1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::JumpTable: 181 return bitc::ATTR_KIND_JUMP_TABLE; 182 case Attribute::MinSize: 183 return bitc::ATTR_KIND_MIN_SIZE; 184 case Attribute::Naked: 185 return bitc::ATTR_KIND_NAKED; 186 case Attribute::Nest: 187 return bitc::ATTR_KIND_NEST; 188 case Attribute::NoAlias: 189 return bitc::ATTR_KIND_NO_ALIAS; 190 case Attribute::NoBuiltin: 191 return bitc::ATTR_KIND_NO_BUILTIN; 192 case Attribute::NoCapture: 193 return bitc::ATTR_KIND_NO_CAPTURE; 194 case Attribute::NoDuplicate: 195 return bitc::ATTR_KIND_NO_DUPLICATE; 196 case Attribute::NoImplicitFloat: 197 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 198 case Attribute::NoInline: 199 return bitc::ATTR_KIND_NO_INLINE; 200 case Attribute::NonLazyBind: 201 return bitc::ATTR_KIND_NON_LAZY_BIND; 202 case Attribute::NonNull: 203 return bitc::ATTR_KIND_NON_NULL; 204 case Attribute::NoRedZone: 205 return bitc::ATTR_KIND_NO_RED_ZONE; 206 case Attribute::NoReturn: 207 return bitc::ATTR_KIND_NO_RETURN; 208 case Attribute::NoUnwind: 209 return bitc::ATTR_KIND_NO_UNWIND; 210 case Attribute::OptimizeForSize: 211 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 212 case Attribute::OptimizeNone: 213 return bitc::ATTR_KIND_OPTIMIZE_NONE; 214 case Attribute::ReadNone: 215 return bitc::ATTR_KIND_READ_NONE; 216 case Attribute::ReadOnly: 217 return bitc::ATTR_KIND_READ_ONLY; 218 case Attribute::Returned: 219 return bitc::ATTR_KIND_RETURNED; 220 case Attribute::ReturnsTwice: 221 return bitc::ATTR_KIND_RETURNS_TWICE; 222 case Attribute::SExt: 223 return bitc::ATTR_KIND_S_EXT; 224 case Attribute::StackAlignment: 225 return bitc::ATTR_KIND_STACK_ALIGNMENT; 226 case Attribute::StackProtect: 227 return bitc::ATTR_KIND_STACK_PROTECT; 228 case Attribute::StackProtectReq: 229 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 230 case Attribute::StackProtectStrong: 231 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 232 case Attribute::StructRet: 233 return bitc::ATTR_KIND_STRUCT_RET; 234 case Attribute::SanitizeAddress: 235 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 236 case Attribute::SanitizeThread: 237 return bitc::ATTR_KIND_SANITIZE_THREAD; 238 case Attribute::SanitizeMemory: 239 return bitc::ATTR_KIND_SANITIZE_MEMORY; 240 case Attribute::UWTable: 241 return bitc::ATTR_KIND_UW_TABLE; 242 case Attribute::ZExt: 243 return bitc::ATTR_KIND_Z_EXT; 244 case Attribute::EndAttrKinds: 245 llvm_unreachable("Can not encode end-attribute kinds marker."); 246 case Attribute::None: 247 llvm_unreachable("Can not encode none-attribute."); 248 } 249 250 llvm_unreachable("Trying to encode unknown attribute"); 251 } 252 253 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 254 BitstreamWriter &Stream) { 255 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 256 if (AttrGrps.empty()) return; 257 258 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 259 260 SmallVector<uint64_t, 64> Record; 261 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 262 AttributeSet AS = AttrGrps[i]; 263 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 264 AttributeSet A = AS.getSlotAttributes(i); 265 266 Record.push_back(VE.getAttributeGroupID(A)); 267 Record.push_back(AS.getSlotIndex(i)); 268 269 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 270 I != E; ++I) { 271 Attribute Attr = *I; 272 if (Attr.isEnumAttribute()) { 273 Record.push_back(0); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 } else if (Attr.isAlignAttribute()) { 276 Record.push_back(1); 277 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 278 Record.push_back(Attr.getValueAsInt()); 279 } else { 280 StringRef Kind = Attr.getKindAsString(); 281 StringRef Val = Attr.getValueAsString(); 282 283 Record.push_back(Val.empty() ? 3 : 4); 284 Record.append(Kind.begin(), Kind.end()); 285 Record.push_back(0); 286 if (!Val.empty()) { 287 Record.append(Val.begin(), Val.end()); 288 Record.push_back(0); 289 } 290 } 291 } 292 293 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 294 Record.clear(); 295 } 296 } 297 298 Stream.ExitBlock(); 299 } 300 301 static void WriteAttributeTable(const ValueEnumerator &VE, 302 BitstreamWriter &Stream) { 303 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 304 if (Attrs.empty()) return; 305 306 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 307 308 SmallVector<uint64_t, 64> Record; 309 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 310 const AttributeSet &A = Attrs[i]; 311 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 312 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 313 314 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 315 Record.clear(); 316 } 317 318 Stream.ExitBlock(); 319 } 320 321 /// WriteTypeTable - Write out the type table for a module. 322 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 323 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 324 325 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 326 SmallVector<uint64_t, 64> TypeVals; 327 328 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 329 330 // Abbrev for TYPE_CODE_POINTER. 331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 332 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 334 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 335 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 336 337 // Abbrev for TYPE_CODE_FUNCTION. 338 Abbv = new BitCodeAbbrev(); 339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 343 344 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 345 346 // Abbrev for TYPE_CODE_STRUCT_ANON. 347 Abbv = new BitCodeAbbrev(); 348 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 352 353 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 354 355 // Abbrev for TYPE_CODE_STRUCT_NAME. 356 Abbv = new BitCodeAbbrev(); 357 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 360 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 361 362 // Abbrev for TYPE_CODE_STRUCT_NAMED. 363 Abbv = new BitCodeAbbrev(); 364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 368 369 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 370 371 // Abbrev for TYPE_CODE_ARRAY. 372 Abbv = new BitCodeAbbrev(); 373 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 376 377 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 378 379 // Emit an entry count so the reader can reserve space. 380 TypeVals.push_back(TypeList.size()); 381 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 382 TypeVals.clear(); 383 384 // Loop over all of the types, emitting each in turn. 385 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 386 Type *T = TypeList[i]; 387 int AbbrevToUse = 0; 388 unsigned Code = 0; 389 390 switch (T->getTypeID()) { 391 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 392 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 393 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 394 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 395 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 396 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 397 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 398 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 399 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 400 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 401 case Type::IntegerTyID: 402 // INTEGER: [width] 403 Code = bitc::TYPE_CODE_INTEGER; 404 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 405 break; 406 case Type::PointerTyID: { 407 PointerType *PTy = cast<PointerType>(T); 408 // POINTER: [pointee type, address space] 409 Code = bitc::TYPE_CODE_POINTER; 410 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 411 unsigned AddressSpace = PTy->getAddressSpace(); 412 TypeVals.push_back(AddressSpace); 413 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 414 break; 415 } 416 case Type::FunctionTyID: { 417 FunctionType *FT = cast<FunctionType>(T); 418 // FUNCTION: [isvararg, retty, paramty x N] 419 Code = bitc::TYPE_CODE_FUNCTION; 420 TypeVals.push_back(FT->isVarArg()); 421 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 422 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 423 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 424 AbbrevToUse = FunctionAbbrev; 425 break; 426 } 427 case Type::StructTyID: { 428 StructType *ST = cast<StructType>(T); 429 // STRUCT: [ispacked, eltty x N] 430 TypeVals.push_back(ST->isPacked()); 431 // Output all of the element types. 