Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of classes
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGBlocks.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGRecordLayout.h"
     18 #include "CodeGenFunction.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtCXX.h"
     24 #include "clang/Basic/TargetBuiltins.h"
     25 #include "clang/CodeGen/CGFunctionInfo.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 static CharUnits
     32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
     33                                  const CXXRecordDecl *DerivedClass,
     34                                  CastExpr::path_const_iterator Start,
     35                                  CastExpr::path_const_iterator End) {
     36   CharUnits Offset = CharUnits::Zero();
     37 
     38   const CXXRecordDecl *RD = DerivedClass;
     39 
     40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
     41     const CXXBaseSpecifier *Base = *I;
     42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
     43 
     44     // Get the layout.
     45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
     46 
     47     const CXXRecordDecl *BaseDecl =
     48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
     49 
     50     // Add the offset.
     51     Offset += Layout.getBaseClassOffset(BaseDecl);
     52 
     53     RD = BaseDecl;
     54   }
     55 
     56   return Offset;
     57 }
     58 
     59 llvm::Constant *
     60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
     61                                    CastExpr::path_const_iterator PathBegin,
     62                                    CastExpr::path_const_iterator PathEnd) {
     63   assert(PathBegin != PathEnd && "Base path should not be empty!");
     64 
     65   CharUnits Offset =
     66     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
     67                                      PathBegin, PathEnd);
     68   if (Offset.isZero())
     69     return nullptr;
     70 
     71   llvm::Type *PtrDiffTy =
     72   Types.ConvertType(getContext().getPointerDiffType());
     73 
     74   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
     75 }
     76 
     77 /// Gets the address of a direct base class within a complete object.
     78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
     79 /// when the type is known to be complete (e.g. in complete destructors).
     80 ///
     81 /// The object pointed to by 'This' is assumed to be non-null.
     82 llvm::Value *
     83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
     84                                                    const CXXRecordDecl *Derived,
     85                                                    const CXXRecordDecl *Base,
     86                                                    bool BaseIsVirtual) {
     87   // 'this' must be a pointer (in some address space) to Derived.
     88   assert(This->getType()->isPointerTy() &&
     89          cast<llvm::PointerType>(This->getType())->getElementType()
     90            == ConvertType(Derived));
     91 
     92   // Compute the offset of the virtual base.
     93   CharUnits Offset;
     94   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
     95   if (BaseIsVirtual)
     96     Offset = Layout.getVBaseClassOffset(Base);
     97   else
     98     Offset = Layout.getBaseClassOffset(Base);
     99 
    100   // Shift and cast down to the base type.
    101   // TODO: for complete types, this should be possible with a GEP.
    102   llvm::Value *V = This;
    103   if (Offset.isPositive()) {
    104     V = Builder.CreateBitCast(V, Int8PtrTy);
    105     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
    106   }
    107   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
    108 
    109   return V;
    110 }
    111 
    112 static llvm::Value *
    113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
    114                                 CharUnits nonVirtualOffset,
    115                                 llvm::Value *virtualOffset) {
    116   // Assert that we have something to do.
    117   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
    118 
    119   // Compute the offset from the static and dynamic components.
    120   llvm::Value *baseOffset;
    121   if (!nonVirtualOffset.isZero()) {
    122     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
    123                                         nonVirtualOffset.getQuantity());
    124     if (virtualOffset) {
    125       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
    126     }
    127   } else {
    128     baseOffset = virtualOffset;
    129   }
    130 
    131   // Apply the base offset.
    132   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    133   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
    134   return ptr;
    135 }
    136 
    137 llvm::Value *
    138 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
    139                                        const CXXRecordDecl *Derived,
    140                                        CastExpr::path_const_iterator PathBegin,
    141                                        CastExpr::path_const_iterator PathEnd,
    142                                        bool NullCheckValue) {
    143   assert(PathBegin != PathEnd && "Base path should not be empty!");
    144 
    145   CastExpr::path_const_iterator Start = PathBegin;
    146   const CXXRecordDecl *VBase = nullptr;
    147 
    148   // Sema has done some convenient canonicalization here: if the
    149   // access path involved any virtual steps, the conversion path will
    150   // *start* with a step down to the correct virtual base subobject,
    151   // and hence will not require any further steps.
    152   if ((*Start)->isVirtual()) {
    153     VBase =
    154       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
    155     ++Start;
    156   }
    157 
    158   // Compute the static offset of the ultimate destination within its
    159   // allocating subobject (the virtual base, if there is one, or else
    160   // the "complete" object that we see).
    161   CharUnits NonVirtualOffset =
    162     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
    163                                      Start, PathEnd);
    164 
    165   // If there's a virtual step, we can sometimes "devirtualize" it.
    166   // For now, that's limited to when the derived type is final.
    167   // TODO: "devirtualize" this for accesses to known-complete objects.
    168   if (VBase && Derived->hasAttr<FinalAttr>()) {
    169     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
    170     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
    171     NonVirtualOffset += vBaseOffset;
    172     VBase = nullptr; // we no longer have a virtual step
    173   }
    174 
    175   // Get the base pointer type.
    176   llvm::Type *BasePtrTy =
    177     ConvertType((PathEnd[-1])->getType())->getPointerTo();
    178 
    179   // If the static offset is zero and we don't have a virtual step,
    180   // just do a bitcast; null checks are unnecessary.
    181   if (NonVirtualOffset.isZero() && !VBase) {
    182     return Builder.CreateBitCast(Value, BasePtrTy);
    183   }
    184 
    185   llvm::BasicBlock *origBB = nullptr;
    186   llvm::BasicBlock *endBB = nullptr;
    187 
    188   // Skip over the offset (and the vtable load) if we're supposed to
    189   // null-check the pointer.
    190   if (NullCheckValue) {
    191     origBB = Builder.GetInsertBlock();
    192     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
    193     endBB = createBasicBlock("cast.end");
    194 
    195     llvm::Value *isNull = Builder.CreateIsNull(Value);
    196     Builder.CreateCondBr(isNull, endBB, notNullBB);
    197     EmitBlock(notNullBB);
    198   }
    199 
    200   // Compute the virtual offset.
    201   llvm::Value *VirtualOffset = nullptr;
    202   if (VBase) {
    203     VirtualOffset =
    204       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
    205   }
    206 
    207   // Apply both offsets.
    208   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
    209                                           NonVirtualOffset,
    210                                           VirtualOffset);
    211 
    212   // Cast to the destination type.
    213   Value = Builder.CreateBitCast(Value, BasePtrTy);
    214 
    215   // Build a phi if we needed a null check.
    216   if (NullCheckValue) {
    217     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    218     Builder.CreateBr(endBB);
    219     EmitBlock(endBB);
    220 
    221     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
    222     PHI->addIncoming(Value, notNullBB);
    223     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
    224     Value = PHI;
    225   }
    226 
    227   return Value;
    228 }
    229 
    230 llvm::Value *
    231 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
    232                                           const CXXRecordDecl *Derived,
    233                                         CastExpr::path_const_iterator PathBegin,
    234                                           CastExpr::path_const_iterator PathEnd,
    235                                           bool NullCheckValue) {
    236   assert(PathBegin != PathEnd && "Base path should not be empty!");
    237 
    238   QualType DerivedTy =
    239     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
    240   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
    241 
    242   llvm::Value *NonVirtualOffset =
    243     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
    244 
    245   if (!NonVirtualOffset) {
    246     // No offset, we can just cast back.
    247     return Builder.CreateBitCast(Value, DerivedPtrTy);
    248   }
    249 
    250   llvm::BasicBlock *CastNull = nullptr;
    251   llvm::BasicBlock *CastNotNull = nullptr;
    252   llvm::BasicBlock *CastEnd = nullptr;
    253 
    254   if (NullCheckValue) {
    255     CastNull = createBasicBlock("cast.null");
    256     CastNotNull = createBasicBlock("cast.notnull");
    257     CastEnd = createBasicBlock("cast.end");
    258 
    259     llvm::Value *IsNull = Builder.CreateIsNull(Value);
    260     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    261     EmitBlock(CastNotNull);
    262   }
    263 
    264   // Apply the offset.
    265   Value = Builder.CreateBitCast(Value, Int8PtrTy);
    266   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
    267                             "sub.ptr");
    268 
    269   // Just cast.
    270   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
    271 
    272   if (NullCheckValue) {
    273     Builder.CreateBr(CastEnd);
    274     EmitBlock(CastNull);
    275     Builder.CreateBr(CastEnd);
    276     EmitBlock(CastEnd);
    277 
    278     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    279     PHI->addIncoming(Value, CastNotNull);
    280     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
    281                      CastNull);
    282     Value = PHI;
    283   }
    284 
    285   return Value;
    286 }
    287 
    288 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
    289                                               bool ForVirtualBase,
    290                                               bool Delegating) {
    291   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
    292     // This constructor/destructor does not need a VTT parameter.
