141 
    142 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
    143 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
    144 typedef std::pair<BindingKey, SVal> BindingPair;
    145 
    146 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
    147         RegionBindings;
    148 
    149 namespace {
    150 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
    151                                  ClusterBindings> {
    152  ClusterBindings::Factory &CBFactory;
    153 public:
    154   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
    155           ParentTy;
    156 
    157   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
    158                     const RegionBindings::TreeTy *T,
    159                     RegionBindings::TreeTy::Factory *F)
    160     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
    161       CBFactory(CBFactory) {}
    162 
    163   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
    164     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
    165       CBFactory(CBFactory) {}
    166 
    167   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
    168     return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
    169                              CBFactory);
    170   }
    171 
    172   RegionBindingsRef remove(key_type_ref K) const {
    173     return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
    174                              CBFactory);
    175   }
    176 
    177   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
    178 
    179   RegionBindingsRef addBinding(const MemRegion *R,
    180                                BindingKey::Kind k, SVal V) const;
    181 
    182   RegionBindingsRef &operator=(const RegionBindingsRef &X) {
    183     *static_cast<ParentTy*>(this) = X;
    184     return *this;
    185   }
    186 
    187   const SVal *lookup(BindingKey K) const;
    188   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
    189   const ClusterBindings *lookup(const MemRegion *R) const {
    190     return static_cast<const ParentTy*>(this)->lookup(R);
    191   }
    192 
    193   RegionBindingsRef removeBinding(BindingKey K);
    194 
    195   RegionBindingsRef removeBinding(const MemRegion *R,
    196                                   BindingKey::Kind k);
    197 
    198   RegionBindingsRef removeBinding(const MemRegion *R) {
    199     return removeBinding(R, BindingKey::Direct).
    200            removeBinding(R, BindingKey::Default);
    201   }
    202 
    203   Optional<SVal> getDirectBinding(const MemRegion *R) const;
    204 
    205   /// getDefaultBinding - Returns an SVal* representing an optional default
    206   ///  binding associated with a region and its subregions.
    207   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
    208 
    209   /// Return the internal tree as a Store.
    210   Store asStore() const {
    211     return asImmutableMap().getRootWithoutRetain();
    212   }
    213 
    214   void dump(raw_ostream &OS, const char *nl) const {
    215    for (iterator I = begin(), E = end(); I != E; ++I) {
    216      const ClusterBindings &Cluster = I.getData();
    217      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    218           CI != CE; ++CI) {
    219        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
    220      }
    221      OS << nl;
    222    }
    223   }
    224 
    225   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
    226 };
    227 } // end anonymous namespace
    228 
    229 typedef const RegionBindingsRef& RegionBindingsConstRef;
    230 
    231 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
    232   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
    233 }
    234 
    235 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
    236   if (R->isBoundable())
    237     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
    238       if (TR->getValueType()->isUnionType())
    239         return UnknownVal();
    240 
    241   return Optional<SVal>::create(lookup(R, BindingKey::Default));
    242 }
    243 
    244 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
    245   const MemRegion *Base = K.getBaseRegion();
    246 
    247   const ClusterBindings *ExistingCluster = lookup(Base);
    248   ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
    249                              : CBFactory.getEmptyMap());
    250 
    251   ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
    252   return add(Base, NewCluster);
    253 }
    254 
    255 
    256 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
    257                                                 BindingKey::Kind k,
    258                                                 SVal V) const {
    259   return addBinding(BindingKey::Make(R, k), V);
    260 }
    261 
    262 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
    263   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
    264   if (!Cluster)
    265     return nullptr;
    266   return Cluster->lookup(K);
    267 }
    268 
    269 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
    270                                       BindingKey::Kind k) const {
    271   return lookup(BindingKey::Make(R, k));
    272 }
    273 
    274 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
    275   const MemRegion *Base = K.getBaseRegion();
    276   const ClusterBindings *Cluster = lookup(Base);
    277   if (!Cluster)
    278     return *this;
    279 
    280   ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
    281   if (NewCluster.isEmpty())
    282     return remove(Base);
    283   return add(Base, NewCluster);
    284 }
    285 
    286 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
    287                                                 BindingKey::Kind k){
    288   return removeBinding(BindingKey::Make(R, k));
    289 }
    290 
    291 //===----------------------------------------------------------------------===//
    292 // Fine-grained control of RegionStoreManager.
    293 //===----------------------------------------------------------------------===//
    294 
    295 namespace {
    296 struct minimal_features_tag {};
    297 struct maximal_features_tag {};
    298 
    299 class RegionStoreFeatures {
    300   bool SupportsFields;
    301 public:
    302   RegionStoreFeatures(minimal_features_tag) :
    303     SupportsFields(false) {}
    304 
    305   RegionStoreFeatures(maximal_features_tag) :
    306     SupportsFields(true) {}
    307 
    308   void enableFields(bool t) { SupportsFields = t; }
    309 
    310   bool supportsFields() const { return SupportsFields; }
    311 };
    312 }
    313 
    314 //===----------------------------------------------------------------------===//
    315 // Main RegionStore logic.
    316 //===----------------------------------------------------------------------===//
    317 
    318 namespace {
    319 class invalidateRegionsWorker;
    320 
    321 class RegionStoreManager : public StoreManager {
    322 public:
    323   const RegionStoreFeatures Features;
    324 
    325   RegionBindings::Factory RBFactory;
    326   mutable ClusterBindings::Factory CBFactory;
    327 
    328   typedef std::vector<SVal> SValListTy;
    329 private:
    330   typedef llvm::DenseMap<const LazyCompoundValData *,
    331                          SValListTy> LazyBindingsMapTy;
    332   LazyBindingsMapTy LazyBindingsMap;
    333 
    334   /// The largest number of fields a struct can have and still be
    335   /// considered "small".
    336   ///
    337   /// This is currently used to decide whether or not it is worth "forcing" a
    338   /// LazyCompoundVal on bind.
    339   ///
    340   /// This is controlled by 'region-store-small-struct-limit' option.
    341   /// To disable all small-struct-dependent behavior, set the option to "0".
    342   unsigned SmallStructLimit;
    343 
    344   /// \brief A helper used to populate the work list with the given set of
    345   /// regions.
    346   void populateWorkList(invalidateRegionsWorker &W,
    347                         ArrayRef<SVal> Values,
    348                         InvalidatedRegions *TopLevelRegions);
    349 
    350 public:
    351   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
    352     : StoreManager(mgr), Features(f),
    353       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
    354       SmallStructLimit(0) {
    355     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
    356       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
    357       SmallStructLimit =
    358         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
    359     }
    360   }
    361 
    362 
    363   /// setImplicitDefaultValue - Set the default binding for the provided
    364   ///  MemRegion to the value implicitly defined for compound literals when
    365   ///  the value is not specified.
    366   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
    367                                             const MemRegion *R, QualType T);
    368 
    369   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
    370   ///  type.  'Array' represents the lvalue of the array being decayed
    371   ///  to a pointer, and the returned SVal represents the decayed
    372   ///  version of that lvalue (i.e., a pointer to the first element of
    373   ///  the array).  This is called by ExprEngine when evaluating
    374   ///  casts from arrays to pointers.
    375   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
    376 
    377   StoreRef getInitialStore(const LocationContext *InitLoc) override {
    378     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
    379   }
    380 
    381   //===-------------------------------------------------------------------===//
    382   // Binding values to regions.
    383   //===-------------------------------------------------------------------===//
    384   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
    385                                            const Expr *Ex,
    386                                            unsigned Count,
    387                                            const LocationContext *LCtx,
    388                                            RegionBindingsRef B,
    389                                            InvalidatedRegions *Invalidated);
    390 
    391   StoreRef invalidateRegions(Store store,
    392                              ArrayRef<SVal> Values,
    393                              const Expr *E, unsigned Count,
    394                              const LocationContext *LCtx,
    395                              const CallEvent *Call,
    396                              InvalidatedSymbols &IS,
    397                              RegionAndSymbolInvalidationTraits &ITraits,
    398                              InvalidatedRegions *Invalidated,
    399                              InvalidatedRegions *InvalidatedTopLevel) override;
    400 
    401   bool scanReachableSymbols(Store S, const MemRegion *R,
    402                             ScanReachableSymbols &Callbacks) override;
    403 
    404   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
    405                                             const SubRegion *R);
    406 
    407 public: // Part of public interface to class.
    408 
    409   StoreRef Bind(Store store, Loc LV, SVal V) override {
    410     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
    411   }
    412 
    413   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
    414 
    415   // BindDefault is only used to initialize a region with a default value.
    416   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
    417     RegionBindingsRef B = getRegionBindings(store);
    418     assert(!B.lookup(R, BindingKey::Direct));
    419 
    420     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
    421     if (B.lookup(Key)) {
    422       const SubRegion *SR = cast<SubRegion>(R);
    423       assert(SR->getAsOffset().getOffset() ==
    424              SR->getSuperRegion()->getAsOffset().getOffset() &&
    425              "A default value must come from a super-region");
    426       B = removeSubRegionBindings(B, SR);
    427     } else {
    428       B = B.addBinding(Key, V);
    429     }
    430 
    431     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
    432   }
    433 
    434   /// Attempt to extract the fields of \p LCV and bind them to the struct region
    435   /// \p R.
