1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a coalescing interval map for small objects. 11 // 12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the 13 // same value are represented in a compressed form. 14 // 15 // Iterators provide ordered access to the compressed intervals rather than the 16 // individual keys, and insert and erase operations use key intervals as well. 17 // 18 // Like SmallVector, IntervalMap will store the first N intervals in the map 19 // object itself without any allocations. When space is exhausted it switches to 20 // a B+-tree representation with very small overhead for small key and value 21 // objects. 22 // 23 // A Traits class specifies how keys are compared. It also allows IntervalMap to 24 // work with both closed and half-open intervals. 25 // 26 // Keys and values are not stored next to each other in a std::pair, so we don't 27 // provide such a value_type. Dereferencing iterators only returns the mapped 28 // value. The interval bounds are accessible through the start() and stop() 29 // iterator methods. 30 // 31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each 32 // is the optimal size. For large objects use std::map instead. 33 // 34 //===----------------------------------------------------------------------===// 35 // 36 // Synopsis: 37 // 38 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 39 // class IntervalMap { 40 // public: 41 // typedef KeyT key_type; 42 // typedef ValT mapped_type; 43 // typedef RecyclingAllocator<...> Allocator; 44 // class iterator; 45 // class const_iterator; 46 // 47 // explicit IntervalMap(Allocator&); 48 // ~IntervalMap(): 49 // 50 // bool empty() const; 51 // KeyT start() const; 52 // KeyT stop() const; 53 // ValT lookup(KeyT x, Value NotFound = Value()) const; 54 // 55 // const_iterator begin() const; 56 // const_iterator end() const; 57 // iterator begin(); 58 // iterator end(); 59 // const_iterator find(KeyT x) const; 60 // iterator find(KeyT x); 61 // 62 // void insert(KeyT a, KeyT b, ValT y); 63 // void clear(); 64 // }; 65 // 66 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 67 // class IntervalMap::const_iterator : 68 // public std::iterator<std::bidirectional_iterator_tag, ValT> { 69 // public: 70 // bool operator==(const const_iterator &) const; 71 // bool operator!=(const const_iterator &) const; 72 // bool valid() const; 73 // 74 // const KeyT &start() const; 75 // const KeyT &stop() const; 76 // const ValT &value() const; 77 // const ValT &operator*() const; 78 // const ValT *operator->() const; 79 // 80 // const_iterator &operator++(); 81 // const_iterator &operator++(int); 82 // const_iterator &operator--(); 83 // const_iterator &operator--(int); 84 // void goToBegin(); 85 // void goToEnd(); 86 // void find(KeyT x); 87 // void advanceTo(KeyT x); 88 // }; 89 // 90 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 91 // class IntervalMap::iterator : public const_iterator { 92 // public: 93 // void insert(KeyT a, KeyT b, Value y); 94 // void erase(); 95 // }; 96 // 97 //===----------------------------------------------------------------------===// 98 99 #ifndef LLVM_ADT_INTERVALMAP_H 100 #define LLVM_ADT_INTERVALMAP_H 101 102 #include "llvm/ADT/PointerIntPair.h" 103 #include "llvm/ADT/SmallVector.h" 104 #include "llvm/Support/Allocator.h" 105 #include "llvm/Support/RecyclingAllocator.h" 106 #include <iterator> 107 108 namespace llvm { 109 110 111 //===----------------------------------------------------------------------===// 112 //--- Key traits ---// 113 //===----------------------------------------------------------------------===// 114 // 115 // The IntervalMap works with closed or half-open intervals. 116 // Adjacent intervals that map to the same value are coalesced. 117 // 118 // The IntervalMapInfo traits class is used to determine if a key is contained 119 // in an interval, and if two intervals are adjacent so they can be coalesced. 120 // The provided implementation works for closed integer intervals, other keys 121 // probably need a specialized version. 122 // 123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x). 124 // 125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is 126 // allowed. This is so that stopLess(a, b) can be used to determine if two 127 // intervals overlap. 