    293     return nullptr;
    294   }
    295 
    296   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
    297   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
    298 
    299   llvm::Value *VTT;
    300 
    301   uint64_t SubVTTIndex;
    302 
    303   if (Delegating) {
    304     // If this is a delegating constructor call, just load the VTT.
    305     return LoadCXXVTT();
    306   } else if (RD == Base) {
    307     // If the record matches the base, this is the complete ctor/dtor
    308     // variant calling the base variant in a class with virtual bases.
    309     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
    310            "doing no-op VTT offset in base dtor/ctor?");
    311     assert(!ForVirtualBase && "Can't have same class as virtual base!");
    312     SubVTTIndex = 0;
    313   } else {
    314     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    315     CharUnits BaseOffset = ForVirtualBase ?
    316       Layout.getVBaseClassOffset(Base) :
    317       Layout.getBaseClassOffset(Base);
    318 
    319     SubVTTIndex =
    320       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
    321     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
    322   }
    323 
    324   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
    325     // A VTT parameter was passed to the constructor, use it.
    326     VTT = LoadCXXVTT();
    327     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
    328   } else {
    329     // We're the complete constructor, so get the VTT by name.
    330     VTT = CGM.getVTables().GetAddrOfVTT(RD);
    331     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
    332   }
    333 
    334   return VTT;
    335 }
    336 
    337 namespace {
    338   /// Call the destructor for a direct base class.
    339   struct CallBaseDtor : EHScopeStack::Cleanup {
    340     const CXXRecordDecl *BaseClass;
    341     bool BaseIsVirtual;
    342     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
    343       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
    344 
    345     void Emit(CodeGenFunction &CGF, Flags flags) override {
    346       const CXXRecordDecl *DerivedClass =
    347         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
    348 
    349       const CXXDestructorDecl *D = BaseClass->getDestructor();
    350       llvm::Value *Addr =
    351         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
    352                                                   DerivedClass, BaseClass,
    353                                                   BaseIsVirtual);
    354       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
    355                                 /*Delegating=*/false, Addr);
    356     }
    357   };
    358 
    359   /// A visitor which checks whether an initializer uses 'this' in a
    360   /// way which requires the vtable to be properly set.
    361   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
    362     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
    363 
    364     bool UsesThis;
    365 
    366     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
    367 
    368     // Black-list all explicit and implicit references to 'this'.
    369     //
    370     // Do we need to worry about external references to 'this' derived
    371     // from arbitrary code?  If so, then anything which runs arbitrary
    372     // external code might potentially access the vtable.
    373     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
    374   };
    375 }
    376 
    377 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
    378   DynamicThisUseChecker Checker(C);
    379   Checker.Visit(const_cast<Expr*>(Init));
    380   return Checker.UsesThis;
    381 }
    382 
    383 static void EmitBaseInitializer(CodeGenFunction &CGF,
    384                                 const CXXRecordDecl *ClassDecl,
    385                                 CXXCtorInitializer *BaseInit,
    386                                 CXXCtorType CtorType) {
    387   assert(BaseInit->isBaseInitializer() &&
    388          "Must have base initializer!");
    389 
    390   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    391 
    392   const Type *BaseType = BaseInit->getBaseClass();
    393   CXXRecordDecl *BaseClassDecl =
    394     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    395 
    396   bool isBaseVirtual = BaseInit->isBaseVirtual();
    397 
    398   // The base constructor doesn't construct virtual bases.
    399   if (CtorType == Ctor_Base && isBaseVirtual)
    400     return;
    401 
    402   // If the initializer for the base (other than the constructor
    403   // itself) accesses 'this' in any way, we need to initialize the
    404   // vtables.
    405   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
    406     CGF.InitializeVTablePointers(ClassDecl);
    407 
    408   // We can pretend to be a complete class because it only matters for
    409   // virtual bases, and we only do virtual bases for complete ctors.
    410   llvm::Value *V =
    411     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
    412                                               BaseClassDecl,
    413                                               isBaseVirtual);
    414   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
    415   AggValueSlot AggSlot =
    416     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
    417                           AggValueSlot::IsDestructed,
    418                           AggValueSlot::DoesNotNeedGCBarriers,
    419                           AggValueSlot::IsNotAliased);
    420 
    421   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
    422 
    423   if (CGF.CGM.getLangOpts().Exceptions &&
    424       !BaseClassDecl->hasTrivialDestructor())
    425     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
    426                                           isBaseVirtual);
    427 }
    428 
    429 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
    430                                      LValue LHS,
    431                                      Expr *Init,
    432                                      llvm::Value *ArrayIndexVar,
    433                                      QualType T,
    434                                      ArrayRef<VarDecl *> ArrayIndexes,
    435                                      unsigned Index) {
    436   if (Index == ArrayIndexes.size()) {
    437     LValue LV = LHS;
    438 
    439     if (ArrayIndexVar) {
    440       // If we have an array index variable, load it and use it as an offset.
    441       // Then, increment the value.
    442       llvm::Value *Dest = LHS.getAddress();
    443       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
    444       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
    445       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
    446       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
    447       CGF.Builder.CreateStore(Next, ArrayIndexVar);
    448 
    449       // Update the LValue.
    450       LV.setAddress(Dest);
    451       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
    452       LV.setAlignment(std::min(Align, LV.getAlignment()));
    453     }
    454 
    455     switch (CGF.getEvaluationKind(T)) {
    456     case TEK_Scalar:
    457       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
    458       break;
    459     case TEK_Complex:
    460       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
    461       break;
    462     case TEK_Aggregate: {
    463       AggValueSlot Slot =
    464         AggValueSlot::forLValue(LV,
    465                                 AggValueSlot::IsDestructed,
    466                                 AggValueSlot::DoesNotNeedGCBarriers,
    467                                 AggValueSlot::IsNotAliased);
    468 
    469       CGF.EmitAggExpr(Init, Slot);
    470       break;
    471     }
    472     }
    473 
    474     return;
    475   }
    476 
    477   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
    478   assert(Array && "Array initialization without the array type?");
    479   llvm::Value *IndexVar
    480     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
    481   assert(IndexVar && "Array index variable not loaded");
    482 
    483   // Initialize this index variable to zero.
    484   llvm::Value* Zero
    485     = llvm::Constant::getNullValue(
    486                               CGF.ConvertType(CGF.getContext().getSizeType()));
    487   CGF.Builder.CreateStore(Zero, IndexVar);
    488 
    489   // Start the loop with a block that tests the condition.
    490   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
    491   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
    492 
    493   CGF.EmitBlock(CondBlock);
    494 
    495   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
    496   // Generate: if (loop-index < number-of-elements) fall to the loop body,
    497   // otherwise, go to the block after the for-loop.
    498   uint64_t NumElements = Array->getSize().getZExtValue();
    499   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
    500   llvm::Value *NumElementsPtr =
    501     llvm::ConstantInt::get(Counter->getType(), NumElements);
    502   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
    503                                                   "isless");
    504 
    505   // If the condition is true, execute the body.
    506   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    507 
    508   CGF.EmitBlock(ForBody);
    509   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
    510 
    511   // Inside the loop body recurse to emit the inner loop or, eventually, the
    512   // constructor call.
    513   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
    514                            Array->getElementType(), ArrayIndexes, Index + 1);
    515 
    516   CGF.EmitBlock(ContinueBlock);
    517 
    518   // Emit the increment of the loop counter.
    519   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
    520   Counter = CGF.Builder.CreateLoad(IndexVar);
    521   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
    522   CGF.Builder.CreateStore(NextVal, IndexVar);
    523 
    524   // Finally, branch back up to the condition for the next iteration.
    525   CGF.EmitBranch(CondBlock);
    526 
    527   // Emit the fall-through block.
    528   CGF.EmitBlock(AfterFor, true);
    529 }
    530 
    531 static void EmitMemberInitializer(CodeGenFunction &CGF,
    532                                   const CXXRecordDecl *ClassDecl,
    533                                   CXXCtorInitializer *MemberInit,
    534                                   const CXXConstructorDecl *Constructor,
    535                                   FunctionArgList &Args) {
    536   assert(MemberInit->isAnyMemberInitializer() &&
    537          "Must have member initializer!");
    538   assert(MemberInit->getInit() && "Must have initializer!");
    539 
    540   // non-static data member initializers.
    541   FieldDecl *Field = MemberInit->getAnyMember();
    542   QualType FieldType = Field->getType();
    543 
    544   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    545   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    546   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    547 
    548   if (MemberInit->isIndirectMemberInitializer()) {
    549     // If we are initializing an anonymous union field, drill down to
    550     // the field.
    551     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
    552     for (const auto *I : IndirectField->chain())
    553       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
    554     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
    555   } else {
    556     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
    557   }
    558 
    559   // Special case: if we are in a copy or move constructor, and we are copying
    560   // an array of PODs or classes with trivial copy constructors, ignore the
    561   // AST and perform the copy we know is equivalent.
    562   // FIXME: This is hacky at best... if we had a bit more explicit information
    563   // in the AST, we could generalize it more easily.