    436   ///
    437   /// This path is used when it seems advantageous to "force" loading the values
    438   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
    439   /// than using a Default binding at the base of the entire region. This is a
    440   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
    441   ///
    442   /// \returns The updated store bindings, or \c None if binding non-lazily
    443   ///          would be too expensive.
    444   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
    445                                                  const TypedValueRegion *R,
    446                                                  const RecordDecl *RD,
    447                                                  nonloc::LazyCompoundVal LCV);
    448 
    449   /// BindStruct - Bind a compound value to a structure.
    450   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
    451                                const TypedValueRegion* R, SVal V);
    452 
    453   /// BindVector - Bind a compound value to a vector.
    454   RegionBindingsRef bindVector(RegionBindingsConstRef B,
    455                                const TypedValueRegion* R, SVal V);
    456 
    457   RegionBindingsRef bindArray(RegionBindingsConstRef B,
    458                               const TypedValueRegion* R,
    459                               SVal V);
    460 
    461   /// Clears out all bindings in the given region and assigns a new value
    462   /// as a Default binding.
    463   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
    464                                   const TypedRegion *R,
    465                                   SVal DefaultVal);
    466 
    467   /// \brief Create a new store with the specified binding removed.
    468   /// \param ST the original store, that is the basis for the new store.
    469   /// \param L the location whose binding should be removed.
    470   StoreRef killBinding(Store ST, Loc L) override;
    471 
    472   void incrementReferenceCount(Store store) override {
    473     getRegionBindings(store).manualRetain();
    474   }
    475 
    476   /// If the StoreManager supports it, decrement the reference count of
    477   /// the specified Store object.  If the reference count hits 0, the memory
    478   /// associated with the object is recycled.
    479   void decrementReferenceCount(Store store) override {
    480     getRegionBindings(store).manualRelease();
    481   }
    482 
    483   bool includedInBindings(Store store, const MemRegion *region) const override;
    484 
    485   /// \brief Return the value bound to specified location in a given state.
    486   ///
    487   /// The high level logic for this method is this:
    488   /// getBinding (L)
    489   ///   if L has binding
    490   ///     return L's binding
    491   ///   else if L is in killset
    492   ///     return unknown
    493   ///   else
    494   ///     if L is on stack or heap
    495   ///       return undefined
    496   ///     else
    497   ///       return symbolic
    498   SVal getBinding(Store S, Loc L, QualType T) override {
    499     return getBinding(getRegionBindings(S), L, T);
    500   }
    501 
    502   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
    503 
    504   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
    505 
    506   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
    507 
    508   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
    509 
    510   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
    511 
    512   SVal getBindingForLazySymbol(const TypedValueRegion *R);
    513 
    514   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
    515                                          const TypedValueRegion *R,
    516                                          QualType Ty);
    517 
    518   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
    519                       RegionBindingsRef LazyBinding);
    520 
    521   /// Get bindings for the values in a struct and return a CompoundVal, used
    522   /// when doing struct copy:
    523   /// struct s x, y;
    524   /// x = y;
    525   /// y's value is retrieved by this method.
    526   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
    527   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
    528   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
    529 
    530   /// Used to lazily generate derived symbols for bindings that are defined
    531   /// implicitly by default bindings in a super region.
    532   ///
    533   /// Note that callers may need to specially handle LazyCompoundVals, which
    534   /// are returned as is in case the caller needs to treat them differently.
    535   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
    536                                                   const MemRegion *superR,
    537                                                   const TypedValueRegion *R,
    538                                                   QualType Ty);
    539 
    540   /// Get the state and region whose binding this region \p R corresponds to.
    541   ///
    542   /// If there is no lazy binding for \p R, the returned value will have a null
    543   /// \c second. Note that a null pointer can represents a valid Store.
    544   std::pair<Store, const SubRegion *>
    545   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
    546                   const SubRegion *originalRegion);
    547 
    548   /// Returns the cached set of interesting SVals contained within a lazy
    549   /// binding.
    550   ///
    551   /// The precise value of "interesting" is determined for the purposes of
    552   /// RegionStore's internal analysis. It must always contain all regions and
    553   /// symbols, but may omit constants and other kinds of SVal.
    554   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
    555 
    556   //===------------------------------------------------------------------===//
    557   // State pruning.
    558   //===------------------------------------------------------------------===//
    559 
    560   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
    561   ///  It returns a new Store with these values removed.
    562   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
    563                               SymbolReaper& SymReaper) override;
    564 
    565   //===------------------------------------------------------------------===//
    566   // Region "extents".
    567   //===------------------------------------------------------------------===//
    568 
    569   // FIXME: This method will soon be eliminated; see the note in Store.h.
    570   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
    571                                          const MemRegion* R,
    572                                          QualType EleTy) override;
    573 
    574   //===------------------------------------------------------------------===//
    575   // Utility methods.
    576   //===------------------------------------------------------------------===//
    577 
    578   RegionBindingsRef getRegionBindings(Store store) const {
    579     return RegionBindingsRef(CBFactory,
    580                              static_cast<const RegionBindings::TreeTy*>(store),
    581                              RBFactory.getTreeFactory());
    582   }
    583 
    584   void print(Store store, raw_ostream &Out, const char* nl,
    585              const char *sep) override;
    586 
    587   void iterBindings(Store store, BindingsHandler& f) override {
    588     RegionBindingsRef B = getRegionBindings(store);
    589     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    590       const ClusterBindings &Cluster = I.getData();
    591       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    592            CI != CE; ++CI) {
    593         const BindingKey &K = CI.getKey();
    594         if (!K.isDirect())
    595           continue;
    596         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
    597           // FIXME: Possibly incorporate the offset?
    598           if (!f.HandleBinding(*this, store, R, CI.getData()))
    599             return;
    600         }
    601       }
    602     }
    603   }
    604 };
    605 
    606 } // end anonymous namespace
    607 
    608 //===----------------------------------------------------------------------===//
    609 // RegionStore creation.
    610 //===----------------------------------------------------------------------===//
    611 
    612 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
    613   RegionStoreFeatures F = maximal_features_tag();
    614   return new RegionStoreManager(StMgr, F);
    615 }
    616 
    617 StoreManager *
    618 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
    619   RegionStoreFeatures F = minimal_features_tag();
    620   F.enableFields(true);
    621   return new RegionStoreManager(StMgr, F);
    622 }
    623 
    624 
    625 //===----------------------------------------------------------------------===//
    626 // Region Cluster analysis.
    627 //===----------------------------------------------------------------------===//
    628 
    629 namespace {
    630 /// Used to determine which global regions are automatically included in the
    631 /// initial worklist of a ClusterAnalysis.
    632 enum GlobalsFilterKind {
    633   /// Don't include any global regions.
    634   GFK_None,
    635   /// Only include system globals.
    636   GFK_SystemOnly,
    637   /// Include all global regions.
    638   GFK_All
    639 };
    640 
    641 template <typename DERIVED>
    642 class ClusterAnalysis  {
    643 protected:
    644   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
    645   typedef const MemRegion * WorkListElement;
    646   typedef SmallVector<WorkListElement, 10> WorkList;
    647 
    648   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
    649 
    650   WorkList WL;
    651 
    652   RegionStoreManager &RM;
    653   ASTContext &Ctx;
    654   SValBuilder &svalBuilder;
    655 
    656   RegionBindingsRef B;
    657 
    658 private:
    659   GlobalsFilterKind GlobalsFilter;
    660 
    661 protected:
    662   const ClusterBindings *getCluster(const MemRegion *R) {
    663     return B.lookup(R);
    664   }
    665 
    666   /// Returns true if the memory space of the given region is one of the global
    667   /// regions specially included at the start of analysis.
    668   bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
    669     switch (GlobalsFilter) {
    670     case GFK_None:
    671       return false;
    672     case GFK_SystemOnly:
    673       return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
    674     case GFK_All:
    675       return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
    676     }
    677 
    678     llvm_unreachable("unknown globals filter");
    679   }
    680 
    681 public:
    682   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
    683                   RegionBindingsRef b, GlobalsFilterKind GFK)
    684     : RM(rm), Ctx(StateMgr.getContext()),
    685       svalBuilder(StateMgr.getSValBuilder()),
    686       B(b), GlobalsFilter(GFK) {}
    687 
    688   RegionBindingsRef getRegionBindings() const { return B; }
    689 
    690   bool isVisited(const MemRegion *R) {
    691     return Visited.count(getCluster(R));
    692   }
    693 
    694   void GenerateClusters() {
    695     // Scan the entire set of bindings and record the region clusters.
    696     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
    697          RI != RE; ++RI){
    698       const MemRegion *Base = RI.getKey();
    699 
    700       const ClusterBindings &Cluster = RI.getData();
    701       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
    702       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
    703 
    704       // If this is an interesting global region, add it the work list up front.
    705       if (isInitiallyIncludedGlobalRegion(Base))
    706         AddToWorkList(WorkListElement(Base), &Cluster);
    707     }
    708   }
    709 
    710   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
    711     if (C && !Visited.insert(C))
    712       return false;
    713     WL.push_back(E);
    714     return true;
    715   }
    716 
    717   bool AddToWorkList(const MemRegion *R) {
    718     const MemRegion *BaseR = R->getBaseRegion();
    719     return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
    720   }
    721 
    722   void RunWorkList() {
    723     while (!WL.empty()) {
    724       WorkListElement E = WL.pop_back_val();
    725       const MemRegion *BaseR = E;
    726 
    727       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
    728     }
    729   }
    730 
    731   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
    732   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
    733 
    734   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
    735                     bool Flag) {
    736     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
    737   }
    738 };
    739 }
    740 
    741 //===----------------------------------------------------------------------===//
    742 // Binding invalidation.
