Home | History | Annotate | Download | only in IPO
      1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for equivalent functions that are mergable and folds them.
     11 //
     12 // Order relation is defined on set of functions. It was made through
     13 // special function comparison procedure that returns
     14 // 0 when functions are equal,
     15 // -1 when Left function is less than right function, and
     16 // 1 for opposite case. We need total-ordering, so we need to maintain
     17 // four properties on the functions set:
     18 // a <= a (reflexivity)
     19 // if a <= b and b <= a then a = b (antisymmetry)
     20 // if a <= b and b <= c then a <= c (transitivity).
     21 // for all a and b: a <= b or b <= a (totality).
     22 //
     23 // Comparison iterates through each instruction in each basic block.
     24 // Functions are kept on binary tree. For each new function F we perform
     25 // lookup in binary tree.
     26 // In practice it works the following way:
     27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
     28 // -- "FunctionPtr" instances are stored in std::set collection, so every
     29 //    std::set::insert operation will give you result in log(N) time.
     30 //
     31 // When a match is found the functions are folded. If both functions are
     32 // overridable, we move the functionality into a new internal function and
     33 // leave two overridable thunks to it.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 //
     37 // Future work:
     38 //
     39 // * virtual functions.
     40 //
     41 // Many functions have their address taken by the virtual function table for
     42 // the object they belong to. However, as long as it's only used for a lookup
     43 // and call, this is irrelevant, and we'd like to fold such functions.
     44 //
     45 // * be smarter about bitcasts.
     46 //
     47 // In order to fold functions, we will sometimes add either bitcast instructions
     48 // or bitcast constant expressions. Unfortunately, this can confound further
     49 // analysis since the two functions differ where one has a bitcast and the
     50 // other doesn't. We should learn to look through bitcasts.
     51 //
     52 // * Compare complex types with pointer types inside.
     53 // * Compare cross-reference cases.
     54 // * Compare complex expressions.
     55 //
     56 // All the three issues above could be described as ability to prove that
     57 // fA == fB == fC == fE == fF == fG in example below:
     58 //
     59 //  void fA() {
     60 //    fB();
     61 //  }
     62 //  void fB() {
     63 //    fA();
     64 //  }
     65 //
     66 //  void fE() {
     67 //    fF();
     68 //  }
     69 //  void fF() {
     70 //    fG();
     71 //  }
     72 //  void fG() {
     73 //    fE();
     74 //  }
     75 //
     76 // Simplest cross-reference case (fA <--> fB) was implemented in previous
     77 // versions of MergeFunctions, though it presented only in two function pairs
     78 // in test-suite (that counts >50k functions)
     79 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
     80 // could cover much more cases.
     81 //
     82 //===----------------------------------------------------------------------===//
     83 
     84 #include "llvm/Transforms/IPO.h"
     85 #include "llvm/ADT/DenseSet.h"
     86 #include "llvm/ADT/FoldingSet.h"
     87 #include "llvm/ADT/STLExtras.h"
     88 #include "llvm/ADT/SmallSet.h"
     89 #include "llvm/ADT/Statistic.h"
     90 #include "llvm/IR/CallSite.h"
     91 #include "llvm/IR/Constants.h"
     92 #include "llvm/IR/DataLayout.h"
     93 #include "llvm/IR/IRBuilder.h"
     94 #include "llvm/IR/InlineAsm.h"
     95 #include "llvm/IR/Instructions.h"
     96 #include "llvm/IR/LLVMContext.h"
     97 #include "llvm/IR/Module.h"
     98 #include "llvm/IR/Operator.h"
     99 #include "llvm/IR/ValueHandle.h"
    100 #include "llvm/Pass.h"
    101 #include "llvm/Support/CommandLine.h"
    102 #include "llvm/Support/Debug.h"
    103 #include "llvm/Support/ErrorHandling.h"
    104 #include "llvm/Support/raw_ostream.h"
    105 #include <vector>
    106 using namespace llvm;
    107 
    108 #define DEBUG_TYPE "mergefunc"
    109 
    110 STATISTIC(NumFunctionsMerged, "Number of functions merged");
    111 STATISTIC(NumThunksWritten, "Number of thunks generated");
    112 STATISTIC(NumAliasesWritten, "Number of aliases generated");
    113 STATISTIC(NumDoubleWeak, "Number of new functions created");
    114 
    115 static cl::opt<unsigned> NumFunctionsForSanityCheck(
    116     "mergefunc-sanity",
    117     cl::desc("How many functions in module could be used for "
    118              "MergeFunctions pass sanity check. "
    119              "'0' disables this check. Works only with '-debug' key."),
    120     cl::init(0), cl::Hidden);
    121 
    122 namespace {
    123 
    124 /// FunctionComparator - Compares two functions to determine whether or not
    125 /// they will generate machine code with the same behaviour. DataLayout is
    126 /// used if available. The comparator always fails conservatively (erring on the
    127 /// side of claiming that two functions are different).
    128 class FunctionComparator {
    129 public:
    130   FunctionComparator(const DataLayout *DL, const Function *F1,
    131                      const Function *F2)
    132       : FnL(F1), FnR(F2), DL(DL) {}
    133 
    134   /// Test whether the two functions have equivalent behaviour.
    135   int compare();
    136 
    137 private:
    138   /// Test whether two basic blocks have equivalent behaviour.
    139   int compare(const BasicBlock *BBL, const BasicBlock *BBR);
    140 
    141   /// Constants comparison.
    142   /// Its analog to lexicographical comparison between hypothetical numbers
    143   /// of next format:
    144   /// <bitcastability-trait><raw-bit-contents>
    145   ///
    146   /// 1. Bitcastability.
    147   /// Check whether L's type could be losslessly bitcasted to R's type.
    148   /// On this stage method, in case when lossless bitcast is not possible
    149   /// method returns -1 or 1, thus also defining which type is greater in
    150   /// context of bitcastability.
    151   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
    152   ///          to the contents comparison.
    153   ///          If types differ, remember types comparison result and check
    154   ///          whether we still can bitcast types.
    155   /// Stage 1: Types that satisfies isFirstClassType conditions are always
    156   ///          greater then others.
    157   /// Stage 2: Vector is greater then non-vector.
    158   ///          If both types are vectors, then vector with greater bitwidth is
    159   ///          greater.
    160   ///          If both types are vectors with the same bitwidth, then types
    161   ///          are bitcastable, and we can skip other stages, and go to contents
    162   ///          comparison.
    163   /// Stage 3: Pointer types are greater than non-pointers. If both types are
    164   ///          pointers of the same address space - go to contents comparison.