    564   const ConstantArrayType *Array
    565     = CGF.getContext().getAsConstantArrayType(FieldType);
    566   if (Array && Constructor->isDefaulted() &&
    567       Constructor->isCopyOrMoveConstructor()) {
    568     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
    569     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    570     if (BaseElementTy.isPODType(CGF.getContext()) ||
    571         (CE && CE->getConstructor()->isTrivial())) {
    572       // Find the source pointer. We know it's the last argument because
    573       // we know we're in an implicit copy constructor.
    574       unsigned SrcArgIndex = Args.size() - 1;
    575       llvm::Value *SrcPtr
    576         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
    577       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    578       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
    579 
    580       // Copy the aggregate.
    581       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
    582                             LHS.isVolatileQualified());
    583       return;
    584     }
    585   }
    586 
    587   ArrayRef<VarDecl *> ArrayIndexes;
    588   if (MemberInit->getNumArrayIndices())
    589     ArrayIndexes = MemberInit->getArrayIndexes();
    590   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
    591 }
    592 
    593 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
    594                                               LValue LHS, Expr *Init,
    595                                              ArrayRef<VarDecl *> ArrayIndexes) {
    596   QualType FieldType = Field->getType();
    597   switch (getEvaluationKind(FieldType)) {
    598   case TEK_Scalar:
    599     if (LHS.isSimple()) {
    600       EmitExprAsInit(Init, Field, LHS, false);
    601     } else {
    602       RValue RHS = RValue::get(EmitScalarExpr(Init));
    603       EmitStoreThroughLValue(RHS, LHS);
    604     }
    605     break;
    606   case TEK_Complex:
    607     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
    608     break;
    609   case TEK_Aggregate: {
    610     llvm::Value *ArrayIndexVar = nullptr;
    611     if (ArrayIndexes.size()) {
    612       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    613 
    614       // The LHS is a pointer to the first object we'll be constructing, as
    615       // a flat array.
    616       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
    617       llvm::Type *BasePtr = ConvertType(BaseElementTy);
    618       BasePtr = llvm::PointerType::getUnqual(BasePtr);
    619       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
    620                                                        BasePtr);
    621       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
    622 
    623       // Create an array index that will be used to walk over all of the
    624       // objects we're constructing.
    625       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
    626       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
    627       Builder.CreateStore(Zero, ArrayIndexVar);
    628 
    629 
    630       // Emit the block variables for the array indices, if any.
    631       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
    632         EmitAutoVarDecl(*ArrayIndexes[I]);
    633     }
    634 
    635     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
    636                              ArrayIndexes, 0);
    637   }
    638   }
    639 
    640   // Ensure that we destroy this object if an exception is thrown
    641   // later in the constructor.
    642   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    643   if (needsEHCleanup(dtorKind))
    644     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    645 }
    646 
    647 /// Checks whether the given constructor is a valid subject for the
    648 /// complete-to-base constructor delegation optimization, i.e.
    649 /// emitting the complete constructor as a simple call to the base
    650 /// constructor.
    651 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
    652 
    653   // Currently we disable the optimization for classes with virtual
    654   // bases because (1) the addresses of parameter variables need to be
    655   // consistent across all initializers but (2) the delegate function
    656   // call necessarily creates a second copy of the parameter variable.
    657   //
    658   // The limiting example (purely theoretical AFAIK):
    659   //   struct A { A(int &c) { c++; } };
    660   //   struct B : virtual A {
    661   //     B(int count) : A(count) { printf("%d\n", count); }
    662   //   };
    663   // ...although even this example could in principle be emitted as a
    664   // delegation since the address of the parameter doesn't escape.
    665   if (Ctor->getParent()->getNumVBases()) {
    666     // TODO: white-list trivial vbase initializers.  This case wouldn't
    667     // be subject to the restrictions below.
    668 
    669     // TODO: white-list cases where:
    670     //  - there are no non-reference parameters to the constructor
    671     //  - the initializers don't access any non-reference parameters
    672     //  - the initializers don't take the address of non-reference
    673     //    parameters
    674     //  - etc.
    675     // If we ever add any of the above cases, remember that:
    676     //  - function-try-blocks will always blacklist this optimization
    677     //  - we need to perform the constructor prologue and cleanup in
    678     //    EmitConstructorBody.
    679 
    680     return false;
    681   }
    682 
    683   // We also disable the optimization for variadic functions because
    684   // it's impossible to "re-pass" varargs.
    685   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
    686     return false;
    687 
    688   // FIXME: Decide if we can do a delegation of a delegating constructor.
    689   if (Ctor->isDelegatingConstructor())
    690     return false;
    691 
    692   return true;
    693 }
    694 
    695 /// EmitConstructorBody - Emits the body of the current constructor.
    696 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
    697   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
    698   CXXCtorType CtorType = CurGD.getCtorType();
    699 
    700   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
    701           CtorType == Ctor_Complete) &&
    702          "can only generate complete ctor for this ABI");
    703 
    704   // Before we go any further, try the complete->base constructor
    705   // delegation optimization.
    706   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
    707       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
    708     if (CGDebugInfo *DI = getDebugInfo())
    709       DI->EmitLocation(Builder, Ctor->getLocEnd());
    710     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
    711     return;
    712   }
    713 
    714   Stmt *Body = Ctor->getBody();
    715 
    716   // Enter the function-try-block before the constructor prologue if
    717   // applicable.
    718   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
    719   if (IsTryBody)
    720     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    721 
    722   RegionCounter Cnt = getPGORegionCounter(Body);
    723   Cnt.beginRegion(Builder);
    724 
    725   RunCleanupsScope RunCleanups(*this);
    726 
    727   // TODO: in restricted cases, we can emit the vbase initializers of
    728   // a complete ctor and then delegate to the base ctor.
    729 
    730   // Emit the constructor prologue, i.e. the base and member
    731   // initializers.
    732   EmitCtorPrologue(Ctor, CtorType, Args);
    733 
    734   // Emit the body of the statement.
    735   if (IsTryBody)
    736     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
    737   else if (Body)
    738     EmitStmt(Body);
    739 
    740   // Emit any cleanup blocks associated with the member or base
    741   // initializers, which includes (along the exceptional path) the
    742   // destructors for those members and bases that were fully
    743   // constructed.
    744   RunCleanups.ForceCleanup();
    745 
    746   if (IsTryBody)
    747     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    748 }
    749 
    750 namespace {
    751   /// RAII object to indicate that codegen is copying the value representation
    752   /// instead of the object representation. Useful when copying a struct or
    753   /// class which has uninitialized members and we're only performing
    754   /// lvalue-to-rvalue conversion on the object but not its members.
    755   class CopyingValueRepresentation {
    756   public:
    757     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
    758         : CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) {
    759       SO.Bool = false;
    760       SO.Enum = false;
    761       CGF.SanOpts = &SO;
    762     }
    763     ~CopyingValueRepresentation() {
    764       CGF.SanOpts = OldSanOpts;
    765     }
    766   private:
    767     CodeGenFunction &CGF;
    768     SanitizerOptions SO;
    769     const SanitizerOptions *OldSanOpts;
    770   };
    771 }
    772 
    773 namespace {
    774   class FieldMemcpyizer {
    775   public:
    776     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
    777                     const VarDecl *SrcRec)
    778       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
    779         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
    780         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
    781         LastFieldOffset(0), LastAddedFieldIndex(0) {}
    782 
    783     static bool isMemcpyableField(FieldDecl *F) {
    784       Qualifiers Qual = F->getType().getQualifiers();
    785       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
    786         return false;
    787       return true;
    788     }
    789 
    790     void addMemcpyableField(FieldDecl *F) {
    791       if (!FirstField)
    792         addInitialField(F);
    793       else
    794         addNextField(F);
    795     }
    796 
    797     CharUnits getMemcpySize() const {
    798       unsigned LastFieldSize =
    799         LastField->isBitField() ?
    800           LastField->getBitWidthValue(CGF.getContext()) :
    801           CGF.getContext().getTypeSize(LastField->getType());
    802       uint64_t MemcpySizeBits =
    803         LastFieldOffset + LastFieldSize - FirstFieldOffset +
    804         CGF.getContext().getCharWidth() - 1;
    805       CharUnits MemcpySize =
    806         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
    807       return MemcpySize;
    808     }
    809 
    810     void emitMemcpy() {
    811       // Give the subclass a chance to bail out if it feels the memcpy isn't
    812       // worth it (e.g. Hasn't aggregated enough data).