    743 //===----------------------------------------------------------------------===//
    744 
    745 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
    746                                               ScanReachableSymbols &Callbacks) {
    747   assert(R == R->getBaseRegion() && "Should only be called for base regions");
    748   RegionBindingsRef B = getRegionBindings(S);
    749   const ClusterBindings *Cluster = B.lookup(R);
    750 
    751   if (!Cluster)
    752     return true;
    753 
    754   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
    755        RI != RE; ++RI) {
    756     if (!Callbacks.scan(RI.getData()))
    757       return false;
    758   }
    759 
    760   return true;
    761 }
    762 
    763 static inline bool isUnionField(const FieldRegion *FR) {
    764   return FR->getDecl()->getParent()->isUnion();
    765 }
    766 
    767 typedef SmallVector<const FieldDecl *, 8> FieldVector;
    768 
    769 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
    770   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    771 
    772   const MemRegion *Base = K.getConcreteOffsetRegion();
    773   const MemRegion *R = K.getRegion();
    774 
    775   while (R != Base) {
    776     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
    777       if (!isUnionField(FR))
    778         Fields.push_back(FR->getDecl());
    779 
    780     R = cast<SubRegion>(R)->getSuperRegion();
    781   }
    782 }
    783 
    784 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
    785   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    786 
    787   if (Fields.empty())
    788     return true;
    789 
    790   FieldVector FieldsInBindingKey;
    791   getSymbolicOffsetFields(K, FieldsInBindingKey);
    792 
    793   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
    794   if (Delta >= 0)
    795     return std::equal(FieldsInBindingKey.begin() + Delta,
    796                       FieldsInBindingKey.end(),
    797                       Fields.begin());
    798   else
    799     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
    800                       Fields.begin() - Delta);
    801 }
    802 
    803 /// Collects all bindings in \p Cluster that may refer to bindings within
    804 /// \p Top.
    805 ///
    806 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
    807 /// \c second is the value (an SVal).
    808 ///
    809 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
    810 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
    811 /// an aggregate within a larger aggregate with a default binding.
    812 static void
    813 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    814                          SValBuilder &SVB, const ClusterBindings &Cluster,
    815                          const SubRegion *Top, BindingKey TopKey,
    816                          bool IncludeAllDefaultBindings) {
    817   FieldVector FieldsInSymbolicSubregions;
    818   if (TopKey.hasSymbolicOffset()) {
    819     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
    820     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
    821     TopKey = BindingKey::Make(Top, BindingKey::Default);
    822   }
    823 
    824   // Find the length (in bits) of the region being invalidated.
    825   uint64_t Length = UINT64_MAX;
    826   SVal Extent = Top->getExtent(SVB);
    827   if (Optional<nonloc::ConcreteInt> ExtentCI =
    828           Extent.getAs<nonloc::ConcreteInt>()) {
    829     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
    830     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
    831     // Extents are in bytes but region offsets are in bits. Be careful!
    832     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
    833   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
    834     if (FR->getDecl()->isBitField())
    835       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
    836   }
    837 
    838   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
    839        I != E; ++I) {
    840     BindingKey NextKey = I.getKey();
    841     if (NextKey.getRegion() == TopKey.getRegion()) {
    842       // FIXME: This doesn't catch the case where we're really invalidating a
    843       // region with a symbolic offset. Example:
    844       //      R: points[i].y
    845       //   Next: points[0].x
    846 
    847       if (NextKey.getOffset() > TopKey.getOffset() &&
    848           NextKey.getOffset() - TopKey.getOffset() < Length) {
    849         // Case 1: The next binding is inside the region we're invalidating.
    850         // Include it.
    851         Bindings.push_back(*I);
    852 
    853       } else if (NextKey.getOffset() == TopKey.getOffset()) {
    854         // Case 2: The next binding is at the same offset as the region we're
    855         // invalidating. In this case, we need to leave default bindings alone,
    856         // since they may be providing a default value for a regions beyond what
    857         // we're invalidating.
    858         // FIXME: This is probably incorrect; consider invalidating an outer
    859         // struct whose first field is bound to a LazyCompoundVal.
    860         if (IncludeAllDefaultBindings || NextKey.isDirect())
    861           Bindings.push_back(*I);
    862       }
    863 
    864     } else if (NextKey.hasSymbolicOffset()) {
    865       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
    866       if (Top->isSubRegionOf(Base)) {
    867         // Case 3: The next key is symbolic and we just changed something within
    868         // its concrete region. We don't know if the binding is still valid, so
    869         // we'll be conservative and include it.
    870         if (IncludeAllDefaultBindings || NextKey.isDirect())
    871           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    872             Bindings.push_back(*I);
    873       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
    874         // Case 4: The next key is symbolic, but we changed a known
    875         // super-region. In this case the binding is certainly included.
    876         if (Top == Base || BaseSR->isSubRegionOf(Top))
    877           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    878             Bindings.push_back(*I);
    879       }
    880     }
    881   }
    882 }
    883 
    884 static void
    885 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    886                          SValBuilder &SVB, const ClusterBindings &Cluster,
    887                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
    888   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
    889                            BindingKey::Make(Top, BindingKey::Default),
    890                            IncludeAllDefaultBindings);
    891 }
    892 
    893 RegionBindingsRef
    894 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
    895                                             const SubRegion *Top) {
    896   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
    897   const MemRegion *ClusterHead = TopKey.getBaseRegion();
    898 
    899   if (Top == ClusterHead) {
    900     // We can remove an entire cluster's bindings all in one go.
    901     return B.remove(Top);
    902   }
    903 
    904   const ClusterBindings *Cluster = B.lookup(ClusterHead);
    905   if (!Cluster) {
    906     // If we're invalidating a region with a symbolic offset, we need to make
    907     // sure we don't treat the base region as uninitialized anymore.
    908     if (TopKey.hasSymbolicOffset()) {
    909       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    910       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
    911     }
    912     return B;
    913   }
    914 
    915   SmallVector<BindingPair, 32> Bindings;
    916   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
    917                            /*IncludeAllDefaultBindings=*/false);
    918 
    919   ClusterBindingsRef Result(*Cluster, CBFactory);
    920   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
    921                                                     E = Bindings.end();
    922        I != E; ++I)
    923     Result = Result.remove(I->first);
    924 
    925   // If we're invalidating a region with a symbolic offset, we need to make sure
    926   // we don't treat the base region as uninitialized anymore.
    927   // FIXME: This isn't very precise; see the example in
    928   // collectSubRegionBindings.
    929   if (TopKey.hasSymbolicOffset()) {
    930     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    931     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
    932                         UnknownVal());
    933   }
    934 
    935   if (Result.isEmpty())
    936     return B.remove(ClusterHead);
    937   return B.add(ClusterHead, Result.asImmutableMap());
    938 }
    939 
    940 namespace {
    941 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
    942 {
    943   const Expr *Ex;
    944   unsigned Count;
    945   const LocationContext *LCtx;
    946   InvalidatedSymbols &IS;
    947   RegionAndSymbolInvalidationTraits &ITraits;
    948   StoreManager::InvalidatedRegions *Regions;
    949 public:
    950   invalidateRegionsWorker(RegionStoreManager &rm,
    951                           ProgramStateManager &stateMgr,
    952                           RegionBindingsRef b,
    953                           const Expr *ex, unsigned count,
    954                           const LocationContext *lctx,
    955                           InvalidatedSymbols &is,
    956                           RegionAndSymbolInvalidationTraits &ITraitsIn,
    957                           StoreManager::InvalidatedRegions *r,
    958                           GlobalsFilterKind GFK)
    959     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
    960       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r){}
    961 
    962   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
    963   void VisitBinding(SVal V);
    964 };
    965 }
    966 
    967 void invalidateRegionsWorker::VisitBinding(SVal V) {
    968   // A symbol?  Mark it touched by the invalidation.
    969   if (SymbolRef Sym = V.getAsSymbol())
    970     IS.insert(Sym);
    971 
    972   if (const MemRegion *R = V.getAsRegion()) {
    973     AddToWorkList(R);
    974     return;
    975   }
    976 
    977   // Is it a LazyCompoundVal?  All references get invalidated as well.
    978   if (Optional<nonloc::LazyCompoundVal> LCS =
    979           V.getAs<nonloc::LazyCompoundVal>()) {
    980 
    981     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
    982 
    983     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
    984                                                         E = Vals.end();
    985          I != E; ++I)
    986       VisitBinding(*I);
    987 
    988     return;
    989   }
    990 }
    991 
    992 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
    993                                            const ClusterBindings *C) {
    994 
    995   bool PreserveRegionsContents =
    996       ITraits.hasTrait(baseR,
    997                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
    998 
    999   if (C) {
   1000     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
   1001       VisitBinding(I.getData());
   1002 
   1003     // Invalidate regions contents.