128 // 129 //===----------------------------------------------------------------------===// 130 131 template <typename T> 132 struct IntervalMapInfo { 133 134 /// startLess - Return true if x is not in [a;b]. 135 /// This is x < a both for closed intervals and for [a;b) half-open intervals. 136 static inline bool startLess(const T &x, const T &a) { 137 return x < a; 138 } 139 140 /// stopLess - Return true if x is not in [a;b]. 141 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals. 142 static inline bool stopLess(const T &b, const T &x) { 143 return b < x; 144 } 145 146 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce. 147 /// This is a+1 == b for closed intervals, a == b for half-open intervals. 148 static inline bool adjacent(const T &a, const T &b) { 149 return a+1 == b; 150 } 151 152 }; 153 154 template <typename T> 155 struct IntervalMapHalfOpenInfo { 156 157 /// startLess - Return true if x is not in [a;b). 158 static inline bool startLess(const T &x, const T &a) { 159 return x < a; 160 } 161 162 /// stopLess - Return true if x is not in [a;b). 163 static inline bool stopLess(const T &b, const T &x) { 164 return b <= x; 165 } 166 167 /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce. 168 static inline bool adjacent(const T &a, const T &b) { 169 return a == b; 170 } 171 172 }; 173 174 /// IntervalMapImpl - Namespace used for IntervalMap implementation details. 175 /// It should be considered private to the implementation. 176 namespace IntervalMapImpl { 177 178 // Forward declarations. 179 template <typename, typename, unsigned, typename> class LeafNode; 180 template <typename, typename, unsigned, typename> class BranchNode; 181 182 typedef std::pair<unsigned,unsigned> IdxPair; 183 184 185 //===----------------------------------------------------------------------===// 186 //--- IntervalMapImpl::NodeBase ---// 187 //===----------------------------------------------------------------------===// 188 // 189 // Both leaf and branch nodes store vectors of pairs. 190 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT). 191 // 192 // Keys and values are stored in separate arrays to avoid padding caused by 193 // different object alignments. This also helps improve locality of reference 194 // when searching the keys. 195 // 196 // The nodes don't know how many elements they contain - that information is 197 // stored elsewhere. Omitting the size field prevents padding and allows a node 198 // to fill the allocated cache lines completely. 199 // 200 // These are typical key and value sizes, the node branching factor (N), and 201 // wasted space when nodes are sized to fit in three cache lines (192 bytes): 202 // 203 // T1 T2 N Waste Used by 204 // 4 4 24 0 Branch<4> (32-bit pointers) 205 // 8 4 16 0 Leaf<4,4>, Branch<4> 206 // 8 8 12 0 Leaf<4,8>, Branch<8> 207 // 16 4 9 12 Leaf<8,4> 208 // 16 8 8 0 Leaf<8,8> 209 // 210 //===----------------------------------------------------------------------===// 211 212 template <typename T1, typename T2, unsigned N> 213 class NodeBase { 214 public: 215 enum { Capacity = N }; 216 217 T1 first[N]; 218 T2 second[N]; 219 220 /// copy - Copy elements from another node. 221 /// @param Other Node elements are copied from. 222 /// @param i Beginning of the source range in other. 223 /// @param j Beginning of the destination range in this. 224 /// @param Count Number of elements to copy. 225 template <unsigned M> 226 void copy(const NodeBase<T1, T2, M> &Other, unsigned i, 227 unsigned j, unsigned Count) { 228 assert(i + Count <= M && "Invalid source range"); 229 assert(j + Count <= N && "Invalid dest range"); 230 for (unsigned e = i + Count; i != e; ++i, ++j) { 231 first[j] = Other.first[i]; 232 second[j] = Other.second[i]; 233 } 234 } 235 236 /// moveLeft - Move elements to the left. 237 /// @param i Beginning of the source range. 238 /// @param j Beginning of the destination range. 239 /// @param Count Number of elements to copy. 240 void moveLeft(unsigned i, unsigned j, unsigned Count) { 241 assert(j <= i && "Use moveRight shift elements right"); 242 copy(*this, i, j, Count); 243 } 244 245 /// moveRight - Move elements to the right. 246 /// @param i Beginning of the source range. 