    813       if (!FirstField) {
    814         return;
    815       }
    816 
    817       CharUnits Alignment;
    818 
    819       if (FirstField->isBitField()) {
    820         const CGRecordLayout &RL =
    821           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
    822         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
    823         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
    824       } else {
    825         Alignment = CGF.getContext().getDeclAlign(FirstField);
    826       }
    827 
    828       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
    829               Alignment) == 0 && "Bad field alignment.");
    830 
    831       CharUnits MemcpySize = getMemcpySize();
    832       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    833       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    834       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    835       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
    836       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
    837       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    838       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
    839 
    840       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
    841                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
    842                    MemcpySize, Alignment);
    843       reset();
    844     }
    845 
    846     void reset() {
    847       FirstField = nullptr;
    848     }
    849 
    850   protected:
    851     CodeGenFunction &CGF;
    852     const CXXRecordDecl *ClassDecl;
    853 
    854   private:
    855 
    856     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
    857                       CharUnits Size, CharUnits Alignment) {
    858       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
    859       llvm::Type *DBP =
    860         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
    861       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
    862 
    863       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
    864       llvm::Type *SBP =
    865         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
    866       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
    867 
    868       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
    869                                Alignment.getQuantity());
    870     }
    871 
    872     void addInitialField(FieldDecl *F) {
    873         FirstField = F;
    874         LastField = F;
    875         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    876         LastFieldOffset = FirstFieldOffset;
    877         LastAddedFieldIndex = F->getFieldIndex();
    878         return;
    879       }
    880 
    881     void addNextField(FieldDecl *F) {
    882       // For the most part, the following invariant will hold:
    883       //   F->getFieldIndex() == LastAddedFieldIndex + 1
    884       // The one exception is that Sema won't add a copy-initializer for an
    885       // unnamed bitfield, which will show up here as a gap in the sequence.
    886       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
    887              "Cannot aggregate fields out of order.");
    888       LastAddedFieldIndex = F->getFieldIndex();
    889 
    890       // The 'first' and 'last' fields are chosen by offset, rather than field
    891       // index. This allows the code to support bitfields, as well as regular
    892       // fields.
    893       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    894       if (FOffset < FirstFieldOffset) {
    895         FirstField = F;
    896         FirstFieldOffset = FOffset;
    897       } else if (FOffset > LastFieldOffset) {
    898         LastField = F;
    899         LastFieldOffset = FOffset;
    900       }
    901     }
    902 
    903     const VarDecl *SrcRec;
    904     const ASTRecordLayout &RecLayout;
    905     FieldDecl *FirstField;
    906     FieldDecl *LastField;
    907     uint64_t FirstFieldOffset, LastFieldOffset;
    908     unsigned LastAddedFieldIndex;
    909   };
    910 
    911   class ConstructorMemcpyizer : public FieldMemcpyizer {
    912   private:
    913 
    914     /// Get source argument for copy constructor. Returns null if not a copy
    915     /// constructor.
    916     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
    917                                                FunctionArgList &Args) {
    918       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
    919         return Args[Args.size() - 1];
    920       return nullptr;
    921     }
    922 
    923     // Returns true if a CXXCtorInitializer represents a member initialization
    924     // that can be rolled into a memcpy.
    925     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
    926       if (!MemcpyableCtor)
    927         return false;
    928       FieldDecl *Field = MemberInit->getMember();
    929       assert(Field && "No field for member init.");
    930       QualType FieldType = Field->getType();
    931       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    932 
    933       // Bail out on non-POD, not-trivially-constructable members.
    934       if (!(CE && CE->getConstructor()->isTrivial()) &&
    935           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
    936             FieldType->isReferenceType()))
    937         return false;
    938 
    939       // Bail out on volatile fields.
    940       if (!isMemcpyableField(Field))
    941         return false;
    942 
    943       // Otherwise we're good.
    944       return true;
    945     }
    946 
    947   public:
    948     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
    949                           FunctionArgList &Args)
    950       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
    951         ConstructorDecl(CD),
    952         MemcpyableCtor(CD->isDefaulted() &&
    953                        CD->isCopyOrMoveConstructor() &&
    954                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
    955         Args(Args) { }
    956 
    957     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
    958       if (isMemberInitMemcpyable(MemberInit)) {
    959         AggregatedInits.push_back(MemberInit);
    960         addMemcpyableField(MemberInit->getMember());
    961       } else {
    962         emitAggregatedInits();
    963         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
    964                               ConstructorDecl, Args);
    965       }
    966     }
    967 
    968     void emitAggregatedInits() {
    969       if (AggregatedInits.size() <= 1) {
    970         // This memcpy is too small to be worthwhile. Fall back on default
    971         // codegen.
    972         if (!AggregatedInits.empty()) {
    973           CopyingValueRepresentation CVR(CGF);
    974           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
    975                                 AggregatedInits[0], ConstructorDecl, Args);
    976         }
    977         reset();
    978         return;
    979       }
    980 
    981       pushEHDestructors();
    982       emitMemcpy();
    983       AggregatedInits.clear();
    984     }
    985 
    986     void pushEHDestructors() {
    987       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    988       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    989       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    990 
    991       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
    992         QualType FieldType = AggregatedInits[i]->getMember()->getType();
    993         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    994         if (CGF.needsEHCleanup(dtorKind))
    995           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    996       }
    997     }
    998 
    999     void finish() {
   1000       emitAggregatedInits();
   1001     }
   1002 
   1003   private:
   1004     const CXXConstructorDecl *ConstructorDecl;
   1005     bool MemcpyableCtor;
   1006     FunctionArgList &Args;
   1007     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
   1008   };
   1009 
   1010   class AssignmentMemcpyizer : public FieldMemcpyizer {
   1011   private:
   1012 
   1013     // Returns the memcpyable field copied by the given statement, if one
   1014     // exists. Otherwise returns null.
   1015     FieldDecl *getMemcpyableField(Stmt *S) {
   1016       if (!AssignmentsMemcpyable)
   1017         return nullptr;
   1018       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
   1019         // Recognise trivial assignments.
   1020         if (BO->getOpcode() != BO_Assign)
   1021           return nullptr;
   1022         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
   1023         if (!ME)
   1024           return nullptr;
   1025         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1026         if (!Field || !isMemcpyableField(Field))
   1027           return nullptr;
   1028         Stmt *RHS = BO->getRHS();
   1029         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
   1030           RHS = EC->getSubExpr();
   1031         if (!RHS)
   1032           return nullptr;
   1033         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
   1034         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
   1035           return nullptr;
   1036         return Field;
   1037       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
   1038         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
   1039         if (!(MD && (MD->isCopyAssignmentOperator() ||
   1040                        MD->isMoveAssignmentOperator()) &&
   1041               MD->isTrivial()))
   1042           return nullptr;
   1043         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
   1044         if (!IOA)
   1045           return nullptr;
   1046         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
   1047         if (!Field || !isMemcpyableField(Field))
   1048           return nullptr;
   1049         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
   1050         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
   1051           return nullptr;
   1052         return Field;
   1053       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
   1054         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1055         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
   1056           return nullptr;
   1057         Expr *DstPtr = CE->getArg(0);
   1058         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
   1059           DstPtr = DC->getSubExpr();
   1060         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
   1061         if (!DUO || DUO->getOpcode() != UO_AddrOf)
   1062           return nullptr;
   1063         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
   1064         if (!ME)
   1065           return nullptr;
   1066         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1067         if (!Field || !isMemcpyableField(Field))
   1068           return nullptr;
   1069         Expr *SrcPtr = CE->getArg(1);
   1070         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
   1071           SrcPtr = SC->getSubExpr();
   1072         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
   1073         if (!SUO || SUO->getOpcode() != UO_AddrOf)
   1074           return nullptr;
   1075         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
   1076         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
   1077           return nullptr;
   1078         return Field;
   1079       }
   1080 
   1081       return nullptr;
   1082     }
   1083 
   1084     bool AssignmentsMemcpyable;
   1085     SmallVector<Stmt*, 16> AggregatedStmts;
   1086 
   1087   public:
   1088 
   1089     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
   1090                          FunctionArgList &Args)
   1091       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
   1092         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
   1093       assert(Args.size() == 2);
   1094     }
   1095 
   1096     void emitAssignment(Stmt *S) {
   1097       FieldDecl *F = getMemcpyableField(S);
   1098       if (F) {
   1099         addMemcpyableField(F);
   1100         AggregatedStmts.push_back(S);
   1101       } else {
   1102         emitAggregatedStmts();
   1103         CGF.EmitStmt(S);
   1104       }
   1105     }
   1106 
   1107     void emitAggregatedStmts() {
   1108       if (AggregatedStmts.size() <= 1) {
   1109         if (!AggregatedStmts.empty()) {
   1110           CopyingValueRepresentation CVR(CGF);
   1111           CGF.EmitStmt(AggregatedStmts[0]);
   1112         }
   1113         reset();
   1114       }
   1115 
   1116       emitMemcpy();
   1117       AggregatedStmts.clear();
   1118     }
   1119 
   1120     void finish() {
   1121       emitAggregatedStmts();
   1122     }
   1123   };
   1124 
   1125 }
   1126 
   1127 /// EmitCtorPrologue - This routine generates necessary code to initialize
   1128 /// base classes and non-static data members belonging to this constructor.