   1004     if (!PreserveRegionsContents)
   1005       B = B.remove(baseR);
   1006   }
   1007 
   1008   // BlockDataRegion?  If so, invalidate captured variables that are passed
   1009   // by reference.
   1010   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
   1011     for (BlockDataRegion::referenced_vars_iterator
   1012          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
   1013          BI != BE; ++BI) {
   1014       const VarRegion *VR = BI.getCapturedRegion();
   1015       const VarDecl *VD = VR->getDecl();
   1016       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
   1017         AddToWorkList(VR);
   1018       }
   1019       else if (Loc::isLocType(VR->getValueType())) {
   1020         // Map the current bindings to a Store to retrieve the value
   1021         // of the binding.  If that binding itself is a region, we should
   1022         // invalidate that region.  This is because a block may capture
   1023         // a pointer value, but the thing pointed by that pointer may
   1024         // get invalidated.
   1025         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
   1026         if (Optional<Loc> L = V.getAs<Loc>()) {
   1027           if (const MemRegion *LR = L->getAsRegion())
   1028             AddToWorkList(LR);
   1029         }
   1030       }
   1031     }
   1032     return;
   1033   }
   1034 
   1035   // Symbolic region?
   1036   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
   1037     IS.insert(SR->getSymbol());
   1038 
   1039   // Nothing else should be done in the case when we preserve regions context.
   1040   if (PreserveRegionsContents)
   1041     return;
   1042 
   1043   // Otherwise, we have a normal data region. Record that we touched the region.
   1044   if (Regions)
   1045     Regions->push_back(baseR);
   1046 
   1047   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
   1048     // Invalidate the region by setting its default value to
   1049     // conjured symbol. The type of the symbol is irrelevant.
   1050     DefinedOrUnknownSVal V =
   1051       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
   1052     B = B.addBinding(baseR, BindingKey::Default, V);
   1053     return;
   1054   }
   1055 
   1056   if (!baseR->isBoundable())
   1057     return;
   1058 
   1059   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
   1060   QualType T = TR->getValueType();
   1061 
   1062   if (isInitiallyIncludedGlobalRegion(baseR)) {
   1063     // If the region is a global and we are invalidating all globals,
   1064     // erasing the entry is good enough.  This causes all globals to be lazily
   1065     // symbolicated from the same base symbol.
   1066     return;
   1067   }
   1068 
   1069   if (T->isStructureOrClassType()) {
   1070     // Invalidate the region by setting its default value to
   1071     // conjured symbol. The type of the symbol is irrelevant.
   1072     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1073                                                           Ctx.IntTy, Count);
   1074     B = B.addBinding(baseR, BindingKey::Default, V);
   1075     return;
   1076   }
   1077 
   1078   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
   1079       // Set the default value of the array to conjured symbol.
   1080     DefinedOrUnknownSVal V =
   1081     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1082                                      AT->getElementType(), Count);
   1083     B = B.addBinding(baseR, BindingKey::Default, V);
   1084     return;
   1085   }
   1086 
   1087   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1088                                                         T,Count);
   1089   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
   1090   B = B.addBinding(baseR, BindingKey::Direct, V);
   1091 }
   1092 
   1093 RegionBindingsRef
   1094 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
   1095                                            const Expr *Ex,
   1096                                            unsigned Count,
   1097                                            const LocationContext *LCtx,
   1098                                            RegionBindingsRef B,
   1099                                            InvalidatedRegions *Invalidated) {
   1100   // Bind the globals memory space to a new symbol that we will use to derive
   1101   // the bindings for all globals.
   1102   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
   1103   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
   1104                                         /* type does not matter */ Ctx.IntTy,
   1105                                         Count);
   1106 
   1107   B = B.removeBinding(GS)
   1108        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
   1109 
   1110   // Even if there are no bindings in the global scope, we still need to
   1111   // record that we touched it.
   1112   if (Invalidated)
   1113     Invalidated->push_back(GS);
   1114 
   1115   return B;
   1116 }
   1117 
   1118 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
   1119                                           ArrayRef<SVal> Values,
   1120                                           InvalidatedRegions *TopLevelRegions) {
   1121   for (ArrayRef<SVal>::iterator I = Values.begin(),
   1122                                 E = Values.end(); I != E; ++I) {
   1123     SVal V = *I;
   1124     if (Optional<nonloc::LazyCompoundVal> LCS =
   1125         V.getAs<nonloc::LazyCompoundVal>()) {
   1126 
   1127       const SValListTy &Vals = getInterestingValues(*LCS);
   1128 
   1129       for (SValListTy::const_iterator I = Vals.begin(),
   1130                                       E = Vals.end(); I != E; ++I) {
   1131         // Note: the last argument is false here because these are
   1132         // non-top-level regions.
   1133         if (const MemRegion *R = (*I).getAsRegion())
   1134           W.AddToWorkList(R);
   1135       }
   1136       continue;
   1137     }
   1138 
   1139     if (const MemRegion *R = V.getAsRegion()) {
   1140       if (TopLevelRegions)
   1141         TopLevelRegions->push_back(R);
   1142       W.AddToWorkList(R);
   1143       continue;
   1144     }
   1145   }
   1146 }
   1147 
   1148 StoreRef
   1149 RegionStoreManager::invalidateRegions(Store store,
   1150                                      ArrayRef<SVal> Values,
   1151                                      const Expr *Ex, unsigned Count,
   1152                                      const LocationContext *LCtx,
   1153                                      const CallEvent *Call,
   1154                                      InvalidatedSymbols &IS,
   1155                                      RegionAndSymbolInvalidationTraits &ITraits,
   1156                                      InvalidatedRegions *TopLevelRegions,
   1157                                      InvalidatedRegions *Invalidated) {
   1158   GlobalsFilterKind GlobalsFilter;
   1159   if (Call) {
   1160     if (Call->isInSystemHeader())
   1161       GlobalsFilter = GFK_SystemOnly;
   1162     else
   1163       GlobalsFilter = GFK_All;
   1164   } else {
   1165     GlobalsFilter = GFK_None;
   1166   }
   1167 
   1168   RegionBindingsRef B = getRegionBindings(store);
   1169   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
   1170                             Invalidated, GlobalsFilter);
   1171 
   1172   // Scan the bindings and generate the clusters.
   1173   W.GenerateClusters();
   1174 
   1175   // Add the regions to the worklist.
   1176   populateWorkList(W, Values, TopLevelRegions);
   1177 
   1178   W.RunWorkList();
   1179 
   1180   // Return the new bindings.
   1181   B = W.getRegionBindings();
   1182 
   1183   // For calls, determine which global regions should be invalidated and
   1184   // invalidate them. (Note that function-static and immutable globals are never
   1185   // invalidated by this.)
   1186   // TODO: This could possibly be more precise with modules.
   1187   switch (GlobalsFilter) {
   1188   case GFK_All:
   1189     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
   1190                                Ex, Count, LCtx, B, Invalidated);
   1191     // FALLTHROUGH
   1192   case GFK_SystemOnly:
   1193     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
   1194                                Ex, Count, LCtx, B, Invalidated);
   1195     // FALLTHROUGH
   1196   case GFK_None:
   1197     break;
   1198   }
   1199 
   1200   return StoreRef(B.asStore(), *this);
   1201 }
   1202 
   1203 //===----------------------------------------------------------------------===//
   1204 // Extents for regions.
   1205 //===----------------------------------------------------------------------===//
   1206 
   1207 DefinedOrUnknownSVal
   1208 RegionStoreManager::getSizeInElements(ProgramStateRef state,
   1209                                       const MemRegion *R,
   1210                                       QualType EleTy) {
   1211   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
   1212   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
   1213   if (!SizeInt)
   1214     return UnknownVal();
   1215 
   1216   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
   1217 
   1218   if (Ctx.getAsVariableArrayType(EleTy)) {
   1219     // FIXME: We need to track extra state to properly record the size
   1220     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
   1221     // we don't have a divide-by-zero below.
   1222     return UnknownVal();
   1223   }
   1224 
   1225   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
   1226 
   1227   // If a variable is reinterpreted as a type that doesn't fit into a larger
   1228   // type evenly, round it down.
   1229   // This is a signed value, since it's used in arithmetic with signed indices.
   1230   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
   1231 }
   1232 
   1233 //===----------------------------------------------------------------------===//
   1234 // Location and region casting.
   1235 //===----------------------------------------------------------------------===//
   1236 
   1237 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
   1238 ///  type.  'Array' represents the lvalue of the array being decayed
   1239 ///  to a pointer, and the returned SVal represents the decayed
   1240 ///  version of that lvalue (i.e., a pointer to the first element of
   1241 ///  the array).  This is called by ExprEngine when evaluating casts
   1242 ///  from arrays to pointers.
   1243 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
   1244   if (!Array.getAs<loc::MemRegionVal>())
   1245     return UnknownVal();
   1246 
   1247   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
   1248   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
   1249   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
   1250 }
   1251 
   1252 //===----------------------------------------------------------------------===//
   1253 // Loading values from regions.
   1254 //===----------------------------------------------------------------------===//
   1255 
   1256 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
   1257   assert(!L.getAs<UnknownVal>() && "location unknown");
   1258   assert(!L.getAs<UndefinedVal>() && "location undefined");
   1259 
   1260   // For access to concrete addresses, return UnknownVal.  Checks
   1261   // for null dereferences (and similar errors) are done by checkers, not
   1262   // the Store.
