1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines RangeConstraintManager, a class that tracks simple 11 // equality and inequality constraints on symbolic values of ProgramState. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SimpleConstraintManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 19 #include "llvm/ADT/FoldingSet.h" 20 #include "llvm/ADT/ImmutableSet.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace clang; 25 using namespace ento; 26 27 /// A Range represents the closed range [from, to]. The caller must 28 /// guarantee that from <= to. Note that Range is immutable, so as not 29 /// to subvert RangeSet's immutability. 30 namespace { 31 class Range : public std::pair<const llvm::APSInt*, 32 const llvm::APSInt*> { 33 public: 34 Range(const llvm::APSInt &from, const llvm::APSInt &to) 35 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) { 36 assert(from <= to); 37 } 38 bool Includes(const llvm::APSInt &v) const { 39 return *first <= v && v <= *second; 40 } 41 const llvm::APSInt &From() const { 42 return *first; 43 } 44 const llvm::APSInt &To() const { 45 return *second; 46 } 47 const llvm::APSInt *getConcreteValue() const { 48 return &From() == &To() ? &From() : nullptr; 49 } 50 51 void Profile(llvm::FoldingSetNodeID &ID) const { 52 ID.AddPointer(&From()); 53 ID.AddPointer(&To()); 54 } 55 }; 56 57 58 class RangeTrait : public llvm::ImutContainerInfo<Range> { 59 public: 60 // When comparing if one Range is less than another, we should compare 61 // the actual APSInt values instead of their pointers. This keeps the order 62 // consistent (instead of comparing by pointer values) and can potentially 63 // be used to speed up some of the operations in RangeSet. 64 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) { 65 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) && 66 *lhs.second < *rhs.second); 67 } 68 }; 69 70 /// RangeSet contains a set of ranges. If the set is empty, then 71 /// there the value of a symbol is overly constrained and there are no 72 /// possible values for that symbol. 73 class RangeSet { 74 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet; 75 PrimRangeSet ranges; // no need to make const, since it is an 76 // ImmutableSet - this allows default operator= 77 // to work. 78 public: 79 typedef PrimRangeSet::Factory Factory; 80 typedef PrimRangeSet::iterator iterator; 81 82 RangeSet(PrimRangeSet RS) : ranges(RS) {} 83 84 iterator begin() const { return ranges.begin(); } 85 iterator end() const { return ranges.end(); } 86 87 bool isEmpty() const { return ranges.isEmpty(); } 88 89 /// Construct a new RangeSet representing '{ [from, to] }'. 90 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to) 91 : ranges(F.add(F.getEmptySet(), Range(from, to))) {} 92 93 /// Profile - Generates a hash profile of this RangeSet for use 94 /// by FoldingSet. 95 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); } 96 97 /// getConcreteValue - If a symbol is contrained to equal a specific integer 98 /// constant then this method returns that value. Otherwise, it returns 99 /// NULL. 100 const llvm::APSInt* getConcreteValue() const { 101 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr; 102 } 103 104 private: 105 void IntersectInRange(BasicValueFactory &BV, Factory &F, 106 const llvm::APSInt &Lower, 107 const llvm::APSInt &Upper, 108 PrimRangeSet &newRanges, 109 PrimRangeSet::iterator &i, 110 PrimRangeSet::iterator &e) const { 111 // There are six cases for each range R in the set: 112 // 1. R is entirely before the intersection range. 113 // 2. R is entirely after the intersection range. 114 // 3. R contains the entire intersection range. 115 // 4. R starts before the intersection range and ends in the middle. 116 // 5. R starts in the middle of the intersection range and ends after it. 117 // 6. R is entirely contained in the intersection range. 118 // These correspond to each of the conditions below. 119 for (/* i = begin(), e = end() */; i != e; ++i) { 120 if (i->To() < Lower) { 121 continue; 122 } 123 if (i->From() > Upper) { 124 break; 125 } 126 127 if (i->Includes(Lower)) { 128 if (i->Includes(Upper)) { 129 newRanges = F.add(newRanges, Range(BV.getValue(Lower), 130 BV.getValue(Upper))); 131 break; 132 } else 133 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To())); 134 } else { 135 if (i->Includes(Upper)) { 136 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper))); 137 break; 138 } else 139 newRanges = F.add(newRanges, *i); 140 } 141 } 142 } 143 144 const llvm::APSInt &getMinValue() const { 145 assert(!isEmpty()); 146 return ranges.begin()->From(); 147 } 148 149 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 150 // This function has nine cases, the cartesian product of range-testing 151 // both the upper and lower bounds against the symbol's type. 152 // Each case requires a different pinning operation. 