   1129 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
   1130                                        CXXCtorType CtorType,
   1131                                        FunctionArgList &Args) {
   1132   if (CD->isDelegatingConstructor())
   1133     return EmitDelegatingCXXConstructorCall(CD, Args);
   1134 
   1135   const CXXRecordDecl *ClassDecl = CD->getParent();
   1136 
   1137   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
   1138                                           E = CD->init_end();
   1139 
   1140   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
   1141   if (ClassDecl->getNumVBases() &&
   1142       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   1143     // The ABIs that don't have constructor variants need to put a branch
   1144     // before the virtual base initialization code.
   1145     BaseCtorContinueBB =
   1146       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
   1147     assert(BaseCtorContinueBB);
   1148   }
   1149 
   1150   // Virtual base initializers first.
   1151   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
   1152     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1153   }
   1154 
   1155   if (BaseCtorContinueBB) {
   1156     // Complete object handler should continue to the remaining initializers.
   1157     Builder.CreateBr(BaseCtorContinueBB);
   1158     EmitBlock(BaseCtorContinueBB);
   1159   }
   1160 
   1161   // Then, non-virtual base initializers.
   1162   for (; B != E && (*B)->isBaseInitializer(); B++) {
   1163     assert(!(*B)->isBaseVirtual());
   1164     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1165   }
   1166 
   1167   InitializeVTablePointers(ClassDecl);
   1168 
   1169   // And finally, initialize class members.
   1170   FieldConstructionScope FCS(*this, CXXThisValue);
   1171   ConstructorMemcpyizer CM(*this, CD, Args);
   1172   for (; B != E; B++) {
   1173     CXXCtorInitializer *Member = (*B);
   1174     assert(!Member->isBaseInitializer());
   1175     assert(Member->isAnyMemberInitializer() &&
   1176            "Delegating initializer on non-delegating constructor");
   1177     CM.addMemberInitializer(Member);
   1178   }
   1179   CM.finish();
   1180 }
   1181 
   1182 static bool
   1183 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
   1184 
   1185 static bool
   1186 HasTrivialDestructorBody(ASTContext &Context,
   1187                          const CXXRecordDecl *BaseClassDecl,
   1188                          const CXXRecordDecl *MostDerivedClassDecl)
   1189 {
   1190   // If the destructor is trivial we don't have to check anything else.
   1191   if (BaseClassDecl->hasTrivialDestructor())
   1192     return true;
   1193 
   1194   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
   1195     return false;
   1196 
   1197   // Check fields.
   1198   for (const auto *Field : BaseClassDecl->fields())
   1199     if (!FieldHasTrivialDestructorBody(Context, Field))
   1200       return false;
   1201 
   1202   // Check non-virtual bases.
   1203   for (const auto &I : BaseClassDecl->bases()) {
   1204     if (I.isVirtual())
   1205       continue;
   1206 
   1207     const CXXRecordDecl *NonVirtualBase =
   1208       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1209     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
   1210                                   MostDerivedClassDecl))
   1211       return false;
   1212   }
   1213 
   1214   if (BaseClassDecl == MostDerivedClassDecl) {
   1215     // Check virtual bases.
   1216     for (const auto &I : BaseClassDecl->vbases()) {
   1217       const CXXRecordDecl *VirtualBase =
   1218         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
   1219       if (!HasTrivialDestructorBody(Context, VirtualBase,
   1220                                     MostDerivedClassDecl))
   1221         return false;
   1222     }
   1223   }
   1224 
   1225   return true;
   1226 }
   1227 
   1228 static bool
   1229 FieldHasTrivialDestructorBody(ASTContext &Context,
   1230                               const FieldDecl *Field)
   1231 {
   1232   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
   1233 
   1234   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
   1235   if (!RT)
   1236     return true;
   1237 
   1238   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   1239   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
   1240 }
   1241 
   1242 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
   1243 /// any vtable pointers before calling this destructor.
   1244 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
   1245                                                const CXXDestructorDecl *Dtor) {
   1246   if (!Dtor->hasTrivialBody())
   1247     return false;
   1248 
   1249   // Check the fields.
   1250   const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1251   for (const auto *Field : ClassDecl->fields())
   1252     if (!FieldHasTrivialDestructorBody(Context, Field))
   1253       return false;
   1254 
   1255   return true;
   1256 }
   1257 
   1258 /// EmitDestructorBody - Emits the body of the current destructor.
   1259 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
   1260   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
   1261   CXXDtorType DtorType = CurGD.getDtorType();
   1262 
   1263   // The call to operator delete in a deleting destructor happens
   1264   // outside of the function-try-block, which means it's always
   1265   // possible to delegate the destructor body to the complete
   1266   // destructor.  Do so.
   1267   if (DtorType == Dtor_Deleting) {
   1268     EnterDtorCleanups(Dtor, Dtor_Deleting);
   1269     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
   1270                           /*Delegating=*/false, LoadCXXThis());
   1271     PopCleanupBlock();
   1272     return;
   1273   }
   1274 
   1275   Stmt *Body = Dtor->getBody();
   1276 
   1277   // If the body is a function-try-block, enter the try before
   1278   // anything else.
   1279   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
   1280   if (isTryBody)
   1281     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1282 
   1283   // Enter the epilogue cleanups.
   1284   RunCleanupsScope DtorEpilogue(*this);
   1285 
   1286   // If this is the complete variant, just invoke the base variant;
   1287   // the epilogue will destruct the virtual bases.  But we can't do
   1288   // this optimization if the body is a function-try-block, because
   1289   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
   1290   // always delegate because we might not have a definition in this TU.
   1291   switch (DtorType) {
   1292   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
   1293 
   1294   case Dtor_Complete:
   1295     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
   1296            "can't emit a dtor without a body for non-Microsoft ABIs");
   1297 
   1298     // Enter the cleanup scopes for virtual bases.
   1299     EnterDtorCleanups(Dtor, Dtor_Complete);
   1300 
   1301     if (!isTryBody) {
   1302       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
   1303                             /*Delegating=*/false, LoadCXXThis());
   1304       break;
   1305     }
   1306     // Fallthrough: act like we're in the base variant.
   1307 
   1308   case Dtor_Base:
   1309     assert(Body);
   1310 
   1311     RegionCounter Cnt = getPGORegionCounter(Body);
   1312     Cnt.beginRegion(Builder);
   1313 
   1314     // Enter the cleanup scopes for fields and non-virtual bases.
   1315     EnterDtorCleanups(Dtor, Dtor_Base);
   1316 
   1317     // Initialize the vtable pointers before entering the body.
   1318     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
   1319         InitializeVTablePointers(Dtor->getParent());
   1320 
   1321     if (isTryBody)
   1322       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
   1323     else if (Body)
   1324       EmitStmt(Body);
   1325     else {
   1326       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
   1327       // nothing to do besides what's in the epilogue
   1328     }
   1329     // -fapple-kext must inline any call to this dtor into
   1330     // the caller's body.
   1331     if (getLangOpts().AppleKext)
   1332       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
   1333     break;
   1334   }
   1335 
   1336   // Jump out through the epilogue cleanups.
   1337   DtorEpilogue.ForceCleanup();
   1338 
   1339   // Exit the try if applicable.
   1340   if (isTryBody)
   1341     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1342 }
   1343 
   1344 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
   1345   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
   1346   const Stmt *RootS = AssignOp->getBody();
   1347   assert(isa<CompoundStmt>(RootS) &&
   1348          "Body of an implicit assignment operator should be compound stmt.");
   1349   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
   1350 
   1351   LexicalScope Scope(*this, RootCS->getSourceRange());
   1352 
   1353   AssignmentMemcpyizer AM(*this, AssignOp, Args);
   1354   for (auto *I : RootCS->body())
   1355     AM.emitAssignment(I);
   1356   AM.finish();
   1357 }
   1358 
   1359 namespace {
   1360   /// Call the operator delete associated with the current destructor.
   1361   struct CallDtorDelete : EHScopeStack::Cleanup {
   1362     CallDtorDelete() {}
   1363 
   1364     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1365       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1366       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1367       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1368                          CGF.getContext().getTagDeclType(ClassDecl));
   1369     }
   1370   };
   1371 
   1372   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
   1373     llvm::Value *ShouldDeleteCondition;
   1374   public:
   1375     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
   1376       : ShouldDeleteCondition(ShouldDeleteCondition) {
   1377       assert(ShouldDeleteCondition != nullptr);
   1378     }
   1379 
   1380     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1381       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
   1382       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
   1383       llvm::Value *ShouldCallDelete
   1384         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
   1385       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
   1386 
   1387       CGF.EmitBlock(callDeleteBB);
   1388       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1389       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1390       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1391                          CGF.getContext().getTagDeclType(ClassDecl));
   1392       CGF.Builder.CreateBr(continueBB);
   1393 
   1394       CGF.EmitBlock(continueBB);
   1395     }
   1396   };
   1397 
   1398   class DestroyField  : public EHScopeStack::Cleanup {
   1399     const FieldDecl *field;
   1400     CodeGenFunction::Destroyer *destroyer;
   1401     bool useEHCleanupForArray;
   1402 
   1403   public:
   1404     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
   1405                  bool useEHCleanupForArray)
   1406       : field(field), destroyer(destroyer),
   1407         useEHCleanupForArray(useEHCleanupForArray) {}
   1408 
   1409     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1410       // Find the address of the field.
