Home | History | Annotate | Download | only in Core
      1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines RangeConstraintManager, a class that tracks simple
     11 //  equality and inequality constraints on symbolic values of ProgramState.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "SimpleConstraintManager.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     19 #include "llvm/ADT/FoldingSet.h"
     20 #include "llvm/ADT/ImmutableSet.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 
     24 using namespace clang;
     25 using namespace ento;
     26 
     27 /// A Range represents the closed range [from, to].  The caller must
     28 /// guarantee that from <= to.  Note that Range is immutable, so as not
     29 /// to subvert RangeSet's immutability.
     30 namespace {
     31 class Range : public std::pair<const llvm::APSInt*,
     32                                                 const llvm::APSInt*> {
     33 public:
     34   Range(const llvm::APSInt &from, const llvm::APSInt &to)
     35     : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
     36     assert(from <= to);
     37   }
     38   bool Includes(const llvm::APSInt &v) const {
     39     return *first <= v && v <= *second;
     40   }
     41   const llvm::APSInt &From() const {
     42     return *first;
     43   }
     44   const llvm::APSInt &To() const {
     45     return *second;
     46   }
     47   const llvm::APSInt *getConcreteValue() const {
     48     return &From() == &To() ? &From() : nullptr;
     49   }
     50 
     51   void Profile(llvm::FoldingSetNodeID &ID) const {
     52     ID.AddPointer(&From());
     53     ID.AddPointer(&To());
     54   }
     55 };
     56 
     57 
     58 class RangeTrait : public llvm::ImutContainerInfo<Range> {
     59 public:
     60   // When comparing if one Range is less than another, we should compare
     61   // the actual APSInt values instead of their pointers.  This keeps the order
     62   // consistent (instead of comparing by pointer values) and can potentially
     63   // be used to speed up some of the operations in RangeSet.
     64   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
     65     return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
     66                                        *lhs.second < *rhs.second);
     67   }
     68 };
     69 
     70 /// RangeSet contains a set of ranges. If the set is empty, then
     71 ///  there the value of a symbol is overly constrained and there are no
     72 ///  possible values for that symbol.
     73 class RangeSet {
     74   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
     75   PrimRangeSet ranges; // no need to make const, since it is an
     76                        // ImmutableSet - this allows default operator=
     77                        // to work.
     78 public:
     79   typedef PrimRangeSet::Factory Factory;
     80   typedef PrimRangeSet::iterator iterator;
     81 
     82   RangeSet(PrimRangeSet RS) : ranges(RS) {}
     83 
     84   iterator begin() const { return ranges.begin(); }
     85   iterator end() const { return ranges.end(); }
     86 
     87   bool isEmpty() const { return ranges.isEmpty(); }
     88 
     89   /// Construct a new RangeSet representing '{ [from, to] }'.
     90   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
     91     : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
     92 
     93   /// Profile - Generates a hash profile of this RangeSet for use
     94   ///  by FoldingSet.
     95   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
     96 
     97   /// getConcreteValue - If a symbol is contrained to equal a specific integer
     98   ///  constant then this method returns that value.  Otherwise, it returns
     99   ///  NULL.
    100   const llvm::APSInt* getConcreteValue() const {
    101     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
    102   }
    103 
    104 private:
    105   void IntersectInRange(BasicValueFactory &BV, Factory &F,
    106                         const llvm::APSInt &Lower,
    107                         const llvm::APSInt &Upper,
    108                         PrimRangeSet &newRanges,
    109                         PrimRangeSet::iterator &i,
    110                         PrimRangeSet::iterator &e) const {
    111     // There are six cases for each range R in the set:
    112     //   1. R is entirely before the intersection range.
    113     //   2. R is entirely after the intersection range.
    114     //   3. R contains the entire intersection range.
    115     //   4. R starts before the intersection range and ends in the middle.
    116     //   5. R starts in the middle of the intersection range and ends after it.