153 // The function returns false if the described range is entirely outside 154 // the range of values for the associated symbol. 155 APSIntType Type(getMinValue()); 156 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 157 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 158 159 switch (LowerTest) { 160 case APSIntType::RTR_Below: 161 switch (UpperTest) { 162 case APSIntType::RTR_Below: 163 // The entire range is outside the symbol's set of possible values. 164 // If this is a conventionally-ordered range, the state is infeasible. 165 if (Lower < Upper) 166 return false; 167 168 // However, if the range wraps around, it spans all possible values. 169 Lower = Type.getMinValue(); 170 Upper = Type.getMaxValue(); 171 break; 172 case APSIntType::RTR_Within: 173 // The range starts below what's possible but ends within it. Pin. 174 Lower = Type.getMinValue(); 175 Type.apply(Upper); 176 break; 177 case APSIntType::RTR_Above: 178 // The range spans all possible values for the symbol. Pin. 179 Lower = Type.getMinValue(); 180 Upper = Type.getMaxValue(); 181 break; 182 } 183 break; 184 case APSIntType::RTR_Within: 185 switch (UpperTest) { 186 case APSIntType::RTR_Below: 187 // The range wraps around, but all lower values are not possible. 188 Type.apply(Lower); 189 Upper = Type.getMaxValue(); 190 break; 191 case APSIntType::RTR_Within: 192 // The range may or may not wrap around, but both limits are valid. 193 Type.apply(Lower); 194 Type.apply(Upper); 195 break; 196 case APSIntType::RTR_Above: 197 // The range starts within what's possible but ends above it. Pin. 198 Type.apply(Lower); 199 Upper = Type.getMaxValue(); 200 break; 201 } 202 break; 203 case APSIntType::RTR_Above: 204 switch (UpperTest) { 205 case APSIntType::RTR_Below: 206 // The range wraps but is outside the symbol's set of possible values. 207 return false; 208 case APSIntType::RTR_Within: 209 // The range starts above what's possible but ends within it (wrap). 210 Lower = Type.getMinValue(); 211 Type.apply(Upper); 212 break; 213 case APSIntType::RTR_Above: 214 // The entire range is outside the symbol's set of possible values. 215 // If this is a conventionally-ordered range, the state is infeasible. 216 if (Lower < Upper) 217 return false; 218 219 // However, if the range wraps around, it spans all possible values. 220 Lower = Type.getMinValue(); 221 Upper = Type.getMaxValue(); 222 break; 223 } 224 break; 225 } 226 227 return true; 228 } 229 230 public: 231 // Returns a set containing the values in the receiving set, intersected with 232 // the closed range [Lower, Upper]. Unlike the Range type, this range uses 233 // modular arithmetic, corresponding to the common treatment of C integer 234 // overflow. Thus, if the Lower bound is greater than the Upper bound, the 235 // range is taken to wrap around. This is equivalent to taking the 236 // intersection with the two ranges [Min, Upper] and [Lower, Max], 237 // or, alternatively, /removing/ all integers between Upper and Lower. 238 RangeSet Intersect(BasicValueFactory &BV, Factory &F, 239 llvm::APSInt Lower, llvm::APSInt Upper) const { 240 if (!pin(Lower, Upper)) 241 return F.getEmptySet(); 242 243 PrimRangeSet newRanges = F.getEmptySet(); 244 245 PrimRangeSet::iterator i = begin(), e = end(); 246 if (Lower <= Upper) 247 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e); 248 else { 249 // The order of the next two statements is important! 250 // IntersectInRange() does not reset the iteration state for i and e. 251 // Therefore, the lower range most be handled first. 252 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e); 253 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e); 254 } 255 256 return newRanges; 257 } 258 259 void print(raw_ostream &os) const { 260 bool isFirst = true; 261 os << "{ "; 262 for (iterator i = begin(), e = end(); i != e; ++i) { 263 if (isFirst) 264 isFirst = false; 265 else 266 os << ", "; 267 268 os << '[' << i->From().toString(10) << ", " << i->To().toString(10) 269 << ']'; 270 } 271 os << " }"; 272 } 273 274 bool operator==(const RangeSet &other) const { 275 return ranges == other.ranges; 276 } 277 }; 278 } // end anonymous namespace 279 280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange, 281 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef, 282 RangeSet)) 283 284 namespace { 285 class RangeConstraintManager : public SimpleConstraintManager{ 286 RangeSet GetRange(ProgramStateRef state, SymbolRef sym); 287 public: 288 RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB) 289 : SimpleConstraintManager(subengine, SVB) {} 290 291 ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym, 292 const llvm::APSInt& Int, 293 const llvm::APSInt& Adjustment) override; 294 295 ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym, 296 const llvm::APSInt& Int, 297 const llvm::APSInt& Adjustment) override; 298 299 ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym, 300 