   1411       llvm::Value *thisValue = CGF.LoadCXXThis();
   1412       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
   1413       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
   1414       LValue LV = CGF.EmitLValueForField(ThisLV, field);
   1415       assert(LV.isSimple());
   1416 
   1417       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
   1418                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1419     }
   1420   };
   1421 }
   1422 
   1423 /// \brief Emit all code that comes at the end of class's
   1424 /// destructor. This is to call destructors on members and base classes
   1425 /// in reverse order of their construction.
   1426 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
   1427                                         CXXDtorType DtorType) {
   1428   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
   1429          "Should not emit dtor epilogue for non-exported trivial dtor!");
   1430 
   1431   // The deleting-destructor phase just needs to call the appropriate
   1432   // operator delete that Sema picked up.
   1433   if (DtorType == Dtor_Deleting) {
   1434     assert(DD->getOperatorDelete() &&
   1435            "operator delete missing - EnterDtorCleanups");
   1436     if (CXXStructorImplicitParamValue) {
   1437       // If there is an implicit param to the deleting dtor, it's a boolean
   1438       // telling whether we should call delete at the end of the dtor.
   1439       EHStack.pushCleanup<CallDtorDeleteConditional>(
   1440           NormalAndEHCleanup, CXXStructorImplicitParamValue);
   1441     } else {
   1442       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
   1443     }
   1444     return;
   1445   }
   1446 
   1447   const CXXRecordDecl *ClassDecl = DD->getParent();
   1448 
   1449   // Unions have no bases and do not call field destructors.
   1450   if (ClassDecl->isUnion())
   1451     return;
   1452 
   1453   // The complete-destructor phase just destructs all the virtual bases.
   1454   if (DtorType == Dtor_Complete) {
   1455 
   1456     // We push them in the forward order so that they'll be popped in
   1457     // the reverse order.
   1458     for (const auto &Base : ClassDecl->vbases()) {
   1459       CXXRecordDecl *BaseClassDecl
   1460         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   1461 
   1462       // Ignore trivial destructors.
   1463       if (BaseClassDecl->hasTrivialDestructor())
   1464         continue;
   1465 
   1466       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1467                                         BaseClassDecl,
   1468                                         /*BaseIsVirtual*/ true);
   1469     }
   1470 
   1471     return;
   1472   }
   1473 
   1474   assert(DtorType == Dtor_Base);
   1475 
   1476   // Destroy non-virtual bases.
   1477   for (const auto &Base : ClassDecl->bases()) {
   1478     // Ignore virtual bases.
   1479     if (Base.isVirtual())
   1480       continue;
   1481 
   1482     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
   1483 
   1484     // Ignore trivial destructors.
   1485     if (BaseClassDecl->hasTrivialDestructor())
   1486       continue;
   1487 
   1488     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1489                                       BaseClassDecl,
   1490                                       /*BaseIsVirtual*/ false);
   1491   }
   1492 
   1493   // Destroy direct fields.
   1494   for (const auto *Field : ClassDecl->fields()) {
   1495     QualType type = Field->getType();
   1496     QualType::DestructionKind dtorKind = type.isDestructedType();
   1497     if (!dtorKind) continue;
   1498 
   1499     // Anonymous union members do not have their destructors called.
   1500     const RecordType *RT = type->getAsUnionType();
   1501     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
   1502 
   1503     CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1504     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
   1505                                       getDestroyer(dtorKind),
   1506                                       cleanupKind & EHCleanup);
   1507   }
   1508 }
   1509 
   1510 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1511 /// constructor for each of several members of an array.
   1512 ///
   1513 /// \param ctor the constructor to call for each element
   1514 /// \param arrayType the type of the array to initialize
   1515 /// \param arrayBegin an arrayType*
   1516 /// \param zeroInitialize true if each element should be
   1517 ///   zero-initialized before it is constructed
   1518 void
   1519 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1520                                             const ConstantArrayType *arrayType,
   1521                                             llvm::Value *arrayBegin,
   1522                                           CallExpr::const_arg_iterator argBegin,
   1523                                             CallExpr::const_arg_iterator argEnd,
   1524                                             bool zeroInitialize) {
   1525   QualType elementType;
   1526   llvm::Value *numElements =
   1527     emitArrayLength(arrayType, elementType, arrayBegin);
   1528 
   1529   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
   1530                              argBegin, argEnd, zeroInitialize);
   1531 }
   1532 
   1533 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1534 /// constructor for each of several members of an array.
   1535 ///
   1536 /// \param ctor the constructor to call for each element
   1537 /// \param numElements the number of elements in the array;
   1538 ///   may be zero
   1539 /// \param arrayBegin a T*, where T is the type constructed by ctor
   1540 /// \param zeroInitialize true if each element should be
   1541 ///   zero-initialized before it is constructed
   1542 void
   1543 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1544                                             llvm::Value *numElements,
   1545                                             llvm::Value *arrayBegin,
   1546                                          CallExpr::const_arg_iterator argBegin,
   1547                                            CallExpr::const_arg_iterator argEnd,
   1548                                             bool zeroInitialize) {
   1549 
   1550   // It's legal for numElements to be zero.  This can happen both
   1551   // dynamically, because x can be zero in 'new A[x]', and statically,
   1552   // because of GCC extensions that permit zero-length arrays.  There
   1553   // are probably legitimate places where we could assume that this
   1554   // doesn't happen, but it's not clear that it's worth it.
   1555   llvm::BranchInst *zeroCheckBranch = nullptr;
   1556 
   1557   // Optimize for a constant count.
   1558   llvm::ConstantInt *constantCount
   1559     = dyn_cast<llvm::ConstantInt>(numElements);
   1560   if (constantCount) {
   1561     // Just skip out if the constant count is zero.
   1562     if (constantCount->isZero()) return;
   1563 
   1564   // Otherwise, emit the check.
   1565   } else {
   1566     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
   1567     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
   1568     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
   1569     EmitBlock(loopBB);
   1570   }
   1571 
   1572   // Find the end of the array.
   1573   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
   1574                                                     "arrayctor.end");
   1575 
   1576   // Enter the loop, setting up a phi for the current location to initialize.
   1577   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1578   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
   1579   EmitBlock(loopBB);
   1580   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
   1581                                          "arrayctor.cur");
   1582   cur->addIncoming(arrayBegin, entryBB);
   1583 
   1584   // Inside the loop body, emit the constructor call on the array element.
   1585 
   1586   QualType type = getContext().getTypeDeclType(ctor->getParent());
   1587 
   1588   // Zero initialize the storage, if requested.
   1589   if (zeroInitialize)
   1590     EmitNullInitialization(cur, type);
   1591 
   1592   // C++ [class.temporary]p4:
   1593   // There are two contexts in which temporaries are destroyed at a different
   1594   // point than the end of the full-expression. The first context is when a
   1595   // default constructor is called to initialize an element of an array.
   1596   // If the constructor has one or more default arguments, the destruction of
   1597   // every temporary created in a default argument expression is sequenced
   1598   // before the construction of the next array element, if any.
   1599 
   1600   {
   1601     RunCleanupsScope Scope(*this);
   1602 
   1603     // Evaluate the constructor and its arguments in a regular
   1604     // partial-destroy cleanup.
   1605     if (getLangOpts().Exceptions &&
   1606         !ctor->getParent()->hasTrivialDestructor()) {
   1607       Destroyer *destroyer = destroyCXXObject;
   1608       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
   1609     }
   1610 
   1611     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
   1612                            /*Delegating=*/false, cur, argBegin, argEnd);
   1613   }
   1614 
   1615   // Go to the next element.
   1616   llvm::Value *next =
   1617     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
   1618                               "arrayctor.next");
   1619   cur->addIncoming(next, Builder.GetInsertBlock());
   1620 
   1621   // Check whether that's the end of the loop.
   1622   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
   1623   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
   1624   Builder.CreateCondBr(done, contBB, loopBB);
   1625 
   1626   // Patch the earlier check to skip over the loop.
   1627   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
   1628 
   1629   EmitBlock(contBB);
   1630 }
   1631 
   1632 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
   1633                                        llvm::Value *addr,
   1634                                        QualType type) {
   1635   const RecordType *rtype = type->castAs<RecordType>();
   1636   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
   1637   const CXXDestructorDecl *dtor = record->getDestructor();
   1638   assert(!dtor->isTrivial());
   1639   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
   1640                             /*Delegating=*/false, addr);
   1641 }
   1642 
   1643 void
   1644 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   1645                                         CXXCtorType Type, bool ForVirtualBase,
   1646                                         bool Delegating,
   1647                                         llvm::Value *This,
   1648                                         CallExpr::const_arg_iterator ArgBeg,
   1649                                         CallExpr::const_arg_iterator ArgEnd) {
   1650   // If this is a trivial constructor, just emit what's needed.
