Home | History | Annotate | Download | only in Utils
      1 //===-- Local.cpp - Functions to perform local transformations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/MemoryBuiltins.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/CFG.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/DIBuilder.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/DebugInfo.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/GetElementPtrTypeIterator.h"
     31 #include "llvm/IR/GlobalAlias.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/IR/Intrinsics.h"
     37 #include "llvm/IR/MDBuilder.h"
     38 #include "llvm/IR/Metadata.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/IR/ValueHandle.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/MathExtras.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 using namespace llvm;
     45 
     46 #define DEBUG_TYPE "local"
     47 
     48 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
     49 
     50 //===----------------------------------------------------------------------===//
     51 //  Local constant propagation.
     52 //
     53 
     54 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     55 /// constant value, convert it into an unconditional branch to the constant
     56 /// destination.  This is a nontrivial operation because the successors of this
     57 /// basic block must have their PHI nodes updated.
     58 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     59 /// conditions and indirectbr addresses this might make dead if
     60 /// DeleteDeadConditions is true.
     61 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
     62                                   const TargetLibraryInfo *TLI) {
     63   TerminatorInst *T = BB->getTerminator();
     64   IRBuilder<> Builder(T);
     65 
     66   // Branch - See if we are conditional jumping on constant
     67   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     68     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
     69     BasicBlock *Dest1 = BI->getSuccessor(0);
     70     BasicBlock *Dest2 = BI->getSuccessor(1);
     71 
     72     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
     73       // Are we branching on constant?
     74       // YES.  Change to unconditional branch...
     75       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
     76       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
     77 
     78       //cerr << "Function: " << T->getParent()->getParent()
     79       //     << "\nRemoving branch from " << T->getParent()
     80       //     << "\n\nTo: " << OldDest << endl;
     81 
     82       // Let the basic block know that we are letting go of it.  Based on this,
     83       // it will adjust it's PHI nodes.
     84       OldDest->removePredecessor(BB);
     85 
     86       // Replace the conditional branch with an unconditional one.
     87       Builder.CreateBr(Destination);
     88       BI->eraseFromParent();
     89       return true;
     90     }
     91 
     92     if (Dest2 == Dest1) {       // Conditional branch to same location?
     93       // This branch matches something like this:
     94       //     br bool %cond, label %Dest, label %Dest
     95       // and changes it into:  br label %Dest
     96 
     97       // Let the basic block know that we are letting go of one copy of it.
     98       assert(BI->getParent() && "Terminator not inserted in block!");
     99       Dest1->removePredecessor(BI->getParent());
    100 
    101       // Replace the conditional branch with an unconditional one.
    102       Builder.CreateBr(Dest1);
    103       Value *Cond = BI->getCondition();
    104       BI->eraseFromParent();
    105       if (DeleteDeadConditions)
    106         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    107       return true;
    108     }
    109     return false;
    110   }
    111 
    112   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    113     // If we are switching on a constant, we can convert the switch into a
    114     // single branch instruction!
    115     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    116     BasicBlock *TheOnlyDest = SI->getDefaultDest();
    117     BasicBlock *DefaultDest = TheOnlyDest;
    118 
    119     // Figure out which case it goes to.
    120     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    121          i != e; ++i) {
    122       // Found case matching a constant operand?
    123       if (i.getCaseValue() == CI) {
    124         TheOnlyDest = i.getCaseSuccessor();
    125         break;
    126       }
    127 
    128       // Check to see if this branch is going to the same place as the default
    129       // dest.  If so, eliminate it as an explicit compare.
    130       if (i.getCaseSuccessor() == DefaultDest) {
    131         MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    132         unsigned NCases = SI->getNumCases();
    133         // Fold the case metadata into the default if there will be any branches
    134         // left, unless the metadata doesn't match the switch.
    135         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
    136           // Collect branch weights into a vector.
    137           SmallVector<uint32_t, 8> Weights;
    138           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    139                ++MD_i) {
    140             ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
    141             assert(CI);
    142             Weights.push_back(CI->getValue().getZExtValue());
    143           }
    144           // Merge weight of this case to the default weight.
    145           unsigned idx = i.getCaseIndex();
    146           Weights[0] += Weights[idx+1];
    147           // Remove weight for this case.
    148           std::swap(Weights[idx+1], Weights.back());
    149           Weights.pop_back();
    150           SI->setMetadata(LLVMContext::MD_prof,
    151                           MDBuilder(BB->getContext()).
    152                           createBranchWeights(Weights));
    153         }
    154         // Remove this entry.
    155         DefaultDest->removePredecessor(SI->getParent());
    156         SI->removeCase(i);
    157         --i; --e;
    158         continue;
    159       }
    160 
    161       // Otherwise, check to see if the switch only branches to one destination.
    162       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
    163       // destinations.
    164       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
    165     }
    166 
    167     if (CI && !TheOnlyDest) {
    168       // Branching on a constant, but not any of the cases, go to the default
    169       // successor.
    170       TheOnlyDest = SI->getDefaultDest();
    171     }
    172 
    173     // If we found a single destination that we can fold the switch into, do so
    174     // now.
    175     if (TheOnlyDest) {
    176       // Insert the new branch.
    177       Builder.CreateBr(TheOnlyDest);
    178       BasicBlock *BB = SI->getParent();
    179 
    180       // Remove entries from PHI nodes which we no longer branch to...
    181       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
    182         // Found case matching a constant operand?
    183         BasicBlock *Succ = SI->getSuccessor(i);
    184         if (Succ == TheOnlyDest)
    185           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
    186         else
    187           Succ->removePredecessor(BB);
    188       }
    189 
    190       // Delete the old switch.
