Home | History | Annotate | Download | only in dex
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mir_graph.h"
     18 
     19 #include <inttypes.h>
     20 #include <queue>
     21 
     22 #include "base/stl_util.h"
     23 #include "compiler_internals.h"
     24 #include "dex_file-inl.h"
     25 #include "dex_instruction-inl.h"
     26 #include "dex/global_value_numbering.h"
     27 #include "dex/quick/dex_file_to_method_inliner_map.h"
     28 #include "dex/quick/dex_file_method_inliner.h"
     29 #include "leb128.h"
     30 #include "pass_driver_me_post_opt.h"
     31 #include "utils/scoped_arena_containers.h"
     32 
     33 namespace art {
     34 
     35 #define MAX_PATTERN_LEN 5
     36 
     37 const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = {
     38   "Phi",
     39   "Copy",
     40   "FusedCmplFloat",
     41   "FusedCmpgFloat",
     42   "FusedCmplDouble",
     43   "FusedCmpgDouble",
     44   "FusedCmpLong",
     45   "Nop",
     46   "OpNullCheck",
     47   "OpRangeCheck",
     48   "OpDivZeroCheck",
     49   "Check1",
     50   "Check2",
     51   "Select",
     52   "ConstVector",
     53   "MoveVector",
     54   "PackedMultiply",
     55   "PackedAddition",
     56   "PackedSubtract",
     57   "PackedShiftLeft",
     58   "PackedSignedShiftRight",
     59   "PackedUnsignedShiftRight",
     60   "PackedAnd",
     61   "PackedOr",
     62   "PackedXor",
     63   "PackedAddReduce",
     64   "PackedReduce",
     65   "PackedSet",
     66   "ReserveVectorRegisters",
     67   "ReturnVectorRegisters",
     68 };
     69 
     70 MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena)
     71     : reg_location_(NULL),
     72       block_id_map_(std::less<unsigned int>(), arena->Adapter()),
     73       cu_(cu),
     74       ssa_base_vregs_(NULL),
     75       ssa_subscripts_(NULL),
     76       vreg_to_ssa_map_(NULL),
     77       ssa_last_defs_(NULL),
     78       is_constant_v_(NULL),
     79       constant_values_(NULL),
     80       use_counts_(arena, 256, kGrowableArrayMisc),
     81       raw_use_counts_(arena, 256, kGrowableArrayMisc),
     82       num_reachable_blocks_(0),
     83       max_num_reachable_blocks_(0),
     84       dfs_order_(NULL),
     85       dfs_post_order_(NULL),
     86       dom_post_order_traversal_(NULL),
     87       topological_order_(nullptr),
     88       topological_order_loop_ends_(nullptr),
     89       topological_order_indexes_(nullptr),
     90       topological_order_loop_head_stack_(nullptr),
     91       i_dom_list_(NULL),
     92       def_block_matrix_(NULL),
     93       temp_scoped_alloc_(),
     94       temp_insn_data_(nullptr),
     95       temp_bit_vector_size_(0u),
     96       temp_bit_vector_(nullptr),
     97       temp_gvn_(),
     98       block_list_(arena, 100, kGrowableArrayBlockList),
     99       try_block_addr_(NULL),
    100       entry_block_(NULL),
    101       exit_block_(NULL),
    102       num_blocks_(0),
    103       current_code_item_(NULL),
    104       dex_pc_to_block_map_(arena, 0, kGrowableArrayMisc),
    105       m_units_(arena->Adapter()),
    106       method_stack_(arena->Adapter()),
    107       current_method_(kInvalidEntry),
    108       current_offset_(kInvalidEntry),
    109       def_count_(0),
    110       opcode_count_(NULL),
    111       num_ssa_regs_(0),
    112       extended_basic_blocks_(arena->Adapter()),
    113       method_sreg_(0),
    114       attributes_(METHOD_IS_LEAF),  // Start with leaf assumption, change on encountering invoke.
    115       checkstats_(NULL),
    116       arena_(arena),
    117       backward_branches_(0),
    118       forward_branches_(0),
    119       compiler_temps_(arena, 6, kGrowableArrayMisc),
    120       num_non_special_compiler_temps_(0),
    121       max_available_non_special_compiler_temps_(0),
    122       punt_to_interpreter_(false),
    123       merged_df_flags_(0u),
    124       ifield_lowering_infos_(arena, 0u),
    125       sfield_lowering_infos_(arena, 0u),
    126       method_lowering_infos_(arena, 0u),
    127       gen_suspend_test_list_(arena, 0u) {
    128   try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */);
    129   max_available_special_compiler_temps_ = std::abs(static_cast<int>(kVRegNonSpecialTempBaseReg))
    130       - std::abs(static_cast<int>(kVRegTempBaseReg));
    131 }
    132 
    133 MIRGraph::~MIRGraph() {
    134   STLDeleteElements(&m_units_);
    135 }
    136 
    137 /*
    138  * Parse an instruction, return the length of the instruction
    139  */
    140 int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {
    141   const Instruction* inst = Instruction::At(code_ptr);
    142   decoded_instruction->opcode = inst->Opcode();
    143   decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;
    144   decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;
    145   decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;
    146   decoded_instruction->vC = inst->HasVRegC() ?  inst->VRegC() : 0;
    147   if (inst->HasVarArgs()) {
    148     inst->GetVarArgs(decoded_instruction->arg);
    149   }
    150   return inst->SizeInCodeUnits();
    151 }
    152 
    153 
    154 /* Split an existing block from the specified code offset into two */
    155 BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset,
    156                                  BasicBlock* orig_block, BasicBlock** immed_pred_block_p) {
    157   DCHECK_GT(code_offset, orig_block->start_offset);
    158   MIR* insn = orig_block->first_mir_insn;
    159   MIR* prev = NULL;
    160   while (insn) {
    161     if (insn->offset == code_offset) break;
    162     prev = insn;
    163     insn = insn->next;
    164   }
    165   if (insn == NULL) {
    166     LOG(FATAL) << "Break split failed";
    167   }
    168   BasicBlock* bottom_block = NewMemBB(kDalvikByteCode, num_blocks_++);
    169   block_list_.Insert(bottom_block);
    170 
    171   bottom_block->start_offset = code_offset;
    172   bottom_block->first_mir_insn = insn;
    173   bottom_block->last_mir_insn = orig_block->last_mir_insn;
    174 
    175   /* If this block was terminated by a return, the flag needs to go with the bottom block */
    176   bottom_block->terminated_by_return = orig_block->terminated_by_return;
    177   orig_block->terminated_by_return = false;
    178 
    179   /* Handle the taken path */
    180   bottom_block->taken = orig_block->taken;
    181   if (bottom_block->taken != NullBasicBlockId) {
    182     orig_block->taken = NullBasicBlockId;
    183     BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken);
    184     bb_taken->predecessors->Delete(orig_block->id);
    185     bb_taken->predecessors->Insert(bottom_block->id);
    186   }
    187 
    188   /* Handle the fallthrough path */
    189   bottom_block->fall_through = orig_block->fall_through;
    190   orig_block->fall_through = bottom_block->id;
    191   bottom_block->predecessors->Insert(orig_block->id);
    192   if (bottom_block->fall_through != NullBasicBlockId) {
    193     BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through);
    194     bb_fall_through->predecessors->Delete(orig_block->id);
    195     bb_fall_through->predecessors->Insert(bottom_block->id);
    196   }
    197 
    198   /* Handle the successor list */
    199   if (orig_block->successor_block_list_type != kNotUsed) {
    200     bottom_block->successor_block_list_type = orig_block->successor_block_list_type;
    201     bottom_block->successor_blocks = orig_block->successor_blocks;
    202     orig_block->successor_block_list_type = kNotUsed;
    203     orig_block->successor_blocks = nullptr;
    204     GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bottom_block->successor_blocks);
    205     while (true) {
    206       SuccessorBlockInfo* successor_block_info = iterator.Next();
    207       if (successor_block_info == nullptr) break;
    208       BasicBlock* bb = GetBasicBlock(successor_block_info->block);
    209       if (bb != nullptr) {
    210         bb->predecessors->Delete(orig_block->id);
    211         bb->predecessors->Insert(bottom_block->id);
    212       }
    213     }
    214   }
    215 
    216   orig_block->last_mir_insn = prev;
    217   prev->next = nullptr;
    218 
    219   /*
    220    * Update the immediate predecessor block pointer so that outgoing edges
    221    * can be applied to the proper block.
    222    */
    223   if (immed_pred_block_p) {
    224     DCHECK_EQ(*immed_pred_block_p, orig_block);
    225     *immed_pred_block_p = bottom_block;
    226   }
    227 
    228   // Associate dex instructions in the bottom block with the new container.
    229   DCHECK(insn != nullptr);
    230   DCHECK(insn != orig_block->first_mir_insn);
    231   DCHECK(insn == bottom_block->first_mir_insn);
    232   DCHECK_EQ(insn->offset, bottom_block->start_offset);
    233   DCHECK(static_cast<int>(insn->dalvikInsn.opcode) == kMirOpCheck ||
    234          !MIR::DecodedInstruction::IsPseudoMirOp(insn->dalvikInsn.opcode));
    235   DCHECK_EQ(dex_pc_to_block_map_.Get(insn->offset), orig_block->id);
    236   MIR* p = insn;
    237   dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
    238   while (p != bottom_block->last_mir_insn) {
    239     p = p->next;
    240     DCHECK(p != nullptr);
    241     p->bb = bottom_block->id;
    242     int opcode = p->dalvikInsn.opcode;
    243     /*
    244      * Some messiness here to ensure that we only enter real opcodes and only the
    245      * first half of a potentially throwing instruction that has been split into
    246      * CHECK and work portions. Since the 2nd half of a split operation is always
    247      * the first in a BasicBlock, we can't hit it here.
    248      */
    249     if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
    250       DCHECK_EQ(dex_pc_to_block_map_.Get(p->offset), orig_block->id);
    251       dex_pc_to_block_map_.Put(p->offset, bottom_block->id);
    252     }
    253   }
    254 
    255   return bottom_block;
    256 }
    257 
    258 /*
    259  * Given a code offset, find out the block that starts with it. If the offset
    260  * is in the middle of an existing block, split it into two.  If immed_pred_block_p
    261  * is not non-null and is the block being split, update *immed_pred_block_p to
    262  * point to the bottom block so that outgoing edges can be set up properly
    263  * (by the caller)
    264  * Utilizes a map for fast lookup of the typical cases.
    265  */
    266 BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool split, bool create,
    267                                 BasicBlock** immed_pred_block_p) {
    268   if (code_offset >= cu_->code_item->insns_size_in_code_units_) {
    269     return NULL;
    270   }
    271 
    272   int block_id = dex_pc_to_block_map_.Get(code_offset);
    273   BasicBlock* bb = (block_id == 0) ? NULL : block_list_.Get(block_id);
    274 
    275   if ((bb != NULL) && (bb->start_offset == code_offset)) {
    276     // Does this containing block start with the desired instruction?