432 for (StructType::element_iterator I = ST->element_begin(), 433 E = ST->element_end(); I != E; ++I) 434 TypeVals.push_back(VE.getTypeID(*I)); 435 436 if (ST->isLiteral()) { 437 Code = bitc::TYPE_CODE_STRUCT_ANON; 438 AbbrevToUse = StructAnonAbbrev; 439 } else { 440 if (ST->isOpaque()) { 441 Code = bitc::TYPE_CODE_OPAQUE; 442 } else { 443 Code = bitc::TYPE_CODE_STRUCT_NAMED; 444 AbbrevToUse = StructNamedAbbrev; 445 } 446 447 // Emit the name if it is present. 448 if (!ST->getName().empty()) 449 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 450 StructNameAbbrev, Stream); 451 } 452 break; 453 } 454 case Type::ArrayTyID: { 455 ArrayType *AT = cast<ArrayType>(T); 456 // ARRAY: [numelts, eltty] 457 Code = bitc::TYPE_CODE_ARRAY; 458 TypeVals.push_back(AT->getNumElements()); 459 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 460 AbbrevToUse = ArrayAbbrev; 461 break; 462 } 463 case Type::VectorTyID: { 464 VectorType *VT = cast<VectorType>(T); 465 // VECTOR [numelts, eltty] 466 Code = bitc::TYPE_CODE_VECTOR; 467 TypeVals.push_back(VT->getNumElements()); 468 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 469 break; 470 } 471 } 472 473 // Emit the finished record. 474 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 475 TypeVals.clear(); 476 } 477 478 Stream.ExitBlock(); 479 } 480 481 static unsigned getEncodedLinkage(const GlobalValue &GV) { 482 switch (GV.getLinkage()) { 483 case GlobalValue::ExternalLinkage: return 0; 484 case GlobalValue::WeakAnyLinkage: return 1; 485 case GlobalValue::AppendingLinkage: return 2; 486 case GlobalValue::InternalLinkage: return 3; 487 case GlobalValue::LinkOnceAnyLinkage: return 4; 488 case GlobalValue::ExternalWeakLinkage: return 7; 489 case GlobalValue::CommonLinkage: return 8; 490 case GlobalValue::PrivateLinkage: return 9; 491 case GlobalValue::WeakODRLinkage: return 10; 492 case GlobalValue::LinkOnceODRLinkage: return 11; 493 case GlobalValue::AvailableExternallyLinkage: return 12; 494 } 495 llvm_unreachable("Invalid linkage"); 496 } 497 498 static unsigned getEncodedVisibility(const GlobalValue &GV) { 499 switch (GV.getVisibility()) { 500 case GlobalValue::DefaultVisibility: return 0; 501 case GlobalValue::HiddenVisibility: return 1; 502 case GlobalValue::ProtectedVisibility: return 2; 503 } 504 llvm_unreachable("Invalid visibility"); 505 } 506 507 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 508 switch (GV.getDLLStorageClass()) { 509 case GlobalValue::DefaultStorageClass: return 0; 510 case GlobalValue::DLLImportStorageClass: return 1; 511 case GlobalValue::DLLExportStorageClass: return 2; 512 } 513 llvm_unreachable("Invalid DLL storage class"); 514 } 515 516 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 517 switch (GV.getThreadLocalMode()) { 518 case GlobalVariable::NotThreadLocal: return 0; 519 case GlobalVariable::GeneralDynamicTLSModel: return 1; 520 case GlobalVariable::LocalDynamicTLSModel: return 2; 521 case GlobalVariable::InitialExecTLSModel: return 3; 522 case GlobalVariable::LocalExecTLSModel: return 4; 523 } 524 llvm_unreachable("Invalid TLS model"); 525 } 526 527 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 528 switch (C.getSelectionKind()) { 529 case Comdat::Any: 530 return bitc::COMDAT_SELECTION_KIND_ANY; 531 case Comdat::ExactMatch: 532 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 533 case Comdat::Largest: 534 return bitc::COMDAT_SELECTION_KIND_LARGEST; 535 case Comdat::NoDuplicates: 536 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 537 case Comdat::SameSize: 538 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 539 } 540 llvm_unreachable("Invalid selection kind"); 541 } 542 543 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 544 SmallVector<uint8_t, 64> Vals; 545 for (const Comdat *C : VE.getComdats()) { 546 // COMDAT: [selection_kind, name] 547 Vals.push_back(getEncodedComdatSelectionKind(*C)); 548 Vals.push_back(C->getName().size()); 549 for (char Chr : C->getName()) 550 Vals.push_back((unsigned char)Chr); 551 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 552 Vals.clear(); 553 } 554 } 555 556 // Emit top-level description of module, including target triple, inline asm, 557 // descriptors for global variables, and function prototype info. 558 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 559 BitstreamWriter &Stream) { 560 // Emit various pieces of data attached to a module. 561 if (!M->getTargetTriple().empty()) 562 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 563 0/*TODO*/, Stream); 564 const std::string &DL = M->getDataLayoutStr(); 565 if (!DL.empty()) 566 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 567 if (!M->getModuleInlineAsm().empty()) 568 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 569 0/*TODO*/, Stream); 570 571 // Emit information about sections and GC, computing how many there are. Also 572 // compute the maximum alignment value. 573 std::map<std::string, unsigned> SectionMap; 574 std::map<std::string, unsigned> GCMap; 575 unsigned MaxAlignment = 0; 576 unsigned MaxGlobalType = 0; 577 for (const GlobalValue &GV : M->globals()) { 578 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 579 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 580 if (GV.hasSection()) { 581 // Give section names unique ID's. 582 unsigned &Entry = SectionMap[GV.getSection()]; 583 if (!Entry) { 584 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 585 0/*TODO*/, Stream); 586 Entry = SectionMap.size(); 587 } 588 } 589 } 590 for (const Function &F : *M) { 591 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 592 if (F.hasSection()) { 593 // Give section names unique ID's. 594 unsigned &Entry = SectionMap[F.getSection()]; 595 if (!Entry) { 596 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 597 0/*TODO*/, Stream); 598 Entry = SectionMap.size(); 599 } 600 } 601 if (F.hasGC()) { 602 // Same for GC names. 603 unsigned &Entry = GCMap[F.getGC()]; 604 if (!Entry) { 605 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 606 0/*TODO*/, Stream); 607 Entry = GCMap.size(); 608 } 609 } 610 } 611 612 // Emit abbrev for globals, now that we know # sections and max alignment. 613 unsigned SimpleGVarAbbrev = 0; 614 if (!M->global_empty()) { 615 // Add an abbrev for common globals with no visibility or thread localness. 616 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 617 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 619 Log2_32_Ceil(MaxGlobalType+1))); 620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 623 if (MaxAlignment == 0) // Alignment. 624 Abbv->Add(BitCodeAbbrevOp(0)); 625 else { 626 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 628 Log2_32_Ceil(MaxEncAlignment+1))); 629 } 630 if (SectionMap.empty()) // Section. 631 Abbv->Add(BitCodeAbbrevOp(0)); 632 else 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 634 Log2_32_Ceil(SectionMap.size()+1))); 635 // Don't bother emitting vis + thread local. 636 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 637 } 638 639 // Emit the global variable information. 640 SmallVector<unsigned, 64> Vals; 641 for (const GlobalVariable &GV : M->globals()) { 642 unsigned AbbrevToUse = 0; 643 644 // GLOBALVAR: [type, isconst, initid, 645 // linkage, alignment, section, visibility, threadlocal, 646 // unnamed_addr, externally_initialized, dllstorageclass] 647 Vals.push_back(VE.getTypeID(GV.getType())); 648 Vals.push_back(GV.isConstant()); 649 Vals.push_back(GV.isDeclaration() ? 0 : 650 (VE.getValueID(GV.getInitializer()) + 1)); 651 Vals.push_back(getEncodedLinkage(GV)); 652 Vals.push_back(Log2_32(GV.getAlignment())+1); 653 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 654 if (GV.isThreadLocal() || 655 GV.getVisibility() != GlobalValue::DefaultVisibility || 656 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 657 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 658 GV.hasComdat()) { 659 Vals.push_back(getEncodedVisibility(GV)); 660 Vals.push_back(getEncodedThreadLocalMode(GV)); 661 Vals.push_back(GV.hasUnnamedAddr()); 662 Vals.push_back(GV.isExternallyInitialized()); 663 Vals.push_back(getEncodedDLLStorageClass(GV)); 664 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 665 } else { 666 AbbrevToUse = SimpleGVarAbbrev; 667 } 668 669 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 670 Vals.clear(); 671 } 672 673 // Emit the function proto information. 