    191       Value *Cond = SI->getCondition();
    192       SI->eraseFromParent();
    193       if (DeleteDeadConditions)
    194         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    195       return true;
    196     }
    197 
    198     if (SI->getNumCases() == 1) {
    199       // Otherwise, we can fold this switch into a conditional branch
    200       // instruction if it has only one non-default destination.
    201       SwitchInst::CaseIt FirstCase = SI->case_begin();
    202       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
    203           FirstCase.getCaseValue(), "cond");
    204 
    205       // Insert the new branch.
    206       BranchInst *NewBr = Builder.CreateCondBr(Cond,
    207                                                FirstCase.getCaseSuccessor(),
    208                                                SI->getDefaultDest());
    209       MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    210       if (MD && MD->getNumOperands() == 3) {
    211         ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
    212         ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
    213         assert(SICase && SIDef);
    214         // The TrueWeight should be the weight for the single case of SI.
    215         NewBr->setMetadata(LLVMContext::MD_prof,
    216                         MDBuilder(BB->getContext()).
    217                         createBranchWeights(SICase->getValue().getZExtValue(),
    218                                             SIDef->getValue().getZExtValue()));
    219       }
    220 
    221       // Delete the old switch.
    222       SI->eraseFromParent();
    223       return true;
    224     }
    225     return false;
    226   }
    227 
    228   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    229     // indirectbr blockaddress(@F, @BB) -> br label @BB
    230     if (BlockAddress *BA =
    231           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
    232       BasicBlock *TheOnlyDest = BA->getBasicBlock();
    233       // Insert the new branch.
    234       Builder.CreateBr(TheOnlyDest);
    235 
    236       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    237         if (IBI->getDestination(i) == TheOnlyDest)
    238           TheOnlyDest = nullptr;
    239         else
    240           IBI->getDestination(i)->removePredecessor(IBI->getParent());
    241       }
    242       Value *Address = IBI->getAddress();
    243       IBI->eraseFromParent();
    244       if (DeleteDeadConditions)
    245         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
    246 
    247       // If we didn't find our destination in the IBI successor list, then we
    248       // have undefined behavior.  Replace the unconditional branch with an
    249       // 'unreachable' instruction.
    250       if (TheOnlyDest) {
    251         BB->getTerminator()->eraseFromParent();
    252         new UnreachableInst(BB->getContext(), BB);
    253       }
    254 
    255       return true;
    256     }
    257   }
    258 
    259   return false;
    260 }
    261 
    262 
    263 //===----------------------------------------------------------------------===//
    264 //  Local dead code elimination.
    265 //
    266 
    267 /// isInstructionTriviallyDead - Return true if the result produced by the
    268 /// instruction is not used, and the instruction has no side effects.
    269 ///
    270 bool llvm::isInstructionTriviallyDead(Instruction *I,
    271                                       const TargetLibraryInfo *TLI) {
    272   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
    273 
    274   // We don't want the landingpad instruction removed by anything this general.
    275   if (isa<LandingPadInst>(I))
    276     return false;
    277 
    278   // We don't want debug info removed by anything this general, unless
    279   // debug info is empty.
    280   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    281     if (DDI->getAddress())
    282       return false;
    283     return true;
    284   }
    285   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    286     if (DVI->getValue())
    287       return false;
    288     return true;
    289   }
    290 
    291   if (!I->mayHaveSideEffects()) return true;
    292 
    293   // Special case intrinsics that "may have side effects" but can be deleted
    294   // when dead.
    295   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    296     // Safe to delete llvm.stacksave if dead.
    297     if (II->getIntrinsicID() == Intrinsic::stacksave)
    298       return true;
    299 
    300     // Lifetime intrinsics are dead when their right-hand is undef.
    301     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    302         II->getIntrinsicID() == Intrinsic::lifetime_end)
    303       return isa<UndefValue>(II->getArgOperand(1));
    304   }
    305 
    306   if (isAllocLikeFn(I, TLI)) return true;
    307 
    308   if (CallInst *CI = isFreeCall(I, TLI))
    309     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
    310       return C->isNullValue() || isa<UndefValue>(C);
    311 
    312   return false;
    313 }
    314 
    315 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
    316 /// trivially dead instruction, delete it.  If that makes any of its operands
    317 /// trivially dead, delete them too, recursively.  Return true if any
    318 /// instructions were deleted.
    319 bool
    320 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
    321                                                  const TargetLibraryInfo *TLI) {
    322   Instruction *I = dyn_cast<Instruction>(V);
    323   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
    324     return false;
    325 
    326   SmallVector<Instruction*, 16> DeadInsts;
    327   DeadInsts.push_back(I);
    328 
    329   do {
    330     I = DeadInsts.pop_back_val();
    331 
    332     // Null out all of the instruction's operands to see if any operand becomes
    333     // dead as we go.
    334     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    335       Value *OpV = I->getOperand(i);
    336       I->setOperand(i, nullptr);
    337 
    338       if (!OpV->use_empty()) continue;
    339 
    340       // If the operand is an instruction that became dead as we nulled out the
    341       // operand, and if it is 'trivially' dead, delete it in a future loop
    342       // iteration.
    343       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    344         if (isInstructionTriviallyDead(OpI, TLI))
    345           DeadInsts.push_back(OpI);
    346     }
    347 
    348     I->eraseFromParent();
    349   } while (!DeadInsts.empty());
    350 
    351   return true;
    352 }
    353 
    354 /// areAllUsesEqual - Check whether the uses of a value are all the same.
    355 /// This is similar to Instruction::hasOneUse() except this will also return
    356 /// true when there are no uses or multiple uses that all refer to the same
    357 /// value.