    277     return bb;
    278   }
    279 
    280   // No direct hit.
    281   if (!create) {
    282     return NULL;
    283   }
    284 
    285   if (bb != NULL) {
    286     // The target exists somewhere in an existing block.
    287     return SplitBlock(code_offset, bb, bb == *immed_pred_block_p ?  immed_pred_block_p : NULL);
    288   }
    289 
    290   // Create a new block.
    291   bb = NewMemBB(kDalvikByteCode, num_blocks_++);
    292   block_list_.Insert(bb);
    293   bb->start_offset = code_offset;
    294   dex_pc_to_block_map_.Put(bb->start_offset, bb->id);
    295   return bb;
    296 }
    297 
    298 
    299 /* Identify code range in try blocks and set up the empty catch blocks */
    300 void MIRGraph::ProcessTryCatchBlocks() {
    301   int tries_size = current_code_item_->tries_size_;
    302   DexOffset offset;
    303 
    304   if (tries_size == 0) {
    305     return;
    306   }
    307 
    308   for (int i = 0; i < tries_size; i++) {
    309     const DexFile::TryItem* pTry =
    310         DexFile::GetTryItems(*current_code_item_, i);
    311     DexOffset start_offset = pTry->start_addr_;
    312     DexOffset end_offset = start_offset + pTry->insn_count_;
    313     for (offset = start_offset; offset < end_offset; offset++) {
    314       try_block_addr_->SetBit(offset);
    315     }
    316   }
    317 
    318   // Iterate over each of the handlers to enqueue the empty Catch blocks.
    319   const byte* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0);
    320   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
    321   for (uint32_t idx = 0; idx < handlers_size; idx++) {
    322     CatchHandlerIterator iterator(handlers_ptr);
    323     for (; iterator.HasNext(); iterator.Next()) {
    324       uint32_t address = iterator.GetHandlerAddress();
    325       FindBlock(address, false /* split */, true /*create*/,
    326                 /* immed_pred_block_p */ NULL);
    327     }
    328     handlers_ptr = iterator.EndDataPointer();
    329   }
    330 }
    331 
    332 bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,
    333                                      NarrowDexOffset catch_offset) {
    334   // Catches for monitor-exit during stack unwinding have the pattern
    335   //   move-exception (move)* (goto)? monitor-exit throw
    336   // In the currently generated dex bytecode we see these catching a bytecode range including
    337   // either its own or an identical monitor-exit, http://b/15745363 . This function checks if
    338   // it's the case for a given monitor-exit and catch block so that we can ignore it.
    339   // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized
    340   // block in a try-block and catch the NPE, Error or Throwable and we should let it through;
    341   // even though a throwing monitor-exit certainly indicates a bytecode error.)
    342   const Instruction* monitor_exit = Instruction::At(cu_->code_item->insns_ + monitor_exit_offset);
    343   DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT);
    344   int monitor_reg = monitor_exit->VRegA_11x();
    345   const Instruction* check_insn = Instruction::At(cu_->code_item->insns_ + catch_offset);
    346   DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION);
    347   if (check_insn->VRegA_11x() == monitor_reg) {
    348     // Unexpected move-exception to the same register. Probably not the pattern we're looking for.
    349     return false;
    350   }
    351   check_insn = check_insn->Next();
    352   while (true) {
    353     int dest = -1;
    354     bool wide = false;
    355     switch (check_insn->Opcode()) {
    356       case Instruction::MOVE_WIDE:
    357         wide = true;
    358         // Intentional fall-through.
    359       case Instruction::MOVE_OBJECT:
    360       case Instruction::MOVE:
    361         dest = check_insn->VRegA_12x();
    362         break;
    363 
    364       case Instruction::MOVE_WIDE_FROM16:
    365         wide = true;
    366         // Intentional fall-through.
    367       case Instruction::MOVE_OBJECT_FROM16:
    368       case Instruction::MOVE_FROM16:
    369         dest = check_insn->VRegA_22x();
    370         break;
    371 
    372       case Instruction::MOVE_WIDE_16:
    373         wide = true;
    374         // Intentional fall-through.
    375       case Instruction::MOVE_OBJECT_16:
    376       case Instruction::MOVE_16:
    377         dest = check_insn->VRegA_32x();
    378         break;
    379 
    380       case Instruction::GOTO:
    381       case Instruction::GOTO_16:
    382       case Instruction::GOTO_32:
    383         check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset());
    384         // Intentional fall-through.
    385       default:
    386         return check_insn->Opcode() == Instruction::MONITOR_EXIT &&
    387             check_insn->VRegA_11x() == monitor_reg;
    388     }
    389 
    390     if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) {
    391       return false;
    392     }
    393 
    394     check_insn = check_insn->Next();
    395   }
    396 }
    397 
    398 /* Process instructions with the kBranch flag */
    399 BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
    400                                        int width, int flags, const uint16_t* code_ptr,
    401                                        const uint16_t* code_end) {
    402   DexOffset target = cur_offset;
    403   switch (insn->dalvikInsn.opcode) {
    404     case Instruction::GOTO:
    405     case Instruction::GOTO_16:
    406     case Instruction::GOTO_32:
    407       target += insn->dalvikInsn.vA;
    408       break;
    409     case Instruction::IF_EQ:
    410     case Instruction::IF_NE:
    411     case Instruction::IF_LT:
    412     case Instruction::IF_GE:
    413     case Instruction::IF_GT:
    414     case Instruction::IF_LE:
    415       cur_block->conditional_branch = true;
    416       target += insn->dalvikInsn.vC;
    417       break;
    418     case Instruction::IF_EQZ:
    419     case Instruction::IF_NEZ:
    420     case Instruction::IF_LTZ:
    421     case Instruction::IF_GEZ:
    422     case Instruction::IF_GTZ:
    423     case Instruction::IF_LEZ:
    424       cur_block->conditional_branch = true;
    425       target += insn->dalvikInsn.vB;
    426       break;
    427     default:
    428       LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
    429   }
    430   CountBranch(target);
    431   BasicBlock* taken_block = FindBlock(target, /* split */ true, /* create */ true,
    432                                       /* immed_pred_block_p */ &cur_block);
    433   cur_block->taken = taken_block->id;
    434   taken_block->predecessors->Insert(cur_block->id);
    435 
    436   /* Always terminate the current block for conditional branches */
    437   if (flags & Instruction::kContinue) {
    438     BasicBlock* fallthrough_block = FindBlock(cur_offset +  width,
    439                                              /*
    440                                               * If the method is processed
    441                                               * in sequential order from the
    442                                               * beginning, we don't need to
    443                                               * specify split for continue
    444                                               * blocks. However, this
    445                                               * routine can be called by
    446                                               * compileLoop, which starts
    447                                               * parsing the method from an
    448                                               * arbitrary address in the
    449                                               * method body.
    450                                               */
    451                                              true,
    452                                              /* create */
    453                                              true,
    454                                              /* immed_pred_block_p */
    455                                              &cur_block);
    456     cur_block->fall_through = fallthrough_block->id;
    457     fallthrough_block->predecessors->Insert(cur_block->id);
    458   } else if (code_ptr < code_end) {
    459     FindBlock(cur_offset + width, /* split */ false, /* create */ true,
    460                 /* immed_pred_block_p */ NULL);
    461   }
    462   return cur_block;
    463 }
    464 
    465 /* Process instructions with the kSwitch flag */
    466 BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
    467                                        int width, int flags) {
    468   const uint16_t* switch_data =
    469       reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB);
    470   int size;
    471   const int* keyTable;
    472   const int* target_table;
    473   int i;
    474   int first_key;
    475 
    476   /*
    477    * Packed switch data format:
    478    *  ushort ident = 0x0100   magic value
    479    *  ushort size             number of entries in the table
    480    *  int first_key           first (and lowest) switch case value
    481    *  int targets[size]       branch targets, relative to switch opcode
    482    *
    483    * Total size is (4+size*2) 16-bit code units.
    484    */
    485   if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
    486     DCHECK_EQ(static_cast<int>(switch_data[0]),
    487               static_cast<int>(Instruction::kPackedSwitchSignature));
    488     size = switch_data[1];
    489     first_key = switch_data[2] | (switch_data[3] << 16);
    490     target_table = reinterpret_cast<const int*>(&switch_data[4]);
    491     keyTable = NULL;        // Make the compiler happy.
    492   /*
    493    * Sparse switch data format:
    494    *  ushort ident = 0x0200   magic value
    495    *  ushort size             number of entries in the table; > 0
    496    *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
    497    *  int targets[size]       branch targets, relative to switch opcode
    498    *
    499    * Total size is (2+size*4) 16-bit code units.
    500    */
    501   } else {
    502     DCHECK_EQ(static_cast<int>(switch_data[0]),
    503               static_cast<int>(Instruction::kSparseSwitchSignature));
    504     size = switch_data[1];
    505     keyTable = reinterpret_cast<const int*>(&switch_data[2]);
    506     target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
    507     first_key = 0;   // To make the compiler happy.
    508   }
    509 
    510   if (cur_block->successor_block_list_type != kNotUsed) {
    511     LOG(FATAL) << "Successor block list already in use: "
    512                << static_cast<int>(cur_block->successor_block_list_type);
    513   }
    514   cur_block->successor_block_list_type =
    515       (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?  kPackedSwitch : kSparseSwitch;
    516   cur_block->successor_blocks =
    517       new (arena_) GrowableArray<SuccessorBlockInfo*>(arena_, size, kGrowableArraySuccessorBlocks);
    518 
    519   for (i = 0; i < size; i++) {
    520     BasicBlock* case_block = FindBlock(cur_offset + target_table[i], /* split */ true,
    521                                       /* create */ true, /* immed_pred_block_p */ &cur_block);
    522     SuccessorBlockInfo* successor_block_info =
    523         static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo),
    524                                                        kArenaAllocSuccessor));
    525     successor_block_info->block = case_block->id;
    526     successor_block_info->key =
    527         (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
    528         first_key + i : keyTable[i];
    529     cur_block->successor_blocks->Insert(successor_block_info);
    530     case_block->predecessors->Insert(cur_block->id);
    531   }
    532 
    533   /* Fall-through case */
    534   BasicBlock* fallthrough_block = FindBlock(cur_offset +  width, /* split */ false,
    535                                             /* create */ true, /* immed_pred_block_p */ NULL);
    536   cur_block->fall_through = fallthrough_block->id;
    537   fallthrough_block->predecessors->Insert(cur_block->id);
    538   return cur_block;
    539 }
    540 
    541 /* Process instructions with the kThrow flag */
    542 BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
    543                                       int width, int flags, ArenaBitVector* try_block_addr,
    544                                       const uint16_t* code_ptr, const uint16_t* code_end) {
    545   bool in_try_block = try_block_addr->IsBitSet(cur_offset);
    546   bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW);
    547   bool build_all_edges =
    548       (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block;
    549 
    550   /* In try block */
    551   if (in_try_block) {
    552     CatchHandlerIterator iterator(*current_code_item_, cur_offset);
    553 
    554     if (cur_block->successor_block_list_type != kNotUsed) {
    555       LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    556       LOG(FATAL) << "Successor block list already in use: "
    557                  << static_cast<int>(cur_block->successor_block_list_type);
    558     }
    559 
    560     for (; iterator.HasNext(); iterator.Next()) {
    561       BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* split*/,
    562                                          false /* creat */, NULL  /* immed_pred_block_p */);
    563       if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT &&
    564           IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) {
    565         // Don't allow monitor-exit to catch its own exception, http://b/15745363 .