   1263   // FIXME: We can consider lazily symbolicating such memory, but we really
   1264   // should defer this when we can reason easily about symbolicating arrays
   1265   // of bytes.
   1266   if (L.getAs<loc::ConcreteInt>()) {
   1267     return UnknownVal();
   1268   }
   1269   if (!L.getAs<loc::MemRegionVal>()) {
   1270     return UnknownVal();
   1271   }
   1272 
   1273   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
   1274 
   1275   if (isa<AllocaRegion>(MR) ||
   1276       isa<SymbolicRegion>(MR) ||
   1277       isa<CodeTextRegion>(MR)) {
   1278     if (T.isNull()) {
   1279       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
   1280         T = TR->getLocationType();
   1281       else {
   1282         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
   1283         T = SR->getSymbol()->getType();
   1284       }
   1285     }
   1286     MR = GetElementZeroRegion(MR, T);
   1287   }
   1288 
   1289   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
   1290   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
   1291   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
   1292   QualType RTy = R->getValueType();
   1293 
   1294   // FIXME: we do not yet model the parts of a complex type, so treat the
   1295   // whole thing as "unknown".
   1296   if (RTy->isAnyComplexType())
   1297     return UnknownVal();
   1298 
   1299   // FIXME: We should eventually handle funny addressing.  e.g.:
   1300   //
   1301   //   int x = ...;
   1302   //   int *p = &x;
   1303   //   char *q = (char*) p;
   1304   //   char c = *q;  // returns the first byte of 'x'.
   1305   //
   1306   // Such funny addressing will occur due to layering of regions.
   1307   if (RTy->isStructureOrClassType())
   1308     return getBindingForStruct(B, R);
   1309 
   1310   // FIXME: Handle unions.
   1311   if (RTy->isUnionType())
   1312     return createLazyBinding(B, R);
   1313 
   1314   if (RTy->isArrayType()) {
   1315     if (RTy->isConstantArrayType())
   1316       return getBindingForArray(B, R);
   1317     else
   1318       return UnknownVal();
   1319   }
   1320 
   1321   // FIXME: handle Vector types.
   1322   if (RTy->isVectorType())
   1323     return UnknownVal();
   1324 
   1325   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
   1326     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
   1327 
   1328   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
   1329     // FIXME: Here we actually perform an implicit conversion from the loaded
   1330     // value to the element type.  Eventually we want to compose these values
   1331     // more intelligently.  For example, an 'element' can encompass multiple
   1332     // bound regions (e.g., several bound bytes), or could be a subset of
   1333     // a larger value.
   1334     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
   1335   }
   1336 
   1337   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
   1338     // FIXME: Here we actually perform an implicit conversion from the loaded
   1339     // value to the ivar type.  What we should model is stores to ivars
   1340     // that blow past the extent of the ivar.  If the address of the ivar is
   1341     // reinterpretted, it is possible we stored a different value that could
   1342     // fit within the ivar.  Either we need to cast these when storing them
   1343     // or reinterpret them lazily (as we do here).
   1344     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
   1345   }
   1346 
   1347   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
   1348     // FIXME: Here we actually perform an implicit conversion from the loaded
   1349     // value to the variable type.  What we should model is stores to variables
   1350     // that blow past the extent of the variable.  If the address of the
   1351     // variable is reinterpretted, it is possible we stored a different value
   1352     // that could fit within the variable.  Either we need to cast these when
   1353     // storing them or reinterpret them lazily (as we do here).
   1354     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
   1355   }
   1356 
   1357   const SVal *V = B.lookup(R, BindingKey::Direct);
   1358 
   1359   // Check if the region has a binding.
   1360   if (V)
   1361     return *V;
   1362 
   1363   // The location does not have a bound value.  This means that it has
   1364   // the value it had upon its creation and/or entry to the analyzed
   1365   // function/method.  These are either symbolic values or 'undefined'.
   1366   if (R->hasStackNonParametersStorage()) {
   1367     // All stack variables are considered to have undefined values
   1368     // upon creation.  All heap allocated blocks are considered to
   1369     // have undefined values as well unless they are explicitly bound
   1370     // to specific values.
   1371     return UndefinedVal();
   1372   }
   1373 
   1374   // All other values are symbolic.
   1375   return svalBuilder.getRegionValueSymbolVal(R);
   1376 }
   1377 
   1378 static QualType getUnderlyingType(const SubRegion *R) {
   1379   QualType RegionTy;
   1380   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
   1381     RegionTy = TVR->getValueType();
   1382 
   1383   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   1384     RegionTy = SR->getSymbol()->getType();
   1385 
   1386   return RegionTy;
   1387 }
   1388 
   1389 /// Checks to see if store \p B has a lazy binding for region \p R.
   1390 ///
   1391 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
   1392 /// if there are additional bindings within \p R.
   1393 ///
   1394 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
   1395 /// for lazy bindings for super-regions of \p R.
   1396 static Optional<nonloc::LazyCompoundVal>
   1397 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
   1398                        const SubRegion *R, bool AllowSubregionBindings) {
   1399   Optional<SVal> V = B.getDefaultBinding(R);
   1400   if (!V)
   1401     return None;
   1402 
   1403   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
   1404   if (!LCV)
   1405     return None;
   1406 
   1407   // If the LCV is for a subregion, the types might not match, and we shouldn't
   1408   // reuse the binding.
   1409   QualType RegionTy = getUnderlyingType(R);
   1410   if (!RegionTy.isNull() &&
   1411       !RegionTy->isVoidPointerType()) {
   1412     QualType SourceRegionTy = LCV->getRegion()->getValueType();
   1413     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
   1414       return None;
   1415   }
   1416 
   1417   if (!AllowSubregionBindings) {
   1418     // If there are any other bindings within this region, we shouldn't reuse
   1419     // the top-level binding.
   1420     SmallVector<BindingPair, 16> Bindings;
   1421     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
   1422                              /*IncludeAllDefaultBindings=*/true);
   1423     if (Bindings.size() > 1)
   1424       return None;
   1425   }
   1426 
   1427   return *LCV;
   1428 }
   1429 
   1430 
   1431 std::pair<Store, const SubRegion *>
   1432 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
   1433                                    const SubRegion *R,
   1434                                    const SubRegion *originalRegion) {
   1435   if (originalRegion != R) {
   1436     if (Optional<nonloc::LazyCompoundVal> V =
   1437           getExistingLazyBinding(svalBuilder, B, R, true))
   1438       return std::make_pair(V->getStore(), V->getRegion());
   1439   }
   1440 
   1441   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
   1442   StoreRegionPair Result = StoreRegionPair();
   1443 
   1444   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
   1445     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
   1446                              originalRegion);
   1447 
   1448     if (Result.second)
   1449       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
   1450 
   1451   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
   1452     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
   1453                                        originalRegion);
   1454 
   1455     if (Result.second)
   1456       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
   1457 
   1458   } else if (const CXXBaseObjectRegion *BaseReg =
   1459                dyn_cast<CXXBaseObjectRegion>(R)) {
   1460     // C++ base object region is another kind of region that we should blast
   1461     // through to look for lazy compound value. It is like a field region.
   1462     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
   1463                              originalRegion);
   1464 
   1465     if (Result.second)
   1466       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
   1467                                                             Result.second);
   1468   }
   1469 
   1470   return Result;
   1471 }
   1472 
   1473 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
   1474                                               const ElementRegion* R) {
   1475   // We do not currently model bindings of the CompoundLiteralregion.
   1476   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
   1477     return UnknownVal();
   1478 
   1479   // Check if the region has a binding.
   1480   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1481     return *V;
   1482 
   1483   const MemRegion* superR = R->getSuperRegion();
   1484 
   1485   // Check if the region is an element region of a string literal.
   1486   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
   1487     // FIXME: Handle loads from strings where the literal is treated as
   1488     // an integer, e.g., *((unsigned int*)"hello")
   1489     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
   1490     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
   1491       return UnknownVal();
   1492 
   1493     const StringLiteral *Str = StrR->getStringLiteral();
   1494     SVal Idx = R->getIndex();
   1495     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
   1496       int64_t i = CI->getValue().getSExtValue();
   1497       // Abort on string underrun.  This can be possible by arbitrary
   1498       // clients of getBindingForElement().
   1499       if (i < 0)
   1500         return UndefinedVal();
   1501       int64_t length = Str->getLength();
   1502       // Technically, only i == length is guaranteed to be null.
   1503       // However, such overflows should be caught before reaching this point;
   1504       // the only time such an access would be made is if a string literal was
   1505       // used to initialize a larger array.
   1506       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
   1507       return svalBuilder.makeIntVal(c, T);
   1508     }
   1509   }
   1510 
   1511   // Check for loads from a code text region.  For such loads, just give up.
   1512   if (isa<CodeTextRegion>(superR))
   1513     return UnknownVal();
   1514 
   1515   // Handle the case where we are indexing into a larger scalar object.
   1516   // For example, this handles:
   1517   //   int x = ...
   1518   //   char *y = &x;
   1519   //   return *y;
   1520   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
   1521   const RegionRawOffset &O = R->getAsArrayOffset();
   1522 
   1523   // If we cannot reason about the offset, return an unknown value.