    358 static bool areAllUsesEqual(Instruction *I) {
    359   Value::user_iterator UI = I->user_begin();
    360   Value::user_iterator UE = I->user_end();
    361   if (UI == UE)
    362     return true;
    363 
    364   User *TheUse = *UI;
    365   for (++UI; UI != UE; ++UI) {
    366     if (*UI != TheUse)
    367       return false;
    368   }
    369   return true;
    370 }
    371 
    372 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
    373 /// dead PHI node, due to being a def-use chain of single-use nodes that
    374 /// either forms a cycle or is terminated by a trivially dead instruction,
    375 /// delete it.  If that makes any of its operands trivially dead, delete them
    376 /// too, recursively.  Return true if a change was made.
    377 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
    378                                         const TargetLibraryInfo *TLI) {
    379   SmallPtrSet<Instruction*, 4> Visited;
    380   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
    381        I = cast<Instruction>(*I->user_begin())) {
    382     if (I->use_empty())
    383       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    384 
    385     // If we find an instruction more than once, we're on a cycle that
    386     // won't prove fruitful.
    387     if (!Visited.insert(I)) {
    388       // Break the cycle and delete the instruction and its operands.
    389       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    390       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    391       return true;
    392     }
    393   }
    394   return false;
    395 }
    396 
    397 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
    398 /// simplify any instructions in it and recursively delete dead instructions.
    399 ///
    400 /// This returns true if it changed the code, note that it can delete
    401 /// instructions in other blocks as well in this block.
    402 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
    403                                        const TargetLibraryInfo *TLI) {
    404   bool MadeChange = false;
    405 
    406 #ifndef NDEBUG
    407   // In debug builds, ensure that the terminator of the block is never replaced
    408   // or deleted by these simplifications. The idea of simplification is that it
    409   // cannot introduce new instructions, and there is no way to replace the
    410   // terminator of a block without introducing a new instruction.
    411   AssertingVH<Instruction> TerminatorVH(--BB->end());
    412 #endif
    413 
    414   for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
    415     assert(!BI->isTerminator());
    416     Instruction *Inst = BI++;
    417 
    418     WeakVH BIHandle(BI);
    419     if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
    420       MadeChange = true;
    421       if (BIHandle != BI)
    422         BI = BB->begin();
    423       continue;
    424     }
    425 
    426     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
    427     if (BIHandle != BI)
    428       BI = BB->begin();
    429   }
    430   return MadeChange;
    431 }
    432 
    433 //===----------------------------------------------------------------------===//
    434 //  Control Flow Graph Restructuring.
    435 //
    436 
    437 
    438 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    439 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    440 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    441 ///
    442 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    443 /// nodes that collapse into identity values.  For example, if we have:
    444 ///   x = phi(1, 0, 0, 0)
    445 ///   y = and x, z
    446 ///
    447 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    448 /// recursively fold the and to 0.
    449 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    450                                         DataLayout *TD) {
    451   // This only adjusts blocks with PHI nodes.
    452   if (!isa<PHINode>(BB->begin()))
    453     return;
    454 
    455   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
    456   // them down.  This will leave us with single entry phi nodes and other phis
    457   // that can be removed.
    458   BB->removePredecessor(Pred, true);
    459 
    460   WeakVH PhiIt = &BB->front();
    461   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    462     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    463     Value *OldPhiIt = PhiIt;
    464 
    465     if (!recursivelySimplifyInstruction(PN, TD))
    466       continue;
    467 
    468     // If recursive simplification ended up deleting the next PHI node we would
    469     // iterate to, then our iterator is invalid, restart scanning from the top
    470     // of the block.
    471     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
    472   }
    473 }
    474 
    475 
    476 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
    477 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
    478 /// between them, moving the instructions in the predecessor into DestBB and
    479 /// deleting the predecessor block.
    480 ///
    481 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
    482   // If BB has single-entry PHI nodes, fold them.
    483   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    484     Value *NewVal = PN->getIncomingValue(0);
    485     // Replace self referencing PHI with undef, it must be dead.
    486     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    487     PN->replaceAllUsesWith(NewVal);
    488     PN->eraseFromParent();
    489   }
    490 
    491   BasicBlock *PredBB = DestBB->getSinglePredecessor();
    492   assert(PredBB && "Block doesn't have a single predecessor!");
    493 
    494   // Zap anything that took the address of DestBB.  Not doing this will give the
    495   // address an invalid value.
    496   if (DestBB->hasAddressTaken()) {
    497     BlockAddress *BA = BlockAddress::get(DestBB);
    498     Constant *Replacement =
    499       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    500     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
    501                                                      BA->getType()));
    502     BA->destroyConstant();
    503   }
    504 
    505   // Anything that branched to PredBB now branches to DestBB.
    506   PredBB->replaceAllUsesWith(DestBB);
    507 
    508   // Splice all the instructions from PredBB to DestBB.
    509   PredBB->getTerminator()->eraseFromParent();
    510   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
    511 
    512   if (P) {
    513     if (DominatorTreeWrapperPass *DTWP =
    514             P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
    515       DominatorTree &DT = DTWP->getDomTree();
    516       BasicBlock *PredBBIDom = DT.getNode(PredBB)->getIDom()->getBlock();
    517       DT.changeImmediateDominator(DestBB, PredBBIDom);
    518       DT.eraseNode(PredBB);
    519     }
    520   }
    521   // Nuke BB.
    522   PredBB->eraseFromParent();
    523 }
    524 
    525 /// CanMergeValues - Return true if we can choose one of these values to use
    526 /// in place of the other. Note that we will always choose the non-undef
    527 /// value to keep.