674 for (const Function &F : *M) { 675 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 676 // section, visibility, gc, unnamed_addr, prefix] 677 Vals.push_back(VE.getTypeID(F.getType())); 678 Vals.push_back(F.getCallingConv()); 679 Vals.push_back(F.isDeclaration()); 680 Vals.push_back(getEncodedLinkage(F)); 681 Vals.push_back(VE.getAttributeID(F.getAttributes())); 682 Vals.push_back(Log2_32(F.getAlignment())+1); 683 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 684 Vals.push_back(getEncodedVisibility(F)); 685 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 686 Vals.push_back(F.hasUnnamedAddr()); 687 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 688 : 0); 689 Vals.push_back(getEncodedDLLStorageClass(F)); 690 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 691 692 unsigned AbbrevToUse = 0; 693 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 694 Vals.clear(); 695 } 696 697 // Emit the alias information. 698 for (const GlobalAlias &A : M->aliases()) { 699 // ALIAS: [alias type, aliasee val#, linkage, visibility] 700 Vals.push_back(VE.getTypeID(A.getType())); 701 Vals.push_back(VE.getValueID(A.getAliasee())); 702 Vals.push_back(getEncodedLinkage(A)); 703 Vals.push_back(getEncodedVisibility(A)); 704 Vals.push_back(getEncodedDLLStorageClass(A)); 705 Vals.push_back(getEncodedThreadLocalMode(A)); 706 Vals.push_back(A.hasUnnamedAddr()); 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 } 712 713 static uint64_t GetOptimizationFlags(const Value *V) { 714 uint64_t Flags = 0; 715 716 if (const OverflowingBinaryOperator *OBO = 717 dyn_cast<OverflowingBinaryOperator>(V)) { 718 if (OBO->hasNoSignedWrap()) 719 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 720 if (OBO->hasNoUnsignedWrap()) 721 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 722 } else if (const PossiblyExactOperator *PEO = 723 dyn_cast<PossiblyExactOperator>(V)) { 724 if (PEO->isExact()) 725 Flags |= 1 << bitc::PEO_EXACT; 726 } else if (const FPMathOperator *FPMO = 727 dyn_cast<const FPMathOperator>(V)) { 728 if (FPMO->hasUnsafeAlgebra()) 729 Flags |= FastMathFlags::UnsafeAlgebra; 730 if (FPMO->hasNoNaNs()) 731 Flags |= FastMathFlags::NoNaNs; 732 if (FPMO->hasNoInfs()) 733 Flags |= FastMathFlags::NoInfs; 734 if (FPMO->hasNoSignedZeros()) 735 Flags |= FastMathFlags::NoSignedZeros; 736 if (FPMO->hasAllowReciprocal()) 737 Flags |= FastMathFlags::AllowReciprocal; 738 } 739 740 return Flags; 741 } 742 743 static void WriteMDNode(const MDNode *N, 744 const ValueEnumerator &VE, 745 BitstreamWriter &Stream, 746 SmallVectorImpl<uint64_t> &Record) { 747 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 748 if (N->getOperand(i)) { 749 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 750 Record.push_back(VE.getValueID(N->getOperand(i))); 751 } else { 752 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 753 Record.push_back(0); 754 } 755 } 756 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 757 bitc::METADATA_NODE; 758 Stream.EmitRecord(MDCode, Record, 0); 759 Record.clear(); 760 } 761 762 static void WriteModuleMetadata(const Module *M, 763 const ValueEnumerator &VE, 764 BitstreamWriter &Stream) { 765 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 766 bool StartedMetadataBlock = false; 767 unsigned MDSAbbrev = 0; 768 SmallVector<uint64_t, 64> Record; 769 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 770 771 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 772 if (!N->isFunctionLocal() || !N->getFunction()) { 773 if (!StartedMetadataBlock) { 774 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 775 StartedMetadataBlock = true; 776 } 777 WriteMDNode(N, VE, Stream, Record); 778 } 779 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 780 if (!StartedMetadataBlock) { 781 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 782 783 // Abbrev for METADATA_STRING. 784 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 785 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 788 MDSAbbrev = Stream.EmitAbbrev(Abbv); 789 StartedMetadataBlock = true; 790 } 791 792 // Code: [strchar x N] 793 Record.append(MDS->begin(), MDS->end()); 794 795 // Emit the finished record. 796 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 797 Record.clear(); 798 } 799 } 800 801 // Write named metadata. 802 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 803 E = M->named_metadata_end(); I != E; ++I) { 804 const NamedMDNode *NMD = I; 805 if (!StartedMetadataBlock) { 806 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 807 StartedMetadataBlock = true; 808 } 809 810 // Write name. 811 StringRef Str = NMD->getName(); 812 for (unsigned i = 0, e = Str.size(); i != e; ++i) 813 Record.push_back(Str[i]); 814 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 815 Record.clear(); 816 817 // Write named metadata operands. 818 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 819 Record.push_back(VE.getValueID(NMD->getOperand(i))); 820 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 821 Record.clear(); 822 } 823 824 if (StartedMetadataBlock) 825 Stream.ExitBlock(); 826 } 827 828 static void WriteFunctionLocalMetadata(const Function &F, 829 const ValueEnumerator &VE, 830 BitstreamWriter &Stream) { 831 bool StartedMetadataBlock = false; 832 SmallVector<uint64_t, 64> Record; 833 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 834 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 835 if (const MDNode *N = Vals[i]) 836 if (N->isFunctionLocal() && N->getFunction() == &F) { 837 if (!StartedMetadataBlock) { 838 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 839 StartedMetadataBlock = true; 840 } 841 WriteMDNode(N, VE, Stream, Record); 842 } 843 844 if (StartedMetadataBlock) 845 Stream.ExitBlock(); 846 } 847 848 static void WriteMetadataAttachment(const Function &F, 849 const ValueEnumerator &VE, 850 BitstreamWriter &Stream) { 851 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 852 853 SmallVector<uint64_t, 64> Record; 854 855 // Write metadata attachments 856 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 857 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 858 859 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 860 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 861 I != E; ++I) { 862 MDs.clear(); 863 I->getAllMetadataOtherThanDebugLoc(MDs); 864 865 // If no metadata, ignore instruction. 866 if (MDs.empty()) continue; 867 868 Record.push_back(VE.getInstructionID(I)); 869 870 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 871 Record.push_back(MDs[i].first); 872 Record.push_back(VE.getValueID(MDs[i].second)); 873 } 874 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 875 Record.clear(); 876 } 877 878 Stream.ExitBlock(); 879 } 880 881 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 882 SmallVector<uint64_t, 64> Record; 883 884 // Write metadata kinds 885 // METADATA_KIND - [n x [id, name]] 886 SmallVector<StringRef, 8> Names; 887 M->getMDKindNames(Names); 888 889 if (Names.empty()) return; 890 891 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 892 893 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 894 Record.push_back(MDKindID); 895 StringRef KName = Names[MDKindID]; 896 Record.append(KName.begin(), KName.end()); 897 898 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 899 Record.clear(); 900 } 901 902 Stream.ExitBlock(); 903 } 904 905 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 906 if ((int64_t)V >= 0) 907 Vals.push_back(V << 1); 908 else 909 Vals.push_back((-V << 1) | 1); 910 } 911 912 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 913 const ValueEnumerator &VE, 914 BitstreamWriter &Stream, bool isGlobal) { 915 if (FirstVal == LastVal) return; 916 917 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 918 919 unsigned AggregateAbbrev = 0; 920 unsigned String8Abbrev = 0; 921 unsigned CString7Abbrev = 0; 922 unsigned CString6Abbrev = 0; 923 // If this is a constant pool for the module, emit module-specific abbrevs. 924 if (isGlobal) { 925 // Abbrev for CST_CODE_AGGREGATE. 926 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 927 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 930 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 931 932 // Abbrev for CST_CODE_STRING. 933 Abbv = new BitCodeAbbrev(); 934 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 937 String8Abbrev = Stream.EmitAbbrev(Abbv); 938 // Abbrev for CST_CODE_CSTRING. 