   1524   if (!O.getRegion())
   1525     return UnknownVal();
   1526 
   1527   if (const TypedValueRegion *baseR =
   1528         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
   1529     QualType baseT = baseR->getValueType();
   1530     if (baseT->isScalarType()) {
   1531       QualType elemT = R->getElementType();
   1532       if (elemT->isScalarType()) {
   1533         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
   1534           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
   1535             if (SymbolRef parentSym = V->getAsSymbol())
   1536               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1537 
   1538             if (V->isUnknownOrUndef())
   1539               return *V;
   1540             // Other cases: give up.  We are indexing into a larger object
   1541             // that has some value, but we don't know how to handle that yet.
   1542             return UnknownVal();
   1543           }
   1544         }
   1545       }
   1546     }
   1547   }
   1548   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
   1549 }
   1550 
   1551 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
   1552                                             const FieldRegion* R) {
   1553 
   1554   // Check if the region has a binding.
   1555   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1556     return *V;
   1557 
   1558   QualType Ty = R->getValueType();
   1559   return getBindingForFieldOrElementCommon(B, R, Ty);
   1560 }
   1561 
   1562 Optional<SVal>
   1563 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
   1564                                                      const MemRegion *superR,
   1565                                                      const TypedValueRegion *R,
   1566                                                      QualType Ty) {
   1567 
   1568   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
   1569     const SVal &val = D.getValue();
   1570     if (SymbolRef parentSym = val.getAsSymbol())
   1571       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1572 
   1573     if (val.isZeroConstant())
   1574       return svalBuilder.makeZeroVal(Ty);
   1575 
   1576     if (val.isUnknownOrUndef())
   1577       return val;
   1578 
   1579     // Lazy bindings are usually handled through getExistingLazyBinding().
   1580     // We should unify these two code paths at some point.
   1581     if (val.getAs<nonloc::LazyCompoundVal>())
   1582       return val;
   1583 
   1584     llvm_unreachable("Unknown default value");
   1585   }
   1586 
   1587   return None;
   1588 }
   1589 
   1590 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
   1591                                         RegionBindingsRef LazyBinding) {
   1592   SVal Result;
   1593   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
   1594     Result = getBindingForElement(LazyBinding, ER);
   1595   else
   1596     Result = getBindingForField(LazyBinding,
   1597                                 cast<FieldRegion>(LazyBindingRegion));
   1598 
   1599   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1600   // default value for /part/ of an aggregate from a default value for the
   1601   // /entire/ aggregate. The most common case of this is when struct Outer
   1602   // has as its first member a struct Inner, which is copied in from a stack
   1603   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1604   // or unknown, it gets overridden by the Inner's default value of undefined.
   1605   //
   1606   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1607   // will now look zero-initialized. The proper way to solve this is with a
   1608   // new version of RegionStore that tracks the extent of a binding as well
   1609   // as the offset.
   1610   //
   1611   // This hack only takes care of the undefined case because that can very
   1612   // quickly result in a warning.
   1613   if (Result.isUndef())
   1614     Result = UnknownVal();
   1615 
   1616   return Result;
   1617 }
   1618 
   1619 SVal
   1620 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
   1621                                                       const TypedValueRegion *R,
   1622                                                       QualType Ty) {
   1623 
   1624   // At this point we have already checked in either getBindingForElement or
   1625   // getBindingForField if 'R' has a direct binding.
   1626 
   1627   // Lazy binding?
   1628   Store lazyBindingStore = nullptr;
   1629   const SubRegion *lazyBindingRegion = nullptr;
   1630   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
   1631   if (lazyBindingRegion)
   1632     return getLazyBinding(lazyBindingRegion,
   1633                           getRegionBindings(lazyBindingStore));
   1634 
   1635   // Record whether or not we see a symbolic index.  That can completely
   1636   // be out of scope of our lookup.
   1637   bool hasSymbolicIndex = false;
   1638 
   1639   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1640   // default value for /part/ of an aggregate from a default value for the
   1641   // /entire/ aggregate. The most common case of this is when struct Outer
   1642   // has as its first member a struct Inner, which is copied in from a stack
   1643   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1644   // or unknown, it gets overridden by the Inner's default value of undefined.
   1645   //
   1646   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1647   // will now look zero-initialized. The proper way to solve this is with a
   1648   // new version of RegionStore that tracks the extent of a binding as well
   1649   // as the offset.
   1650   //
   1651   // This hack only takes care of the undefined case because that can very
   1652   // quickly result in a warning.
   1653   bool hasPartialLazyBinding = false;
   1654 
   1655   const SubRegion *SR = dyn_cast<SubRegion>(R);
   1656   while (SR) {
   1657     const MemRegion *Base = SR->getSuperRegion();
   1658     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
   1659       if (D->getAs<nonloc::LazyCompoundVal>()) {
   1660         hasPartialLazyBinding = true;
   1661         break;
   1662       }
   1663 
   1664       return *D;
   1665     }
   1666 
   1667     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
   1668       NonLoc index = ER->getIndex();
   1669       if (!index.isConstant())
   1670         hasSymbolicIndex = true;
   1671     }
   1672 
   1673     // If our super region is a field or element itself, walk up the region
   1674     // hierarchy to see if there is a default value installed in an ancestor.
   1675     SR = dyn_cast<SubRegion>(Base);
   1676   }
   1677 
   1678   if (R->hasStackNonParametersStorage()) {
   1679     if (isa<ElementRegion>(R)) {
   1680       // Currently we don't reason specially about Clang-style vectors.  Check
   1681       // if superR is a vector and if so return Unknown.
   1682       if (const TypedValueRegion *typedSuperR =
   1683             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
   1684         if (typedSuperR->getValueType()->isVectorType())
   1685           return UnknownVal();
   1686       }
   1687     }
   1688 
   1689     // FIXME: We also need to take ElementRegions with symbolic indexes into
   1690     // account.  This case handles both directly accessing an ElementRegion
   1691     // with a symbolic offset, but also fields within an element with
   1692     // a symbolic offset.
   1693     if (hasSymbolicIndex)
   1694       return UnknownVal();
   1695 
   1696     if (!hasPartialLazyBinding)
   1697       return UndefinedVal();
   1698   }
   1699 
   1700   // All other values are symbolic.
   1701   return svalBuilder.getRegionValueSymbolVal(R);
   1702 }
   1703 
   1704 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
   1705                                                const ObjCIvarRegion* R) {
   1706   // Check if the region has a binding.
   1707   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1708     return *V;
   1709 
   1710   const MemRegion *superR = R->getSuperRegion();
   1711 
   1712   // Check if the super region has a default binding.
   1713   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
   1714     if (SymbolRef parentSym = V->getAsSymbol())
   1715       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1716 
   1717     // Other cases: give up.
   1718     return UnknownVal();
   1719   }
   1720 
   1721   return getBindingForLazySymbol(R);
   1722 }
   1723 
   1724 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
   1725                                           const VarRegion *R) {
   1726 
   1727   // Check if the region has a binding.
   1728   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1729     return *V;
   1730 
   1731   // Lazily derive a value for the VarRegion.
   1732   const VarDecl *VD = R->getDecl();
   1733   const MemSpaceRegion *MS = R->getMemorySpace();
   1734 
   1735   // Arguments are always symbolic.
   1736   if (isa<StackArgumentsSpaceRegion>(MS))
   1737     return svalBuilder.getRegionValueSymbolVal(R);
   1738 
   1739   // Is 'VD' declared constant?  If so, retrieve the constant value.
   1740   if (VD->getType().isConstQualified())
   1741     if (const Expr *Init = VD->getInit())
   1742       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
   1743         return *V;
   1744 
   1745   // This must come after the check for constants because closure-captured
   1746   // constant variables may appear in UnknownSpaceRegion.
   1747   if (isa<UnknownSpaceRegion>(MS))
   1748     return svalBuilder.getRegionValueSymbolVal(R);
   1749 
   1750   if (isa<GlobalsSpaceRegion>(MS)) {
   1751     QualType T = VD->getType();
   1752 
   1753     // Function-scoped static variables are default-initialized to 0; if they
   1754     // have an initializer, it would have been processed by now.
   1755     if (isa<StaticGlobalSpaceRegion>(MS))
   1756       return svalBuilder.makeZeroVal(T);
   1757 
   1758     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
   1759       assert(!V->getAs<nonloc::LazyCompoundVal>());
   1760       return V.getValue();
   1761     }
   1762 
   1763     return svalBuilder.getRegionValueSymbolVal(R);
   1764   }
   1765 
   1766   return UndefinedVal();
   1767 }
   1768 
   1769 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
   1770   // All other values are symbolic.
   1771   return svalBuilder.getRegionValueSymbolVal(R);
   1772 }
   1773 
   1774 const RegionStoreManager::SValListTy &
   1775 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
   1776   // First, check the cache.
   1777   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
   1778   if (I != LazyBindingsMap.end())
   1779     return I->second;
   1780 
   1781   // If we don't have a list of values cached, start constructing it.
   1782   SValListTy List;
   1783 
   1784   const SubRegion *LazyR = LCV.getRegion();
   1785   RegionBindingsRef B = getRegionBindings(LCV.getStore());
   1786 
   1787   // If this region had /no/ bindings at the time, there are no interesting
   1788   // values to return.