    117     //   6. R is entirely contained in the intersection range.
    118     // These correspond to each of the conditions below.
    119     for (/* i = begin(), e = end() */; i != e; ++i) {
    120       if (i->To() < Lower) {
    121         continue;
    122       }
    123       if (i->From() > Upper) {
    124         break;
    125       }
    126 
    127       if (i->Includes(Lower)) {
    128         if (i->Includes(Upper)) {
    129           newRanges = F.add(newRanges, Range(BV.getValue(Lower),
    130                                              BV.getValue(Upper)));
    131           break;
    132         } else
    133           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
    134       } else {
    135         if (i->Includes(Upper)) {
    136           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
    137           break;
    138         } else
    139           newRanges = F.add(newRanges, *i);
    140       }
    141     }
    142   }
    143 
    144   const llvm::APSInt &getMinValue() const {
    145     assert(!isEmpty());
    146     return ranges.begin()->From();
    147   }
    148 
    149   bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
    150     // This function has nine cases, the cartesian product of range-testing
    151     // both the upper and lower bounds against the symbol's type.
    152     // Each case requires a different pinning operation.
    153     // The function returns false if the described range is entirely outside
    154     // the range of values for the associated symbol.
    155     APSIntType Type(getMinValue());
    156     APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
    157     APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
    158 
    159     switch (LowerTest) {
    160     case APSIntType::RTR_Below:
    161       switch (UpperTest) {
    162       case APSIntType::RTR_Below:
    163         // The entire range is outside the symbol's set of possible values.
    164         // If this is a conventionally-ordered range, the state is infeasible.
    165         if (Lower < Upper)
    166           return false;
    167 
    168         // However, if the range wraps around, it spans all possible values.
    169         Lower = Type.getMinValue();
    170         Upper = Type.getMaxValue();
    171         break;
    172       case APSIntType::RTR_Within:
    173         // The range starts below what's possible but ends within it. Pin.
    174         Lower = Type.getMinValue();
    175         Type.apply(Upper);
    176         break;
    177       case APSIntType::RTR_Above:
    178         // The range spans all possible values for the symbol. Pin.
    179         Lower = Type.getMinValue();
    180         Upper = Type.getMaxValue();
    181         break;
    182       }
    183       break;
    184     case APSIntType::RTR_Within:
    185       switch (UpperTest) {
    186       case APSIntType::RTR_Below:
    187         // The range wraps around, but all lower values are not possible.
    188         Type.apply(Lower);
    189         Upper = Type.getMaxValue();
    190         break;
    191       case APSIntType::RTR_Within:
    192         // The range may or may not wrap around, but both limits are valid.
    193         Type.apply(Lower);
    194         Type.apply(Upper);
    195         break;
    196       case APSIntType::RTR_Above:
    197         // The range starts within what's possible but ends above it. Pin.
    198         Type.apply(Lower);
    199         Upper = Type.getMaxValue();
    200         break;
    201       }
    202       break;
    203     case APSIntType::RTR_Above:
    204       switch (UpperTest) {
    205       case APSIntType::RTR_Below:
    206         // The range wraps but is outside the symbol's set of possible values.
    207         return false;
    208       case APSIntType::RTR_Within:
    209         // The range starts above what's possible but ends within it (wrap).
    210         Lower = Type.getMinValue();
    211         Type.apply(Upper);
    212         break;
    213       case APSIntType::RTR_Above:
    214         // The entire range is outside the symbol's set of possible values.
    215         // If this is a conventionally-ordered range, the state is infeasible.
    216         if (Lower < Upper)
    217           return false;
    218 
    219         // However, if the range wraps around, it spans all possible values.