const llvm::APSInt& Int, 301 const llvm::APSInt& Adjustment) override; 302 303 ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym, 304 const llvm::APSInt& Int, 305 const llvm::APSInt& Adjustment) override; 306 307 ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym, 308 const llvm::APSInt& Int, 309 const llvm::APSInt& Adjustment) override; 310 311 ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym, 312 const llvm::APSInt& Int, 313 const llvm::APSInt& Adjustment) override; 314 315 const llvm::APSInt* getSymVal(ProgramStateRef St, 316 SymbolRef sym) const override; 317 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 318 319 ProgramStateRef removeDeadBindings(ProgramStateRef St, 320 SymbolReaper& SymReaper) override; 321 322 void print(ProgramStateRef St, raw_ostream &Out, 323 const char* nl, const char *sep) override; 324 325 private: 326 RangeSet::Factory F; 327 }; 328 329 } // end anonymous namespace 330 331 ConstraintManager * 332 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) { 333 return new RangeConstraintManager(Eng, StMgr.getSValBuilder()); 334 } 335 336 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St, 337 SymbolRef sym) const { 338 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym); 339 return T ? T->getConcreteValue() : nullptr; 340 } 341 342 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 343 SymbolRef Sym) { 344 const RangeSet *Ranges = State->get<ConstraintRange>(Sym); 345 346 // If we don't have any information about this symbol, it's underconstrained. 347 if (!Ranges) 348 return ConditionTruthVal(); 349 350 // If we have a concrete value, see if it's zero. 351 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 352 return *Value == 0; 353 354 BasicValueFactory &BV = getBasicVals(); 355 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 356 llvm::APSInt Zero = IntType.getZeroValue(); 357 358 // Check if zero is in the set of possible values. 359 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty()) 360 return false; 361 362 // Zero is a possible value, but it is not the /only/ possible value. 363 return ConditionTruthVal(); 364 } 365 366 /// Scan all symbols referenced by the constraints. If the symbol is not alive 367 /// as marked in LSymbols, mark it as dead in DSymbols. 368 ProgramStateRef 369 RangeConstraintManager::removeDeadBindings(ProgramStateRef state, 370 SymbolReaper& SymReaper) { 371 372 ConstraintRangeTy CR = state->get<ConstraintRange>(); 373 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>(); 374 375 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) { 376 SymbolRef sym = I.getKey(); 377 if (SymReaper.maybeDead(sym)) 378 CR = CRFactory.remove(CR, sym); 379 } 380 381 return state->set<ConstraintRange>(CR); 382 } 383 384 RangeSet 385 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) { 386 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym)) 387 return *V; 388 389 // Lazily generate a new RangeSet representing all possible values for the 390 // given symbol type. 391 BasicValueFactory &BV = getBasicVals(); 392 QualType T = sym->getType(); 393 394 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T)); 395 396 // Special case: references are known to be non-zero. 397 if (T->isReferenceType()) { 398 APSIntType IntType = BV.getAPSIntType(T); 399 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(), 400 --IntType.getZeroValue()); 401 } 402 403 return Result; 404 } 405 406 //===------------------------------------------------------------------------=== 407 // assumeSymX methods: public interface for RangeConstraintManager. 408 //===------------------------------------------------------------------------===/ 409 410 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 411 // and (x, y) for open ranges. These ranges are modular, corresponding with 412 // a common treatment of C integer overflow. This means that these methods 413 // do not have to worry about overflow; RangeSet::Intersect can handle such a 414 // "wraparound" range. 415 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 416 // UINT_MAX, 0, 1, and 2. 417 418 ProgramStateRef 419 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 420 const llvm::APSInt &Int, 421 const llvm::APSInt &Adjustment) { 422 // Before we do any real work, see if the value can even show up. 423 APSIntType AdjustmentType(Adjustment); 424 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 425 return St; 426 427 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment; 428 llvm::APSInt Upper = Lower; 429 --Lower; 430 ++Upper; 431 432 // [Int-Adjustment+1, Int-Adjustment-1] 433 // Notice that the lower bound is greater than the upper bound. 