    566         continue;
    567       }
    568       if (cur_block->successor_block_list_type == kNotUsed) {
    569         cur_block->successor_block_list_type = kCatch;
    570         cur_block->successor_blocks = new (arena_) GrowableArray<SuccessorBlockInfo*>(
    571             arena_, 2, kGrowableArraySuccessorBlocks);
    572       }
    573       catch_block->catch_entry = true;
    574       if (kIsDebugBuild) {
    575         catches_.insert(catch_block->start_offset);
    576       }
    577       SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
    578           (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
    579       successor_block_info->block = catch_block->id;
    580       successor_block_info->key = iterator.GetHandlerTypeIndex();
    581       cur_block->successor_blocks->Insert(successor_block_info);
    582       catch_block->predecessors->Insert(cur_block->id);
    583     }
    584     in_try_block = (cur_block->successor_block_list_type != kNotUsed);
    585   }
    586   if (!in_try_block && build_all_edges) {
    587     BasicBlock* eh_block = NewMemBB(kExceptionHandling, num_blocks_++);
    588     cur_block->taken = eh_block->id;
    589     block_list_.Insert(eh_block);
    590     eh_block->start_offset = cur_offset;
    591     eh_block->predecessors->Insert(cur_block->id);
    592   }
    593 
    594   if (is_throw) {
    595     cur_block->explicit_throw = true;
    596     if (code_ptr < code_end) {
    597       // Force creation of new block following THROW via side-effect.
    598       FindBlock(cur_offset + width, /* split */ false, /* create */ true,
    599                 /* immed_pred_block_p */ NULL);
    600     }
    601     if (!in_try_block) {
    602        // Don't split a THROW that can't rethrow - we're done.
    603       return cur_block;
    604     }
    605   }
    606 
    607   if (!build_all_edges) {
    608     /*
    609      * Even though there is an exception edge here, control cannot return to this
    610      * method.  Thus, for the purposes of dataflow analysis and optimization, we can
    611      * ignore the edge.  Doing this reduces compile time, and increases the scope
    612      * of the basic-block level optimization pass.
    613      */
    614     return cur_block;
    615   }
    616 
    617   /*
    618    * Split the potentially-throwing instruction into two parts.
    619    * The first half will be a pseudo-op that captures the exception
    620    * edges and terminates the basic block.  It always falls through.
    621    * Then, create a new basic block that begins with the throwing instruction
    622    * (minus exceptions).  Note: this new basic block must NOT be entered into
    623    * the block_map.  If the potentially-throwing instruction is the target of a
    624    * future branch, we need to find the check psuedo half.  The new
    625    * basic block containing the work portion of the instruction should
    626    * only be entered via fallthrough from the block containing the
    627    * pseudo exception edge MIR.  Note also that this new block is
    628    * not automatically terminated after the work portion, and may
    629    * contain following instructions.
    630    *
    631    * Note also that the dex_pc_to_block_map_ entry for the potentially
    632    * throwing instruction will refer to the original basic block.
    633    */
    634   BasicBlock* new_block = NewMemBB(kDalvikByteCode, num_blocks_++);
    635   block_list_.Insert(new_block);
    636   new_block->start_offset = insn->offset;
    637   cur_block->fall_through = new_block->id;
    638   new_block->predecessors->Insert(cur_block->id);
    639   MIR* new_insn = NewMIR();
    640   *new_insn = *insn;
    641   insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck);
    642   // Associate the two halves.
    643   insn->meta.throw_insn = new_insn;
    644   new_block->AppendMIR(new_insn);
    645   return new_block;
    646 }
    647 
    648 /* Parse a Dex method and insert it into the MIRGraph at the current insert point. */
    649 void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
    650                            InvokeType invoke_type, uint16_t class_def_idx,
    651                            uint32_t method_idx, jobject class_loader, const DexFile& dex_file) {
    652   current_code_item_ = code_item;
    653   method_stack_.push_back(std::make_pair(current_method_, current_offset_));
    654   current_method_ = m_units_.size();
    655   current_offset_ = 0;
    656   // TODO: will need to snapshot stack image and use that as the mir context identification.
    657   m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(),
    658                      dex_file, current_code_item_, class_def_idx, method_idx, access_flags,
    659                      cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx)));
    660   const uint16_t* code_ptr = current_code_item_->insns_;
    661   const uint16_t* code_end =
    662       current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_;
    663 
    664   // TODO: need to rework expansion of block list & try_block_addr when inlining activated.
    665   // TUNING: use better estimate of basic blocks for following resize.
    666   block_list_.Resize(block_list_.Size() + current_code_item_->insns_size_in_code_units_);
    667   dex_pc_to_block_map_.SetSize(dex_pc_to_block_map_.Size() + current_code_item_->insns_size_in_code_units_);
    668 
    669   // TODO: replace with explicit resize routine.  Using automatic extension side effect for now.
    670   try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_);
    671   try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_);
    672 
    673   // If this is the first method, set up default entry and exit blocks.
    674   if (current_method_ == 0) {
    675     DCHECK(entry_block_ == NULL);
    676     DCHECK(exit_block_ == NULL);
    677     DCHECK_EQ(num_blocks_, 0U);
    678     // Use id 0 to represent a null block.
    679     BasicBlock* null_block = NewMemBB(kNullBlock, num_blocks_++);
    680     DCHECK_EQ(null_block->id, NullBasicBlockId);
    681     null_block->hidden = true;
    682     block_list_.Insert(null_block);
    683     entry_block_ = NewMemBB(kEntryBlock, num_blocks_++);
    684     block_list_.Insert(entry_block_);
    685     exit_block_ = NewMemBB(kExitBlock, num_blocks_++);
    686     block_list_.Insert(exit_block_);
    687     // TODO: deprecate all "cu->" fields; move what's left to wherever CompilationUnit is allocated.
    688     cu_->dex_file = &dex_file;
    689     cu_->class_def_idx = class_def_idx;
    690     cu_->method_idx = method_idx;
    691     cu_->access_flags = access_flags;
    692     cu_->invoke_type = invoke_type;
    693     cu_->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
    694     cu_->num_ins = current_code_item_->ins_size_;
    695     cu_->num_regs = current_code_item_->registers_size_ - cu_->num_ins;
    696     cu_->num_outs = current_code_item_->outs_size_;
    697     cu_->num_dalvik_registers = current_code_item_->registers_size_;
    698     cu_->insns = current_code_item_->insns_;
    699     cu_->code_item = current_code_item_;
    700   } else {
    701     UNIMPLEMENTED(FATAL) << "Nested inlining not implemented.";
    702     /*
    703      * Will need to manage storage for ins & outs, push prevous state and update
    704      * insert point.
    705      */
    706   }
    707 
    708   /* Current block to record parsed instructions */
    709   BasicBlock* cur_block = NewMemBB(kDalvikByteCode, num_blocks_++);
    710   DCHECK_EQ(current_offset_, 0U);
    711   cur_block->start_offset = current_offset_;
    712   block_list_.Insert(cur_block);
    713   // TODO: for inlining support, insert at the insert point rather than entry block.
    714   entry_block_->fall_through = cur_block->id;
    715   cur_block->predecessors->Insert(entry_block_->id);
    716 
    717   /* Identify code range in try blocks and set up the empty catch blocks */
    718   ProcessTryCatchBlocks();
    719 
    720   uint64_t merged_df_flags = 0u;
    721 
    722   /* Parse all instructions and put them into containing basic blocks */
    723   while (code_ptr < code_end) {
    724     MIR *insn = NewMIR();
    725     insn->offset = current_offset_;
    726     insn->m_unit_index = current_method_;
    727     int width = ParseInsn(code_ptr, &insn->dalvikInsn);
    728     Instruction::Code opcode = insn->dalvikInsn.opcode;
    729     if (opcode_count_ != NULL) {
    730       opcode_count_[static_cast<int>(opcode)]++;
    731     }
    732 
    733     int flags = Instruction::FlagsOf(insn->dalvikInsn.opcode);
    734     int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode);
    735 
    736     uint64_t df_flags = GetDataFlowAttributes(insn);
    737     merged_df_flags |= df_flags;
    738 
    739     if (df_flags & DF_HAS_DEFS) {
    740       def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1;
    741     }
    742 
    743     if (df_flags & DF_LVN) {
    744       cur_block->use_lvn = true;  // Run local value numbering on this basic block.
    745     }
    746 
    747     // Check for inline data block signatures.
    748     if (opcode == Instruction::NOP) {
    749       // A simple NOP will have a width of 1 at this point, embedded data NOP > 1.
    750       if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) {
    751         // Could be an aligning nop.  If an embedded data NOP follows, treat pair as single unit.
    752         uint16_t following_raw_instruction = code_ptr[1];
    753         if ((following_raw_instruction == Instruction::kSparseSwitchSignature) ||
    754             (following_raw_instruction == Instruction::kPackedSwitchSignature) ||
    755             (following_raw_instruction == Instruction::kArrayDataSignature)) {
    756           width += Instruction::At(code_ptr + 1)->SizeInCodeUnits();
    757         }
    758       }
    759       if (width == 1) {
    760         // It is a simple nop - treat normally.
    761         cur_block->AppendMIR(insn);
    762       } else {
    763         DCHECK(cur_block->fall_through == NullBasicBlockId);
    764         DCHECK(cur_block->taken == NullBasicBlockId);
    765         // Unreachable instruction, mark for no continuation and end basic block.
    766         flags &= ~Instruction::kContinue;
    767         FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
    768                   /* immed_pred_block_p */ NULL);
    769       }
    770     } else {
    771       cur_block->AppendMIR(insn);
    772     }
    773 
    774     // Associate the starting dex_pc for this opcode with its containing basic block.
    775     dex_pc_to_block_map_.Put(insn->offset, cur_block->id);
    776 
    777     code_ptr += width;
    778 
    779     if (flags & Instruction::kBranch) {
    780       cur_block = ProcessCanBranch(cur_block, insn, current_offset_,
    781                                    width, flags, code_ptr, code_end);
    782     } else if (flags & Instruction::kReturn) {
    783       cur_block->terminated_by_return = true;
    784       cur_block->fall_through = exit_block_->id;
    785       exit_block_->predecessors->Insert(cur_block->id);
    786       /*
    787        * Terminate the current block if there are instructions
    788        * afterwards.