247 /// @param j Beginning of the destination range. 248 /// @param Count Number of elements to copy. 249 void moveRight(unsigned i, unsigned j, unsigned Count) { 250 assert(i <= j && "Use moveLeft shift elements left"); 251 assert(j + Count <= N && "Invalid range"); 252 while (Count--) { 253 first[j + Count] = first[i + Count]; 254 second[j + Count] = second[i + Count]; 255 } 256 } 257 258 /// erase - Erase elements [i;j). 259 /// @param i Beginning of the range to erase. 260 /// @param j End of the range. (Exclusive). 261 /// @param Size Number of elements in node. 262 void erase(unsigned i, unsigned j, unsigned Size) { 263 moveLeft(j, i, Size - j); 264 } 265 266 /// erase - Erase element at i. 267 /// @param i Index of element to erase. 268 /// @param Size Number of elements in node. 269 void erase(unsigned i, unsigned Size) { 270 erase(i, i+1, Size); 271 } 272 273 /// shift - Shift elements [i;size) 1 position to the right. 274 /// @param i Beginning of the range to move. 275 /// @param Size Number of elements in node. 276 void shift(unsigned i, unsigned Size) { 277 moveRight(i, i + 1, Size - i); 278 } 279 280 /// transferToLeftSib - Transfer elements to a left sibling node. 281 /// @param Size Number of elements in this. 282 /// @param Sib Left sibling node. 283 /// @param SSize Number of elements in sib. 284 /// @param Count Number of elements to transfer. 285 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, 286 unsigned Count) { 287 Sib.copy(*this, 0, SSize, Count); 288 erase(0, Count, Size); 289 } 290 291 /// transferToRightSib - Transfer elements to a right sibling node. 292 /// @param Size Number of elements in this. 293 /// @param Sib Right sibling node. 294 /// @param SSize Number of elements in sib. 295 /// @param Count Number of elements to transfer. 296 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize, 297 unsigned Count) { 298 Sib.moveRight(0, Count, SSize); 299 Sib.copy(*this, Size-Count, 0, Count); 300 } 301 302 /// adjustFromLeftSib - Adjust the number if elements in this node by moving 303 /// elements to or from a left sibling node. 304 /// @param Size Number of elements in this. 305 /// @param Sib Right sibling node. 306 /// @param SSize Number of elements in sib. 307 /// @param Add The number of elements to add to this node, possibly < 0. 308 /// @return Number of elements added to this node, possibly negative. 309 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) { 310 if (Add > 0) { 311 // We want to grow, copy from sib. 312 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size); 313 Sib.transferToRightSib(SSize, *this, Size, Count); 314 return Count; 315 } else { 316 // We want to shrink, copy to sib. 317 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize); 318 transferToLeftSib(Size, Sib, SSize, Count); 319 return -Count; 320 } 321 } 322 }; 323 324 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes. 325 /// @param Node Array of pointers to sibling nodes. 326 /// @param Nodes Number of nodes. 327 /// @param CurSize Array of current node sizes, will be overwritten. 328 /// @param NewSize Array of desired node sizes. 329 template <typename NodeT> 330 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes, 331 unsigned CurSize[], const unsigned NewSize[]) { 332 // Move elements right. 333 for (int n = Nodes - 1; n; --n) { 334 if (CurSize[n] == NewSize[n]) 335 continue; 336 for (int m = n - 1; m != -1; --m) { 337 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m], 338 NewSize[n] - CurSize[n]); 339 CurSize[m] -= d; 340 CurSize[n] += d; 341 // Keep going if the current node was exhausted. 342 if (CurSize[n] >= NewSize[n]) 343 break; 344 } 345 } 346 347 if (Nodes == 0) 348 return; 349 350 // Move elements left. 351 for (unsigned n = 0; n != Nodes - 1; ++n) { 352 if (CurSize[n] == NewSize[n]) 353 continue; 354 for (unsigned m = n + 1; m != Nodes; ++m) { 355 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n], 356 CurSize[n] - NewSize[n]); 357 CurSize[m] += d; 358 CurSize[n] -= d; 359 // Keep going if the current node was exhausted. 