939 Abbv = new BitCodeAbbrev(); 940 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 943 CString7Abbrev = Stream.EmitAbbrev(Abbv); 944 // Abbrev for CST_CODE_CSTRING. 945 Abbv = new BitCodeAbbrev(); 946 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 949 CString6Abbrev = Stream.EmitAbbrev(Abbv); 950 } 951 952 SmallVector<uint64_t, 64> Record; 953 954 const ValueEnumerator::ValueList &Vals = VE.getValues(); 955 Type *LastTy = nullptr; 956 for (unsigned i = FirstVal; i != LastVal; ++i) { 957 const Value *V = Vals[i].first; 958 // If we need to switch types, do so now. 959 if (V->getType() != LastTy) { 960 LastTy = V->getType(); 961 Record.push_back(VE.getTypeID(LastTy)); 962 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 963 CONSTANTS_SETTYPE_ABBREV); 964 Record.clear(); 965 } 966 967 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 968 Record.push_back(unsigned(IA->hasSideEffects()) | 969 unsigned(IA->isAlignStack()) << 1 | 970 unsigned(IA->getDialect()&1) << 2); 971 972 // Add the asm string. 973 const std::string &AsmStr = IA->getAsmString(); 974 Record.push_back(AsmStr.size()); 975 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 976 Record.push_back(AsmStr[i]); 977 978 // Add the constraint string. 979 const std::string &ConstraintStr = IA->getConstraintString(); 980 Record.push_back(ConstraintStr.size()); 981 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 982 Record.push_back(ConstraintStr[i]); 983 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 984 Record.clear(); 985 continue; 986 } 987 const Constant *C = cast<Constant>(V); 988 unsigned Code = -1U; 989 unsigned AbbrevToUse = 0; 990 if (C->isNullValue()) { 991 Code = bitc::CST_CODE_NULL; 992 } else if (isa<UndefValue>(C)) { 993 Code = bitc::CST_CODE_UNDEF; 994 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 995 if (IV->getBitWidth() <= 64) { 996 uint64_t V = IV->getSExtValue(); 997 emitSignedInt64(Record, V); 998 Code = bitc::CST_CODE_INTEGER; 999 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1000 } else { // Wide integers, > 64 bits in size. 1001 // We have an arbitrary precision integer value to write whose 1002 // bit width is > 64. However, in canonical unsigned integer 1003 // format it is likely that the high bits are going to be zero. 1004 // So, we only write the number of active words. 1005 unsigned NWords = IV->getValue().getActiveWords(); 1006 const uint64_t *RawWords = IV->getValue().getRawData(); 1007 for (unsigned i = 0; i != NWords; ++i) { 1008 emitSignedInt64(Record, RawWords[i]); 1009 } 1010 Code = bitc::CST_CODE_WIDE_INTEGER; 1011 } 1012 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1013 Code = bitc::CST_CODE_FLOAT; 1014 Type *Ty = CFP->getType(); 1015 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1016 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1017 } else if (Ty->isX86_FP80Ty()) { 1018 // api needed to prevent premature destruction 1019 // bits are not in the same order as a normal i80 APInt, compensate. 1020 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1021 const uint64_t *p = api.getRawData(); 1022 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1023 Record.push_back(p[0] & 0xffffLL); 1024 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1025 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1026 const uint64_t *p = api.getRawData(); 1027 Record.push_back(p[0]); 1028 Record.push_back(p[1]); 1029 } else { 1030 assert (0 && "Unknown FP type!"); 1031 } 1032 } else if (isa<ConstantDataSequential>(C) && 1033 cast<ConstantDataSequential>(C)->isString()) { 1034 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1035 // Emit constant strings specially. 1036 unsigned NumElts = Str->getNumElements(); 1037 // If this is a null-terminated string, use the denser CSTRING encoding. 1038 if (Str->isCString()) { 1039 Code = bitc::CST_CODE_CSTRING; 1040 --NumElts; // Don't encode the null, which isn't allowed by char6. 1041 } else { 1042 Code = bitc::CST_CODE_STRING; 1043 AbbrevToUse = String8Abbrev; 1044 } 1045 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1046 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1047 for (unsigned i = 0; i != NumElts; ++i) { 1048 unsigned char V = Str->getElementAsInteger(i); 1049 Record.push_back(V); 1050 isCStr7 &= (V & 128) == 0; 1051 if (isCStrChar6) 1052 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1053 } 1054 1055 if (isCStrChar6) 1056 AbbrevToUse = CString6Abbrev; 1057 else if (isCStr7) 1058 AbbrevToUse = CString7Abbrev; 1059 } else if (const ConstantDataSequential *CDS = 1060 dyn_cast<ConstantDataSequential>(C)) { 1061 Code = bitc::CST_CODE_DATA; 1062 Type *EltTy = CDS->getType()->getElementType(); 1063 if (isa<IntegerType>(EltTy)) { 1064 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1065 Record.push_back(CDS->getElementAsInteger(i)); 1066 } else if (EltTy->isFloatTy()) { 1067 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1068 union { float F; uint32_t I; }; 1069 F = CDS->getElementAsFloat(i); 1070 Record.push_back(I); 1071 } 1072 } else { 1073 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 union { double F; uint64_t I; }; 1076 F = CDS->getElementAsDouble(i); 1077 Record.push_back(I); 1078 } 1079 } 1080 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1081 isa<ConstantVector>(C)) { 1082 Code = bitc::CST_CODE_AGGREGATE; 1083 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1084 Record.push_back(VE.getValueID(C->getOperand(i))); 1085 AbbrevToUse = AggregateAbbrev; 1086 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1087 switch (CE->getOpcode()) { 1088 default: 1089 if (Instruction::isCast(CE->getOpcode())) { 1090 Code = bitc::CST_CODE_CE_CAST; 1091 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1092 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1093 Record.push_back(VE.getValueID(C->getOperand(0))); 1094 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1095 } else { 1096 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1097 Code = bitc::CST_CODE_CE_BINOP; 1098 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1099 Record.push_back(VE.getValueID(C->getOperand(0))); 1100 Record.push_back(VE.getValueID(C->getOperand(1))); 1101 uint64_t Flags = GetOptimizationFlags(CE); 1102 if (Flags != 0) 1103 Record.push_back(Flags); 1104 } 1105 break; 1106 case Instruction::GetElementPtr: 1107 Code = bitc::CST_CODE_CE_GEP; 1108 if (cast<GEPOperator>(C)->isInBounds()) 1109 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1110 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1111 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1112 Record.push_back(VE.getValueID(C->getOperand(i))); 1113 } 1114 break; 1115 case Instruction::Select: 1116 Code = bitc::CST_CODE_CE_SELECT; 1117 Record.push_back(VE.getValueID(C->getOperand(0))); 1118 Record.push_back(VE.getValueID(C->getOperand(1))); 1119 Record.push_back(VE.getValueID(C->getOperand(2))); 1120 break; 1121 case Instruction::ExtractElement: 1122 Code = bitc::CST_CODE_CE_EXTRACTELT; 1123 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1124 Record.push_back(VE.getValueID(C->getOperand(0))); 1125 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1126 Record.push_back(VE.getValueID(C->getOperand(1))); 1127 break; 1128 case Instruction::InsertElement: 1129 Code = bitc::CST_CODE_CE_INSERTELT; 1130 Record.push_back(VE.getValueID(C->getOperand(0))); 1131 Record.push_back(VE.getValueID(C->getOperand(1))); 1132 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1133 Record.push_back(VE.getValueID(C->getOperand(2))); 1134 break; 1135 case Instruction::ShuffleVector: 1136 // If the return type and argument types are the same, this is a 1137 // standard shufflevector instruction. If the types are different, 1138 // then the shuffle is widening or truncating the input vectors, and 1139 // the argument type must also be encoded. 