    789        */
    790       if (code_ptr < code_end) {
    791         /*
    792          * Create a fallthrough block for real instructions
    793          * (incl. NOP).
    794          */
    795          FindBlock(current_offset_ + width, /* split */ false, /* create */ true,
    796                    /* immed_pred_block_p */ NULL);
    797       }
    798     } else if (flags & Instruction::kThrow) {
    799       cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_,
    800                                   code_ptr, code_end);
    801     } else if (flags & Instruction::kSwitch) {
    802       cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, flags);
    803     }
    804     if (verify_flags & Instruction::kVerifyVarArgRange ||
    805         verify_flags & Instruction::kVerifyVarArgRangeNonZero) {
    806       /*
    807        * The Quick backend's runtime model includes a gap between a method's
    808        * argument ("in") vregs and the rest of its vregs.  Handling a range instruction
    809        * which spans the gap is somewhat complicated, and should not happen
    810        * in normal usage of dx.  Punt to the interpreter.
    811        */
    812       int first_reg_in_range = insn->dalvikInsn.vC;
    813       int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1;
    814       if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) {
    815         punt_to_interpreter_ = true;
    816       }
    817     }
    818     current_offset_ += width;
    819     BasicBlock* next_block = FindBlock(current_offset_, /* split */ false, /* create */
    820                                       false, /* immed_pred_block_p */ NULL);
    821     if (next_block) {
    822       /*
    823        * The next instruction could be the target of a previously parsed
    824        * forward branch so a block is already created. If the current
    825        * instruction is not an unconditional branch, connect them through
    826        * the fall-through link.
    827        */
    828       DCHECK(cur_block->fall_through == NullBasicBlockId ||
    829              GetBasicBlock(cur_block->fall_through) == next_block ||
    830              GetBasicBlock(cur_block->fall_through) == exit_block_);
    831 
    832       if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) {
    833         cur_block->fall_through = next_block->id;
    834         next_block->predecessors->Insert(cur_block->id);
    835       }
    836       cur_block = next_block;
    837     }
    838   }
    839   merged_df_flags_ = merged_df_flags;
    840 
    841   if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
    842     DumpCFG("/sdcard/1_post_parse_cfg/", true);
    843   }
    844 
    845   if (cu_->verbose) {
    846     DumpMIRGraph();
    847   }
    848 }
    849 
    850 void MIRGraph::ShowOpcodeStats() {
    851   DCHECK(opcode_count_ != NULL);
    852   LOG(INFO) << "Opcode Count";
    853   for (int i = 0; i < kNumPackedOpcodes; i++) {
    854     if (opcode_count_[i] != 0) {
    855       LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i))
    856                 << " " << opcode_count_[i];
    857     }
    858   }
    859 }
    860 
    861 uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) {
    862   DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0])));
    863   return oat_data_flow_attributes_[opcode];
    864 }
    865 
    866 uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) {
    867   DCHECK(mir != nullptr);
    868   Instruction::Code opcode = mir->dalvikInsn.opcode;
    869   return GetDataFlowAttributes(opcode);
    870 }
    871 
    872 // TODO: use a configurable base prefix, and adjust callers to supply pass name.
    873 /* Dump the CFG into a DOT graph */
    874 void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) {
    875   FILE* file;
    876   static AtomicInteger cnt(0);
    877 
    878   // Increment counter to get a unique file number.
    879   cnt++;
    880 
    881   std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
    882   ReplaceSpecialChars(fname);
    883   fname = StringPrintf("%s%s%x%s_%d.dot", dir_prefix, fname.c_str(),
    884                       GetBasicBlock(GetEntryBlock()->fall_through)->start_offset,
    885                       suffix == nullptr ? "" : suffix,
    886                       cnt.LoadRelaxed());
    887   file = fopen(fname.c_str(), "w");
    888   if (file == NULL) {
    889     return;
    890   }
    891   fprintf(file, "digraph G {\n");
    892 
    893   fprintf(file, "  rankdir=TB\n");
    894 
    895   int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_;
    896   int idx;
    897 
    898   for (idx = 0; idx < num_blocks; idx++) {
    899     int block_idx = all_blocks ? idx : dfs_order_->Get(idx);
    900     BasicBlock* bb = GetBasicBlock(block_idx);
    901     if (bb == NULL) continue;
    902     if (bb->block_type == kDead) continue;
    903     if (bb->hidden) continue;
    904     if (bb->block_type == kEntryBlock) {
    905       fprintf(file, "  entry_%d [shape=Mdiamond];\n", bb->id);
    906     } else if (bb->block_type == kExitBlock) {
    907       fprintf(file, "  exit_%d [shape=Mdiamond];\n", bb->id);
    908     } else if (bb->block_type == kDalvikByteCode) {
    909       fprintf(file, "  block%04x_%d [shape=record,label = \"{ \\\n",
    910               bb->start_offset, bb->id);
    911       const MIR* mir;
    912         fprintf(file, "    {block id %d\\l}%s\\\n", bb->id,
    913                 bb->first_mir_insn ? " | " : " ");
    914         for (mir = bb->first_mir_insn; mir; mir = mir->next) {
    915             int opcode = mir->dalvikInsn.opcode;
    916             if (opcode > kMirOpSelect && opcode < kMirOpLast) {
    917               if (opcode == kMirOpConstVector) {
    918                 fprintf(file, "    {%04x %s %d %d %d %d %d %d\\l}%s\\\n", mir->offset,
    919                         extended_mir_op_names_[kMirOpConstVector - kMirOpFirst],
    920                         mir->dalvikInsn.vA,
    921                         mir->dalvikInsn.vB,
    922                         mir->dalvikInsn.arg[0],
    923                         mir->dalvikInsn.arg[1],
    924                         mir->dalvikInsn.arg[2],
    925                         mir->dalvikInsn.arg[3],
    926                         mir->next ? " | " : " ");
    927               } else {
    928                 fprintf(file, "    {%04x %s %d %d %d\\l}%s\\\n", mir->offset,
    929                         extended_mir_op_names_[opcode - kMirOpFirst],
    930                         mir->dalvikInsn.vA,
    931                         mir->dalvikInsn.vB,
    932                         mir->dalvikInsn.vC,
    933                         mir->next ? " | " : " ");
    934               }
    935             } else {
    936               fprintf(file, "    {%04x %s %s %s %s\\l}%s\\\n", mir->offset,
    937                       mir->ssa_rep ? GetDalvikDisassembly(mir) :
    938                       !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ?
    939                         Instruction::Name(mir->dalvikInsn.opcode) :
    940                         extended_mir_op_names_[opcode - kMirOpFirst],
    941                       (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
    942                       (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
    943                       (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ",
    944                       mir->next ? " | " : " ");
    945             }
    946         }
    947         fprintf(file, "  }\"];\n\n");
    948     } else if (bb->block_type == kExceptionHandling) {
    949       char block_name[BLOCK_NAME_LEN];
    950 
    951       GetBlockName(bb, block_name);
    952       fprintf(file, "  %s [shape=invhouse];\n", block_name);
    953     }
    954 
    955     char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
    956 
    957     if (bb->taken != NullBasicBlockId) {
    958       GetBlockName(bb, block_name1);
    959       GetBlockName(GetBasicBlock(bb->taken), block_name2);
    960       fprintf(file, "  %s:s -> %s:n [style=dotted]\n",
    961               block_name1, block_name2);
    962     }
    963     if (bb->fall_through != NullBasicBlockId) {
    964       GetBlockName(bb, block_name1);
    965       GetBlockName(GetBasicBlock(bb->fall_through), block_name2);
    966       fprintf(file, "  %s:s -> %s:n\n", block_name1, block_name2);
    967     }
    968 
    969     if (bb->successor_block_list_type != kNotUsed) {
    970       fprintf(file, "  succ%04x_%d [shape=%s,label = \"{ \\\n",
    971               bb->start_offset, bb->id,
    972               (bb->successor_block_list_type == kCatch) ?  "Mrecord" : "record");
    973       GrowableArray<SuccessorBlockInfo*>::Iterator iterator(bb->successor_blocks);
    974       SuccessorBlockInfo* successor_block_info = iterator.Next();
    975 
    976       int succ_id = 0;
    977       while (true) {
    978         if (successor_block_info == NULL) break;
    979 
    980         BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
    981         SuccessorBlockInfo *next_successor_block_info = iterator.Next();
    982 
    983         fprintf(file, "    {<f%d> %04x: %04x\\l}%s\\\n",
    984                 succ_id++,
    985                 successor_block_info->key,
    986                 dest_block->start_offset,
    987                 (next_successor_block_info != NULL) ? " | " : " ");
    988 
    989         successor_block_info = next_successor_block_info;
    990       }
    991       fprintf(file, "  }\"];\n\n");
    992 
    993       GetBlockName(bb, block_name1);
    994       fprintf(file, "  %s:s -> succ%04x_%d:n [style=dashed]\n",
    995               block_name1, bb->start_offset, bb->id);
    996 
    997       // Link the successor pseudo-block with all of its potential targets.
    998       GrowableArray<SuccessorBlockInfo*>::Iterator iter(bb->successor_blocks);
    999 
   1000       succ_id = 0;
   1001       while (true) {
   1002         SuccessorBlockInfo* successor_block_info = iter.Next();
   1003         if (successor_block_info == NULL) break;
   1004 
   1005         BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
   1006 
   1007         GetBlockName(dest_block, block_name2);
   1008         fprintf(file, "  succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
   1009                 bb->id, succ_id++, block_name2);
   1010       }
   1011     }
   1012     fprintf(file, "\n");
   1013 
   1014     if (cu_->verbose) {
   1015       /* Display the dominator tree */
   1016       GetBlockName(bb, block_name1);
   1017       fprintf(file, "  cfg%s [label=\"%s\", shape=none];\n",
   1018               block_name1, block_name1);
   1019       if (bb->i_dom) {
   1020         GetBlockName(GetBasicBlock(bb->i_dom), block_name2);
   1021         fprintf(file, "  cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
   1022       }
   1023     }
   1024   }
   1025   fprintf(file, "}\n");
   1026   fclose(file);
   1027 }
   1028 
   1029 /* Insert an MIR instruction to the end of a basic block. */
   1030 void BasicBlock::AppendMIR(MIR* mir) {
   1031   // Insert it after the last MIR.
   1032   InsertMIRListAfter(last_mir_insn, mir, mir);
   1033 }
   1034 
   1035 void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) {
   1036   // Insert it after the last MIR.
   1037   InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir);
   1038 }
   1039 
   1040 void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) {
   1041   for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) {
   1042     MIR* new_mir = *it;
   1043 
   1044     // Add a copy of each MIR.