    165   ///          Different address spaces: pointer with greater address space is
    166   ///          greater.
    167   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
    168   ///          We don't know how to bitcast them. So, we better don't do it,
    169   ///          and return types comparison result (so it determines the
    170   ///          relationship among constants we don't know how to bitcast).
    171   ///
    172   /// Just for clearance, let's see how the set of constants could look
    173   /// on single dimension axis:
    174   ///
    175   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
    176   /// Where: NFCT - Not a FirstClassType
    177   ///        FCT - FirstClassTyp:
    178   ///
    179   /// 2. Compare raw contents.
    180   /// It ignores types on this stage and only compares bits from L and R.
    181   /// Returns 0, if L and R has equivalent contents.
    182   /// -1 or 1 if values are different.
    183   /// Pretty trivial:
    184   /// 2.1. If contents are numbers, compare numbers.
    185   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
    186   ///    compared by their contents.
    187   /// 2.2. "And so on". Just to avoid discrepancies with comments
    188   /// perhaps it would be better to read the implementation itself.
    189   /// 3. And again about overall picture. Let's look back at how the ordered set
    190   /// of constants will look like:
    191   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
    192   ///
    193   /// Now look, what could be inside [FCT, "others"], for example:
    194   /// [FCT, "others"] =
    195   /// [
    196   ///   [double 0.1], [double 1.23],
    197   ///   [i32 1], [i32 2],
    198   ///   { double 1.0 },       ; StructTyID, NumElements = 1
    199   ///   { i32 1 },            ; StructTyID, NumElements = 1
    200   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
    201   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
    202   /// ]
    203   ///
    204   /// Let's explain the order. Float numbers will be less than integers, just
    205   /// because of cmpType terms: FloatTyID < IntegerTyID.
    206   /// Floats (with same fltSemantics) are sorted according to their value.
    207   /// Then you can see integers, and they are, like a floats,
    208   /// could be easy sorted among each others.
    209   /// The structures. Structures are grouped at the tail, again because of their
    210   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
    211   /// Structures with greater number of elements are greater. Structures with
    212   /// greater elements going first are greater.
    213   /// The same logic with vectors, arrays and other possible complex types.
    214   ///
    215   /// Bitcastable constants.
    216   /// Let's assume, that some constant, belongs to some group of
    217   /// "so-called-equal" values with different types, and at the same time
    218   /// belongs to another group of constants with equal types
    219   /// and "really" equal values.
    220   ///
    221   /// Now, prove that this is impossible:
    222   ///
    223   /// If constant A with type TyA is bitcastable to B with type TyB, then:
    224   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
    225   ///    those should be vectors (if TyA is vector), pointers
    226   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
    227   ///    be equal to TyB.
    228   /// 2. All constants with non-equal, but bitcastable types to TyA, are
    229   ///    bitcastable to B.
    230   ///    Once again, just because we allow it to vectors and pointers only.
    231   ///    This statement could be expanded as below:
    232   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
    233   ///      vector B, and thus bitcastable to B as well.
    234   /// 2.2. All pointers of the same address space, no matter what they point to,
    235   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
    236   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
    237   /// QED.
    238   ///
    239   /// In another words, for pointers and vectors, we ignore top-level type and
    240   /// look at their particular properties (bit-width for vectors, and
    241   /// address space for pointers).
    242   /// If these properties are equal - compare their contents.
    243   int cmpConstants(const Constant *L, const Constant *R);
    244 
    245   /// Assign or look up previously assigned numbers for the two values, and
    246   /// return whether the numbers are equal. Numbers are assigned in the order
    247   /// visited.
    248   /// Comparison order:
    249   /// Stage 0: Value that is function itself is always greater then others.
    250   ///          If left and right values are references to their functions, then
    251   ///          they are equal.
    252   /// Stage 1: Constants are greater than non-constants.
    253   ///          If both left and right are constants, then the result of
    254   ///          cmpConstants is used as cmpValues result.
    255   /// Stage 2: InlineAsm instances are greater than others. If both left and
    256   ///          right are InlineAsm instances, InlineAsm* pointers casted to
    257   ///          integers and compared as numbers.
    258   /// Stage 3: For all other cases we compare order we meet these values in
    259   ///          their functions. If right value was met first during scanning,
    260   ///          then left value is greater.
    261   ///          In another words, we compare serial numbers, for more details
    262   ///          see comments for sn_mapL and sn_mapR.
    263   int cmpValues(const Value *L, const Value *R);
    264 
    265   /// Compare two Instructions for equivalence, similar to
    266   /// Instruction::isSameOperationAs but with modifications to the type
    267   /// comparison.
    268   /// Stages are listed in "most significant stage first" order:
    269   /// On each stage below, we do comparison between some left and right
    270   /// operation parts. If parts are non-equal, we assign parts comparison
    271   /// result to the operation comparison result and exit from method.
    272   /// Otherwise we proceed to the next stage.
    273   /// Stages:
    274   /// 1. Operations opcodes. Compared as numbers.
    275   /// 2. Number of operands.
    276   /// 3. Operation types. Compared with cmpType method.
    277   /// 4. Compare operation subclass optional data as stream of bytes:
    278   /// just convert it to integers and call cmpNumbers.
    279   /// 5. Compare in operation operand types with cmpType in
    280   /// most significant operand first order.
    281   /// 6. Last stage. Check operations for some specific attributes.
    282   /// For example, for Load it would be:
    283   /// 6.1.Load: volatile (as boolean flag)
    284   /// 6.2.Load: alignment (as integer numbers)
    285   /// 6.3.Load: synch-scope (as integer numbers)
    286   /// 6.4.Load: range metadata (as integer numbers)
    287   /// On this stage its better to see the code, since its not more than 10-15
    288   /// strings for particular instruction, and could change sometimes.
    289   int cmpOperation(const Instruction *L, const Instruction *R) const;
    290 
    291   /// Compare two GEPs for equivalent pointer arithmetic.
    292   /// Parts to be compared for each comparison stage,
    293   /// most significant stage first:
    294   /// 1. Address space. As numbers.
    295   /// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
    296   /// using GEPOperator::accumulateConstantOffset method).
    297   /// 3. Pointer operand type (using cmpType method).
    298   /// 4. Number of operands.
    299   /// 5. Compare operands, using cmpValues method.
    300   int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
    301   int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
    302     return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
    303   }
    304 
    305   /// cmpType - compares two types,
    306   /// defines total ordering among the types set.
    307   ///
    308   /// Return values:
    309   /// 0 if types are equal,
    310   /// -1 if Left is less than Right,
    311   /// +1 if Left is greater than Right.