    220         Lower = Type.getMinValue();
    221         Upper = Type.getMaxValue();
    222         break;
    223       }
    224       break;
    225     }
    226 
    227     return true;
    228   }
    229 
    230 public:
    231   // Returns a set containing the values in the receiving set, intersected with
    232   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
    233   // modular arithmetic, corresponding to the common treatment of C integer
    234   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
    235   // range is taken to wrap around. This is equivalent to taking the
    236   // intersection with the two ranges [Min, Upper] and [Lower, Max],
    237   // or, alternatively, /removing/ all integers between Upper and Lower.
    238   RangeSet Intersect(BasicValueFactory &BV, Factory &F,
    239                      llvm::APSInt Lower, llvm::APSInt Upper) const {
    240     if (!pin(Lower, Upper))
    241       return F.getEmptySet();
    242 
    243     PrimRangeSet newRanges = F.getEmptySet();
    244 
    245     PrimRangeSet::iterator i = begin(), e = end();
    246     if (Lower <= Upper)
    247       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
    248     else {
    249       // The order of the next two statements is important!
    250       // IntersectInRange() does not reset the iteration state for i and e.
    251       // Therefore, the lower range most be handled first.
    252       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
    253       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
    254     }
    255 
    256     return newRanges;
    257   }
    258 
    259   void print(raw_ostream &os) const {
    260     bool isFirst = true;
    261     os << "{ ";
    262     for (iterator i = begin(), e = end(); i != e; ++i) {
    263       if (isFirst)
    264         isFirst = false;
    265       else
    266         os << ", ";
    267 
    268       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
    269          << ']';
    270     }
    271     os << " }";
    272   }
    273 
    274   bool operator==(const RangeSet &other) const {
    275     return ranges == other.ranges;
    276   }
    277 };
    278 } // end anonymous namespace
    279 
    280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
    281                                  CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
    282                                                              RangeSet))
    283 
    284 namespace {
    285 class RangeConstraintManager : public SimpleConstraintManager{
    286   RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
    287 public:
    288   RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
    289     : SimpleConstraintManager(subengine, SVB) {}
    290 
    291   ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
    292                              const llvm::APSInt& Int,
    293                              const llvm::APSInt& Adjustment) override;
    294 
    295   ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
    296                              const llvm::APSInt& Int,
    297                              const llvm::APSInt& Adjustment) override;
    298 
    299   ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
    300                              const llvm::APSInt& Int,
    301                              const llvm::APSInt& Adjustment) override;
    302 
    303   ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
    304                              const llvm::APSInt& Int,
    305                              const llvm::APSInt& Adjustment) override;
    306 
    307   ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
    308                              const llvm::APSInt& Int,
    309                              const llvm::APSInt& Adjustment) override;
    310 
    311   ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
    312                              const llvm::APSInt& Int,
    313                              const llvm::APSInt& Adjustment) override;
    314 
    315   const llvm::APSInt* getSymVal(ProgramStateRef St,
    316                                 SymbolRef sym) const override;
    317   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
    318 
    319   ProgramStateRef removeDeadBindings(ProgramStateRef St,
    320                                      SymbolReaper& SymReaper) override;
    321 
    322   void print(ProgramStateRef St, raw_ostream &Out,
    323              const char* nl, const char *sep) override;
    324 
    325 private:
    326   RangeSet::Factory F;
    327 };
    328 
    329 } // end anonymous namespace
    330 
    331 ConstraintManager *
    332 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
    333   return new RangeConstraintManager(Eng, StMgr.getSValBuilder());
    334 }
    335 
    336 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
    337                                                       SymbolRef sym) const {
    338   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
    339   return T ? T->getConcreteValue() : nullptr;
    340 }
    341 
    342 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
    343                                                     SymbolRef Sym) {
    344   const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
    345 
    346   // If we don't have any information about this symbol, it's underconstrained.
    347   if (!Ranges)
    348     return ConditionTruthVal();
    349 
    350   // If we have a concrete value, see if it's zero.