   1651   if (D->isTrivial()) {
   1652     if (ArgBeg == ArgEnd) {
   1653       // Trivial default constructor, no codegen required.
   1654       assert(D->isDefaultConstructor() &&
   1655              "trivial 0-arg ctor not a default ctor");
   1656       return;
   1657     }
   1658 
   1659     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
   1660     assert(D->isCopyOrMoveConstructor() &&
   1661            "trivial 1-arg ctor not a copy/move ctor");
   1662 
   1663     const Expr *E = (*ArgBeg);
   1664     QualType Ty = E->getType();
   1665     llvm::Value *Src = EmitLValue(E).getAddress();
   1666     EmitAggregateCopy(This, Src, Ty);
   1667     return;
   1668   }
   1669 
   1670   // C++11 [class.mfct.non-static]p2:
   1671   //   If a non-static member function of a class X is called for an object that
   1672   //   is not of type X, or of a type derived from X, the behavior is undefined.
   1673   // FIXME: Provide a source location here.
   1674   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
   1675                 getContext().getRecordType(D->getParent()));
   1676 
   1677   CallArgList Args;
   1678 
   1679   // Push the this ptr.
   1680   Args.add(RValue::get(This), D->getThisType(getContext()));
   1681 
   1682   // Add the rest of the user-supplied arguments.
   1683   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   1684   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
   1685 
   1686   // Insert any ABI-specific implicit constructor arguments.
   1687   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
   1688       *this, D, Type, ForVirtualBase, Delegating, Args);
   1689 
   1690   // Emit the call.
   1691   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
   1692   const CGFunctionInfo &Info =
   1693       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
   1694   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
   1695 }
   1696 
   1697 void
   1698 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1699                                         llvm::Value *This, llvm::Value *Src,
   1700                                         CallExpr::const_arg_iterator ArgBeg,
   1701                                         CallExpr::const_arg_iterator ArgEnd) {
   1702   if (D->isTrivial()) {
   1703     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
   1704     assert(D->isCopyOrMoveConstructor() &&
   1705            "trivial 1-arg ctor not a copy/move ctor");
   1706     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
   1707     return;
   1708   }
   1709   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, clang::Ctor_Complete);
   1710   assert(D->isInstance() &&
   1711          "Trying to emit a member call expr on a static method!");
   1712 
   1713   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   1714 
   1715   CallArgList Args;
   1716 
   1717   // Push the this ptr.
   1718   Args.add(RValue::get(This), D->getThisType(getContext()));
   1719 
   1720   // Push the src ptr.
   1721   QualType QT = *(FPT->param_type_begin());
   1722   llvm::Type *t = CGM.getTypes().ConvertType(QT);
   1723   Src = Builder.CreateBitCast(Src, t);
   1724   Args.add(RValue::get(Src), QT);
   1725 
   1726   // Skip over first argument (Src).
   1727   EmitCallArgs(Args, FPT->isVariadic(), FPT->param_type_begin() + 1,
   1728                FPT->param_type_end(), ArgBeg + 1, ArgEnd);
   1729 
   1730   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
   1731            Callee, ReturnValueSlot(), Args, D);
   1732 }
   1733 
   1734 void
   1735 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1736                                                 CXXCtorType CtorType,
   1737                                                 const FunctionArgList &Args,
   1738                                                 SourceLocation Loc) {
   1739   CallArgList DelegateArgs;
   1740 
   1741   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
   1742   assert(I != E && "no parameters to constructor");
   1743 
   1744   // this
   1745   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
   1746   ++I;
   1747 
   1748   // vtt
   1749   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
   1750                                          /*ForVirtualBase=*/false,
   1751                                          /*Delegating=*/true)) {
   1752     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
   1753     DelegateArgs.add(RValue::get(VTT), VoidPP);
   1754 
   1755     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
   1756       assert(I != E && "cannot skip vtt parameter, already done with args");
   1757       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
   1758       ++I;
   1759     }
   1760   }
   1761 
   1762   // Explicit arguments.
   1763   for (; I != E; ++I) {
   1764     const VarDecl *param = *I;
   1765     // FIXME: per-argument source location
   1766     EmitDelegateCallArg(DelegateArgs, param, Loc);
   1767   }
   1768 
   1769   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
   1770   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
   1771            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
   1772 }
   1773 
   1774 namespace {
   1775   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
   1776     const CXXDestructorDecl *Dtor;
   1777     llvm::Value *Addr;
   1778     CXXDtorType Type;
   1779 
   1780     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
   1781                            CXXDtorType Type)
   1782       : Dtor(D), Addr(Addr), Type(Type) {}
   1783 
   1784     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1785       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
   1786                                 /*Delegating=*/true, Addr);
   1787     }
   1788   };
   1789 }
   1790 
   1791 void
   1792 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1793                                                   const FunctionArgList &Args) {
   1794   assert(Ctor->isDelegatingConstructor());
   1795 
   1796   llvm::Value *ThisPtr = LoadCXXThis();
   1797 
   1798   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
   1799   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1800   AggValueSlot AggSlot =
   1801     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
   1802                           AggValueSlot::IsDestructed,
   1803                           AggValueSlot::DoesNotNeedGCBarriers,
   1804                           AggValueSlot::IsNotAliased);
   1805 
   1806   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
   1807 
   1808   const CXXRecordDecl *ClassDecl = Ctor->getParent();
   1809   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
   1810     CXXDtorType Type =
   1811       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
   1812 
   1813     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
   1814                                                 ClassDecl->getDestructor(),
   1815                                                 ThisPtr, Type);
   1816   }
   1817 }
   1818 
   1819 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
   1820                                             CXXDtorType Type,
   1821                                             bool ForVirtualBase,
   1822                                             bool Delegating,
   1823                                             llvm::Value *This) {
   1824   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
   1825                                      Delegating, This);
   1826 }
   1827 
   1828 namespace {
   1829   struct CallLocalDtor : EHScopeStack::Cleanup {
   1830     const CXXDestructorDecl *Dtor;
   1831     llvm::Value *Addr;
   1832 
   1833     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
   1834       : Dtor(D), Addr(Addr) {}
   1835 
   1836     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1837       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1838                                 /*ForVirtualBase=*/false,
   1839                                 /*Delegating=*/false, Addr);
   1840     }
   1841   };
   1842 }
   1843 
   1844 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
   1845                                             llvm::Value *Addr) {
   1846   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
   1847 }
   1848 
   1849 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
   1850   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
   1851   if (!ClassDecl) return;
   1852   if (ClassDecl->hasTrivialDestructor()) return;
   1853 
   1854   const CXXDestructorDecl *D = ClassDecl->getDestructor();
   1855   assert(D && D->isUsed() && "destructor not marked as used!");
   1856   PushDestructorCleanup(D, Addr);
   1857 }
   1858 
   1859 void
   1860 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
   1861                                          const CXXRecordDecl *NearestVBase,
   1862                                          CharUnits OffsetFromNearestVBase,
   1863                                          const CXXRecordDecl *VTableClass) {
   1864   // Compute the address point.
   1865   bool NeedsVirtualOffset;
   1866   llvm::Value *VTableAddressPoint =
   1867       CGM.getCXXABI().getVTableAddressPointInStructor(
   1868           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
   1869   if (!VTableAddressPoint)
   1870     return;
   1871 
   1872   // Compute where to store the address point.
   1873   llvm::Value *VirtualOffset = nullptr;
   1874   CharUnits NonVirtualOffset = CharUnits::Zero();
   1875 
   1876   if (NeedsVirtualOffset) {
   1877     // We need to use the virtual base offset offset because the virtual base
   1878     // might have a different offset in the most derived class.
   1879     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
   1880                                                               LoadCXXThis(),
   1881                                                               VTableClass,
   1882                                                               NearestVBase);
   1883     NonVirtualOffset = OffsetFromNearestVBase;
   1884   } else {
   1885     // We can just use the base offset in the complete class.
   1886     NonVirtualOffset = Base.getBaseOffset();
   1887   }
   1888 
   1889   // Apply the offsets.
   1890   llvm::Value *VTableField = LoadCXXThis();
   1891 
   1892   if (!NonVirtualOffset.isZero() || VirtualOffset)
   1893     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
   1894                                                   NonVirtualOffset,
   1895                                                   VirtualOffset);
   1896 
   1897   // Finally, store the address point.
   1898   llvm::Type *AddressPointPtrTy =
   1899     VTableAddressPoint->getType()->getPointerTo();
   1900   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
   1901   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
   1902   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
   1903 }
   1904 
   1905 void
   1906 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
   1907                                           const CXXRecordDecl *NearestVBase,
   1908                                           CharUnits OffsetFromNearestVBase,
   1909                                           bool BaseIsNonVirtualPrimaryBase,
   1910                                           const CXXRecordDecl *VTableClass,
   1911                                           VisitedVirtualBasesSetTy& VBases) {
   1912   // If this base is a non-virtual primary base the address point has already
   1913   // been set.