    312   ///
    313   /// Description:
    314   /// Comparison is broken onto stages. Like in lexicographical comparison
    315   /// stage coming first has higher priority.
    316   /// On each explanation stage keep in mind total ordering properties.
    317   ///
    318   /// 0. Before comparison we coerce pointer types of 0 address space to
    319   /// integer.
    320   /// We also don't bother with same type at left and right, so
    321   /// just return 0 in this case.
    322   ///
    323   /// 1. If types are of different kind (different type IDs).
    324   ///    Return result of type IDs comparison, treating them as numbers.
    325   /// 2. If types are vectors or integers, compare Type* values as numbers.
    326   /// 3. Types has same ID, so check whether they belongs to the next group:
    327   /// * Void
    328   /// * Float
    329   /// * Double
    330   /// * X86_FP80
    331   /// * FP128
    332   /// * PPC_FP128
    333   /// * Label
    334   /// * Metadata
    335   /// If so - return 0, yes - we can treat these types as equal only because
    336   /// their IDs are same.
    337   /// 4. If Left and Right are pointers, return result of address space
    338   /// comparison (numbers comparison). We can treat pointer types of same
    339   /// address space as equal.
    340   /// 5. If types are complex.
    341   /// Then both Left and Right are to be expanded and their element types will
    342   /// be checked with the same way. If we get Res != 0 on some stage, return it.
    343   /// Otherwise return 0.
    344   /// 6. For all other cases put llvm_unreachable.
    345   int cmpType(Type *TyL, Type *TyR) const;
    346 
    347   int cmpNumbers(uint64_t L, uint64_t R) const;
    348 
    349   int cmpAPInt(const APInt &L, const APInt &R) const;
    350   int cmpAPFloat(const APFloat &L, const APFloat &R) const;
    351   int cmpStrings(StringRef L, StringRef R) const;
    352   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
    353 
    354   // The two functions undergoing comparison.
    355   const Function *FnL, *FnR;
    356 
    357   const DataLayout *DL;
    358 
    359   /// Assign serial numbers to values from left function, and values from
    360   /// right function.
    361   /// Explanation:
    362   /// Being comparing functions we need to compare values we meet at left and
    363   /// right sides.
    364   /// Its easy to sort things out for external values. It just should be
    365   /// the same value at left and right.
    366   /// But for local values (those were introduced inside function body)
    367   /// we have to ensure they were introduced at exactly the same place,
    368   /// and plays the same role.
    369   /// Let's assign serial number to each value when we meet it first time.
    370   /// Values that were met at same place will be with same serial numbers.
    371   /// In this case it would be good to explain few points about values assigned
    372   /// to BBs and other ways of implementation (see below).
    373   ///
    374   /// 1. Safety of BB reordering.
    375   /// It's safe to change the order of BasicBlocks in function.
    376   /// Relationship with other functions and serial numbering will not be
    377   /// changed in this case.
    378   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
    379   /// from the entry, and then take each terminator. So it doesn't matter how in
    380   /// fact BBs are ordered in function. And since cmpValues are called during
    381   /// this walk, the numbering depends only on how BBs located inside the CFG.
    382   /// So the answer is - yes. We will get the same numbering.
    383   ///
    384   /// 2. Impossibility to use dominance properties of values.
    385   /// If we compare two instruction operands: first is usage of local
    386   /// variable AL from function FL, and second is usage of local variable AR
    387   /// from FR, we could compare their origins and check whether they are
    388   /// defined at the same place.
    389   /// But, we are still not able to compare operands of PHI nodes, since those
    390   /// could be operands from further BBs we didn't scan yet.
    391   /// So it's impossible to use dominance properties in general.
    392   DenseMap<const Value*, int> sn_mapL, sn_mapR;
    393 };
    394 
    395 class FunctionPtr {
    396   AssertingVH<Function> F;
    397   const DataLayout *DL;
    398 
    399 public:
    400   FunctionPtr(Function *F, const DataLayout *DL) : F(F), DL(DL) {}
    401   Function *getFunc() const { return F; }
    402   void release() { F = 0; }
    403   bool operator<(const FunctionPtr &RHS) const {
    404     return (FunctionComparator(DL, F, RHS.getFunc()).compare()) == -1;
    405   }
    406 };
    407 }
    408 
    409 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
    410   if (L < R) return -1;
    411   if (L > R) return 1;
    412   return 0;
    413 }
    414 
    415 int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
    416   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
    417     return Res;
    418   if (L.ugt(R)) return 1;
    419   if (R.ugt(L)) return -1;
    420   return 0;
    421 }
    422 
    423 int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
    424   if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
    425                            (uint64_t)&R.getSemantics()))
    426     return Res;
    427   return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
    428 }
    429 
    430 int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
    431   // Prevent heavy comparison, compare sizes first.
    432   if (int Res = cmpNumbers(L.size(), R.size()))
    433     return Res;
    434 
    435   // Compare strings lexicographically only when it is necessary: only when
    436   // strings are equal in size.
    437   return L.compare(R);
    438 }
    439 
    440 int FunctionComparator::cmpAttrs(const AttributeSet L,
    441                                  const AttributeSet R) const {
    442   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
    443     return Res;
    444 
    445   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
    446     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
    447                            RE = R.end(i);
    448     for (; LI != LE && RI != RE; ++LI, ++RI) {
    449       Attribute LA = *LI;
    450       Attribute RA = *RI;
    451       if (LA < RA)
    452         return -1;
    453       if (RA < LA)
    454         return 1;
    455     }
    456     if (LI != LE)
    457       return 1;
    458     if (RI != RE)
    459       return -1;
    460   }
    461   return 0;
    462 }
    463 
    464 /// Constants comparison:
    465 /// 1. Check whether type of L constant could be losslessly bitcasted to R
    466 /// type.
    467 /// 2. Compare constant contents.
    468 /// For more details see declaration comments.
    469 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
    470 
    471   Type *TyL = L->getType();
    472   Type *TyR = R->getType();
    473 
    474   // Check whether types are bitcastable. This part is just re-factored
    475   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
    476   // we also pack into result which type is "less" for us.
    477   int TypesRes = cmpType(TyL, TyR);
    478   if (TypesRes != 0) {
    479     // Types are different, but check whether we can bitcast them.