    528 static bool CanMergeValues(Value *First, Value *Second) {
    529   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
    530 }
    531 
    532 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
    533 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
    534 ///
    535 /// Assumption: Succ is the single successor for BB.
    536 ///
    537 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
    538   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
    539 
    540   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
    541         << Succ->getName() << "\n");
    542   // Shortcut, if there is only a single predecessor it must be BB and merging
    543   // is always safe
    544   if (Succ->getSinglePredecessor()) return true;
    545 
    546   // Make a list of the predecessors of BB
    547   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    548 
    549   // Look at all the phi nodes in Succ, to see if they present a conflict when
    550   // merging these blocks
    551   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    552     PHINode *PN = cast<PHINode>(I);
    553 
    554     // If the incoming value from BB is again a PHINode in
    555     // BB which has the same incoming value for *PI as PN does, we can
    556     // merge the phi nodes and then the blocks can still be merged
    557     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    558     if (BBPN && BBPN->getParent() == BB) {
    559       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    560         BasicBlock *IBB = PN->getIncomingBlock(PI);
    561         if (BBPreds.count(IBB) &&
    562             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
    563                             PN->getIncomingValue(PI))) {
    564           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    565                 << Succ->getName() << " is conflicting with "
    566                 << BBPN->getName() << " with regard to common predecessor "
    567                 << IBB->getName() << "\n");
    568           return false;
    569         }
    570       }
    571     } else {
    572       Value* Val = PN->getIncomingValueForBlock(BB);
    573       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    574         // See if the incoming value for the common predecessor is equal to the
    575         // one for BB, in which case this phi node will not prevent the merging
    576         // of the block.
    577         BasicBlock *IBB = PN->getIncomingBlock(PI);
    578         if (BBPreds.count(IBB) &&
    579             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
    580           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    581                 << Succ->getName() << " is conflicting with regard to common "
    582                 << "predecessor " << IBB->getName() << "\n");
    583           return false;
    584         }
    585       }
    586     }
    587   }
    588 
    589   return true;
    590 }
    591 
    592 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
    593 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
    594 
    595 /// \brief Determines the value to use as the phi node input for a block.
    596 ///
    597 /// Select between \p OldVal any value that we know flows from \p BB
    598 /// to a particular phi on the basis of which one (if either) is not
    599 /// undef. Update IncomingValues based on the selected value.
    600 ///
    601 /// \param OldVal The value we are considering selecting.
    602 /// \param BB The block that the value flows in from.
    603 /// \param IncomingValues A map from block-to-value for other phi inputs
    604 /// that we have examined.
    605 ///
    606 /// \returns the selected value.
    607 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
    608                                           IncomingValueMap &IncomingValues) {
    609   if (!isa<UndefValue>(OldVal)) {
    610     assert((!IncomingValues.count(BB) ||
    611             IncomingValues.find(BB)->second == OldVal) &&
    612            "Expected OldVal to match incoming value from BB!");
    613 
    614     IncomingValues.insert(std::make_pair(BB, OldVal));
    615     return OldVal;
    616   }
    617 
    618   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    619   if (It != IncomingValues.end()) return It->second;
    620 
    621   return OldVal;
    622 }
    623 
    624 /// \brief Create a map from block to value for the operands of a
    625 /// given phi.
    626 ///
    627 /// Create a map from block to value for each non-undef value flowing
    628 /// into \p PN.
    629 ///
    630 /// \param PN The phi we are collecting the map for.
    631 /// \param IncomingValues [out] The map from block to value for this phi.
    632 static void gatherIncomingValuesToPhi(PHINode *PN,
    633                                       IncomingValueMap &IncomingValues) {
    634   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    635     BasicBlock *BB = PN->getIncomingBlock(i);
    636     Value *V = PN->getIncomingValue(i);
    637 
    638     if (!isa<UndefValue>(V))
    639       IncomingValues.insert(std::make_pair(BB, V));
    640   }
    641 }
    642 
    643 /// \brief Replace the incoming undef values to a phi with the values
    644 /// from a block-to-value map.
    645 ///
    646 /// \param PN The phi we are replacing the undefs in.
    647 /// \param IncomingValues A map from block to value.
    648 static void replaceUndefValuesInPhi(PHINode *PN,
    649                                     const IncomingValueMap &IncomingValues) {
    650   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    651     Value *V = PN->getIncomingValue(i);
    652 
    653     if (!isa<UndefValue>(V)) continue;
    654 
    655     BasicBlock *BB = PN->getIncomingBlock(i);
    656     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    657     if (It == IncomingValues.end()) continue;
    658 
    659     PN->setIncomingValue(i, It->second);
    660   }
    661 }
    662 
    663 /// \brief Replace a value flowing from a block to a phi with
    664 /// potentially multiple instances of that value flowing from the
    665 /// block's predecessors to the phi.
    666 ///
    667 /// \param BB The block with the value flowing into the phi.
    668 /// \param BBPreds The predecessors of BB.
    669 /// \param PN The phi that we are updating.
    670 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
    671                                                 const PredBlockVector &BBPreds,
    672                                                 PHINode *PN) {
    673   Value *OldVal = PN->removeIncomingValue(BB, false);
    674   assert(OldVal && "No entry in PHI for Pred BB!");
    675 
    676   IncomingValueMap IncomingValues;
    677 
    678   // We are merging two blocks - BB, and the block containing PN - and
    679   // as a result we need to redirect edges from the predecessors of BB
    680   // to go to the block containing PN, and update PN
    681   // accordingly. Since we allow merging blocks in the case where the
    682   // predecessor and successor blocks both share some predecessors,
    683   // and where some of those common predecessors might have undef
    684   // values flowing into PN, we want to rewrite those values to be
    685   // consistent with the non-undef values.