434 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower); 435 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 436 } 437 438 ProgramStateRef 439 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 440 const llvm::APSInt &Int, 441 const llvm::APSInt &Adjustment) { 442 // Before we do any real work, see if the value can even show up. 443 APSIntType AdjustmentType(Adjustment); 444 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 445 return nullptr; 446 447 // [Int-Adjustment, Int-Adjustment] 448 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 449 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt); 450 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 451 } 452 453 ProgramStateRef 454 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 455 const llvm::APSInt &Int, 456 const llvm::APSInt &Adjustment) { 457 // Before we do any real work, see if the value can even show up. 458 APSIntType AdjustmentType(Adjustment); 459 switch (AdjustmentType.testInRange(Int, true)) { 460 case APSIntType::RTR_Below: 461 return nullptr; 462 case APSIntType::RTR_Within: 463 break; 464 case APSIntType::RTR_Above: 465 return St; 466 } 467 468 // Special case for Int == Min. This is always false. 469 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 470 llvm::APSInt Min = AdjustmentType.getMinValue(); 471 if (ComparisonVal == Min) 472 return nullptr; 473 474 llvm::APSInt Lower = Min-Adjustment; 475 llvm::APSInt Upper = ComparisonVal-Adjustment; 476 --Upper; 477 478 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 479 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 480 } 481 482 ProgramStateRef 483 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 484 const llvm::APSInt &Int, 485 const llvm::APSInt &Adjustment) { 486 // Before we do any real work, see if the value can even show up. 487 APSIntType AdjustmentType(Adjustment); 488 switch (AdjustmentType.testInRange(Int, true)) { 489 case APSIntType::RTR_Below: 490 return St; 491 case APSIntType::RTR_Within: 492 break; 493 case APSIntType::RTR_Above: 494 return nullptr; 495 } 496 497 // Special case for Int == Max. This is always false. 498 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 499 llvm::APSInt Max = AdjustmentType.getMaxValue(); 500 if (ComparisonVal == Max) 501 return nullptr; 502 503 llvm::APSInt Lower = ComparisonVal-Adjustment; 504 llvm::APSInt Upper = Max-Adjustment; 505 ++Lower; 506 507 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 508 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 509 } 510 511 ProgramStateRef 512 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 513 const llvm::APSInt &Int, 514 const llvm::APSInt &Adjustment) { 515 // Before we do any real work, see if the value can even show up. 516 APSIntType AdjustmentType(Adjustment); 517 switch (AdjustmentType.testInRange(Int, true)) { 518 case APSIntType::RTR_Below: 519 return St; 520 case APSIntType::RTR_Within: 521 break; 522 case APSIntType::RTR_Above: 523 return nullptr; 524 } 525 526 // Special case for Int == Min. This is always feasible. 527 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 528 llvm::APSInt Min = AdjustmentType.getMinValue(); 529 if (ComparisonVal == Min) 530 return St; 531 532 llvm::APSInt Max = AdjustmentType.getMaxValue(); 533 llvm::APSInt Lower = ComparisonVal-Adjustment; 534 llvm::APSInt Upper = Max-Adjustment; 535 536 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 537 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 538 } 539 540 ProgramStateRef 541 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 542 const llvm::APSInt &Int, 543 const llvm::APSInt &Adjustment) { 544 // Before we do any real work, see if the value can even show up. 545 APSIntType AdjustmentType(Adjustment); 546 switch (AdjustmentType.testInRange(Int, true)) { 547 case APSIntType::RTR_Below: 548 return nullptr; 549 case APSIntType::RTR_Within: 550 break; 551 case APSIntType::RTR_Above: 552 return St; 553 } 554 555 // Special case for Int == Max. This is always feasible. 556 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 557 llvm::APSInt Max = AdjustmentType.getMaxValue(); 558 if (ComparisonVal == Max) 559 return St; 560 561 llvm::APSInt Min = AdjustmentType.getMinValue(); 562 llvm::APSInt Lower = Min-Adjustment; 563 llvm::APSInt Upper = ComparisonVal-Adjustment; 564 565 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 566 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 567 } 568 569 //===------------------------------------------------------------------------=== 570 // Pretty-printing. 571 //===------------------------------------------------------------------------===/ 572 573 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out, 574 const char* nl, const char *sep) { 575 576 ConstraintRangeTy Ranges = St->get<ConstraintRange>(); 577 578 if (Ranges.isEmpty()) { 579 Out << nl << sep << "Ranges are empty." << nl; 580 return; 581 } 582 583 Out << nl << sep << "Ranges of symbol values:"; 584 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){ 585 Out << nl << ' ' << I.getKey() << " : "; 586 I.getData().print(Out); 587 } 588 Out << nl; 589 } 590