    351   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
    352     return *Value == 0;
    353 
    354   BasicValueFactory &BV = getBasicVals();
    355   APSIntType IntType = BV.getAPSIntType(Sym->getType());
    356   llvm::APSInt Zero = IntType.getZeroValue();
    357 
    358   // Check if zero is in the set of possible values.
    359   if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
    360     return false;
    361 
    362   // Zero is a possible value, but it is not the /only/ possible value.
    363   return ConditionTruthVal();
    364 }
    365 
    366 /// Scan all symbols referenced by the constraints. If the symbol is not alive
    367 /// as marked in LSymbols, mark it as dead in DSymbols.
    368 ProgramStateRef
    369 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
    370                                            SymbolReaper& SymReaper) {
    371 
    372   ConstraintRangeTy CR = state->get<ConstraintRange>();
    373   ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
    374 
    375   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
    376     SymbolRef sym = I.getKey();
    377     if (SymReaper.maybeDead(sym))
    378       CR = CRFactory.remove(CR, sym);
    379   }
    380 
    381   return state->set<ConstraintRange>(CR);
    382 }
    383 
    384 RangeSet
    385 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
    386   if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
    387     return *V;
    388 
    389   // Lazily generate a new RangeSet representing all possible values for the
    390   // given symbol type.
    391   BasicValueFactory &BV = getBasicVals();
    392   QualType T = sym->getType();
    393 
    394   RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
    395 
    396   // Special case: references are known to be non-zero.
    397   if (T->isReferenceType()) {
    398     APSIntType IntType = BV.getAPSIntType(T);
    399     Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
    400                                      --IntType.getZeroValue());
    401   }
    402 
    403   return Result;
    404 }
    405 
    406 //===------------------------------------------------------------------------===
    407 // assumeSymX methods: public interface for RangeConstraintManager.
    408 //===------------------------------------------------------------------------===/
    409 
    410 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
    411 // and (x, y) for open ranges. These ranges are modular, corresponding with
    412 // a common treatment of C integer overflow. This means that these methods
    413 // do not have to worry about overflow; RangeSet::Intersect can handle such a
    414 // "wraparound" range.
    415 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
    416 // UINT_MAX, 0, 1, and 2.
    417 
    418 ProgramStateRef
    419 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
    420                                     const llvm::APSInt &Int,
    421                                     const llvm::APSInt &Adjustment) {
    422   // Before we do any real work, see if the value can even show up.
    423   APSIntType AdjustmentType(Adjustment);
    424   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    425     return St;
    426 
    427   llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
    428   llvm::APSInt Upper = Lower;
    429   --Lower;
    430   ++Upper;
    431 
    432   // [Int-Adjustment+1, Int-Adjustment-1]
    433   // Notice that the lower bound is greater than the upper bound.
    434   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
    435   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
    436 }
    437 
    438 ProgramStateRef
    439 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
    440                                     const llvm::APSInt &Int,
    441                                     const llvm::APSInt &Adjustment) {
    442   // Before we do any real work, see if the value can even show up.
    443   APSIntType AdjustmentType(Adjustment);
    444   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    445     return nullptr;
    446 
    447   // [Int-Adjustment, Int-Adjustment]
    448   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
    449   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
    450   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
    451 }
    452 
    453 ProgramStateRef
    454 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
    455                                     const llvm::APSInt &Int,
    456                                     const llvm::APSInt &Adjustment) {
    457   // Before we do any real work, see if the value can even show up.
    458   APSIntType AdjustmentType(Adjustment);
    459   switch (AdjustmentType.testInRange(Int, true)) {
    460   case APSIntType::RTR_Below:
    461     return nullptr;
    462   case APSIntType::RTR_Within:
    463     break;
    464   case APSIntType::RTR_Above:
    465     return St;
    466   }
    467 
    468   // Special case for Int == Min. This is always false.