   1045     InsertMIRListAfter(last_mir_insn, new_mir, new_mir);
   1046   }
   1047 }
   1048 
   1049 /* Insert a MIR instruction after the specified MIR. */
   1050 void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) {
   1051   InsertMIRListAfter(current_mir, new_mir, new_mir);
   1052 }
   1053 
   1054 void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) {
   1055   // If no MIR, we are done.
   1056   if (first_list_mir == nullptr || last_list_mir == nullptr) {
   1057     return;
   1058   }
   1059 
   1060   // If insert_after is null, assume BB is empty.
   1061   if (insert_after == nullptr) {
   1062     first_mir_insn = first_list_mir;
   1063     last_mir_insn = last_list_mir;
   1064     last_list_mir->next = nullptr;
   1065   } else {
   1066     MIR* after_list = insert_after->next;
   1067     insert_after->next = first_list_mir;
   1068     last_list_mir->next = after_list;
   1069     if (after_list == nullptr) {
   1070       last_mir_insn = last_list_mir;
   1071     }
   1072   }
   1073 
   1074   // Set this BB to be the basic block of the MIRs.
   1075   MIR* last = last_list_mir->next;
   1076   for (MIR* mir = first_list_mir; mir != last; mir = mir->next) {
   1077     mir->bb = id;
   1078   }
   1079 }
   1080 
   1081 /* Insert an MIR instruction to the head of a basic block. */
   1082 void BasicBlock::PrependMIR(MIR* mir) {
   1083   InsertMIRListBefore(first_mir_insn, mir, mir);
   1084 }
   1085 
   1086 void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) {
   1087   // Insert it before the first MIR.
   1088   InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir);
   1089 }
   1090 
   1091 void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) {
   1092   for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) {
   1093     MIR* mir = *it;
   1094 
   1095     InsertMIRListBefore(first_mir_insn, mir, mir);
   1096   }
   1097 }
   1098 
   1099 /* Insert a MIR instruction before the specified MIR. */
   1100 void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) {
   1101   // Insert as a single element list.
   1102   return InsertMIRListBefore(current_mir, new_mir, new_mir);
   1103 }
   1104 
   1105 MIR* BasicBlock::FindPreviousMIR(MIR* mir) {
   1106   MIR* current = first_mir_insn;
   1107 
   1108   while (current != nullptr) {
   1109     MIR* next = current->next;
   1110 
   1111     if (next == mir) {
   1112       return current;
   1113     }
   1114 
   1115     current = next;
   1116   }
   1117 
   1118   return nullptr;
   1119 }
   1120 
   1121 void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) {
   1122   // If no MIR, we are done.
   1123   if (first_list_mir == nullptr || last_list_mir == nullptr) {
   1124     return;
   1125   }
   1126 
   1127   // If insert_before is null, assume BB is empty.
   1128   if (insert_before == nullptr) {
   1129     first_mir_insn = first_list_mir;
   1130     last_mir_insn = last_list_mir;
   1131     last_list_mir->next = nullptr;
   1132   } else {
   1133     if (first_mir_insn == insert_before) {
   1134       last_list_mir->next = first_mir_insn;
   1135       first_mir_insn = first_list_mir;
   1136     } else {
   1137       // Find the preceding MIR.
   1138       MIR* before_list = FindPreviousMIR(insert_before);
   1139       DCHECK(before_list != nullptr);
   1140       before_list->next = first_list_mir;
   1141       last_list_mir->next = insert_before;
   1142     }
   1143   }
   1144 
   1145   // Set this BB to be the basic block of the MIRs.
   1146   for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
   1147     mir->bb = id;
   1148   }
   1149 }
   1150 
   1151 bool BasicBlock::RemoveMIR(MIR* mir) {
   1152   // Remove as a single element list.
   1153   return RemoveMIRList(mir, mir);
   1154 }
   1155 
   1156 bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) {
   1157   if (first_list_mir == nullptr) {
   1158     return false;
   1159   }
   1160 
   1161   // Try to find the MIR.
   1162   MIR* before_list = nullptr;
   1163   MIR* after_list = nullptr;
   1164 
   1165   // If we are removing from the beginning of the MIR list.
   1166   if (first_mir_insn == first_list_mir) {
   1167     before_list = nullptr;
   1168   } else {
   1169     before_list = FindPreviousMIR(first_list_mir);
   1170     if (before_list == nullptr) {
   1171       // We did not find the mir.
   1172       return false;
   1173     }
   1174   }
   1175 
   1176   // Remove the BB information and also find the after_list.
   1177   for (MIR* mir = first_list_mir; mir != last_list_mir; mir = mir->next) {
   1178     mir->bb = NullBasicBlockId;
   1179   }
   1180 
   1181   after_list = last_list_mir->next;
   1182 
   1183   // If there is nothing before the list, after_list is the first_mir.
   1184   if (before_list == nullptr) {
   1185     first_mir_insn = after_list;
   1186   } else {
   1187     before_list->next = after_list;
   1188   }
   1189 
   1190   // If there is nothing after the list, before_list is last_mir.
   1191   if (after_list == nullptr) {
   1192     last_mir_insn = before_list;
   1193   }
   1194 
   1195   return true;
   1196 }
   1197 
   1198 MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) {
   1199   MIR* next_mir = nullptr;
   1200 
   1201   if (current != nullptr) {
   1202     next_mir = current->next;
   1203   }
   1204 
   1205   if (next_mir == nullptr) {
   1206     // Only look for next MIR that follows unconditionally.
   1207     if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) {
   1208       next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn;
   1209     }
   1210   }
   1211 
   1212   return next_mir;
   1213 }
   1214 
   1215 char* MIRGraph::GetDalvikDisassembly(const MIR* mir) {
   1216   MIR::DecodedInstruction insn = mir->dalvikInsn;
   1217   std::string str;
   1218   int flags = 0;
   1219   int opcode = insn.opcode;
   1220   char* ret;
   1221   bool nop = false;
   1222   SSARepresentation* ssa_rep = mir->ssa_rep;
   1223   Instruction::Format dalvik_format = Instruction::k10x;  // Default to no-operand format.
   1224   int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
   1225   int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
   1226 
   1227   // Handle special cases.
   1228   if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
   1229     str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
   1230     str.append(": ");
   1231     // Recover the original Dex instruction.
   1232     insn = mir->meta.throw_insn->dalvikInsn;
   1233     ssa_rep = mir->meta.throw_insn->ssa_rep;
   1234     defs = ssa_rep->num_defs;
   1235     uses = ssa_rep->num_uses;
   1236     opcode = insn.opcode;
   1237   } else if (opcode == kMirOpNop) {
   1238     str.append("[");
   1239     // Recover original opcode.
   1240     insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode();
   1241     opcode = insn.opcode;
   1242     nop = true;
   1243   }
   1244 
   1245   if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
   1246     str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
   1247   } else {
   1248     dalvik_format = Instruction::FormatOf(insn.opcode);
   1249     flags = Instruction::FlagsOf(insn.opcode);
   1250     str.append(Instruction::Name(insn.opcode));
   1251   }
   1252 
   1253   if (opcode == kMirOpPhi) {
   1254     BasicBlockId* incoming = mir->meta.phi_incoming;
   1255     str.append(StringPrintf(" %s = (%s",
   1256                GetSSANameWithConst(ssa_rep->defs[0], true).c_str(),
   1257                GetSSANameWithConst(ssa_rep->uses[0], true).c_str()));
   1258     str.append(StringPrintf(":%d", incoming[0]));
   1259     int i;
   1260     for (i = 1; i < uses; i++) {
   1261       str.append(StringPrintf(", %s:%d",
   1262                               GetSSANameWithConst(ssa_rep->uses[i], true).c_str(),
   1263                               incoming[i]));
   1264     }
   1265     str.append(")");
   1266   } else if ((flags & Instruction::kBranch) != 0) {
   1267     // For branches, decode the instructions to print out the branch targets.
   1268     int offset = 0;
   1269     switch (dalvik_format) {
   1270       case Instruction::k21t:
   1271         str.append(StringPrintf(" %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
   1272         offset = insn.vB;
   1273         break;
   1274       case Instruction::k22t:
   1275         str.append(StringPrintf(" %s, %s,", GetSSANameWithConst(ssa_rep->uses[0], false).c_str(),
   1276                    GetSSANameWithConst(ssa_rep->uses[1], false).c_str()));
   1277         offset = insn.vC;
   1278         break;
   1279       case Instruction::k10t:
   1280       case Instruction::k20t:
   1281       case Instruction::k30t:
   1282         offset = insn.vA;
   1283         break;
   1284       default:
   1285         LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
   1286     }
   1287     str.append(StringPrintf(" 0x%x (%c%x)", mir->offset + offset,
   1288                             offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
   1289   } else {
   1290     // For invokes-style formats, treat wide regs as a pair of singles.
   1291     bool show_singles = ((dalvik_format == Instruction::k35c) ||
   1292                          (dalvik_format == Instruction::k3rc));
   1293     if (defs != 0) {
   1294       str.append(StringPrintf(" %s", GetSSANameWithConst(ssa_rep->defs[0], false).c_str()));
   1295       if (uses != 0) {
   1296         str.append(", ");
   1297       }
   1298     }
   1299     for (int i = 0; i < uses; i++) {
   1300       str.append(
   1301           StringPrintf(" %s", GetSSANameWithConst(ssa_rep->uses[i], show_singles).c_str()));
   1302       if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) {
   1303         // For the listing, skip the high sreg.
   1304         i++;
   1305       }
   1306       if (i != (uses -1)) {
   1307         str.append(",");
   1308       }
   1309     }
   1310     switch (dalvik_format) {
   1311       case Instruction::k11n:  // Add one immediate from vB.
   1312       case Instruction::k21s:
   1313       case Instruction::k31i:
   1314       case Instruction::k21h:
   1315         str.append(StringPrintf(", #%d", insn.vB));
   1316         break;
   1317       case Instruction::k51l:  // Add one wide immediate.
   1318         str.append(StringPrintf(", #%" PRId64, insn.vB_wide));
   1319         break;
   1320       case Instruction::k21c:  // One register, one string/type/method index.
   1321       case Instruction::k31c:
   1322         str.append(StringPrintf(", index #%d", insn.vB));
   1323         break;
   1324       case Instruction::k22c:  // Two registers, one string/type/method index.
   1325         str.append(StringPrintf(", index #%d", insn.vC));
   1326         break;
   1327       case Instruction::k22s:  // Add one immediate from vC.
   1328       case Instruction::k22b:
   1329         str.append(StringPrintf(", #%d", insn.vC));
   1330         break;
   1331       default: {
   1332         // Nothing left to print.