    480     if (!TyL->isFirstClassType()) {
    481       if (TyR->isFirstClassType())
    482         return -1;
    483       // Neither TyL nor TyR are values of first class type. Return the result
    484       // of comparing the types
    485       return TypesRes;
    486     }
    487     if (!TyR->isFirstClassType()) {
    488       if (TyL->isFirstClassType())
    489         return 1;
    490       return TypesRes;
    491     }
    492 
    493     // Vector -> Vector conversions are always lossless if the two vector types
    494     // have the same size, otherwise not.
    495     unsigned TyLWidth = 0;
    496     unsigned TyRWidth = 0;
    497 
    498     if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
    499       TyLWidth = VecTyL->getBitWidth();
    500     if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
    501       TyRWidth = VecTyR->getBitWidth();
    502 
    503     if (TyLWidth != TyRWidth)
    504       return cmpNumbers(TyLWidth, TyRWidth);
    505 
    506     // Zero bit-width means neither TyL nor TyR are vectors.
    507     if (!TyLWidth) {
    508       PointerType *PTyL = dyn_cast<PointerType>(TyL);
    509       PointerType *PTyR = dyn_cast<PointerType>(TyR);
    510       if (PTyL && PTyR) {
    511         unsigned AddrSpaceL = PTyL->getAddressSpace();
    512         unsigned AddrSpaceR = PTyR->getAddressSpace();
    513         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
    514           return Res;
    515       }
    516       if (PTyL)
    517         return 1;
    518       if (PTyR)
    519         return -1;
    520 
    521       // TyL and TyR aren't vectors, nor pointers. We don't know how to
    522       // bitcast them.
    523       return TypesRes;
    524     }
    525   }
    526 
    527   // OK, types are bitcastable, now check constant contents.
    528 
    529   if (L->isNullValue() && R->isNullValue())
    530     return TypesRes;
    531   if (L->isNullValue() && !R->isNullValue())
    532     return 1;
    533   if (!L->isNullValue() && R->isNullValue())
    534     return -1;
    535 
    536   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
    537     return Res;
    538 
    539   switch (L->getValueID()) {
    540   case Value::UndefValueVal: return TypesRes;
    541   case Value::ConstantIntVal: {
    542     const APInt &LInt = cast<ConstantInt>(L)->getValue();
    543     const APInt &RInt = cast<ConstantInt>(R)->getValue();
    544     return cmpAPInt(LInt, RInt);
    545   }
    546   case Value::ConstantFPVal: {
    547     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
    548     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
    549     return cmpAPFloat(LAPF, RAPF);
    550   }
    551   case Value::ConstantArrayVal: {
    552     const ConstantArray *LA = cast<ConstantArray>(L);
    553     const ConstantArray *RA = cast<ConstantArray>(R);
    554     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
    555     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
    556     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    557       return Res;
    558     for (uint64_t i = 0; i < NumElementsL; ++i) {
    559       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
    560                                  cast<Constant>(RA->getOperand(i))))
    561         return Res;
    562     }
    563     return 0;
    564   }
    565   case Value::ConstantStructVal: {
    566     const ConstantStruct *LS = cast<ConstantStruct>(L);
    567     const ConstantStruct *RS = cast<ConstantStruct>(R);
    568     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
    569     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
    570     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    571       return Res;
    572     for (unsigned i = 0; i != NumElementsL; ++i) {
    573       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
    574                                  cast<Constant>(RS->getOperand(i))))
    575         return Res;
    576     }
    577     return 0;
    578   }
    579   case Value::ConstantVectorVal: {
    580     const ConstantVector *LV = cast<ConstantVector>(L);
    581     const ConstantVector *RV = cast<ConstantVector>(R);
    582     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
    583     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
    584     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    585       return Res;
    586     for (uint64_t i = 0; i < NumElementsL; ++i) {
    587       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
    588                                  cast<Constant>(RV->getOperand(i))))
    589         return Res;
    590     }
    591     return 0;
    592   }
    593   case Value::ConstantExprVal: {
    594     const ConstantExpr *LE = cast<ConstantExpr>(L);
    595     const ConstantExpr *RE = cast<ConstantExpr>(R);
    596     unsigned NumOperandsL = LE->getNumOperands();
    597     unsigned NumOperandsR = RE->getNumOperands();
    598     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
    599       return Res;
    600     for (unsigned i = 0; i < NumOperandsL; ++i) {
    601       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
    602                                  cast<Constant>(RE->getOperand(i))))
    603         return Res;
    604     }
    605     return 0;
    606   }
    607   case Value::FunctionVal:
    608   case Value::GlobalVariableVal:
    609   case Value::GlobalAliasVal:
    610   default: // Unknown constant, cast L and R pointers to numbers and compare.
    611     return cmpNumbers((uint64_t)L, (uint64_t)R);
    612   }
    613 }
    614 
    615 /// cmpType - compares two types,
    616 /// defines total ordering among the types set.
    617 /// See method declaration comments for more details.
    618 int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
    619 
    620   PointerType *PTyL = dyn_cast<PointerType>(TyL);
    621   PointerType *PTyR = dyn_cast<PointerType>(TyR);
    622 
    623   if (DL) {
    624     if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
    625     if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
    626   }
    627 
    628   if (TyL == TyR)
    629     return 0;
    630 
    631   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
    632     return Res;
    633 
    634   switch (TyL->getTypeID()) {
    635   default:
    636     llvm_unreachable("Unknown type!");
    637     // Fall through in Release mode.
    638   case Type::IntegerTyID:
    639   case Type::VectorTyID:
    640     // TyL == TyR would have returned true earlier.
    641     return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
    642 
    643   case Type::VoidTyID:
    644   case Type::FloatTyID:
    645   case Type::DoubleTyID:
    646   case Type::X86_FP80TyID:
    647   case Type::FP128TyID:
    648   case Type::PPC_FP128TyID:
    649   case Type::LabelTyID:
    650   case Type::MetadataTyID:
    651     return 0;
    652 
    653   case Type::PointerTyID: {
    654     assert(PTyL && PTyR && "Both types must be pointers here.");
    655     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
    656   }
    657 
    658   case Type::StructTyID: {
    659     StructType *STyL = cast<StructType>(TyL);
    660     StructType *STyR = cast<StructType>(TyR);
    661     if (STyL->getNumElements() != STyR->getNumElements())
    662       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
    663 
    664     if (STyL->isPacked() != STyR->isPacked())
    665       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
    666 
    667     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
    668       if (int Res = cmpType(STyL->getElementType(i),
    669                             STyR->getElementType(i)))
    670         return Res;
    671     }
    672     return 0;
    673   }
    674 
    675   case Type::FunctionTyID: {
    676     FunctionType *FTyL = cast<FunctionType>(TyL);
    677     FunctionType *FTyR = cast<FunctionType>(TyR);
    678     if (FTyL->getNumParams() != FTyR->getNumParams())
    679       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
    680 
    681     if (FTyL->isVarArg() != FTyR->isVarArg())
    682       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
    683 
    684     if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
    685       return Res;
    686 
    687     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
    688       if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
    689         return Res;
    690     }
    691     return 0;
    692   }
    693 
    694   case Type::ArrayTyID: {
    695     ArrayType *ATyL = cast<ArrayType>(TyL);
    696     ArrayType *ATyR = cast<ArrayType>(TyR);
    697     if (ATyL->getNumElements() != ATyR->getNumElements())
    698       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
    699     return cmpType(ATyL->getElementType(), ATyR->getElementType());
    700   }
    701   }
    702 }
    703 
    704 // Determine whether the two operations are the same except that pointer-to-A
    705 // and pointer-to-B are equivalent. This should be kept in sync with
    706 // Instruction::isSameOperationAs.