    469   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    470   llvm::APSInt Min = AdjustmentType.getMinValue();
    471   if (ComparisonVal == Min)
    472     return nullptr;
    473 
    474   llvm::APSInt Lower = Min-Adjustment;
    475   llvm::APSInt Upper = ComparisonVal-Adjustment;
    476   --Upper;
    477 
    478   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    479   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
    480 }
    481 
    482 ProgramStateRef
    483 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
    484                                     const llvm::APSInt &Int,
    485                                     const llvm::APSInt &Adjustment) {
    486   // Before we do any real work, see if the value can even show up.
    487   APSIntType AdjustmentType(Adjustment);
    488   switch (AdjustmentType.testInRange(Int, true)) {
    489   case APSIntType::RTR_Below:
    490     return St;
    491   case APSIntType::RTR_Within:
    492     break;
    493   case APSIntType::RTR_Above:
    494     return nullptr;
    495   }
    496 
    497   // Special case for Int == Max. This is always false.
    498   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    499   llvm::APSInt Max = AdjustmentType.getMaxValue();
    500   if (ComparisonVal == Max)
    501     return nullptr;
    502 
    503   llvm::APSInt Lower = ComparisonVal-Adjustment;
    504   llvm::APSInt Upper = Max-Adjustment;
    505   ++Lower;
    506 
    507   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    508   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
    509 }
    510 
    511 ProgramStateRef
    512 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
    513                                     const llvm::APSInt &Int,
    514                                     const llvm::APSInt &Adjustment) {
    515   // Before we do any real work, see if the value can even show up.
    516   APSIntType AdjustmentType(Adjustment);
    517   switch (AdjustmentType.testInRange(Int, true)) {
    518   case APSIntType::RTR_Below:
    519     return St;
    520   case APSIntType::RTR_Within:
    521     break;
    522   case APSIntType::RTR_Above:
    523     return nullptr;
    524   }
    525 
    526   // Special case for Int == Min. This is always feasible.
    527   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    528   llvm::APSInt Min = AdjustmentType.getMinValue();
    529   if (ComparisonVal == Min)
    530     return St;
    531 
    532   llvm::APSInt Max = AdjustmentType.getMaxValue();
    533   llvm::APSInt Lower = ComparisonVal-Adjustment;
    534   llvm::APSInt Upper = Max-Adjustment;
    535 
    536   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    537   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
    538 }
    539 
    540 ProgramStateRef
    541 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
    542                                     const llvm::APSInt &Int,
    543                                     const llvm::APSInt &Adjustment) {
    544   // Before we do any real work, see if the value can even show up.
    545   APSIntType AdjustmentType(Adjustment);
    546   switch (AdjustmentType.testInRange(Int, true)) {
    547   case APSIntType::RTR_Below:
    548     return nullptr;
    549   case APSIntType::RTR_Within:
    550     break;
    551   case APSIntType::RTR_Above:
    552     return St;
    553   }
    554 
    555   // Special case for Int == Max. This is always feasible.
    556   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
    557   llvm::APSInt Max = AdjustmentType.getMaxValue();
    558   if (ComparisonVal == Max)
    559     return St;
    560 
    561   llvm::APSInt Min = AdjustmentType.getMinValue();
    562   llvm::APSInt Lower = Min-Adjustment;
    563   llvm::APSInt Upper = ComparisonVal-Adjustment;
    564 
    565   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
    566   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
    567 }
    568 
    569 //===------------------------------------------------------------------------===
    570 // Pretty-printing.
    571 //===------------------------------------------------------------------------===/
    572 
    573 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
    574                                    const char* nl, const char *sep) {
    575 
    576   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
    577 
    578   if (Ranges.isEmpty()) {
    579     Out << nl << sep << "Ranges are empty." << nl;
    580     return;
    581   }
    582 
    583   Out << nl << sep << "Ranges of symbol values:";
    584   for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
    585     Out << nl << ' ' << I.getKey() << " : ";
    586     I.getData().print(Out);
    587   }
    588   Out << nl;
    589 }
    590