   1333       }
   1334     }
   1335   }
   1336   if (nop) {
   1337     str.append("]--optimized away");
   1338   }
   1339   int length = str.length() + 1;
   1340   ret = static_cast<char*>(arena_->Alloc(length, kArenaAllocDFInfo));
   1341   strncpy(ret, str.c_str(), length);
   1342   return ret;
   1343 }
   1344 
   1345 /* Turn method name into a legal Linux file name */
   1346 void MIRGraph::ReplaceSpecialChars(std::string& str) {
   1347   static const struct { const char before; const char after; } match[] = {
   1348     {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'},
   1349     {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='}
   1350   };
   1351   for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
   1352     std::replace(str.begin(), str.end(), match[i].before, match[i].after);
   1353   }
   1354 }
   1355 
   1356 std::string MIRGraph::GetSSAName(int ssa_reg) {
   1357   // TODO: This value is needed for LLVM and debugging. Currently, we compute this and then copy to
   1358   //       the arena. We should be smarter and just place straight into the arena, or compute the
   1359   //       value more lazily.
   1360   return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
   1361 }
   1362 
   1363 // Similar to GetSSAName, but if ssa name represents an immediate show that as well.
   1364 std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) {
   1365   if (reg_location_ == NULL) {
   1366     // Pre-SSA - just use the standard name.
   1367     return GetSSAName(ssa_reg);
   1368   }
   1369   if (IsConst(reg_location_[ssa_reg])) {
   1370     if (!singles_only && reg_location_[ssa_reg].wide) {
   1371       return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
   1372                           ConstantValueWide(reg_location_[ssa_reg]));
   1373     } else {
   1374       return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
   1375                           ConstantValue(reg_location_[ssa_reg]));
   1376     }
   1377   } else {
   1378     return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
   1379   }
   1380 }
   1381 
   1382 void MIRGraph::GetBlockName(BasicBlock* bb, char* name) {
   1383   switch (bb->block_type) {
   1384     case kEntryBlock:
   1385       snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
   1386       break;
   1387     case kExitBlock:
   1388       snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
   1389       break;
   1390     case kDalvikByteCode:
   1391       snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
   1392       break;
   1393     case kExceptionHandling:
   1394       snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
   1395                bb->id);
   1396       break;
   1397     default:
   1398       snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
   1399       break;
   1400   }
   1401 }
   1402 
   1403 const char* MIRGraph::GetShortyFromTargetIdx(int target_idx) {
   1404   // TODO: for inlining support, use current code unit.
   1405   const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(target_idx);
   1406   return cu_->dex_file->GetShorty(method_id.proto_idx_);
   1407 }
   1408 
   1409 /* Debug Utility - dump a compilation unit */
   1410 void MIRGraph::DumpMIRGraph() {
   1411   BasicBlock* bb;
   1412   const char* block_type_names[] = {
   1413     "Null Block",
   1414     "Entry Block",
   1415     "Code Block",
   1416     "Exit Block",
   1417     "Exception Handling",
   1418     "Catch Block"
   1419   };
   1420 
   1421   LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
   1422   LOG(INFO) << cu_->insns << " insns";
   1423   LOG(INFO) << GetNumBlocks() << " blocks in total";
   1424   GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
   1425 
   1426   while (true) {
   1427     bb = iterator.Next();
   1428     if (bb == NULL) break;
   1429     LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
   1430         bb->id,
   1431         block_type_names[bb->block_type],
   1432         bb->start_offset,
   1433         bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
   1434         bb->last_mir_insn ? "" : " empty");
   1435     if (bb->taken != NullBasicBlockId) {
   1436       LOG(INFO) << "  Taken branch: block " << bb->taken
   1437                 << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")";
   1438     }
   1439     if (bb->fall_through != NullBasicBlockId) {
   1440       LOG(INFO) << "  Fallthrough : block " << bb->fall_through
   1441                 << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")";
   1442     }
   1443   }
   1444 }
   1445 
   1446 /*
   1447  * Build an array of location records for the incoming arguments.
   1448  * Note: one location record per word of arguments, with dummy
   1449  * high-word loc for wide arguments.  Also pull up any following
   1450  * MOVE_RESULT and incorporate it into the invoke.
   1451  */
   1452 CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type,
   1453                                   bool is_range) {
   1454   CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo),
   1455                                                         kArenaAllocMisc));
   1456   MIR* move_result_mir = FindMoveResult(bb, mir);
   1457   if (move_result_mir == NULL) {
   1458     info->result.location = kLocInvalid;
   1459   } else {
   1460     info->result = GetRawDest(move_result_mir);
   1461     move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
   1462   }
   1463   info->num_arg_words = mir->ssa_rep->num_uses;
   1464   info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
   1465       (arena_->Alloc(sizeof(RegLocation) * info->num_arg_words, kArenaAllocMisc));
   1466   for (int i = 0; i < info->num_arg_words; i++) {
   1467     info->args[i] = GetRawSrc(mir, i);
   1468   }
   1469   info->opt_flags = mir->optimization_flags;
   1470   info->type = type;
   1471   info->is_range = is_range;
   1472   info->index = mir->dalvikInsn.vB;
   1473   info->offset = mir->offset;
   1474   info->mir = mir;
   1475   return info;
   1476 }
   1477 
   1478 // Allocate a new MIR.
   1479 MIR* MIRGraph::NewMIR() {
   1480   MIR* mir = new (arena_) MIR();
   1481   return mir;
   1482 }
   1483 
   1484 // Allocate a new basic block.
   1485 BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {
   1486   BasicBlock* bb = new (arena_) BasicBlock();
   1487 
   1488   bb->block_type = block_type;
   1489   bb->id = block_id;
   1490   // TUNING: better estimate of the exit block predecessors?
   1491   bb->predecessors = new (arena_) GrowableArray<BasicBlockId>(arena_,
   1492                                                              (block_type == kExitBlock) ? 2048 : 2,
   1493                                                              kGrowableArrayPredecessors);
   1494   bb->successor_block_list_type = kNotUsed;
   1495   block_id_map_.Put(block_id, block_id);
   1496   return bb;
   1497 }
   1498 
   1499 void MIRGraph::InitializeConstantPropagation() {
   1500   is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
   1501   constant_values_ = static_cast<int*>(arena_->Alloc(sizeof(int) * GetNumSSARegs(), kArenaAllocDFInfo));
   1502 }
   1503 
   1504 void MIRGraph::InitializeMethodUses() {
   1505   // The gate starts by initializing the use counts.
   1506   int num_ssa_regs = GetNumSSARegs();
   1507   use_counts_.Resize(num_ssa_regs + 32);
   1508   raw_use_counts_.Resize(num_ssa_regs + 32);
   1509   // Initialize list.
   1510   for (int i = 0; i < num_ssa_regs; i++) {
   1511     use_counts_.Insert(0);
   1512     raw_use_counts_.Insert(0);
   1513   }
   1514 }
   1515 
   1516 void MIRGraph::SSATransformationStart() {
   1517   DCHECK(temp_scoped_alloc_.get() == nullptr);
   1518   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
   1519   temp_bit_vector_size_ = cu_->num_dalvik_registers;
   1520   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
   1521       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapRegisterV);
   1522 
   1523   // Update the maximum number of reachable blocks.
   1524   max_num_reachable_blocks_ = num_reachable_blocks_;
   1525 }
   1526 
   1527 void MIRGraph::SSATransformationEnd() {
   1528   // Verify the dataflow information after the pass.
   1529   if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
   1530     VerifyDataflow();
   1531   }
   1532 
   1533   temp_bit_vector_size_ = 0u;
   1534   temp_bit_vector_ = nullptr;
   1535   DCHECK(temp_scoped_alloc_.get() != nullptr);
   1536   temp_scoped_alloc_.reset();
   1537 }
   1538 
   1539 static BasicBlock* SelectTopologicalSortOrderFallBack(
   1540     MIRGraph* mir_graph, const ArenaBitVector* current_loop,
   1541     const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator,
   1542     ScopedArenaVector<BasicBlockId>* tmp_stack) {
   1543   // No true loop head has been found but there may be true loop heads after the mess we need
   1544   // to resolve. To avoid taking one of those, pick the candidate with the highest number of
   1545   // reachable unvisited nodes. That candidate will surely be a part of a loop.
   1546   BasicBlock* fall_back = nullptr;
   1547   size_t fall_back_num_reachable = 0u;
   1548   // Reuse the same bit vector for each candidate to mark reachable unvisited blocks.
   1549   ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc);
   1550   AllNodesIterator iter(mir_graph);
   1551   for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) {
   1552     if (candidate->hidden ||                            // Hidden, or
   1553         candidate->visited ||                           // already processed, or
   1554         (*visited_cnt_values)[candidate->id] == 0u ||   // no processed predecessors, or
   1555         (current_loop != nullptr &&                     // outside current loop.
   1556          !current_loop->IsBitSet(candidate->id))) {
   1557       continue;
   1558     }
   1559     DCHECK(tmp_stack->empty());
   1560     tmp_stack->push_back(candidate->id);
   1561     candidate_reachable.ClearAllBits();
   1562     size_t num_reachable = 0u;
   1563     while (!tmp_stack->empty()) {
   1564       BasicBlockId current_id = tmp_stack->back();
   1565       tmp_stack->pop_back();
   1566       BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
   1567       DCHECK(current_bb != nullptr);
   1568       ChildBlockIterator child_iter(current_bb, mir_graph);
   1569       BasicBlock* child_bb = child_iter.Next();
   1570       for ( ; child_bb != nullptr; child_bb = child_iter.Next()) {
   1571         DCHECK(!child_bb->hidden);
   1572         if (child_bb->visited ||                            // Already processed, or
   1573             (current_loop != nullptr &&                     // outside current loop.
   1574              !current_loop->IsBitSet(child_bb->id))) {
   1575           continue;
   1576         }
   1577         if (!candidate_reachable.IsBitSet(child_bb->id)) {
   1578           candidate_reachable.SetBit(child_bb->id);
   1579           tmp_stack->push_back(child_bb->id);
   1580           num_reachable += 1u;
   1581         }
   1582       }
   1583     }
   1584     if (fall_back_num_reachable < num_reachable) {
   1585       fall_back_num_reachable = num_reachable;
   1586       fall_back = candidate;
   1587     }
   1588   }
   1589   return fall_back;
   1590 }
   1591 
   1592 // Compute from which unvisited blocks is bb_id reachable through unvisited blocks.
   1593 static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id,
   1594                                           ArenaBitVector* reachable,
   1595                                           ScopedArenaVector<BasicBlockId>* tmp_stack) {
   1596   // NOTE: Loop heads indicated by the "visited" flag.