1140 if (C->getType() == C->getOperand(0)->getType()) { 1141 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1142 } else { 1143 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1144 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1145 } 1146 Record.push_back(VE.getValueID(C->getOperand(0))); 1147 Record.push_back(VE.getValueID(C->getOperand(1))); 1148 Record.push_back(VE.getValueID(C->getOperand(2))); 1149 break; 1150 case Instruction::ICmp: 1151 case Instruction::FCmp: 1152 Code = bitc::CST_CODE_CE_CMP; 1153 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1154 Record.push_back(VE.getValueID(C->getOperand(0))); 1155 Record.push_back(VE.getValueID(C->getOperand(1))); 1156 Record.push_back(CE->getPredicate()); 1157 break; 1158 } 1159 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1160 Code = bitc::CST_CODE_BLOCKADDRESS; 1161 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1162 Record.push_back(VE.getValueID(BA->getFunction())); 1163 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1164 } else { 1165 #ifndef NDEBUG 1166 C->dump(); 1167 #endif 1168 llvm_unreachable("Unknown constant!"); 1169 } 1170 Stream.EmitRecord(Code, Record, AbbrevToUse); 1171 Record.clear(); 1172 } 1173 1174 Stream.ExitBlock(); 1175 } 1176 1177 static void WriteModuleConstants(const ValueEnumerator &VE, 1178 BitstreamWriter &Stream) { 1179 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1180 1181 // Find the first constant to emit, which is the first non-globalvalue value. 1182 // We know globalvalues have been emitted by WriteModuleInfo. 1183 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1184 if (!isa<GlobalValue>(Vals[i].first)) { 1185 WriteConstants(i, Vals.size(), VE, Stream, true); 1186 return; 1187 } 1188 } 1189 } 1190 1191 /// PushValueAndType - The file has to encode both the value and type id for 1192 /// many values, because we need to know what type to create for forward 1193 /// references. However, most operands are not forward references, so this type 1194 /// field is not needed. 1195 /// 1196 /// This function adds V's value ID to Vals. If the value ID is higher than the 1197 /// instruction ID, then it is a forward reference, and it also includes the 1198 /// type ID. The value ID that is written is encoded relative to the InstID. 1199 static bool PushValueAndType(const Value *V, unsigned InstID, 1200 SmallVectorImpl<unsigned> &Vals, 1201 ValueEnumerator &VE) { 1202 unsigned ValID = VE.getValueID(V); 1203 // Make encoding relative to the InstID. 1204 Vals.push_back(InstID - ValID); 1205 if (ValID >= InstID) { 1206 Vals.push_back(VE.getTypeID(V->getType())); 1207 return true; 1208 } 1209 return false; 1210 } 1211 1212 /// pushValue - Like PushValueAndType, but where the type of the value is 1213 /// omitted (perhaps it was already encoded in an earlier operand). 1214 static void pushValue(const Value *V, unsigned InstID, 1215 SmallVectorImpl<unsigned> &Vals, 1216 ValueEnumerator &VE) { 1217 unsigned ValID = VE.getValueID(V); 1218 Vals.push_back(InstID - ValID); 1219 } 1220 1221 static void pushValueSigned(const Value *V, unsigned InstID, 1222 SmallVectorImpl<uint64_t> &Vals, 1223 ValueEnumerator &VE) { 1224 unsigned ValID = VE.getValueID(V); 1225 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1226 emitSignedInt64(Vals, diff); 1227 } 1228 1229 /// WriteInstruction - Emit an instruction to the specified stream. 1230 static void WriteInstruction(const Instruction &I, unsigned InstID, 1231 ValueEnumerator &VE, BitstreamWriter &Stream, 1232 SmallVectorImpl<unsigned> &Vals) { 1233 unsigned Code = 0; 1234 unsigned AbbrevToUse = 0; 1235 VE.setInstructionID(&I); 1236 switch (I.getOpcode()) { 1237 default: 1238 if (Instruction::isCast(I.getOpcode())) { 1239 Code = bitc::FUNC_CODE_INST_CAST; 1240 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1241 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1242 Vals.push_back(VE.getTypeID(I.getType())); 1243 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1244 } else { 1245 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1246 Code = bitc::FUNC_CODE_INST_BINOP; 1247 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1248 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1249 pushValue(I.getOperand(1), InstID, Vals, VE); 1250 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1251 uint64_t Flags = GetOptimizationFlags(&I); 1252 if (Flags != 0) { 1253 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1254 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1255 Vals.push_back(Flags); 1256 } 1257 } 1258 break; 1259 1260 case Instruction::GetElementPtr: 1261 Code = bitc::FUNC_CODE_INST_GEP; 1262 if (cast<GEPOperator>(&I)->isInBounds()) 1263 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1264 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1265 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1266 break; 1267 case Instruction::ExtractValue: { 1268 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1269 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1270 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1271 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1272 Vals.push_back(*i); 1273 break; 1274 } 1275 case Instruction::InsertValue: { 1276 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1277 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1278 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1279 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1280 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1281 Vals.push_back(*i); 1282 break; 1283 } 1284 case Instruction::Select: 1285 Code = bitc::FUNC_CODE_INST_VSELECT; 1286 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1287 pushValue(I.getOperand(2), InstID, Vals, VE); 1288 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1289 break; 1290 case Instruction::ExtractElement: 1291 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1292 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1293 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1294 break; 1295 case Instruction::InsertElement: 1296 Code = bitc::FUNC_CODE_INST_INSERTELT; 1297 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1298 pushValue(I.getOperand(1), InstID, Vals, VE); 1299 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1300 break; 1301 case Instruction::ShuffleVector: 1302 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1303 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1304 pushValue(I.getOperand(1), InstID, Vals, VE); 1305 pushValue(I.getOperand(2), InstID, Vals, VE); 1306 break; 1307 case Instruction::ICmp: 1308 case Instruction::FCmp: 1309 // compare returning Int1Ty or vector of Int1Ty 1310 Code = bitc::FUNC_CODE_INST_CMP2; 1311 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1312 pushValue(I.getOperand(1), InstID, Vals, VE); 1313 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1314 break; 1315 1316 case Instruction::Ret: 1317 { 1318 Code = bitc::FUNC_CODE_INST_RET; 1319 unsigned NumOperands = I.getNumOperands(); 1320 if (NumOperands == 0) 1321 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1322 else if (NumOperands == 1) { 1323 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1324 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1325 } else { 1326 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1327 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1328 } 1329 } 1330 break; 1331 case Instruction::Br: 1332 { 1333 Code = bitc::FUNC_CODE_INST_BR; 1334 const BranchInst &II = cast<BranchInst>(I); 1335 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1336 if (II.isConditional()) { 1337 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1338 pushValue(II.getCondition(), InstID, Vals, VE); 1339 } 1340 } 1341 break; 1342 case Instruction::Switch: 1343 { 1344 Code = bitc::FUNC_CODE_INST_SWITCH; 1345 const SwitchInst &SI = cast<SwitchInst>(I); 1346 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1347 pushValue(SI.getCondition(), InstID, Vals, VE); 1348 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1349 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1350 i != e; ++i) { 1351 Vals.push_back(VE.getValueID(i.getCaseValue())); 1352 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1353 } 1354 } 1355 break; 1356 case Instruction::IndirectBr: 1357 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1358 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1359 // Encode the address operand as relative, but not the basic blocks. 