    686 
    687   gatherIncomingValuesToPhi(PN, IncomingValues);
    688 
    689   // If this incoming value is one of the PHI nodes in BB, the new entries
    690   // in the PHI node are the entries from the old PHI.
    691   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    692     PHINode *OldValPN = cast<PHINode>(OldVal);
    693     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
    694       // Note that, since we are merging phi nodes and BB and Succ might
    695       // have common predecessors, we could end up with a phi node with
    696       // identical incoming branches. This will be cleaned up later (and
    697       // will trigger asserts if we try to clean it up now, without also
    698       // simplifying the corresponding conditional branch).
    699       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
    700       Value *PredVal = OldValPN->getIncomingValue(i);
    701       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
    702                                                     IncomingValues);
    703 
    704       // And add a new incoming value for this predecessor for the
    705       // newly retargeted branch.
    706       PN->addIncoming(Selected, PredBB);
    707     }
    708   } else {
    709     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
    710       // Update existing incoming values in PN for this
    711       // predecessor of BB.
    712       BasicBlock *PredBB = BBPreds[i];
    713       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
    714                                                     IncomingValues);
    715 
    716       // And add a new incoming value for this predecessor for the
    717       // newly retargeted branch.
    718       PN->addIncoming(Selected, PredBB);
    719     }
    720   }
    721 
    722   replaceUndefValuesInPhi(PN, IncomingValues);
    723 }
    724 
    725 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    726 /// unconditional branch, and contains no instructions other than PHI nodes,
    727 /// potential side-effect free intrinsics and the branch.  If possible,
    728 /// eliminate BB by rewriting all the predecessors to branch to the successor
    729 /// block and return true.  If we can't transform, return false.
    730 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
    731   assert(BB != &BB->getParent()->getEntryBlock() &&
    732          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
    733 
    734   // We can't eliminate infinite loops.
    735   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
    736   if (BB == Succ) return false;
    737 
    738   // Check to see if merging these blocks would cause conflicts for any of the
    739   // phi nodes in BB or Succ. If not, we can safely merge.
    740   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
    741 
    742   // Check for cases where Succ has multiple predecessors and a PHI node in BB
    743   // has uses which will not disappear when the PHI nodes are merged.  It is
    744   // possible to handle such cases, but difficult: it requires checking whether
    745   // BB dominates Succ, which is non-trivial to calculate in the case where
    746   // Succ has multiple predecessors.  Also, it requires checking whether
    747   // constructing the necessary self-referential PHI node doesn't introduce any
    748   // conflicts; this isn't too difficult, but the previous code for doing this
    749   // was incorrect.
    750   //
    751   // Note that if this check finds a live use, BB dominates Succ, so BB is
    752   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
    753   // folding the branch isn't profitable in that case anyway.
    754   if (!Succ->getSinglePredecessor()) {
    755     BasicBlock::iterator BBI = BB->begin();
    756     while (isa<PHINode>(*BBI)) {
    757       for (Use &U : BBI->uses()) {
    758         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
    759           if (PN->getIncomingBlock(U) != BB)
    760             return false;
    761         } else {
    762           return false;
    763         }
    764       }
    765       ++BBI;
    766     }
    767   }
    768 
    769   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
    770 
    771   if (isa<PHINode>(Succ->begin())) {
    772     // If there is more than one pred of succ, and there are PHI nodes in
    773     // the successor, then we need to add incoming edges for the PHI nodes
    774     //
    775     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
    776 
    777     // Loop over all of the PHI nodes in the successor of BB.
    778     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    779       PHINode *PN = cast<PHINode>(I);
    780 
    781       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
    782     }
    783   }
    784 
    785   if (Succ->getSinglePredecessor()) {
    786     // BB is the only predecessor of Succ, so Succ will end up with exactly
    787     // the same predecessors BB had.
    788 
    789     // Copy over any phi, debug or lifetime instruction.
    790     BB->getTerminator()->eraseFromParent();
    791     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
    792   } else {
    793     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    794       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
    795       assert(PN->use_empty() && "There shouldn't be any uses here!");
    796       PN->eraseFromParent();
    797     }
    798   }
    799 
    800   // Everything that jumped to BB now goes to Succ.
    801   BB->replaceAllUsesWith(Succ);
    802   if (!Succ->hasName()) Succ->takeName(BB);
    803   BB->eraseFromParent();              // Delete the old basic block.
    804   return true;
    805 }
    806 
    807 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    808 /// nodes in this block. This doesn't try to be clever about PHI nodes
    809 /// which differ only in the order of the incoming values, but instcombine
    810 /// orders them so it usually won't matter.
    811 ///
    812 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
    813   bool Changed = false;
    814 
    815   // This implementation doesn't currently consider undef operands
    816   // specially. Theoretically, two phis which are identical except for
    817   // one having an undef where the other doesn't could be collapsed.
    818 
    819   // Map from PHI hash values to PHI nodes. If multiple PHIs have
    820   // the same hash value, the element is the first PHI in the
    821   // linked list in CollisionMap.
    822   DenseMap<uintptr_t, PHINode *> HashMap;
    823 
    824   // Maintain linked lists of PHI nodes with common hash values.
    825   DenseMap<PHINode *, PHINode *> CollisionMap;
    826 
    827   // Examine each PHI.
    828   for (BasicBlock::iterator I = BB->begin();
    829        PHINode *PN = dyn_cast<PHINode>(I++); ) {
    830     // Compute a hash value on the operands. Instcombine will likely have sorted
    831     // them, which helps expose duplicates, but we have to check all the
    832     // operands to be safe in case instcombine hasn't run.