   1597   DCHECK(tmp_stack->empty());
   1598   reachable->ClearAllBits();
   1599   tmp_stack->push_back(bb_id);
   1600   while (!tmp_stack->empty()) {
   1601     BasicBlockId current_id = tmp_stack->back();
   1602     tmp_stack->pop_back();
   1603     BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
   1604     DCHECK(current_bb != nullptr);
   1605     GrowableArray<BasicBlockId>::Iterator iter(current_bb->predecessors);
   1606     BasicBlock* pred_bb = mir_graph->GetBasicBlock(iter.Next());
   1607     for ( ; pred_bb != nullptr; pred_bb = mir_graph->GetBasicBlock(iter.Next())) {
   1608       if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) {
   1609         reachable->SetBit(pred_bb->id);
   1610         tmp_stack->push_back(pred_bb->id);
   1611       }
   1612     }
   1613   }
   1614 }
   1615 
   1616 void MIRGraph::ComputeTopologicalSortOrder() {
   1617   ScopedArenaAllocator allocator(&cu_->arena_stack);
   1618   unsigned int num_blocks = GetNumBlocks();
   1619 
   1620   ScopedArenaQueue<BasicBlock*> q(allocator.Adapter());
   1621   ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter());
   1622   ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter());
   1623   size_t max_nested_loops = 0u;
   1624   ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc);
   1625   loop_exit_blocks.ClearAllBits();
   1626 
   1627   // Count the number of blocks to process and add the entry block(s).
   1628   GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
   1629   unsigned int num_blocks_to_process = 0u;
   1630   for (BasicBlock* bb = iterator.Next(); bb != nullptr; bb = iterator.Next()) {
   1631     if (bb->hidden == true) {
   1632       continue;
   1633     }
   1634 
   1635     num_blocks_to_process += 1u;
   1636 
   1637     if (bb->predecessors->Size() == 0u) {
   1638       // Add entry block to the queue.
   1639       q.push(bb);
   1640     }
   1641   }
   1642 
   1643   // Create the topological order if need be.
   1644   if (topological_order_ == nullptr) {
   1645     topological_order_ = new (arena_) GrowableArray<BasicBlockId>(arena_, num_blocks);
   1646     topological_order_loop_ends_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
   1647     topological_order_indexes_ = new (arena_) GrowableArray<uint16_t>(arena_, num_blocks);
   1648   }
   1649   topological_order_->Reset();
   1650   topological_order_loop_ends_->Reset();
   1651   topological_order_indexes_->Reset();
   1652   topological_order_loop_ends_->Resize(num_blocks);
   1653   topological_order_indexes_->Resize(num_blocks);
   1654   for (BasicBlockId i = 0; i != num_blocks; ++i) {
   1655     topological_order_loop_ends_->Insert(0u);
   1656     topological_order_indexes_->Insert(static_cast<uint16_t>(-1));
   1657   }
   1658 
   1659   // Mark all blocks as unvisited.
   1660   ClearAllVisitedFlags();
   1661 
   1662   // For loop heads, keep track from which blocks they are reachable not going through other
   1663   // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children
   1664   // in this set go into the loop body, the other children are jumping over the loop.
   1665   ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter());
   1666   loop_head_reachable_from.resize(num_blocks, nullptr);
   1667   // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id].
   1668   ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter());
   1669 
   1670   while (num_blocks_to_process != 0u) {
   1671     BasicBlock* bb = nullptr;
   1672     if (!q.empty()) {
   1673       num_blocks_to_process -= 1u;
   1674       // Get top.
   1675       bb = q.front();
   1676       q.pop();
   1677       if (bb->visited) {
   1678         // Loop head: it was already processed, mark end and copy exit blocks to the queue.
   1679         DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
   1680         uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
   1681         topological_order_loop_ends_->Put(topological_order_indexes_->Get(bb->id), idx);
   1682         DCHECK_EQ(loop_head_stack.back(), bb->id);
   1683         loop_head_stack.pop_back();
   1684         ArenaBitVector* reachable =
   1685             loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
   1686         for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) {
   1687           if (reachable == nullptr || reachable->IsBitSet(candidate_id)) {
   1688             q.push(GetBasicBlock(candidate_id));
   1689             // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
   1690             // so clearing the bit has no effect on the iterator.
   1691             loop_exit_blocks.ClearBit(candidate_id);
   1692           }
   1693         }
   1694         continue;
   1695       }
   1696     } else {
   1697       // Find the new loop head.
   1698       AllNodesIterator iter(this);
   1699       while (true) {
   1700         BasicBlock* candidate = iter.Next();
   1701         if (candidate == nullptr) {
   1702           // We did not find a true loop head, fall back to a reachable block in any loop.
   1703           ArenaBitVector* current_loop =
   1704               loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
   1705           bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values,
   1706                                                   &allocator, &tmp_stack);
   1707           DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
   1708           if (kIsDebugBuild && cu_->dex_file != nullptr) {
   1709             LOG(INFO) << "Topological sort order: Using fall-back in "
   1710                 << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id
   1711                 << " @0x" << std::hex << bb->start_offset
   1712                 << ", num_blocks = " << std::dec << num_blocks;
   1713           }
   1714           break;
   1715         }
   1716         if (candidate->hidden ||                            // Hidden, or
   1717             candidate->visited ||                           // already processed, or
   1718             visited_cnt_values[candidate->id] == 0u ||      // no processed predecessors, or
   1719             (!loop_head_stack.empty() &&                    // outside current loop.
   1720              !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) {
   1721           continue;
   1722         }
   1723 
   1724         GrowableArray<BasicBlockId>::Iterator pred_iter(candidate->predecessors);
   1725         BasicBlock* pred_bb = GetBasicBlock(pred_iter.Next());
   1726         for ( ; pred_bb != nullptr; pred_bb = GetBasicBlock(pred_iter.Next())) {
   1727           if (pred_bb != candidate && !pred_bb->visited &&
   1728               !pred_bb->dominators->IsBitSet(candidate->id)) {
   1729             break;  // Keep non-null pred_bb to indicate failure.
   1730           }
   1731         }
   1732         if (pred_bb == nullptr) {
   1733           bb = candidate;
   1734           break;
   1735         }
   1736       }
   1737       // Compute blocks from which the loop head is reachable and process those blocks first.
   1738       ArenaBitVector* reachable =
   1739           new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc);
   1740       loop_head_reachable_from[bb->id] = reachable;
   1741       ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack);
   1742       // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.)
   1743       loop_head_stack.push_back(bb->id);
   1744       max_nested_loops = std::max(max_nested_loops, loop_head_stack.size());
   1745     }
   1746 
   1747     DCHECK_EQ(bb->hidden, false);
   1748     DCHECK_EQ(bb->visited, false);
   1749     bb->visited = true;
   1750 
   1751     // Now add the basic block.
   1752     uint16_t idx = static_cast<uint16_t>(topological_order_->Size());
   1753     topological_order_indexes_->Put(bb->id, idx);
   1754     topological_order_->Insert(bb->id);
   1755 
   1756     // Update visited_cnt_values for children.
   1757     ChildBlockIterator succIter(bb, this);
   1758     BasicBlock* successor = succIter.Next();
   1759     for ( ; successor != nullptr; successor = succIter.Next()) {
   1760       if (successor->hidden) {
   1761         continue;
   1762       }
   1763 
   1764       // One more predecessor was visited.
   1765       visited_cnt_values[successor->id] += 1u;
   1766       if (visited_cnt_values[successor->id] == successor->predecessors->Size()) {
   1767         if (loop_head_stack.empty() ||
   1768             loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) {
   1769           q.push(successor);
   1770         } else {
   1771           DCHECK(!loop_exit_blocks.IsBitSet(successor->id));
   1772           loop_exit_blocks.SetBit(successor->id);
   1773         }
   1774       }
   1775     }
   1776   }
   1777 
   1778   // Prepare the loop head stack for iteration.
   1779   topological_order_loop_head_stack_ =
   1780       new (arena_) GrowableArray<std::pair<uint16_t, bool>>(arena_, max_nested_loops);
   1781 }
   1782 
   1783 bool BasicBlock::IsExceptionBlock() const {
   1784   if (block_type == kExceptionHandling) {
   1785     return true;
   1786   }
   1787   return false;
   1788 }
   1789 
   1790 bool MIRGraph::HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id) {
   1791   BasicBlock* target = GetBasicBlock(target_id);
   1792 
   1793   if (source == nullptr || target == nullptr)
   1794     return false;
   1795 
   1796   int idx;
   1797   for (idx = gen_suspend_test_list_.Size() - 1; idx >= 0; idx--) {
   1798     BasicBlock* bb = gen_suspend_test_list_.Get(idx);
   1799     if (bb == source)
   1800       return true;  // The block has been inserted by a suspend check before.
   1801     if (source->dominators->IsBitSet(bb->id) && bb->dominators->IsBitSet(target_id))
   1802       return true;
   1803   }
   1804 
   1805   return false;
   1806 }
   1807 
   1808 ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph)
   1809     : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false),
   1810       visited_taken_(false), have_successors_(false) {
   1811   // Check if we actually do have successors.
   1812   if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) {
   1813     have_successors_ = true;
   1814     successor_iter_.Reset(basic_block_->successor_blocks);
   1815   }
   1816 }
   1817 
   1818 BasicBlock* ChildBlockIterator::Next() {
   1819   // We check if we have a basic block. If we don't we cannot get next child.
   1820   if (basic_block_ == nullptr) {
   1821     return nullptr;
   1822   }
   1823 
   1824   // If we haven't visited fallthrough, return that.
   1825   if (visited_fallthrough_ == false) {
   1826     visited_fallthrough_ = true;
   1827 
   1828     BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through);
   1829     if (result != nullptr) {
   1830       return result;
   1831     }
   1832   }
   1833 
   1834   // If we haven't visited taken, return that.
   1835   if (visited_taken_ == false) {
   1836     visited_taken_ = true;
   1837 
   1838     BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken);
   1839     if (result != nullptr) {
   1840       return result;
   1841     }
   1842   }
   1843 
   1844   // We visited both taken and fallthrough. Now check if we have successors we need to visit.
   1845   if (have_successors_ == true) {
   1846     // Get information about next successor block.
   1847     for (SuccessorBlockInfo* successor_block_info = successor_iter_.Next();
   1848       successor_block_info != nullptr;
   1849       successor_block_info = successor_iter_.Next()) {
   1850       // If block was replaced by zero block, take next one.
   1851       if (successor_block_info->block != NullBasicBlockId) {
   1852         return mir_graph_->GetBasicBlock(successor_block_info->block);
   1853       }
   1854     }
   1855   }
   1856 
   1857   // We do not have anything.
   1858   return nullptr;
   1859 }
   1860 
   1861 BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) {
   1862   MIRGraph* mir_graph = c_unit->mir_graph.get();
   1863   return Copy(mir_graph);
   1864 }
   1865 
   1866 BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) {
   1867   BasicBlock* result_bb = mir_graph->CreateNewBB(block_type);
   1868 
   1869   // We don't do a memcpy style copy here because it would lead to a lot of things
   1870   // to clean up. Let us do it by hand instead.
   1871   // Copy in taken and fallthrough.
   1872   result_bb->fall_through = fall_through;
   1873   result_bb->taken = taken;
   1874 
   1875   // Copy successor links if needed.