    707 // Read method declaration comments for more details.
    708 int FunctionComparator::cmpOperation(const Instruction *L,
    709                                      const Instruction *R) const {
    710   // Differences from Instruction::isSameOperationAs:
    711   //  * replace type comparison with calls to isEquivalentType.
    712   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
    713   //  * because of the above, we don't test for the tail bit on calls later on
    714   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
    715     return Res;
    716 
    717   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    718     return Res;
    719 
    720   if (int Res = cmpType(L->getType(), R->getType()))
    721     return Res;
    722 
    723   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
    724                            R->getRawSubclassOptionalData()))
    725     return Res;
    726 
    727   // We have two instructions of identical opcode and #operands.  Check to see
    728   // if all operands are the same type
    729   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
    730     if (int Res =
    731             cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
    732       return Res;
    733   }
    734 
    735   // Check special state that is a part of some instructions.
    736   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
    737     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
    738       return Res;
    739     if (int Res =
    740             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
    741       return Res;
    742     if (int Res =
    743             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
    744       return Res;
    745     if (int Res =
    746             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
    747       return Res;
    748     return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
    749                       (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
    750   }
    751   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
    752     if (int Res =
    753             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
    754       return Res;
    755     if (int Res =
    756             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
    757       return Res;
    758     if (int Res =
    759             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
    760       return Res;
    761     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
    762   }
    763   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
    764     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
    765   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
    766     if (int Res = cmpNumbers(CI->getCallingConv(),
    767                              cast<CallInst>(R)->getCallingConv()))
    768       return Res;
    769     return cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes());
    770   }
    771   if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
    772     if (int Res = cmpNumbers(CI->getCallingConv(),
    773                              cast<InvokeInst>(R)->getCallingConv()))
    774       return Res;
    775     return cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes());
    776   }
    777   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
    778     ArrayRef<unsigned> LIndices = IVI->getIndices();
    779     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
    780     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
    781       return Res;
    782     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
    783       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
    784         return Res;
    785     }
    786   }
    787   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
    788     ArrayRef<unsigned> LIndices = EVI->getIndices();
    789     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
    790     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
    791       return Res;
    792     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
    793       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
    794         return Res;
    795     }
    796   }
    797   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
    798     if (int Res =
    799             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
    800       return Res;
    801     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
    802   }
    803 
    804   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
    805     if (int Res = cmpNumbers(CXI->isVolatile(),
    806                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
    807       return Res;
    808     if (int Res = cmpNumbers(CXI->isWeak(),
    809                              cast<AtomicCmpXchgInst>(R)->isWeak()))
    810       return Res;
    811     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
    812                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
    813       return Res;
    814     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
    815                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
    816       return Res;
    817     return cmpNumbers(CXI->getSynchScope(),
    818                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
    819   }
    820   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
    821     if (int Res = cmpNumbers(RMWI->getOperation(),
    822                              cast<AtomicRMWInst>(R)->getOperation()))
    823       return Res;
    824     if (int Res = cmpNumbers(RMWI->isVolatile(),
    825                              cast<AtomicRMWInst>(R)->isVolatile()))
    826       return Res;
    827     if (int Res = cmpNumbers(RMWI->getOrdering(),
    828                              cast<AtomicRMWInst>(R)->getOrdering()))
    829       return Res;
    830     return cmpNumbers(RMWI->getSynchScope(),
    831                       cast<AtomicRMWInst>(R)->getSynchScope());
    832   }
    833   return 0;
    834 }
    835 
    836 // Determine whether two GEP operations perform the same underlying arithmetic.
    837 // Read method declaration comments for more details.
    838 int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
    839                                const GEPOperator *GEPR) {
    840 
    841   unsigned int ASL = GEPL->getPointerAddressSpace();
    842   unsigned int ASR = GEPR->getPointerAddressSpace();
    843 
    844   if (int Res = cmpNumbers(ASL, ASR))
    845     return Res;
    846 
    847   // When we have target data, we can reduce the GEP down to the value in bytes
    848   // added to the address.
    849   if (DL) {
    850     unsigned BitWidth = DL->getPointerSizeInBits(ASL);
    851     APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
    852     if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
    853         GEPR->accumulateConstantOffset(*DL, OffsetR))
    854       return cmpAPInt(OffsetL, OffsetR);
    855   }
    856 
    857   if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
    858                            (uint64_t)GEPR->getPointerOperand()->getType()))
    859     return Res;
    860 
    861   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
    862     return Res;
    863 
    864   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
    865     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
    866       return Res;
    867   }
    868 
    869   return 0;
    870 }
    871 
    872 /// Compare two values used by the two functions under pair-wise comparison. If
    873 /// this is the first time the values are seen, they're added to the mapping so
    874 /// that we will detect mismatches on next use.
    875 /// See comments in declaration for more details.
    876 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
    877   // Catch self-reference case.
    878   if (L == FnL) {
    879     if (R == FnR)
    880       return 0;
    881     return -1;
    882   }
    883   if (R == FnR) {
    884     if (L == FnL)
    885       return 0;
    886     return 1;
    887   }
    888 
    889   const Constant *ConstL = dyn_cast<Constant>(L);
    890   const Constant *ConstR = dyn_cast<Constant>(R);
    891   if (ConstL && ConstR) {
    892     if (L == R)
    893       return 0;
    894     return cmpConstants(ConstL, ConstR);
    895   }
    896 
    897   if (ConstL)
    898     return 1;
    899   if (ConstR)
    900     return -1;
    901 
    902   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
    903   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
    904 
    905   if (InlineAsmL && InlineAsmR)
    906     return cmpNumbers((uint64_t)L, (uint64_t)R);
    907   if (InlineAsmL)
    908     return 1;
    909   if (InlineAsmR)
    910     return -1;
    911 
    912   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
    913        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
    914 
    915   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
    916 }
    917 // Test whether two basic blocks have equivalent behaviour.