    833     uintptr_t Hash = 0;
    834     // This hash algorithm is quite weak as hash functions go, but it seems
    835     // to do a good enough job for this particular purpose, and is very quick.
    836     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
    837       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
    838       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    839     }
    840     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
    841          I != E; ++I) {
    842       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
    843       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    844     }
    845     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
    846     Hash >>= 1;
    847     // If we've never seen this hash value before, it's a unique PHI.
    848     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
    849       HashMap.insert(std::make_pair(Hash, PN));
    850     if (Pair.second) continue;
    851     // Otherwise it's either a duplicate or a hash collision.
    852     for (PHINode *OtherPN = Pair.first->second; ; ) {
    853       if (OtherPN->isIdenticalTo(PN)) {
    854         // A duplicate. Replace this PHI with its duplicate.
    855         PN->replaceAllUsesWith(OtherPN);
    856         PN->eraseFromParent();
    857         Changed = true;
    858         break;
    859       }
    860       // A non-duplicate hash collision.
    861       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
    862       if (I == CollisionMap.end()) {
    863         // Set this PHI to be the head of the linked list of colliding PHIs.
    864         PHINode *Old = Pair.first->second;
    865         Pair.first->second = PN;
    866         CollisionMap[PN] = Old;
    867         break;
    868       }
    869       // Proceed to the next PHI in the list.
    870       OtherPN = I->second;
    871     }
    872   }
    873 
    874   return Changed;
    875 }
    876 
    877 /// enforceKnownAlignment - If the specified pointer points to an object that
    878 /// we control, modify the object's alignment to PrefAlign. This isn't
    879 /// often possible though. If alignment is important, a more reliable approach
    880 /// is to simply align all global variables and allocation instructions to
    881 /// their preferred alignment from the beginning.
    882 ///
    883 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
    884                                       unsigned PrefAlign, const DataLayout *TD) {
    885   V = V->stripPointerCasts();
    886 
    887   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    888     // If the preferred alignment is greater than the natural stack alignment
    889     // then don't round up. This avoids dynamic stack realignment.
    890     if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
    891       return Align;
    892     // If there is a requested alignment and if this is an alloca, round up.
    893     if (AI->getAlignment() >= PrefAlign)
    894       return AI->getAlignment();
    895     AI->setAlignment(PrefAlign);
    896     return PrefAlign;
    897   }
    898 
    899   if (auto *GO = dyn_cast<GlobalObject>(V)) {
    900     // If there is a large requested alignment and we can, bump up the alignment
    901     // of the global.
    902     if (GO->isDeclaration())
    903       return Align;
    904     // If the memory we set aside for the global may not be the memory used by
    905     // the final program then it is impossible for us to reliably enforce the
    906     // preferred alignment.
    907     if (GO->isWeakForLinker())
    908       return Align;
    909 
    910     if (GO->getAlignment() >= PrefAlign)
    911       return GO->getAlignment();
    912     // We can only increase the alignment of the global if it has no alignment
    913     // specified or if it is not assigned a section.  If it is assigned a
    914     // section, the global could be densely packed with other objects in the
    915     // section, increasing the alignment could cause padding issues.
    916     if (!GO->hasSection() || GO->getAlignment() == 0)
    917       GO->setAlignment(PrefAlign);
    918     return GO->getAlignment();
    919   }
    920 
    921   return Align;
    922 }
    923 
    924 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    925 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    926 /// and it is more than the alignment of the ultimate object, see if we can
    927 /// increase the alignment of the ultimate object, making this check succeed.
    928 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    929                                           const DataLayout *DL) {
    930   assert(V->getType()->isPointerTy() &&
    931          "getOrEnforceKnownAlignment expects a pointer!");
    932   unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
    933 
    934   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    935   computeKnownBits(V, KnownZero, KnownOne, DL);
    936   unsigned TrailZ = KnownZero.countTrailingOnes();
    937 
    938   // Avoid trouble with ridiculously large TrailZ values, such as
    939   // those computed from a null pointer.
    940   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
    941 
    942   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
    943 
    944   // LLVM doesn't support alignments larger than this currently.
    945   Align = std::min(Align, +Value::MaximumAlignment);
    946 
    947   if (PrefAlign > Align)
    948     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
    949 
    950   // We don't need to make any adjustment.
    951   return Align;
    952 }
    953 
    954 ///===---------------------------------------------------------------------===//
    955 ///  Dbg Intrinsic utilities
    956 ///
    957 
    958 /// See if there is a dbg.value intrinsic for DIVar before I.
    959 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
    960   // Since we can't guarantee that the original dbg.declare instrinsic
    961   // is removed by LowerDbgDeclare(), we need to make sure that we are
    962   // not inserting the same dbg.value intrinsic over and over.
    963   llvm::BasicBlock::InstListType::iterator PrevI(I);
    964   if (PrevI != I->getParent()->getInstList().begin()) {
    965     --PrevI;
    966     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
    967       if (DVI->getValue() == I->getOperand(0) &&
    968           DVI->getOffset() == 0 &&
    969           DVI->getVariable() == DIVar)
    970         return true;
    971   }
    972   return false;
    973 }
    974 
    975 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    976 /// that has an associated llvm.dbg.decl intrinsic.
    977 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    978                                            StoreInst *SI, DIBuilder &Builder) {
    979   DIVariable DIVar(DDI->getVariable());
    980   assert((!DIVar || DIVar.isVariable()) &&
    981          "Variable in DbgDeclareInst should be either null or a DIVariable.");
    982   if (!DIVar)
    983     return false;
    984 
    985   if (LdStHasDebugValue(DIVar, SI))
    986     return true;
    987 
    988   Instruction *DbgVal = nullptr;
    989   // If an argument is zero extended then use argument directly. The ZExt
    990   // may be zapped by an optimization pass in future.