   1789   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
   1790   if (!Cluster)
   1791     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
   1792 
   1793   SmallVector<BindingPair, 32> Bindings;
   1794   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
   1795                            /*IncludeAllDefaultBindings=*/true);
   1796   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
   1797                                                     E = Bindings.end();
   1798        I != E; ++I) {
   1799     SVal V = I->second;
   1800     if (V.isUnknownOrUndef() || V.isConstant())
   1801       continue;
   1802 
   1803     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
   1804             V.getAs<nonloc::LazyCompoundVal>()) {
   1805       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
   1806       List.insert(List.end(), InnerList.begin(), InnerList.end());
   1807       continue;
   1808     }
   1809 
   1810     List.push_back(V);
   1811   }
   1812 
   1813   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
   1814 }
   1815 
   1816 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
   1817                                              const TypedValueRegion *R) {
   1818   if (Optional<nonloc::LazyCompoundVal> V =
   1819         getExistingLazyBinding(svalBuilder, B, R, false))
   1820     return *V;
   1821 
   1822   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
   1823 }
   1824 
   1825 static bool isRecordEmpty(const RecordDecl *RD) {
   1826   if (!RD->field_empty())
   1827     return false;
   1828   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
   1829     return CRD->getNumBases() == 0;
   1830   return true;
   1831 }
   1832 
   1833 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
   1834                                              const TypedValueRegion *R) {
   1835   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
   1836   if (!RD->getDefinition() || isRecordEmpty(RD))
   1837     return UnknownVal();
   1838 
   1839   return createLazyBinding(B, R);
   1840 }
   1841 
   1842 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
   1843                                             const TypedValueRegion *R) {
   1844   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
   1845          "Only constant array types can have compound bindings.");
   1846 
   1847   return createLazyBinding(B, R);
   1848 }
   1849 
   1850 bool RegionStoreManager::includedInBindings(Store store,
   1851                                             const MemRegion *region) const {
   1852   RegionBindingsRef B = getRegionBindings(store);
   1853   region = region->getBaseRegion();
   1854 
   1855   // Quick path: if the base is the head of a cluster, the region is live.
   1856   if (B.lookup(region))
   1857     return true;
   1858 
   1859   // Slow path: if the region is the VALUE of any binding, it is live.
   1860   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
   1861     const ClusterBindings &Cluster = RI.getData();
   1862     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   1863          CI != CE; ++CI) {
   1864       const SVal &D = CI.getData();
   1865       if (const MemRegion *R = D.getAsRegion())
   1866         if (R->getBaseRegion() == region)
   1867           return true;
   1868     }
   1869   }
   1870 
   1871   return false;
   1872 }
   1873 
   1874 //===----------------------------------------------------------------------===//
   1875 // Binding values to regions.
   1876 //===----------------------------------------------------------------------===//
   1877 
   1878 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
   1879   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
   1880     if (const MemRegion* R = LV->getRegion())
   1881       return StoreRef(getRegionBindings(ST).removeBinding(R)
   1882                                            .asImmutableMap()
   1883                                            .getRootWithoutRetain(),
   1884                       *this);
   1885 
   1886   return StoreRef(ST, *this);
   1887 }
   1888 
   1889 RegionBindingsRef
   1890 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
   1891   if (L.getAs<loc::ConcreteInt>())
   1892     return B;
   1893 
   1894   // If we get here, the location should be a region.
   1895   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
   1896 
   1897   // Check if the region is a struct region.
   1898   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
   1899     QualType Ty = TR->getValueType();
   1900     if (Ty->isArrayType())
   1901       return bindArray(B, TR, V);
   1902     if (Ty->isStructureOrClassType())
   1903       return bindStruct(B, TR, V);
   1904     if (Ty->isVectorType())
   1905       return bindVector(B, TR, V);
   1906     if (Ty->isUnionType())
   1907       return bindAggregate(B, TR, V);
   1908   }
   1909 
   1910   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
   1911     // Binding directly to a symbolic region should be treated as binding
   1912     // to element 0.
   1913     QualType T = SR->getSymbol()->getType();
   1914     if (T->isAnyPointerType() || T->isReferenceType())
   1915       T = T->getPointeeType();
   1916 
   1917     R = GetElementZeroRegion(SR, T);
   1918   }
   1919 
   1920   // Clear out bindings that may overlap with this binding.
   1921   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
   1922   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
   1923 }
   1924 
   1925 RegionBindingsRef
   1926 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
   1927                                             const MemRegion *R,
   1928                                             QualType T) {
   1929   SVal V;
   1930 
   1931   if (Loc::isLocType(T))
   1932     V = svalBuilder.makeNull();
   1933   else if (T->isIntegralOrEnumerationType())
   1934     V = svalBuilder.makeZeroVal(T);
   1935   else if (T->isStructureOrClassType() || T->isArrayType()) {
   1936     // Set the default value to a zero constant when it is a structure
   1937     // or array.  The type doesn't really matter.
   1938     V = svalBuilder.makeZeroVal(Ctx.IntTy);
   1939   }
   1940   else {
   1941     // We can't represent values of this type, but we still need to set a value
   1942     // to record that the region has been initialized.
   1943     // If this assertion ever fires, a new case should be added above -- we
   1944     // should know how to default-initialize any value we can symbolicate.
   1945     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
   1946     V = UnknownVal();
   1947   }
   1948 
   1949   return B.addBinding(R, BindingKey::Default, V);
   1950 }
   1951 
   1952 RegionBindingsRef
   1953 RegionStoreManager::bindArray(RegionBindingsConstRef B,
   1954                               const TypedValueRegion* R,
   1955                               SVal Init) {
   1956 
   1957   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
   1958   QualType ElementTy = AT->getElementType();
   1959   Optional<uint64_t> Size;
   1960 
   1961   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
   1962     Size = CAT->getSize().getZExtValue();
   1963 
   1964   // Check if the init expr is a string literal.
   1965   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
   1966     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
   1967 
   1968     // Treat the string as a lazy compound value.
   1969     StoreRef store(B.asStore(), *this);
   1970     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
   1971         .castAs<nonloc::LazyCompoundVal>();
   1972     return bindAggregate(B, R, LCV);
   1973   }
   1974 
   1975   // Handle lazy compound values.
   1976   if (Init.getAs<nonloc::LazyCompoundVal>())
   1977     return bindAggregate(B, R, Init);
   1978 
   1979   // Remaining case: explicit compound values.
   1980 
   1981   if (Init.isUnknown())
   1982     return setImplicitDefaultValue(B, R, ElementTy);
   1983 
   1984   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
   1985   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1986   uint64_t i = 0;
   1987 
   1988   RegionBindingsRef NewB(B);
   1989 
   1990   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
   1991     // The init list might be shorter than the array length.
   1992     if (VI == VE)
   1993       break;
   1994 
   1995     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
   1996     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
   1997 
   1998     if (ElementTy->isStructureOrClassType())
   1999       NewB = bindStruct(NewB, ER, *VI);
   2000     else if (ElementTy->isArrayType())
   2001       NewB = bindArray(NewB, ER, *VI);
   2002     else
   2003       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
   2004   }
   2005 
   2006   // If the init list is shorter than the array length, set the
   2007   // array default value.
   2008   if (Size.hasValue() && i < Size.getValue())
   2009     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
   2010 
   2011   return NewB;
   2012 }
   2013 
   2014 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
   2015                                                  const TypedValueRegion* R,
   2016                                                  SVal V) {
   2017   QualType T = R->getValueType();
   2018   assert(T->isVectorType());
   2019   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
   2020 
   2021   // Handle lazy compound values and symbolic values.
   2022   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
   2023     return bindAggregate(B, R, V);
   2024 
   2025   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   2026   // that we are binding symbolic struct value. Kill the field values, and if
   2027   // the value is symbolic go and bind it as a "default" binding.
   2028   if (!V.getAs<nonloc::CompoundVal>()) {
   2029     return bindAggregate(B, R, UnknownVal());
   2030   }
   2031 
   2032   QualType ElemType = VT->getElementType();
   2033   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
   2034   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   2035   unsigned index = 0, numElements = VT->getNumElements();
   2036   RegionBindingsRef NewB(B);
   2037 
   2038   for ( ; index != numElements ; ++index) {
   2039     if (VI == VE)
   2040       break;
   2041 
   2042     NonLoc Idx = svalBuilder.makeArrayIndex(index);
   2043     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
   2044 
   2045     if (ElemType->isArrayType())
   2046       NewB = bindArray(NewB, ER, *VI);
   2047     else if (ElemType->isStructureOrClassType())
   2048       NewB = bindStruct(NewB, ER, *VI);
   2049     else
   2050       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
   2051   }
   2052   return NewB;
   2053 }
   2054 
   2055 Optional<RegionBindingsRef>
   2056 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
   2057                                        const TypedValueRegion *R,
   2058                                        const RecordDecl *RD,
   2059                                        nonloc::LazyCompoundVal LCV) {
   2060   FieldVector Fields;
   2061 
   2062   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
   2063     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
   2064       return None;
   2065 
   2066   for (const auto *FD : RD->fields()) {
   2067     if (FD->isUnnamedBitfield())
   2068       continue;
   2069 
   2070     // If there are too many fields, or if any of the fields are aggregates,
   2071     // just use the LCV as a default binding.