1360 pushValue(I.getOperand(0), InstID, Vals, VE); 1361 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1362 Vals.push_back(VE.getValueID(I.getOperand(i))); 1363 break; 1364 1365 case Instruction::Invoke: { 1366 const InvokeInst *II = cast<InvokeInst>(&I); 1367 const Value *Callee(II->getCalledValue()); 1368 PointerType *PTy = cast<PointerType>(Callee->getType()); 1369 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1370 Code = bitc::FUNC_CODE_INST_INVOKE; 1371 1372 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1373 Vals.push_back(II->getCallingConv()); 1374 Vals.push_back(VE.getValueID(II->getNormalDest())); 1375 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1376 PushValueAndType(Callee, InstID, Vals, VE); 1377 1378 // Emit value #'s for the fixed parameters. 1379 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1380 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1381 1382 // Emit type/value pairs for varargs params. 1383 if (FTy->isVarArg()) { 1384 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1385 i != e; ++i) 1386 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1387 } 1388 break; 1389 } 1390 case Instruction::Resume: 1391 Code = bitc::FUNC_CODE_INST_RESUME; 1392 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1393 break; 1394 case Instruction::Unreachable: 1395 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1396 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1397 break; 1398 1399 case Instruction::PHI: { 1400 const PHINode &PN = cast<PHINode>(I); 1401 Code = bitc::FUNC_CODE_INST_PHI; 1402 // With the newer instruction encoding, forward references could give 1403 // negative valued IDs. This is most common for PHIs, so we use 1404 // signed VBRs. 1405 SmallVector<uint64_t, 128> Vals64; 1406 Vals64.push_back(VE.getTypeID(PN.getType())); 1407 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1408 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1409 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1410 } 1411 // Emit a Vals64 vector and exit. 1412 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1413 Vals64.clear(); 1414 return; 1415 } 1416 1417 case Instruction::LandingPad: { 1418 const LandingPadInst &LP = cast<LandingPadInst>(I); 1419 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1420 Vals.push_back(VE.getTypeID(LP.getType())); 1421 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1422 Vals.push_back(LP.isCleanup()); 1423 Vals.push_back(LP.getNumClauses()); 1424 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1425 if (LP.isCatch(I)) 1426 Vals.push_back(LandingPadInst::Catch); 1427 else 1428 Vals.push_back(LandingPadInst::Filter); 1429 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1430 } 1431 break; 1432 } 1433 1434 case Instruction::Alloca: 1435 Code = bitc::FUNC_CODE_INST_ALLOCA; 1436 Vals.push_back(VE.getTypeID(I.getType())); 1437 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1438 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1439 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1440 break; 1441 1442 case Instruction::Load: 1443 if (cast<LoadInst>(I).isAtomic()) { 1444 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1445 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1446 } else { 1447 Code = bitc::FUNC_CODE_INST_LOAD; 1448 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1449 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1450 } 1451 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1452 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1453 if (cast<LoadInst>(I).isAtomic()) { 1454 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1455 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1456 } 1457 break; 1458 case Instruction::Store: 1459 if (cast<StoreInst>(I).isAtomic()) 1460 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1461 else 1462 Code = bitc::FUNC_CODE_INST_STORE; 1463 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1464 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1465 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1466 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1467 if (cast<StoreInst>(I).isAtomic()) { 1468 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1469 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1470 } 1471 break; 1472 case Instruction::AtomicCmpXchg: 1473 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1474 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1475 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1476 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1477 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1478 Vals.push_back(GetEncodedOrdering( 1479 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1480 Vals.push_back(GetEncodedSynchScope( 1481 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1482 Vals.push_back(GetEncodedOrdering( 1483 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1484 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1485 break; 1486 case Instruction::AtomicRMW: 1487 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1488 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1489 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1490 Vals.push_back(GetEncodedRMWOperation( 1491 cast<AtomicRMWInst>(I).getOperation())); 1492 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1493 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1494 Vals.push_back(GetEncodedSynchScope( 1495 cast<AtomicRMWInst>(I).getSynchScope())); 1496 break; 1497 case Instruction::Fence: 1498 Code = bitc::FUNC_CODE_INST_FENCE; 1499 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1500 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1501 break; 1502 case Instruction::Call: { 1503 const CallInst &CI = cast<CallInst>(I); 1504 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1505 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1506 1507 Code = bitc::FUNC_CODE_INST_CALL; 1508 1509 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1510 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1511 unsigned(CI.isMustTailCall()) << 14); 1512 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1513 1514 // Emit value #'s for the fixed parameters. 1515 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1516 // Check for labels (can happen with asm labels). 1517 if (FTy->getParamType(i)->isLabelTy()) 1518 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1519 else 1520 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1521 } 1522 1523 // Emit type/value pairs for varargs params. 1524 if (FTy->isVarArg()) { 1525 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1526 i != e; ++i) 1527 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1528 } 1529 break; 1530 } 1531 case Instruction::VAArg: 1532 Code = bitc::FUNC_CODE_INST_VAARG; 1533 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1534 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1535 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1536 break; 1537 } 1538 1539 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1540 Vals.clear(); 1541 } 1542 1543 // Emit names for globals/functions etc. 1544 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1545 const ValueEnumerator &VE, 1546 BitstreamWriter &Stream) { 1547 if (VST.empty()) return; 1548 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1549 1550 // FIXME: Set up the abbrev, we know how many values there are! 1551 // FIXME: We know if the type names can use 7-bit ascii. 1552 SmallVector<unsigned, 64> NameVals; 1553 1554 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1555 SI != SE; ++SI) { 1556 1557 const ValueName &Name = *SI; 1558 1559 // Figure out the encoding to use for the name. 1560 bool is7Bit = true; 1561 bool isChar6 = true; 1562 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1563 C != E; ++C) { 1564 if (isChar6) 1565 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1566 if ((unsigned char)*C & 128) { 1567 is7Bit = false; 1568 break; // don't bother scanning the rest. 1569 } 1570 } 1571 1572 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1573 1574 // VST_ENTRY: [valueid, namechar x N] 1575 // VST_BBENTRY: [bbid, namechar x N] 1576 unsigned Code; 1577 if (isa<BasicBlock>(SI->getValue())) { 1578 Code = bitc::VST_CODE_BBENTRY; 1579 if (isChar6) 1580 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1581 } else { 1582 Code = bitc::VST_CODE_ENTRY; 1583 if (isChar6) 1584 AbbrevToUse = VST_ENTRY_6_ABBREV; 1585 else if (is7Bit) 1586 AbbrevToUse = VST_ENTRY_7_ABBREV; 1587 } 1588 1589 NameVals.push_back(VE.getValueID(SI->getValue())); 1590 for (const char *P = Name.getKeyData(), 1591 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1592 NameVals.push_back((unsigned char)*P); 1593 1594 // Emit the finished record. 