    991   Argument *ExtendedArg = nullptr;
    992   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    993     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
    994   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    995     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
    996   if (ExtendedArg)
    997     DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
    998   else
    999     DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
   1000   DbgVal->setDebugLoc(DDI->getDebugLoc());
   1001   return true;
   1002 }
   1003 
   1004 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
   1005 /// that has an associated llvm.dbg.decl intrinsic.
   1006 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
   1007                                            LoadInst *LI, DIBuilder &Builder) {
   1008   DIVariable DIVar(DDI->getVariable());
   1009   assert((!DIVar || DIVar.isVariable()) &&
   1010          "Variable in DbgDeclareInst should be either null or a DIVariable.");
   1011   if (!DIVar)
   1012     return false;
   1013 
   1014   if (LdStHasDebugValue(DIVar, LI))
   1015     return true;
   1016 
   1017   Instruction *DbgVal =
   1018     Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
   1019                                     DIVar, LI);
   1020   DbgVal->setDebugLoc(DDI->getDebugLoc());
   1021   return true;
   1022 }
   1023 
   1024 /// Determine whether this alloca is either a VLA or an array.
   1025 static bool isArray(AllocaInst *AI) {
   1026   return AI->isArrayAllocation() ||
   1027     AI->getType()->getElementType()->isArrayTy();
   1028 }
   1029 
   1030 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
   1031 /// of llvm.dbg.value intrinsics.
   1032 bool llvm::LowerDbgDeclare(Function &F) {
   1033   DIBuilder DIB(*F.getParent());
   1034   SmallVector<DbgDeclareInst *, 4> Dbgs;
   1035   for (auto &FI : F)
   1036     for (BasicBlock::iterator BI : FI)
   1037       if (auto DDI = dyn_cast<DbgDeclareInst>(BI))
   1038         Dbgs.push_back(DDI);
   1039 
   1040   if (Dbgs.empty())
   1041     return false;
   1042 
   1043   for (auto &I : Dbgs) {
   1044     DbgDeclareInst *DDI = I;
   1045     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
   1046     // If this is an alloca for a scalar variable, insert a dbg.value
   1047     // at each load and store to the alloca and erase the dbg.declare.
   1048     // The dbg.values allow tracking a variable even if it is not
   1049     // stored on the stack, while the dbg.declare can only describe
   1050     // the stack slot (and at a lexical-scope granularity). Later
   1051     // passes will attempt to elide the stack slot.
   1052     if (AI && !isArray(AI)) {
   1053       for (User *U : AI->users())
   1054         if (StoreInst *SI = dyn_cast<StoreInst>(U))
   1055           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1056         else if (LoadInst *LI = dyn_cast<LoadInst>(U))
   1057           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
   1058         else if (CallInst *CI = dyn_cast<CallInst>(U)) {
   1059 	  // This is a call by-value or some other instruction that
   1060 	  // takes a pointer to the variable. Insert a *value*
   1061 	  // intrinsic that describes the alloca.
   1062 	  auto DbgVal =
   1063 	    DIB.insertDbgValueIntrinsic(AI, 0,
   1064 					DIVariable(DDI->getVariable()), CI);
   1065 	  DbgVal->setDebugLoc(DDI->getDebugLoc());
   1066 	}
   1067       DDI->eraseFromParent();
   1068     }
   1069   }
   1070   return true;
   1071 }
   1072 
   1073 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
   1074 /// alloca 'V', if any.
   1075 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
   1076   if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
   1077     for (User *U : DebugNode->users())
   1078       if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
   1079         return DDI;
   1080 
   1081   return nullptr;
   1082 }
   1083 
   1084 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
   1085                                       DIBuilder &Builder) {
   1086   DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
   1087   if (!DDI)
   1088     return false;
   1089   DIVariable DIVar(DDI->getVariable());
   1090   assert((!DIVar || DIVar.isVariable()) &&
   1091          "Variable in DbgDeclareInst should be either null or a DIVariable.");
   1092   if (!DIVar)
   1093     return false;
   1094 
   1095   // Create a copy of the original DIDescriptor for user variable, appending
   1096   // "deref" operation to a list of address elements, as new llvm.dbg.declare
   1097   // will take a value storing address of the memory for variable, not
   1098   // alloca itself.
   1099   Type *Int64Ty = Type::getInt64Ty(AI->getContext());
   1100   SmallVector<Value*, 4> NewDIVarAddress;
   1101   if (DIVar.hasComplexAddress()) {
   1102     for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
   1103       NewDIVarAddress.push_back(
   1104           ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
   1105     }
   1106   }
   1107   NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
   1108   DIVariable NewDIVar = Builder.createComplexVariable(
   1109       DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
   1110       DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
   1111       NewDIVarAddress, DIVar.getArgNumber());
   1112 
   1113   // Insert llvm.dbg.declare in the same basic block as the original alloca,
   1114   // and remove old llvm.dbg.declare.
   1115   BasicBlock *BB = AI->getParent();
   1116   Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
   1117   DDI->eraseFromParent();
   1118   return true;
   1119 }
   1120 
   1121 /// changeToUnreachable - Insert an unreachable instruction before the specified
   1122 /// instruction, making it and the rest of the code in the block dead.
   1123 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
   1124   BasicBlock *BB = I->getParent();
   1125   // Loop over all of the successors, removing BB's entry from any PHI
   1126   // nodes.