    918 int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
    919   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
    920   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
    921 
    922   do {
    923     if (int Res = cmpValues(InstL, InstR))
    924       return Res;
    925 
    926     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
    927     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
    928 
    929     if (GEPL && !GEPR)
    930       return 1;
    931     if (GEPR && !GEPL)
    932       return -1;
    933 
    934     if (GEPL && GEPR) {
    935       if (int Res =
    936               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
    937         return Res;
    938       if (int Res = cmpGEP(GEPL, GEPR))
    939         return Res;
    940     } else {
    941       if (int Res = cmpOperation(InstL, InstR))
    942         return Res;
    943       assert(InstL->getNumOperands() == InstR->getNumOperands());
    944 
    945       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
    946         Value *OpL = InstL->getOperand(i);
    947         Value *OpR = InstR->getOperand(i);
    948         if (int Res = cmpValues(OpL, OpR))
    949           return Res;
    950         if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
    951           return Res;
    952         // TODO: Already checked in cmpOperation
    953         if (int Res = cmpType(OpL->getType(), OpR->getType()))
    954           return Res;
    955       }
    956     }
    957 
    958     ++InstL, ++InstR;
    959   } while (InstL != InstLE && InstR != InstRE);
    960 
    961   if (InstL != InstLE && InstR == InstRE)
    962     return 1;
    963   if (InstL == InstLE && InstR != InstRE)
    964     return -1;
    965   return 0;
    966 }
    967 
    968 // Test whether the two functions have equivalent behaviour.
    969 int FunctionComparator::compare() {
    970 
    971   sn_mapL.clear();
    972   sn_mapR.clear();
    973 
    974   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
    975     return Res;
    976 
    977   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
    978     return Res;
    979 
    980   if (FnL->hasGC()) {
    981     if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
    982       return Res;
    983   }
    984 
    985   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
    986     return Res;
    987 
    988   if (FnL->hasSection()) {
    989     if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
    990       return Res;
    991   }
    992 
    993   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
    994     return Res;
    995 
    996   // TODO: if it's internal and only used in direct calls, we could handle this
    997   // case too.
    998   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
    999     return Res;
   1000 
   1001   if (int Res = cmpType(FnL->getFunctionType(), FnR->getFunctionType()))
   1002     return Res;
   1003 
   1004   assert(FnL->arg_size() == FnR->arg_size() &&
   1005          "Identically typed functions have different numbers of args!");
   1006 
   1007   // Visit the arguments so that they get enumerated in the order they're
   1008   // passed in.
   1009   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
   1010                                     ArgRI = FnR->arg_begin(),
   1011                                     ArgLE = FnL->arg_end();
   1012        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
   1013     if (cmpValues(ArgLI, ArgRI) != 0)
   1014       llvm_unreachable("Arguments repeat!");
   1015   }
   1016 
   1017   // We do a CFG-ordered walk since the actual ordering of the blocks in the
   1018   // linked list is immaterial. Our walk starts at the entry block for both
   1019   // functions, then takes each block from each terminator in order. As an
   1020   // artifact, this also means that unreachable blocks are ignored.
   1021   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
   1022   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
   1023 
   1024   FnLBBs.push_back(&FnL->getEntryBlock());
   1025   FnRBBs.push_back(&FnR->getEntryBlock());
   1026 
   1027   VisitedBBs.insert(FnLBBs[0]);
   1028   while (!FnLBBs.empty()) {
   1029     const BasicBlock *BBL = FnLBBs.pop_back_val();
   1030     const BasicBlock *BBR = FnRBBs.pop_back_val();
   1031 
   1032     if (int Res = cmpValues(BBL, BBR))
   1033       return Res;
   1034 
   1035     if (int Res = compare(BBL, BBR))
   1036       return Res;
   1037 
   1038     const TerminatorInst *TermL = BBL->getTerminator();
   1039     const TerminatorInst *TermR = BBR->getTerminator();
   1040 
   1041     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
   1042     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
   1043       if (!VisitedBBs.insert(TermL->getSuccessor(i)))
   1044         continue;
   1045 
   1046       FnLBBs.push_back(TermL->getSuccessor(i));
   1047       FnRBBs.push_back(TermR->getSuccessor(i));
   1048     }
   1049   }
   1050   return 0;
   1051 }
   1052 
   1053 namespace {
   1054 
   1055 /// MergeFunctions finds functions which will generate identical machine code,
   1056 /// by considering all pointer types to be equivalent. Once identified,
   1057 /// MergeFunctions will fold them by replacing a call to one to a call to a
   1058 /// bitcast of the other.
   1059 ///
   1060 class MergeFunctions : public ModulePass {
   1061 public:
   1062   static char ID;
   1063   MergeFunctions()
   1064     : ModulePass(ID), HasGlobalAliases(false) {
   1065     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
   1066   }
   1067 
   1068   bool runOnModule(Module &M) override;
   1069 
   1070 private:
   1071   typedef std::set<FunctionPtr> FnTreeType;
   1072 
   1073   /// A work queue of functions that may have been modified and should be
   1074   /// analyzed again.
   1075   std::vector<WeakVH> Deferred;
   1076 
   1077   /// Checks the rules of order relation introduced among functions set.
   1078   /// Returns true, if sanity check has been passed, and false if failed.
   1079   bool doSanityCheck(std::vector<WeakVH> &Worklist);
   1080 
   1081   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
   1082   /// equal to one that's already present.
   1083   bool insert(Function *NewFunction);
   1084 
   1085   /// Remove a Function from the FnTree and queue it up for a second sweep of
   1086   /// analysis.
   1087   void remove(Function *F);
   1088 
   1089   /// Find the functions that use this Value and remove them from FnTree and
   1090   /// queue the functions.
   1091   void removeUsers(Value *V);
   1092 
   1093   /// Replace all direct calls of Old with calls of New. Will bitcast New if
   1094   /// necessary to make types match.
   1095   void replaceDirectCallers(Function *Old, Function *New);
   1096 
   1097   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
   1098   /// be converted into a thunk. In either case, it should never be visited
   1099   /// again.
   1100   void mergeTwoFunctions(Function *F, Function *G);
   1101 
   1102   /// Replace G with a thunk or an alias to F. Deletes G.