   2072     if (Fields.size() == SmallStructLimit)
   2073       return None;
   2074 
   2075     QualType Ty = FD->getType();
   2076     if (!(Ty->isScalarType() || Ty->isReferenceType()))
   2077       return None;
   2078 
   2079     Fields.push_back(FD);
   2080   }
   2081 
   2082   RegionBindingsRef NewB = B;
   2083 
   2084   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
   2085     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
   2086     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
   2087 
   2088     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
   2089     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
   2090   }
   2091 
   2092   return NewB;
   2093 }
   2094 
   2095 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
   2096                                                  const TypedValueRegion* R,
   2097                                                  SVal V) {
   2098   if (!Features.supportsFields())
   2099     return B;
   2100 
   2101   QualType T = R->getValueType();
   2102   assert(T->isStructureOrClassType());
   2103 
   2104   const RecordType* RT = T->getAs<RecordType>();
   2105   const RecordDecl *RD = RT->getDecl();
   2106 
   2107   if (!RD->isCompleteDefinition())
   2108     return B;
   2109 
   2110   // Handle lazy compound values and symbolic values.
   2111   if (Optional<nonloc::LazyCompoundVal> LCV =
   2112         V.getAs<nonloc::LazyCompoundVal>()) {
   2113     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
   2114       return *NewB;
   2115     return bindAggregate(B, R, V);
   2116   }
   2117   if (V.getAs<nonloc::SymbolVal>())
   2118     return bindAggregate(B, R, V);
   2119 
   2120   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   2121   // that we are binding symbolic struct value. Kill the field values, and if
   2122   // the value is symbolic go and bind it as a "default" binding.
   2123   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
   2124     return bindAggregate(B, R, UnknownVal());
   2125 
   2126   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
   2127   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   2128 
   2129   RecordDecl::field_iterator FI, FE;
   2130   RegionBindingsRef NewB(B);
   2131 
   2132   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
   2133 
   2134     if (VI == VE)
   2135       break;
   2136 
   2137     // Skip any unnamed bitfields to stay in sync with the initializers.
   2138     if (FI->isUnnamedBitfield())
   2139       continue;
   2140 
   2141     QualType FTy = FI->getType();
   2142     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
   2143 
   2144     if (FTy->isArrayType())
   2145       NewB = bindArray(NewB, FR, *VI);
   2146     else if (FTy->isStructureOrClassType())
   2147       NewB = bindStruct(NewB, FR, *VI);
   2148     else
   2149       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
   2150     ++VI;
   2151   }
   2152 
   2153   // There may be fewer values in the initialize list than the fields of struct.
   2154   if (FI != FE) {
   2155     NewB = NewB.addBinding(R, BindingKey::Default,
   2156                            svalBuilder.makeIntVal(0, false));
   2157   }
   2158 
   2159   return NewB;
   2160 }
   2161 
   2162 RegionBindingsRef
   2163 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
   2164                                   const TypedRegion *R,
   2165                                   SVal Val) {
   2166   // Remove the old bindings, using 'R' as the root of all regions
   2167   // we will invalidate. Then add the new binding.
   2168   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
   2169 }
   2170 
   2171 //===----------------------------------------------------------------------===//
   2172 // State pruning.
   2173 //===----------------------------------------------------------------------===//
   2174 
   2175 namespace {
   2176 class removeDeadBindingsWorker :
   2177   public ClusterAnalysis<removeDeadBindingsWorker> {
   2178   SmallVector<const SymbolicRegion*, 12> Postponed;
   2179   SymbolReaper &SymReaper;
   2180   const StackFrameContext *CurrentLCtx;
   2181 
   2182 public:
   2183   removeDeadBindingsWorker(RegionStoreManager &rm,
   2184                            ProgramStateManager &stateMgr,
   2185                            RegionBindingsRef b, SymbolReaper &symReaper,
   2186                            const StackFrameContext *LCtx)
   2187     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
   2188       SymReaper(symReaper), CurrentLCtx(LCtx) {}
   2189 
   2190   // Called by ClusterAnalysis.
   2191   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
   2192   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
   2193   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
   2194 
   2195   bool UpdatePostponed();
   2196   void VisitBinding(SVal V);
   2197 };
   2198 }
   2199 
   2200 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
   2201                                                    const ClusterBindings &C) {
   2202 
   2203   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
   2204     if (SymReaper.isLive(VR))
   2205       AddToWorkList(baseR, &C);
   2206 
   2207     return;
   2208   }
   2209 
   2210   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
   2211     if (SymReaper.isLive(SR->getSymbol()))
   2212       AddToWorkList(SR, &C);
   2213     else
   2214       Postponed.push_back(SR);
   2215 
   2216     return;
   2217   }
   2218 
   2219   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
   2220     AddToWorkList(baseR, &C);
   2221     return;
   2222   }
   2223 
   2224   // CXXThisRegion in the current or parent location context is live.
   2225   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
   2226     const StackArgumentsSpaceRegion *StackReg =
   2227       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
   2228     const StackFrameContext *RegCtx = StackReg->getStackFrame();
   2229     if (CurrentLCtx &&
   2230         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
   2231       AddToWorkList(TR, &C);
   2232   }
   2233 }
   2234 
   2235 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
   2236                                             const ClusterBindings *C) {
   2237   if (!C)
   2238     return;
   2239 
   2240   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
   2241   // This means we should continue to track that symbol.
   2242   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
   2243     SymReaper.markLive(SymR->getSymbol());
   2244 
   2245   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
   2246     VisitBinding(I.getData());
   2247 }
   2248 
   2249 void removeDeadBindingsWorker::VisitBinding(SVal V) {
   2250   // Is it a LazyCompoundVal?  All referenced regions are live as well.
   2251   if (Optional<nonloc::LazyCompoundVal> LCS =
   2252           V.getAs<nonloc::LazyCompoundVal>()) {
   2253 
   2254     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
   2255 
   2256     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
   2257                                                         E = Vals.end();
   2258          I != E; ++I)
   2259       VisitBinding(*I);
   2260 
   2261     return;
   2262   }
   2263 
   2264   // If V is a region, then add it to the worklist.
   2265   if (const MemRegion *R = V.getAsRegion()) {
   2266     AddToWorkList(R);
   2267 
   2268     // All regions captured by a block are also live.
   2269     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
   2270       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
   2271                                                 E = BR->referenced_vars_end();
   2272       for ( ; I != E; ++I)
   2273         AddToWorkList(I.getCapturedRegion());
   2274     }
   2275   }
   2276 
   2277 
   2278   // Update the set of live symbols.
   2279   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
   2280        SI!=SE; ++SI)
   2281     SymReaper.markLive(*SI);
   2282 }
   2283 
   2284 bool removeDeadBindingsWorker::UpdatePostponed() {
   2285   // See if any postponed SymbolicRegions are actually live now, after
   2286   // having done a scan.
   2287   bool changed = false;
   2288 
   2289   for (SmallVectorImpl<const SymbolicRegion*>::iterator
   2290         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
   2291     if (const SymbolicRegion *SR = *I) {
   2292       if (SymReaper.isLive(SR->getSymbol())) {
   2293         changed |= AddToWorkList(SR);
   2294         *I = nullptr;
   2295       }
   2296     }
   2297   }
   2298 
   2299   return changed;
   2300 }
   2301 
   2302 StoreRef RegionStoreManager::removeDeadBindings(Store store,
   2303                                                 const StackFrameContext *LCtx,
   2304                                                 SymbolReaper& SymReaper) {
   2305   RegionBindingsRef B = getRegionBindings(store);
   2306   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
   2307   W.GenerateClusters();
   2308 
   2309   // Enqueue the region roots onto the worklist.
   2310   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
   2311        E = SymReaper.region_end(); I != E; ++I) {
   2312     W.AddToWorkList(*I);
   2313   }
   2314 
   2315   do W.RunWorkList(); while (W.UpdatePostponed());
   2316 
   2317   // We have now scanned the store, marking reachable regions and symbols
   2318   // as live.  We now remove all the regions that are dead from the store
   2319   // as well as update DSymbols with the set symbols that are now dead.
   2320   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   2321     const MemRegion *Base = I.getKey();
   2322 
   2323     // If the cluster has been visited, we know the region has been marked.
   2324     if (W.isVisited(Base))
   2325       continue;
   2326 
   2327     // Remove the dead entry.
   2328     B = B.remove(Base);
   2329 
   2330     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
   2331       SymReaper.maybeDead(SymR->getSymbol());
   2332 
   2333     // Mark all non-live symbols that this binding references as dead.
   2334     const ClusterBindings &Cluster = I.getData();
   2335     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   2336          CI != CE; ++CI) {
   2337       SVal X = CI.getData();
   2338       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
   2339       for (; SI != SE; ++SI)
   2340         SymReaper.maybeDead(*SI);
   2341     }
   2342   }
   2343 
   2344   return StoreRef(B.asStore(), *this);
   2345 }
   2346 
   2347 //===----------------------------------------------------------------------===//
   2348 // Utility methods.
   2349 //===----------------------------------------------------------------------===//
   2350 
   2351 void RegionStoreManager::print(Store store, raw_ostream &OS,
   2352                                const char* nl, const char *sep) {
   2353   RegionBindingsRef B = getRegionBindings(store);
   2354   OS << "Store (direct and default bindings), "
   2355      << B.asStore()
   2356      << " :" << nl;
   2357   B.dump(OS, nl);
   2358 }
   2359