   1914   if (!BaseIsNonVirtualPrimaryBase) {
   1915     // Initialize the vtable pointer for this base.
   1916     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
   1917                             VTableClass);
   1918   }
   1919 
   1920   const CXXRecordDecl *RD = Base.getBase();
   1921 
   1922   // Traverse bases.
   1923   for (const auto &I : RD->bases()) {
   1924     CXXRecordDecl *BaseDecl
   1925       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
   1926 
   1927     // Ignore classes without a vtable.
   1928     if (!BaseDecl->isDynamicClass())
   1929       continue;
   1930 
   1931     CharUnits BaseOffset;
   1932     CharUnits BaseOffsetFromNearestVBase;
   1933     bool BaseDeclIsNonVirtualPrimaryBase;
   1934 
   1935     if (I.isVirtual()) {
   1936       // Check if we've visited this virtual base before.
   1937       if (!VBases.insert(BaseDecl))
   1938         continue;
   1939 
   1940       const ASTRecordLayout &Layout =
   1941         getContext().getASTRecordLayout(VTableClass);
   1942 
   1943       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
   1944       BaseOffsetFromNearestVBase = CharUnits::Zero();
   1945       BaseDeclIsNonVirtualPrimaryBase = false;
   1946     } else {
   1947       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   1948 
   1949       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
   1950       BaseOffsetFromNearestVBase =
   1951         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
   1952       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
   1953     }
   1954 
   1955     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
   1956                              I.isVirtual() ? BaseDecl : NearestVBase,
   1957                              BaseOffsetFromNearestVBase,
   1958                              BaseDeclIsNonVirtualPrimaryBase,
   1959                              VTableClass, VBases);
   1960   }
   1961 }
   1962 
   1963 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
   1964   // Ignore classes without a vtable.
   1965   if (!RD->isDynamicClass())
   1966     return;
   1967 
   1968   // Initialize the vtable pointers for this class and all of its bases.
   1969   VisitedVirtualBasesSetTy VBases;
   1970   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
   1971                            /*NearestVBase=*/nullptr,
   1972                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
   1973                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
   1974 
   1975   if (RD->getNumVBases())
   1976     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
   1977 }
   1978 
   1979 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
   1980                                            llvm::Type *Ty) {
   1981   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
   1982   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
   1983   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
   1984   return VTable;
   1985 }
   1986 
   1987 
   1988 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
   1989 // quite what we want.
   1990 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
   1991   while (true) {
   1992     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   1993       E = PE->getSubExpr();
   1994       continue;
   1995     }
   1996 
   1997     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   1998       if (CE->getCastKind() == CK_NoOp) {
   1999         E = CE->getSubExpr();
   2000         continue;
   2001       }
   2002     }
   2003     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2004       if (UO->getOpcode() == UO_Extension) {
   2005         E = UO->getSubExpr();
   2006         continue;
   2007       }
   2008     }
   2009     return E;
   2010   }
   2011 }
   2012 
   2013 bool
   2014 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
   2015                                                    const CXXMethodDecl *MD) {
   2016   // When building with -fapple-kext, all calls must go through the vtable since
   2017   // the kernel linker can do runtime patching of vtables.
   2018   if (getLangOpts().AppleKext)
   2019     return false;
   2020 
   2021   // If the most derived class is marked final, we know that no subclass can
   2022   // override this member function and so we can devirtualize it. For example:
   2023   //
   2024   // struct A { virtual void f(); }
   2025   // struct B final : A { };
   2026   //
   2027   // void f(B *b) {
   2028   //   b->f();
   2029   // }
   2030   //
   2031   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   2032   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
   2033     return true;
   2034 
   2035   // If the member function is marked 'final', we know that it can't be
   2036   // overridden and can therefore devirtualize it.
   2037   if (MD->hasAttr<FinalAttr>())
   2038     return true;
   2039 
   2040   // Similarly, if the class itself is marked 'final' it can't be overridden
   2041   // and we can therefore devirtualize the member function call.
   2042   if (MD->getParent()->hasAttr<FinalAttr>())
   2043     return true;
   2044 
   2045   Base = skipNoOpCastsAndParens(Base);
   2046   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   2047     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
   2048       // This is a record decl. We know the type and can devirtualize it.
   2049       return VD->getType()->isRecordType();
   2050     }
   2051 
   2052     return false;
   2053   }
   2054 
   2055   // We can devirtualize calls on an object accessed by a class member access
   2056   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
   2057   // a derived class object constructed in the same location.
   2058   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
   2059     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
   2060       return VD->getType()->isRecordType();
   2061 
   2062   // We can always devirtualize calls on temporary object expressions.
   2063   if (isa<CXXConstructExpr>(Base))
   2064     return true;
   2065 
   2066   // And calls on bound temporaries.
   2067   if (isa<CXXBindTemporaryExpr>(Base))
   2068     return true;
   2069 
   2070   // Check if this is a call expr that returns a record type.
   2071   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
   2072     return CE->getCallReturnType()->isRecordType();
   2073 
   2074   // We can't devirtualize the call.
   2075   return false;
   2076 }
   2077 
   2078 llvm::Value *
   2079 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2080                                              const CXXMethodDecl *MD,
   2081                                              llvm::Value *This) {
   2082   llvm::FunctionType *fnType =
   2083     CGM.getTypes().GetFunctionType(
   2084                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
   2085 
   2086   if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD))
   2087     return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType);
   2088 
   2089   return CGM.GetAddrOfFunction(MD, fnType);
   2090 }
   2091 
   2092 void CodeGenFunction::EmitForwardingCallToLambda(
   2093                                       const CXXMethodDecl *callOperator,
   2094                                       CallArgList &callArgs) {
   2095   // Get the address of the call operator.
   2096   const CGFunctionInfo &calleeFnInfo =
   2097     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
   2098   llvm::Value *callee =
   2099     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
   2100                           CGM.getTypes().GetFunctionType(calleeFnInfo));
   2101 
   2102   // Prepare the return slot.
   2103   const FunctionProtoType *FPT =
   2104     callOperator->getType()->castAs<FunctionProtoType>();
   2105   QualType resultType = FPT->getReturnType();
   2106   ReturnValueSlot returnSlot;
   2107   if (!resultType->isVoidType() &&
   2108       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
   2109       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
   2110     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
   2111 
   2112   // We don't need to separately arrange the call arguments because
   2113   // the call can't be variadic anyway --- it's impossible to forward
   2114   // variadic arguments.
   2115 
   2116   // Now emit our call.
   2117   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
   2118                        callArgs, callOperator);
   2119 
   2120   // If necessary, copy the returned value into the slot.
   2121   if (!resultType->isVoidType() && returnSlot.isNull())
   2122     EmitReturnOfRValue(RV, resultType);
   2123   else
   2124     EmitBranchThroughCleanup(ReturnBlock);
   2125 }
   2126 
   2127 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
   2128   const BlockDecl *BD = BlockInfo->getBlockDecl();
   2129   const VarDecl *variable = BD->capture_begin()->getVariable();
   2130   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
   2131 
   2132   // Start building arguments for forwarding call
   2133   CallArgList CallArgs;
   2134 
   2135   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2136   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
   2137   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2138 
   2139   // Add the rest of the parameters.
   2140   for (auto param : BD->params())
   2141     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
   2142 
   2143   assert(!Lambda->isGenericLambda() &&
   2144             "generic lambda interconversion to block not implemented");
   2145   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
   2146 }
   2147 
   2148 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
   2149   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
   2150     // FIXME: Making this work correctly is nasty because it requires either
   2151     // cloning the body of the call operator or making the call operator forward.
   2152     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
   2153     return;
   2154   }
   2155 
   2156   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
   2157 }
   2158 
   2159 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
   2160   const CXXRecordDecl *Lambda = MD->getParent();
   2161 
   2162   // Start building arguments for forwarding call
   2163   CallArgList CallArgs;
   2164 
   2165   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2166   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
   2167   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2168 
   2169   // Add the rest of the parameters.
   2170   for (auto Param : MD->params())
   2171     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
   2172 
   2173   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
   2174   // For a generic lambda, find the corresponding call operator specialization
   2175   // to which the call to the static-invoker shall be forwarded.
   2176   if (Lambda->isGenericLambda()) {
   2177     assert(MD->isFunctionTemplateSpecialization());
   2178     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
   2179     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
   2180     void *InsertPos = nullptr;
   2181     FunctionDecl *CorrespondingCallOpSpecialization =
   2182         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
   2183     assert(CorrespondingCallOpSpecialization);
   2184     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
   2185   }
   2186   EmitForwardingCallToLambda(CallOp, CallArgs);
   2187 }
   2188 
   2189 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
   2190   if (MD->isVariadic()) {
   2191     // FIXME: Making this work correctly is nasty because it requires either
   2192     // cloning the body of the call operator or making the call operator forward.
   2193     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
   2194     return;
   2195   }
   2196 
   2197   EmitLambdaDelegatingInvokeBody(MD);
   2198 }
   2199