360 if (CurSize[n] >= NewSize[n]) 361 break; 362 } 363 } 364 365 #ifndef NDEBUG 366 for (unsigned n = 0; n != Nodes; n++) 367 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle"); 368 #endif 369 } 370 371 /// IntervalMapImpl::distribute - Compute a new distribution of node elements 372 /// after an overflow or underflow. Reserve space for a new element at Position, 373 /// and compute the node that will hold Position after redistributing node 374 /// elements. 375 /// 376 /// It is required that 377 /// 378 /// Elements == sum(CurSize), and 379 /// Elements + Grow <= Nodes * Capacity. 380 /// 381 /// NewSize[] will be filled in such that: 382 /// 383 /// sum(NewSize) == Elements, and 384 /// NewSize[i] <= Capacity. 385 /// 386 /// The returned index is the node where Position will go, so: 387 /// 388 /// sum(NewSize[0..idx-1]) <= Position 389 /// sum(NewSize[0..idx]) >= Position 390 /// 391 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when 392 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node 393 /// before the one holding the Position'th element where there is room for an 394 /// insertion. 395 /// 396 /// @param Nodes The number of nodes. 397 /// @param Elements Total elements in all nodes. 398 /// @param Capacity The capacity of each node. 399 /// @param CurSize Array[Nodes] of current node sizes, or NULL. 400 /// @param NewSize Array[Nodes] to receive the new node sizes. 401 /// @param Position Insert position. 402 /// @param Grow Reserve space for a new element at Position. 403 /// @return (node, offset) for Position. 404 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity, 405 const unsigned *CurSize, unsigned NewSize[], 406 unsigned Position, bool Grow); 407 408 409 //===----------------------------------------------------------------------===// 410 //--- IntervalMapImpl::NodeSizer ---// 411 //===----------------------------------------------------------------------===// 412 // 413 // Compute node sizes from key and value types. 414 // 415 // The branching factors are chosen to make nodes fit in three cache lines. 416 // This may not be possible if keys or values are very large. Such large objects 417 // are handled correctly, but a std::map would probably give better performance. 418 // 419 //===----------------------------------------------------------------------===// 420 421 enum { 422 // Cache line size. Most architectures have 32 or 64 byte cache lines. 423 // We use 64 bytes here because it provides good branching factors. 424 Log2CacheLine = 6, 425 CacheLineBytes = 1 << Log2CacheLine, 426 DesiredNodeBytes = 3 * CacheLineBytes 427 }; 428 429 template <typename KeyT, typename ValT> 430 struct NodeSizer { 431 enum { 432 // Compute the leaf node branching factor that makes a node fit in three 433 // cache lines. The branching factor must be at least 3, or some B+-tree 434 // balancing algorithms won't work. 435 // LeafSize can't be larger than CacheLineBytes. This is required by the 436 // PointerIntPair used by NodeRef. 437 DesiredLeafSize = DesiredNodeBytes / 438 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)), 439 MinLeafSize = 3, 440 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize 441 }; 442 443 typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase; 444 445 enum { 446 // Now that we have the leaf branching factor, compute the actual allocation 447 // unit size by rounding up to a whole number of cache lines. 448 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1), 449 450 // Determine the branching factor for branch nodes. 451 BranchSize = AllocBytes / 452 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*)) 453 }; 454 455 /// Allocator - The recycling allocator used for both branch and leaf nodes. 456 /// This typedef is very likely to be identical for all IntervalMaps with 457 /// reasonably sized entries, so the same allocator can be shared among 458 /// different kinds of maps. 459 typedef RecyclingAllocator<BumpPtrAllocator, char, 460 AllocBytes, CacheLineBytes> Allocator; 461 462 }; 463 464 465 //===----------------------------------------------------------------------===// 466 //--- IntervalMapImpl::NodeRef ---// 467 //===----------------------------------------------------------------------===// 468 // 469 // B+-tree nodes can be leaves or branches, so we need a polymorphic node 470 // pointer that can point to both kinds. 