1595 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1596 NameVals.clear(); 1597 } 1598 Stream.ExitBlock(); 1599 } 1600 1601 /// WriteFunction - Emit a function body to the module stream. 1602 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1603 BitstreamWriter &Stream) { 1604 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1605 VE.incorporateFunction(F); 1606 1607 SmallVector<unsigned, 64> Vals; 1608 1609 // Emit the number of basic blocks, so the reader can create them ahead of 1610 // time. 1611 Vals.push_back(VE.getBasicBlocks().size()); 1612 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1613 Vals.clear(); 1614 1615 // If there are function-local constants, emit them now. 1616 unsigned CstStart, CstEnd; 1617 VE.getFunctionConstantRange(CstStart, CstEnd); 1618 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1619 1620 // If there is function-local metadata, emit it now. 1621 WriteFunctionLocalMetadata(F, VE, Stream); 1622 1623 // Keep a running idea of what the instruction ID is. 1624 unsigned InstID = CstEnd; 1625 1626 bool NeedsMetadataAttachment = false; 1627 1628 DebugLoc LastDL; 1629 1630 // Finally, emit all the instructions, in order. 1631 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1632 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1633 I != E; ++I) { 1634 WriteInstruction(*I, InstID, VE, Stream, Vals); 1635 1636 if (!I->getType()->isVoidTy()) 1637 ++InstID; 1638 1639 // If the instruction has metadata, write a metadata attachment later. 1640 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1641 1642 // If the instruction has a debug location, emit it. 1643 DebugLoc DL = I->getDebugLoc(); 1644 if (DL.isUnknown()) { 1645 // nothing todo. 1646 } else if (DL == LastDL) { 1647 // Just repeat the same debug loc as last time. 1648 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1649 } else { 1650 MDNode *Scope, *IA; 1651 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1652 1653 Vals.push_back(DL.getLine()); 1654 Vals.push_back(DL.getCol()); 1655 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1656 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1657 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1658 Vals.clear(); 1659 1660 LastDL = DL; 1661 } 1662 } 1663 1664 // Emit names for all the instructions etc. 1665 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1666 1667 if (NeedsMetadataAttachment) 1668 WriteMetadataAttachment(F, VE, Stream); 1669 VE.purgeFunction(); 1670 Stream.ExitBlock(); 1671 } 1672 1673 // Emit blockinfo, which defines the standard abbreviations etc. 1674 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1675 // We only want to emit block info records for blocks that have multiple 1676 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1677 // Other blocks can define their abbrevs inline. 1678 Stream.EnterBlockInfoBlock(2); 1679 1680 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1681 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1686 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1687 Abbv) != VST_ENTRY_8_ABBREV) 1688 llvm_unreachable("Unexpected abbrev ordering!"); 1689 } 1690 1691 { // 7-bit fixed width VST_ENTRY strings. 1692 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1693 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1697 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1698 Abbv) != VST_ENTRY_7_ABBREV) 1699 llvm_unreachable("Unexpected abbrev ordering!"); 1700 } 1701 { // 6-bit char6 VST_ENTRY strings. 1702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1703 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1707 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1708 Abbv) != VST_ENTRY_6_ABBREV) 1709 llvm_unreachable("Unexpected abbrev ordering!"); 1710 } 1711 { // 6-bit char6 VST_BBENTRY strings. 1712 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1713 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1717 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1718 Abbv) != VST_BBENTRY_6_ABBREV) 1719 llvm_unreachable("Unexpected abbrev ordering!"); 1720 } 1721 1722 1723 1724 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1725 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1726 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1728 Log2_32_Ceil(VE.getTypes().size()+1))); 1729 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1730 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1731 llvm_unreachable("Unexpected abbrev ordering!"); 1732 } 1733 1734 { // INTEGER abbrev for CONSTANTS_BLOCK. 1735 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1736 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1738 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1739 Abbv) != CONSTANTS_INTEGER_ABBREV) 1740 llvm_unreachable("Unexpected abbrev ordering!"); 1741 } 1742 1743 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1744 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1745 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1748 Log2_32_Ceil(VE.getTypes().size()+1))); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1750 1751 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1752 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1753 llvm_unreachable("Unexpected abbrev ordering!"); 1754 } 1755 { // NULL abbrev for CONSTANTS_BLOCK. 1756 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1757 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1758 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1759 Abbv) != CONSTANTS_NULL_Abbrev) 1760 llvm_unreachable("Unexpected abbrev ordering!"); 1761 } 1762 1763 // FIXME: This should only use space for first class types! 1764 1765 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1766 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1767 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1771 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1772 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1773 llvm_unreachable("Unexpected abbrev ordering!"); 1774 } 1775 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1776 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1781 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1782 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1783 llvm_unreachable("Unexpected abbrev ordering!"); 1784 } 1785 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1786 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1787 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1792 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1793 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1794 llvm_unreachable("Unexpected abbrev ordering!"); 1795 } 1796 { // INST_CAST abbrev for FUNCTION_BLOCK. 1797 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1798 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1801 Log2_32_Ceil(VE.getTypes().size()+1))); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1803 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1804 Abbv) != FUNCTION_INST_CAST_ABBREV) 1805 llvm_unreachable("Unexpected abbrev ordering!"); 1806 } 1807 1808 { // INST_RET abbrev for FUNCTION_BLOCK. 1809 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1810 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1811 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1812 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1813 llvm_unreachable("Unexpected abbrev ordering!"); 1814 } 1815 { // INST_RET abbrev for FUNCTION_BLOCK. 1816 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1817 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1819 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1820 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1821 llvm_unreachable("Unexpected abbrev ordering!"); 1822 } 1823 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1824 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1825 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1826 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1827 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1828 llvm_unreachable("Unexpected abbrev ordering!"); 1829 } 1830 1831 Stream.ExitBlock(); 1832 } 1833 1834 // Sort the Users based on the order in which the reader parses the bitcode 1835 // file. 1836 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1837 // TODO: Implement. 