   1876   ArenaAllocator* arena = mir_graph->GetArena();
   1877 
   1878   result_bb->successor_block_list_type = successor_block_list_type;
   1879   if (result_bb->successor_block_list_type != kNotUsed) {
   1880     size_t size = successor_blocks->Size();
   1881     result_bb->successor_blocks = new (arena) GrowableArray<SuccessorBlockInfo*>(arena, size, kGrowableArraySuccessorBlocks);
   1882     GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
   1883     while (true) {
   1884       SuccessorBlockInfo* sbi_old = iterator.Next();
   1885       if (sbi_old == nullptr) {
   1886         break;
   1887       }
   1888       SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>(arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
   1889       memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo));
   1890       result_bb->successor_blocks->Insert(sbi_new);
   1891     }
   1892   }
   1893 
   1894   // Copy offset, method.
   1895   result_bb->start_offset = start_offset;
   1896 
   1897   // Now copy instructions.
   1898   for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) {
   1899     // Get a copy first.
   1900     MIR* copy = mir->Copy(mir_graph);
   1901 
   1902     // Append it.
   1903     result_bb->AppendMIR(copy);
   1904   }
   1905 
   1906   return result_bb;
   1907 }
   1908 
   1909 MIR* MIR::Copy(MIRGraph* mir_graph) {
   1910   MIR* res = mir_graph->NewMIR();
   1911   *res = *this;
   1912 
   1913   // Remove links
   1914   res->next = nullptr;
   1915   res->bb = NullBasicBlockId;
   1916   res->ssa_rep = nullptr;
   1917 
   1918   return res;
   1919 }
   1920 
   1921 MIR* MIR::Copy(CompilationUnit* c_unit) {
   1922   return Copy(c_unit->mir_graph.get());
   1923 }
   1924 
   1925 uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) {
   1926   // Default result.
   1927   int res = 0;
   1928 
   1929   // We are basically setting the iputs to their igets counterparts.
   1930   switch (opcode) {
   1931     case Instruction::IPUT:
   1932     case Instruction::IPUT_OBJECT:
   1933     case Instruction::IPUT_BOOLEAN:
   1934     case Instruction::IPUT_BYTE:
   1935     case Instruction::IPUT_CHAR:
   1936     case Instruction::IPUT_SHORT:
   1937     case Instruction::IPUT_QUICK:
   1938     case Instruction::IPUT_OBJECT_QUICK:
   1939     case Instruction::APUT:
   1940     case Instruction::APUT_OBJECT:
   1941     case Instruction::APUT_BOOLEAN:
   1942     case Instruction::APUT_BYTE:
   1943     case Instruction::APUT_CHAR:
   1944     case Instruction::APUT_SHORT:
   1945     case Instruction::SPUT:
   1946     case Instruction::SPUT_OBJECT:
   1947     case Instruction::SPUT_BOOLEAN:
   1948     case Instruction::SPUT_BYTE:
   1949     case Instruction::SPUT_CHAR:
   1950     case Instruction::SPUT_SHORT:
   1951       // Skip the VR containing what to store.
   1952       res = 1;
   1953       break;
   1954     case Instruction::IPUT_WIDE:
   1955     case Instruction::IPUT_WIDE_QUICK:
   1956     case Instruction::APUT_WIDE:
   1957     case Instruction::SPUT_WIDE:
   1958       // Skip the two VRs containing what to store.
   1959       res = 2;
   1960       break;
   1961     default:
   1962       // Do nothing in the general case.
   1963       break;
   1964   }
   1965 
   1966   return res;
   1967 }
   1968 
   1969 /**
   1970  * @brief Given a decoded instruction, it checks whether the instruction
   1971  * sets a constant and if it does, more information is provided about the
   1972  * constant being set.
   1973  * @param ptr_value pointer to a 64-bit holder for the constant.
   1974  * @param wide Updated by function whether a wide constant is being set by bytecode.
   1975  * @return Returns false if the decoded instruction does not represent a constant bytecode.
   1976  */
   1977 bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const {
   1978   bool sets_const = true;
   1979   int64_t value = vB;
   1980 
   1981   DCHECK(ptr_value != nullptr);
   1982   DCHECK(wide != nullptr);
   1983 
   1984   switch (opcode) {
   1985     case Instruction::CONST_4:
   1986     case Instruction::CONST_16:
   1987     case Instruction::CONST:
   1988       *wide = false;
   1989       value <<= 32;      // In order to get the sign extend.
   1990       value >>= 32;
   1991       break;
   1992     case Instruction::CONST_HIGH16:
   1993       *wide = false;
   1994       value <<= 48;      // In order to get the sign extend.
   1995       value >>= 32;
   1996       break;
   1997     case Instruction::CONST_WIDE_16:
   1998     case Instruction::CONST_WIDE_32:
   1999       *wide = true;
   2000       value <<= 32;      // In order to get the sign extend.
   2001       value >>= 32;
   2002       break;
   2003     case Instruction::CONST_WIDE:
   2004       *wide = true;
   2005       value = vB_wide;
   2006       break;
   2007     case Instruction::CONST_WIDE_HIGH16:
   2008       *wide = true;
   2009       value <<= 48;      // In order to get the sign extend.
   2010       break;
   2011     default:
   2012       sets_const = false;
   2013       break;
   2014   }
   2015 
   2016   if (sets_const) {
   2017     *ptr_value = value;
   2018   }
   2019 
   2020   return sets_const;
   2021 }
   2022 
   2023 void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) {
   2024   // Reset flags for all MIRs in bb.
   2025   for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) {
   2026     mir->optimization_flags &= (~reset_flags);
   2027   }
   2028 }
   2029 
   2030 void BasicBlock::Hide(CompilationUnit* c_unit) {
   2031   // First lets make it a dalvik bytecode block so it doesn't have any special meaning.
   2032   block_type = kDalvikByteCode;
   2033 
   2034   // Mark it as hidden.
   2035   hidden = true;
   2036 
   2037   // Detach it from its MIRs so we don't generate code for them. Also detached MIRs
   2038   // are updated to know that they no longer have a parent.
   2039   for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
   2040     mir->bb = NullBasicBlockId;
   2041   }
   2042   first_mir_insn = nullptr;
   2043   last_mir_insn = nullptr;
   2044 
   2045   GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
   2046 
   2047   MIRGraph* mir_graph = c_unit->mir_graph.get();
   2048   while (true) {
   2049     BasicBlock* pred_bb = mir_graph->GetBasicBlock(iterator.Next());
   2050     if (pred_bb == nullptr) {
   2051       break;
   2052     }
   2053 
   2054     // Sadly we have to go through the children by hand here.
   2055     pred_bb->ReplaceChild(id, NullBasicBlockId);
   2056   }
   2057 
   2058   // Iterate through children of bb we are hiding.
   2059   ChildBlockIterator successorChildIter(this, mir_graph);
   2060 
   2061   for (BasicBlock* childPtr = successorChildIter.Next(); childPtr != 0; childPtr = successorChildIter.Next()) {
   2062     // Replace child with null child.
   2063     childPtr->predecessors->Delete(id);
   2064   }
   2065 }
   2066 
   2067 bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) {
   2068   // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember
   2069   // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg,
   2070   // then it is not live out of this BB.
   2071   int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg);
   2072 
   2073   int last_ssa_reg = -1;
   2074 
   2075   // Walk through the MIRs backwards.
   2076   for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
   2077     // Get ssa rep.
   2078     SSARepresentation *ssa_rep = mir->ssa_rep;
   2079 
   2080     // Go through the defines for this MIR.
   2081     for (int i = 0; i < ssa_rep->num_defs; i++) {
   2082       DCHECK(ssa_rep->defs != nullptr);
   2083 
   2084       // Get the ssa reg.
   2085       int def_ssa_reg = ssa_rep->defs[i];
   2086 
   2087       // Get dalvik reg.
   2088       int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg);
   2089 
   2090       // Compare dalvik regs.
   2091       if (dalvik_reg == def_dalvik_reg) {
   2092         // We found a def of the register that we are being asked about.
   2093         // Remember it.
   2094         last_ssa_reg = def_ssa_reg;
   2095       }
   2096     }
   2097   }
   2098 
   2099   if (last_ssa_reg == -1) {
   2100     // If we get to this point we couldn't find a define of register user asked about.
   2101     // Let's assume the user knows what he's doing so we can be safe and say that if we
   2102     // couldn't find a def, it is live out.
   2103     return true;
   2104   }
   2105 
   2106   // If it is not -1, we found a match, is it ssa_reg?
   2107   return (ssa_reg == last_ssa_reg);
   2108 }
   2109 
   2110 bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) {
   2111   // We need to check taken, fall_through, and successor_blocks to replace.
   2112   bool found = false;
   2113   if (taken == old_bb) {
   2114     taken = new_bb;
   2115     found = true;
   2116   }
   2117 
   2118   if (fall_through == old_bb) {
   2119     fall_through = new_bb;
   2120     found = true;
   2121   }
   2122 
   2123   if (successor_block_list_type != kNotUsed) {
   2124     GrowableArray<SuccessorBlockInfo*>::Iterator iterator(successor_blocks);
   2125     while (true) {
   2126       SuccessorBlockInfo* successor_block_info = iterator.Next();
   2127       if (successor_block_info == nullptr) {
   2128         break;
   2129       }
   2130       if (successor_block_info->block == old_bb) {
   2131         successor_block_info->block = new_bb;
   2132         found = true;
   2133       }
   2134     }
   2135   }
   2136 
   2137   return found;
   2138 }
   2139 
   2140 void BasicBlock::UpdatePredecessor(BasicBlockId old_parent, BasicBlockId new_parent) {
   2141   GrowableArray<BasicBlockId>::Iterator iterator(predecessors);
   2142   bool found = false;
   2143 
   2144   while (true) {
   2145     BasicBlockId pred_bb_id = iterator.Next();
   2146 
   2147     if (pred_bb_id == NullBasicBlockId) {
   2148       break;
   2149     }
   2150 
   2151     if (pred_bb_id == old_parent) {
   2152       size_t idx = iterator.GetIndex() - 1;
   2153       predecessors->Put(idx, new_parent);
   2154       found = true;
   2155       break;
   2156     }
   2157   }
   2158 
   2159   // If not found, add it.
   2160   if (found == false) {
   2161     predecessors->Insert(new_parent);
   2162   }
   2163 }
   2164 
   2165 // Create a new basic block with block_id as num_blocks_ that is
   2166 // post-incremented.
   2167 BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {
   2168   BasicBlock* res = NewMemBB(block_type, num_blocks_++);
   2169   block_list_.Insert(res);
   2170   return res;
   2171 }
   2172 
   2173 void MIRGraph::CalculateBasicBlockInformation() {
   2174   PassDriverMEPostOpt driver(cu_);
   2175   driver.Launch();
   2176 }
   2177 
   2178 void MIRGraph::InitializeBasicBlockData() {
   2179   num_blocks_ = block_list_.Size();
   2180 }
   2181 
   2182 }  // namespace art
   2183