471 // 472 // All nodes are cache line aligned and the low 6 bits of a node pointer are 473 // always 0. These bits are used to store the number of elements in the 474 // referenced node. Besides saving space, placing node sizes in the parents 475 // allow tree balancing algorithms to run without faulting cache lines for nodes 476 // that may not need to be modified. 477 // 478 // A NodeRef doesn't know whether it references a leaf node or a branch node. 479 // It is the responsibility of the caller to use the correct types. 480 // 481 // Nodes are never supposed to be empty, and it is invalid to store a node size 482 // of 0 in a NodeRef. The valid range of sizes is 1-64. 483 // 484 //===----------------------------------------------------------------------===// 485 486 class NodeRef { 487 struct CacheAlignedPointerTraits { 488 static inline void *getAsVoidPointer(void *P) { return P; } 489 static inline void *getFromVoidPointer(void *P) { return P; } 490 enum { NumLowBitsAvailable = Log2CacheLine }; 491 }; 492 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip; 493 494 public: 495 /// NodeRef - Create a null ref. 496 NodeRef() {} 497 498 /// operator bool - Detect a null ref. 499 LLVM_EXPLICIT operator bool() const { return pip.getOpaqueValue(); } 500 501 /// NodeRef - Create a reference to the node p with n elements. 502 template <typename NodeT> 503 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) { 504 assert(n <= NodeT::Capacity && "Size too big for node"); 505 } 506 507 /// size - Return the number of elements in the referenced node. 508 unsigned size() const { return pip.getInt() + 1; } 509 510 /// setSize - Update the node size. 511 void setSize(unsigned n) { pip.setInt(n - 1); } 512 513 /// subtree - Access the i'th subtree reference in a branch node. 514 /// This depends on branch nodes storing the NodeRef array as their first 515 /// member. 516 NodeRef &subtree(unsigned i) const { 517 return reinterpret_cast<NodeRef*>(pip.getPointer())[i]; 518 } 519 520 /// get - Dereference as a NodeT reference. 521 template <typename NodeT> 522 NodeT &get() const { 523 return *reinterpret_cast<NodeT*>(pip.getPointer()); 524 } 525 526 bool operator==(const NodeRef &RHS) const { 527 if (pip == RHS.pip) 528 return true; 529 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs"); 530 return false; 531 } 532 533 bool operator!=(const NodeRef &RHS) const { 534 return !operator==(RHS); 535 } 536 }; 537 538 //===----------------------------------------------------------------------===// 539 //--- IntervalMapImpl::LeafNode ---// 540 //===----------------------------------------------------------------------===// 541 // 542 // Leaf nodes store up to N disjoint intervals with corresponding values. 543 // 544 // The intervals are kept sorted and fully coalesced so there are no adjacent 545 // intervals mapping to the same value. 546 // 547 // These constraints are always satisfied: 548 // 549 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals. 550 // 551 // - Traits::stopLess(stop(i), start(i + 1) - Sorted. 552 // 553 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1)) 554 // - Fully coalesced. 555 // 556 //===----------------------------------------------------------------------===// 557 558 template <typename KeyT, typename ValT, unsigned N, typename Traits> 559 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> { 560 public: 561 const KeyT &start(unsigned i) const { return this->first[i].first; } 562 const KeyT &stop(unsigned i) const { return this->first[i].second; } 563 const ValT &value(unsigned i) const { return this->second[i]; } 564 565 KeyT &start(unsigned i) { return this->first[i].first; } 566 KeyT &stop(unsigned i) { return this->first[i].second; } 567 ValT &value(unsigned i) { return this->second[i]; } 568 569 /// findFrom - Find the first interval after i that may contain x. 570 /// @param i Starting index for the search. 571 /// @param Size Number of elements in node. 572 /// @param x Key to search for. 573 /// @return First index with !stopLess(key[i].stop, x), or size. 574 /// This is the first interval that can possibly contain x. 575 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { 576 assert(i <= Size && Size <= N && "Bad indices"); 577 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 578 "Index is past the needed point"); 579 while (i != Size && Traits::stopLess(stop(i), x)) ++i; 580 return i; 581 } 582 583 /// safeFind - Find an interval that is known to exist. This is the same as 584 /// findFrom except is it assumed that x is at least within range of the last 585 /// interval. 