   1103   void writeThunkOrAlias(Function *F, Function *G);
   1104 
   1105   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
   1106   /// of G with bitcast(F). Deletes G.
   1107   void writeThunk(Function *F, Function *G);
   1108 
   1109   /// Replace G with an alias to F. Deletes G.
   1110   void writeAlias(Function *F, Function *G);
   1111 
   1112   /// The set of all distinct functions. Use the insert() and remove() methods
   1113   /// to modify it.
   1114   FnTreeType FnTree;
   1115 
   1116   /// DataLayout for more accurate GEP comparisons. May be NULL.
   1117   const DataLayout *DL;
   1118 
   1119   /// Whether or not the target supports global aliases.
   1120   bool HasGlobalAliases;
   1121 };
   1122 
   1123 }  // end anonymous namespace
   1124 
   1125 char MergeFunctions::ID = 0;
   1126 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
   1127 
   1128 ModulePass *llvm::createMergeFunctionsPass() {
   1129   return new MergeFunctions();
   1130 }
   1131 
   1132 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
   1133   if (const unsigned Max = NumFunctionsForSanityCheck) {
   1134     unsigned TripleNumber = 0;
   1135     bool Valid = true;
   1136 
   1137     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
   1138 
   1139     unsigned i = 0;
   1140     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
   1141          I != E && i < Max; ++I, ++i) {
   1142       unsigned j = i;
   1143       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
   1144         Function *F1 = cast<Function>(*I);
   1145         Function *F2 = cast<Function>(*J);
   1146         int Res1 = FunctionComparator(DL, F1, F2).compare();
   1147         int Res2 = FunctionComparator(DL, F2, F1).compare();
   1148 
   1149         // If F1 <= F2, then F2 >= F1, otherwise report failure.
   1150         if (Res1 != -Res2) {
   1151           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
   1152                  << "\n";
   1153           F1->dump();
   1154           F2->dump();
   1155           Valid = false;
   1156         }
   1157 
   1158         if (Res1 == 0)
   1159           continue;
   1160 
   1161         unsigned k = j;
   1162         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
   1163              ++k, ++K, ++TripleNumber) {
   1164           if (K == J)
   1165             continue;
   1166 
   1167           Function *F3 = cast<Function>(*K);
   1168           int Res3 = FunctionComparator(DL, F1, F3).compare();
   1169           int Res4 = FunctionComparator(DL, F2, F3).compare();
   1170 
   1171           bool Transitive = true;
   1172 
   1173           if (Res1 != 0 && Res1 == Res4) {
   1174             // F1 > F2, F2 > F3 => F1 > F3
   1175             Transitive = Res3 == Res1;
   1176           } else if (Res3 != 0 && Res3 == -Res4) {
   1177             // F1 > F3, F3 > F2 => F1 > F2
   1178             Transitive = Res3 == Res1;
   1179           } else if (Res4 != 0 && -Res3 == Res4) {
   1180             // F2 > F3, F3 > F1 => F2 > F1
   1181             Transitive = Res4 == -Res1;
   1182           }
   1183 
   1184           if (!Transitive) {
   1185             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
   1186                    << TripleNumber << "\n";
   1187             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
   1188                    << Res4 << "\n";
   1189             F1->dump();
   1190             F2->dump();
   1191             F3->dump();
   1192             Valid = false;
   1193           }
   1194         }
   1195       }
   1196     }
   1197 
   1198     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
   1199     return Valid;
   1200   }
   1201   return true;
   1202 }
   1203 
   1204 bool MergeFunctions::runOnModule(Module &M) {
   1205   bool Changed = false;
   1206   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1207   DL = DLP ? &DLP->getDataLayout() : nullptr;
   1208 
   1209   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
   1210     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
   1211       Deferred.push_back(WeakVH(I));
   1212   }
   1213 
   1214   do {
   1215     std::vector<WeakVH> Worklist;
   1216     Deferred.swap(Worklist);
   1217 
   1218     DEBUG(doSanityCheck(Worklist));
   1219 
   1220     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
   1221     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
   1222 
   1223     // Insert only strong functions and merge them. Strong function merging
   1224     // always deletes one of them.
   1225     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
   1226            E = Worklist.end(); I != E; ++I) {
   1227       if (!*I) continue;
   1228       Function *F = cast<Function>(*I);
   1229       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
   1230           !F->mayBeOverridden()) {
   1231         Changed |= insert(F);
   1232       }
   1233     }
   1234 
   1235     // Insert only weak functions and merge them. By doing these second we
   1236     // create thunks to the strong function when possible. When two weak
   1237     // functions are identical, we create a new strong function with two weak
   1238     // weak thunks to it which are identical but not mergable.
   1239     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
   1240            E = Worklist.end(); I != E; ++I) {
   1241       if (!*I) continue;
   1242       Function *F = cast<Function>(*I);
   1243       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
   1244           F->mayBeOverridden()) {
   1245         Changed |= insert(F);
   1246       }
   1247     }
   1248     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
   1249   } while (!Deferred.empty());
   1250 
   1251   FnTree.clear();
   1252 
   1253   return Changed;
   1254 }
   1255 
   1256 // Replace direct callers of Old with New.
   1257 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
   1258   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
   1259   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
   1260     Use *U = &*UI;
   1261     ++UI;
   1262     CallSite CS(U->getUser());
   1263     if (CS && CS.isCallee(U)) {
   1264       remove(CS.getInstruction()->getParent()->getParent());
   1265       U->set(BitcastNew);
   1266     }
   1267   }
   1268 }
   1269 
   1270 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
   1271 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
   1272   if (HasGlobalAliases && G->hasUnnamedAddr()) {
   1273     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
   1274         G->hasWeakLinkage()) {
   1275       writeAlias(F, G);
   1276       return;
   1277     }
   1278   }
   1279 
   1280   writeThunk(F, G);
   1281 }
   1282 
   1283 // Helper for writeThunk,
   1284 // Selects proper bitcast operation,
   1285 // but a bit simpler then CastInst::getCastOpcode.
   1286 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
   1287   Type *SrcTy = V->getType();
   1288   if (SrcTy->isStructTy()) {
   1289     assert(DestTy->isStructTy());
   1290     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
   1291     Value *Result = UndefValue::get(DestTy);
   1292     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
   1293       Value *Element = createCast(
   1294           Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
   1295           DestTy->getStructElementType(I));
   1296 
   1297       Result =
   1298           Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
   1299     }
   1300     return Result;
   1301   }
   1302   assert(!DestTy->isStructTy());
   1303   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
   1304     return Builder.CreateIntToPtr(V, DestTy);
   1305   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
   1306     return Builder.CreatePtrToInt(V, DestTy);
   1307   else
   1308     return Builder.CreateBitCast(V, DestTy);
   1309 }
   1310 
   1311 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
   1312 // of G with bitcast(F). Deletes G.