1838 return true; 1839 } 1840 1841 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1842 BitstreamWriter &Stream) { 1843 1844 // One or zero uses can't get out of order. 1845 if (V->use_empty() || V->hasNUses(1)) 1846 return; 1847 1848 // Make a copy of the in-memory use-list for sorting. 1849 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1850 1851 // Sort the copy based on the order read by the BitcodeReader. 1852 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1853 1854 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1855 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1856 1857 // TODO: Emit the USELIST_CODE_ENTRYs. 1858 } 1859 1860 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1861 BitstreamWriter &Stream) { 1862 VE.incorporateFunction(*F); 1863 1864 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1865 AI != AE; ++AI) 1866 WriteUseList(AI, VE, Stream); 1867 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1868 ++BB) { 1869 WriteUseList(BB, VE, Stream); 1870 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1871 ++II) { 1872 WriteUseList(II, VE, Stream); 1873 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1874 OI != E; ++OI) { 1875 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1876 isa<InlineAsm>(*OI)) 1877 WriteUseList(*OI, VE, Stream); 1878 } 1879 } 1880 } 1881 VE.purgeFunction(); 1882 } 1883 1884 // Emit use-lists. 1885 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1886 BitstreamWriter &Stream) { 1887 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1888 1889 // XXX: this modifies the module, but in a way that should never change the 1890 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1891 // contain entries in the use_list that do not exist in the Module and are 1892 // not stored in the .bc file. 1893 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1894 I != E; ++I) 1895 I->removeDeadConstantUsers(); 1896 1897 // Write the global variables. 1898 for (Module::const_global_iterator GI = M->global_begin(), 1899 GE = M->global_end(); GI != GE; ++GI) { 1900 WriteUseList(GI, VE, Stream); 1901 1902 // Write the global variable initializers. 1903 if (GI->hasInitializer()) 1904 WriteUseList(GI->getInitializer(), VE, Stream); 1905 } 1906 1907 // Write the functions. 1908 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1909 WriteUseList(FI, VE, Stream); 1910 if (!FI->isDeclaration()) 1911 WriteFunctionUseList(FI, VE, Stream); 1912 if (FI->hasPrefixData()) 1913 WriteUseList(FI->getPrefixData(), VE, Stream); 1914 } 1915 1916 // Write the aliases. 1917 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1918 AI != AE; ++AI) { 1919 WriteUseList(AI, VE, Stream); 1920 WriteUseList(AI->getAliasee(), VE, Stream); 1921 } 1922 1923 Stream.ExitBlock(); 1924 } 1925 1926 /// WriteModule - Emit the specified module to the bitstream. 1927 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1928 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1929 1930 SmallVector<unsigned, 1> Vals; 1931 unsigned CurVersion = 1; 1932 Vals.push_back(CurVersion); 1933 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1934 1935 // Analyze the module, enumerating globals, functions, etc. 1936 ValueEnumerator VE(M); 1937 1938 // Emit blockinfo, which defines the standard abbreviations etc. 1939 WriteBlockInfo(VE, Stream); 1940 1941 // Emit information about attribute groups. 1942 WriteAttributeGroupTable(VE, Stream); 1943 1944 // Emit information about parameter attributes. 1945 WriteAttributeTable(VE, Stream); 1946 1947 // Emit information describing all of the types in the module. 1948 WriteTypeTable(VE, Stream); 1949 1950 writeComdats(VE, Stream); 1951 1952 // Emit top-level description of module, including target triple, inline asm, 1953 // descriptors for global variables, and function prototype info. 1954 WriteModuleInfo(M, VE, Stream); 1955 1956 // Emit constants. 1957 WriteModuleConstants(VE, Stream); 1958 1959 // Emit metadata. 1960 WriteModuleMetadata(M, VE, Stream); 1961 1962 // Emit metadata. 1963 WriteModuleMetadataStore(M, Stream); 1964 1965 // Emit names for globals/functions etc. 1966 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1967 1968 // Emit use-lists. 1969 if (EnablePreserveUseListOrdering) 1970 WriteModuleUseLists(M, VE, Stream); 1971 1972 // Emit function bodies. 1973 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1974 if (!F->isDeclaration()) 1975 WriteFunction(*F, VE, Stream); 1976 1977 Stream.ExitBlock(); 1978 } 1979 1980 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1981 /// header and trailer to make it compatible with the system archiver. To do 1982 /// this we emit the following header, and then emit a trailer that pads the 1983 /// file out to be a multiple of 16 bytes. 1984 /// 1985 /// struct bc_header { 1986 /// uint32_t Magic; // 0x0B17C0DE 1987 /// uint32_t Version; // Version, currently always 0. 1988 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1989 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1990 /// uint32_t CPUType; // CPU specifier. 1991 /// ... potentially more later ... 1992 /// }; 1993 enum { 1994 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1995 DarwinBCHeaderSize = 5*4 1996 }; 1997 1998 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1999 uint32_t &Position) { 2000 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2001 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2002 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2003 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2004 Position += 4; 2005 } 2006 2007 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2008 const Triple &TT) { 2009 unsigned CPUType = ~0U; 2010 2011 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2012 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2013 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2014 // specific constants here because they are implicitly part of the Darwin ABI. 2015 enum { 2016 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2017 DARWIN_CPU_TYPE_X86 = 7, 2018 DARWIN_CPU_TYPE_ARM = 12, 2019 DARWIN_CPU_TYPE_POWERPC = 18 2020 }; 2021 2022 Triple::ArchType Arch = TT.getArch(); 2023 if (Arch == Triple::x86_64) 2024 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2025 else if (Arch == Triple::x86) 2026 CPUType = DARWIN_CPU_TYPE_X86; 2027 else if (Arch == Triple::ppc) 2028 CPUType = DARWIN_CPU_TYPE_POWERPC; 2029 else if (Arch == Triple::ppc64) 2030 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2031 else if (Arch == Triple::arm || Arch == Triple::thumb) 2032 CPUType = DARWIN_CPU_TYPE_ARM; 2033 2034 // Traditional Bitcode starts after header. 2035 assert(Buffer.size() >= DarwinBCHeaderSize && 2036 "Expected header size to be reserved"); 2037 unsigned BCOffset = DarwinBCHeaderSize; 2038 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2039 2040 // Write the magic and version. 2041 unsigned Position = 0; 2042 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2043 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2044 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2045 WriteInt32ToBuffer(BCSize , Buffer, Position); 2046 WriteInt32ToBuffer(CPUType , Buffer, Position); 2047 2048 // If the file is not a multiple of 16 bytes, insert dummy padding. 2049 while (Buffer.size() & 15) 2050 Buffer.push_back(0); 2051 } 2052 2053 /// WriteBitcodeToFile - Write the specified module to the specified output 2054 /// stream. 2055 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2056 SmallVector<char, 0> Buffer; 2057 Buffer.reserve(256*1024); 2058 2059 // If this is darwin or another generic macho target, reserve space for the 2060 // header. 2061 Triple TT(M->getTargetTriple()); 2062 if (TT.isOSDarwin()) 2063 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2064 2065 // Emit the module into the buffer. 2066 { 2067 BitstreamWriter Stream(Buffer); 2068 2069 // Emit the file header. 2070 Stream.Emit((unsigned)'B', 8); 2071 Stream.Emit((unsigned)'C', 8); 2072 Stream.Emit(0x0, 4); 2073 Stream.Emit(0xC, 4); 2074 Stream.Emit(0xE, 4); 2075 Stream.Emit(0xD, 4); 2076 2077 // Emit the module. 2078 WriteModule(M, Stream); 2079 } 2080 2081 if (TT.isOSDarwin()) 2082 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2083 2084 // Write the generated bitstream to "Out". 2085 Out.write((char*)&Buffer.front(), Buffer.size()); 2086 } 2087