586 /// @param i Starting index for the search. 587 /// @param x Key to search for. 588 /// @return First index with !stopLess(key[i].stop, x), never size. 589 /// This is the first interval that can possibly contain x. 590 unsigned safeFind(unsigned i, KeyT x) const { 591 assert(i < N && "Bad index"); 592 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 593 "Index is past the needed point"); 594 while (Traits::stopLess(stop(i), x)) ++i; 595 assert(i < N && "Unsafe intervals"); 596 return i; 597 } 598 599 /// safeLookup - Lookup mapped value for a safe key. 600 /// It is assumed that x is within range of the last entry. 601 /// @param x Key to search for. 602 /// @param NotFound Value to return if x is not in any interval. 603 /// @return The mapped value at x or NotFound. 604 ValT safeLookup(KeyT x, ValT NotFound) const { 605 unsigned i = safeFind(0, x); 606 return Traits::startLess(x, start(i)) ? NotFound : value(i); 607 } 608 609 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y); 610 }; 611 612 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as 613 /// possible. This may cause the node to grow by 1, or it may cause the node 614 /// to shrink because of coalescing. 615 /// @param Pos Starting index = insertFrom(0, size, a) 616 /// @param Size Number of elements in node. 617 /// @param a Interval start. 618 /// @param b Interval stop. 619 /// @param y Value be mapped. 620 /// @return (insert position, new size), or (i, Capacity+1) on overflow. 621 template <typename KeyT, typename ValT, unsigned N, typename Traits> 622 unsigned LeafNode<KeyT, ValT, N, Traits>:: 623 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) { 624 unsigned i = Pos; 625 assert(i <= Size && Size <= N && "Invalid index"); 626 assert(!Traits::stopLess(b, a) && "Invalid interval"); 627 628 // Verify the findFrom invariant. 629 assert((i == 0 || Traits::stopLess(stop(i - 1), a))); 630 assert((i == Size || !Traits::stopLess(stop(i), a))); 631 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert"); 632 633 // Coalesce with previous interval. 634 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) { 635 Pos = i - 1; 636 // Also coalesce with next interval? 637 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) { 638 stop(i - 1) = stop(i); 639 this->erase(i, Size); 640 return Size - 1; 641 } 642 stop(i - 1) = b; 643 return Size; 644 } 645 646 // Detect overflow. 647 if (i == N) 648 return N + 1; 649 650 // Add new interval at end. 651 if (i == Size) { 652 start(i) = a; 653 stop(i) = b; 654 value(i) = y; 655 return Size + 1; 656 } 657 658 // Try to coalesce with following interval. 659 if (value(i) == y && Traits::adjacent(b, start(i))) { 660 start(i) = a; 661 return Size; 662 } 663 664 // We must insert before i. Detect overflow. 665 if (Size == N) 666 return N + 1; 667 668 // Insert before i. 669 this->shift(i, Size); 670 start(i) = a; 671 stop(i) = b; 672 value(i) = y; 673 return Size + 1; 674 } 675 676 677 //===----------------------------------------------------------------------===// 678 //--- IntervalMapImpl::BranchNode ---// 679 //===----------------------------------------------------------------------===// 680 // 681 // A branch node stores references to 1--N subtrees all of the same height. 682 // 683 // The key array in a branch node holds the rightmost stop key of each subtree. 684 // It is redundant to store the last stop key since it can be found in the 685 // parent node, but doing so makes tree balancing a lot simpler. 686 // 687 // It is unusual for a branch node to only have one subtree, but it can happen 688 // in the root node if it is smaller than the normal nodes. 689 // 690 // When all of the leaf nodes from all the subtrees are concatenated, they must 691 // satisfy the same constraints as a single leaf node. They must be sorted, 692 // sane, and fully coalesced. 