   1127   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1128     (*SI)->removePredecessor(BB);
   1129 
   1130   // Insert a call to llvm.trap right before this.  This turns the undefined
   1131   // behavior into a hard fail instead of falling through into random code.
   1132   if (UseLLVMTrap) {
   1133     Function *TrapFn =
   1134       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
   1135     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
   1136     CallTrap->setDebugLoc(I->getDebugLoc());
   1137   }
   1138   new UnreachableInst(I->getContext(), I);
   1139 
   1140   // All instructions after this are dead.
   1141   BasicBlock::iterator BBI = I, BBE = BB->end();
   1142   while (BBI != BBE) {
   1143     if (!BBI->use_empty())
   1144       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   1145     BB->getInstList().erase(BBI++);
   1146   }
   1147 }
   1148 
   1149 /// changeToCall - Convert the specified invoke into a normal call.
   1150 static void changeToCall(InvokeInst *II) {
   1151   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   1152   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
   1153   NewCall->takeName(II);
   1154   NewCall->setCallingConv(II->getCallingConv());
   1155   NewCall->setAttributes(II->getAttributes());
   1156   NewCall->setDebugLoc(II->getDebugLoc());
   1157   II->replaceAllUsesWith(NewCall);
   1158 
   1159   // Follow the call by a branch to the normal destination.
   1160   BranchInst::Create(II->getNormalDest(), II);
   1161 
   1162   // Update PHI nodes in the unwind destination
   1163   II->getUnwindDest()->removePredecessor(II->getParent());
   1164   II->eraseFromParent();
   1165 }
   1166 
   1167 static bool markAliveBlocks(BasicBlock *BB,
   1168                             SmallPtrSet<BasicBlock*, 128> &Reachable) {
   1169 
   1170   SmallVector<BasicBlock*, 128> Worklist;
   1171   Worklist.push_back(BB);
   1172   Reachable.insert(BB);
   1173   bool Changed = false;
   1174   do {
   1175     BB = Worklist.pop_back_val();
   1176 
   1177     // Do a quick scan of the basic block, turning any obviously unreachable
   1178     // instructions into LLVM unreachable insts.  The instruction combining pass
   1179     // canonicalizes unreachable insts into stores to null or undef.
   1180     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
   1181       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
   1182         if (CI->doesNotReturn()) {
   1183           // If we found a call to a no-return function, insert an unreachable
   1184           // instruction after it.  Make sure there isn't *already* one there
   1185           // though.
   1186           ++BBI;
   1187           if (!isa<UnreachableInst>(BBI)) {
   1188             // Don't insert a call to llvm.trap right before the unreachable.
   1189             changeToUnreachable(BBI, false);
   1190             Changed = true;
   1191           }
   1192           break;
   1193         }
   1194       }
   1195 
   1196       // Store to undef and store to null are undefined and used to signal that
   1197       // they should be changed to unreachable by passes that can't modify the
   1198       // CFG.
   1199       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   1200         // Don't touch volatile stores.
   1201         if (SI->isVolatile()) continue;
   1202 
   1203         Value *Ptr = SI->getOperand(1);
   1204 
   1205         if (isa<UndefValue>(Ptr) ||
   1206             (isa<ConstantPointerNull>(Ptr) &&
   1207              SI->getPointerAddressSpace() == 0)) {
   1208           changeToUnreachable(SI, true);
   1209           Changed = true;
   1210           break;
   1211         }
   1212       }
   1213     }
   1214 
   1215     // Turn invokes that call 'nounwind' functions into ordinary calls.
   1216     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
   1217       Value *Callee = II->getCalledValue();
   1218       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
   1219         changeToUnreachable(II, true);
   1220         Changed = true;
   1221       } else if (II->doesNotThrow()) {
   1222         if (II->use_empty() && II->onlyReadsMemory()) {
   1223           // jump to the normal destination branch.
   1224           BranchInst::Create(II->getNormalDest(), II);
   1225           II->getUnwindDest()->removePredecessor(II->getParent());
   1226           II->eraseFromParent();
   1227         } else
   1228           changeToCall(II);
   1229         Changed = true;
   1230       }
   1231     }
   1232 
   1233     Changed |= ConstantFoldTerminator(BB, true);
   1234     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1235       if (Reachable.insert(*SI))
   1236         Worklist.push_back(*SI);
   1237   } while (!Worklist.empty());
   1238   return Changed;
   1239 }
   1240 
   1241 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
   1242 /// if they are in a dead cycle.  Return true if a change was made, false
   1243 /// otherwise.
   1244 bool llvm::removeUnreachableBlocks(Function &F) {
   1245   SmallPtrSet<BasicBlock*, 128> Reachable;
   1246   bool Changed = markAliveBlocks(F.begin(), Reachable);
   1247 
   1248   // If there are unreachable blocks in the CFG...
   1249   if (Reachable.size() == F.size())
   1250     return Changed;
   1251 
   1252   assert(Reachable.size() < F.size());
   1253   NumRemoved += F.size()-Reachable.size();
   1254 
   1255   // Loop over all of the basic blocks that are not reachable, dropping all of
   1256   // their internal references...
   1257   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
   1258     if (Reachable.count(BB))
   1259       continue;
   1260 
   1261     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1262       if (Reachable.count(*SI))
   1263         (*SI)->removePredecessor(BB);
   1264     BB->dropAllReferences();
   1265   }
   1266 
   1267   for (Function::iterator I = ++F.begin(); I != F.end();)
   1268     if (!Reachable.count(I))
   1269       I = F.getBasicBlockList().erase(I);
   1270     else
   1271       ++I;
   1272 
   1273   return true;
   1274 }
   1275