   1313 void MergeFunctions::writeThunk(Function *F, Function *G) {
   1314   if (!G->mayBeOverridden()) {
   1315     // Redirect direct callers of G to F.
   1316     replaceDirectCallers(G, F);
   1317   }
   1318 
   1319   // If G was internal then we may have replaced all uses of G with F. If so,
   1320   // stop here and delete G. There's no need for a thunk.
   1321   if (G->hasLocalLinkage() && G->use_empty()) {
   1322     G->eraseFromParent();
   1323     return;
   1324   }
   1325 
   1326   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
   1327                                     G->getParent());
   1328   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
   1329   IRBuilder<false> Builder(BB);
   1330 
   1331   SmallVector<Value *, 16> Args;
   1332   unsigned i = 0;
   1333   FunctionType *FFTy = F->getFunctionType();
   1334   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
   1335        AI != AE; ++AI) {
   1336     Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
   1337     ++i;
   1338   }
   1339 
   1340   CallInst *CI = Builder.CreateCall(F, Args);
   1341   CI->setTailCall();
   1342   CI->setCallingConv(F->getCallingConv());
   1343   if (NewG->getReturnType()->isVoidTy()) {
   1344     Builder.CreateRetVoid();
   1345   } else {
   1346     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
   1347   }
   1348 
   1349   NewG->copyAttributesFrom(G);
   1350   NewG->takeName(G);
   1351   removeUsers(G);
   1352   G->replaceAllUsesWith(NewG);
   1353   G->eraseFromParent();
   1354 
   1355   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
   1356   ++NumThunksWritten;
   1357 }
   1358 
   1359 // Replace G with an alias to F and delete G.
   1360 void MergeFunctions::writeAlias(Function *F, Function *G) {
   1361   PointerType *PTy = G->getType();
   1362   auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
   1363                                  G->getLinkage(), "", F);
   1364   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
   1365   GA->takeName(G);
   1366   GA->setVisibility(G->getVisibility());
   1367   removeUsers(G);
   1368   G->replaceAllUsesWith(GA);
   1369   G->eraseFromParent();
   1370 
   1371   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
   1372   ++NumAliasesWritten;
   1373 }
   1374 
   1375 // Merge two equivalent functions. Upon completion, Function G is deleted.
   1376 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
   1377   if (F->mayBeOverridden()) {
   1378     assert(G->mayBeOverridden());
   1379 
   1380     if (HasGlobalAliases) {
   1381       // Make them both thunks to the same internal function.
   1382       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
   1383                                      F->getParent());
   1384       H->copyAttributesFrom(F);
   1385       H->takeName(F);
   1386       removeUsers(F);
   1387       F->replaceAllUsesWith(H);
   1388 
   1389       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
   1390 
   1391       writeAlias(F, G);
   1392       writeAlias(F, H);
   1393 
   1394       F->setAlignment(MaxAlignment);
   1395       F->setLinkage(GlobalValue::PrivateLinkage);
   1396     } else {
   1397       // We can't merge them. Instead, pick one and update all direct callers
   1398       // to call it and hope that we improve the instruction cache hit rate.
   1399       replaceDirectCallers(G, F);
   1400     }
   1401 
   1402     ++NumDoubleWeak;
   1403   } else {
   1404     writeThunkOrAlias(F, G);
   1405   }
   1406 
   1407   ++NumFunctionsMerged;
   1408 }
   1409 
   1410 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
   1411 // that was already inserted.
   1412 bool MergeFunctions::insert(Function *NewFunction) {
   1413   std::pair<FnTreeType::iterator, bool> Result =
   1414       FnTree.insert(FunctionPtr(NewFunction, DL));
   1415 
   1416   if (Result.second) {
   1417     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
   1418     return false;
   1419   }
   1420 
   1421   const FunctionPtr &OldF = *Result.first;
   1422 
   1423   // Don't merge tiny functions, since it can just end up making the function
   1424   // larger.
   1425   // FIXME: Should still merge them if they are unnamed_addr and produce an
   1426   // alias.
   1427   if (NewFunction->size() == 1) {
   1428     if (NewFunction->front().size() <= 2) {
   1429       DEBUG(dbgs() << NewFunction->getName()
   1430                    << " is to small to bother merging\n");
   1431       return false;
   1432     }
   1433   }
   1434 
   1435   // Never thunk a strong function to a weak function.
   1436   assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
   1437 
   1438   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
   1439                << " == " << NewFunction->getName() << '\n');
   1440 
   1441   Function *DeleteF = NewFunction;
   1442   mergeTwoFunctions(OldF.getFunc(), DeleteF);
   1443   return true;
   1444 }
   1445 
   1446 // Remove a function from FnTree. If it was already in FnTree, add
   1447 // it to Deferred so that we'll look at it in the next round.
   1448 void MergeFunctions::remove(Function *F) {
   1449   // We need to make sure we remove F, not a function "equal" to F per the
   1450   // function equality comparator.
   1451   FnTreeType::iterator found = FnTree.find(FunctionPtr(F, DL));
   1452   size_t Erased = 0;
   1453   if (found != FnTree.end() && found->getFunc() == F) {
   1454     Erased = 1;
   1455     FnTree.erase(found);
   1456   }
   1457 
   1458   if (Erased) {
   1459     DEBUG(dbgs() << "Removed " << F->getName()
   1460                  << " from set and deferred it.\n");
   1461     Deferred.push_back(F);
   1462   }
   1463 }
   1464 
   1465 // For each instruction used by the value, remove() the function that contains
   1466 // the instruction. This should happen right before a call to RAUW.
   1467 void MergeFunctions::removeUsers(Value *V) {
   1468   std::vector<Value *> Worklist;
   1469   Worklist.push_back(V);
   1470   while (!Worklist.empty()) {
   1471     Value *V = Worklist.back();
   1472     Worklist.pop_back();
   1473 
   1474     for (User *U : V->users()) {
   1475       if (Instruction *I = dyn_cast<Instruction>(U)) {
   1476         remove(I->getParent()->getParent());
   1477       } else if (isa<GlobalValue>(U)) {
   1478         // do nothing
   1479       } else if (Constant *C = dyn_cast<Constant>(U)) {
   1480         for (User *UU : C->users())
   1481           Worklist.push_back(UU);
   1482       }
   1483     }
   1484   }
   1485 }
   1486