693 // 694 //===----------------------------------------------------------------------===// 695 696 template <typename KeyT, typename ValT, unsigned N, typename Traits> 697 class BranchNode : public NodeBase<NodeRef, KeyT, N> { 698 public: 699 const KeyT &stop(unsigned i) const { return this->second[i]; } 700 const NodeRef &subtree(unsigned i) const { return this->first[i]; } 701 702 KeyT &stop(unsigned i) { return this->second[i]; } 703 NodeRef &subtree(unsigned i) { return this->first[i]; } 704 705 /// findFrom - Find the first subtree after i that may contain x. 706 /// @param i Starting index for the search. 707 /// @param Size Number of elements in node. 708 /// @param x Key to search for. 709 /// @return First index with !stopLess(key[i], x), or size. 710 /// This is the first subtree that can possibly contain x. 711 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { 712 assert(i <= Size && Size <= N && "Bad indices"); 713 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 714 "Index to findFrom is past the needed point"); 715 while (i != Size && Traits::stopLess(stop(i), x)) ++i; 716 return i; 717 } 718 719 /// safeFind - Find a subtree that is known to exist. This is the same as 720 /// findFrom except is it assumed that x is in range. 721 /// @param i Starting index for the search. 722 /// @param x Key to search for. 723 /// @return First index with !stopLess(key[i], x), never size. 724 /// This is the first subtree that can possibly contain x. 725 unsigned safeFind(unsigned i, KeyT x) const { 726 assert(i < N && "Bad index"); 727 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 728 "Index is past the needed point"); 729 while (Traits::stopLess(stop(i), x)) ++i; 730 assert(i < N && "Unsafe intervals"); 731 return i; 732 } 733 734 /// safeLookup - Get the subtree containing x, Assuming that x is in range. 735 /// @param x Key to search for. 736 /// @return Subtree containing x 737 NodeRef safeLookup(KeyT x) const { 738 return subtree(safeFind(0, x)); 739 } 740 741 /// insert - Insert a new (subtree, stop) pair. 742 /// @param i Insert position, following entries will be shifted. 743 /// @param Size Number of elements in node. 744 /// @param Node Subtree to insert. 745 /// @param Stop Last key in subtree. 746 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) { 747 assert(Size < N && "branch node overflow"); 748 assert(i <= Size && "Bad insert position"); 749 this->shift(i, Size); 750 subtree(i) = Node; 751 stop(i) = Stop; 752 } 753 }; 754 755 //===----------------------------------------------------------------------===// 756 //--- IntervalMapImpl::Path ---// 757 //===----------------------------------------------------------------------===// 758 // 759 // A Path is used by iterators to represent a position in a B+-tree, and the 760 // path to get there from the root. 761 // 762 // The Path class also contains the tree navigation code that doesn't have to 763 // be templatized. 764 // 765 //===----------------------------------------------------------------------===// 766 767 class Path { 768 /// Entry - Each step in the path is a node pointer and an offset into that 769 /// node. 770 struct Entry { 771 void *node; 772 unsigned size; 773 unsigned offset; 774 775 Entry(void *Node, unsigned Size, unsigned Offset) 776 : node(Node), size(Size), offset(Offset) {} 777 778 Entry(NodeRef Node, unsigned Offset) 779 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {} 780 781 NodeRef &subtree(unsigned i) const { 782 return reinterpret_cast<NodeRef*>(node)[i]; 783 } 784 }; 785 786 /// path - The path entries, path[0] is the root node, path.back() is a leaf. 787 SmallVector<Entry, 4> path; 788 789 public: 790 // Node accessors. 791 template <typename NodeT> NodeT &node(unsigned Level) const { 792 return *reinterpret_cast<NodeT*>(path[Level].node); 793 } 794 unsigned size(unsigned Level) const { return path[Level].size; } 795 unsigned offset(unsigned Level) const { return path[Level].offset; } 796 unsigned &offset(unsigned Level) { return path[Level].offset; } 797 798 // Leaf accessors. 799 template <typename NodeT> NodeT &leaf() const { 800 return *reinterpret_cast<NodeT*>(path.back().node); 801 } 802 unsigned leafSize() const { return path.back().size; } 803 unsigned leafOffset() const { return path.back().offset; } 804 unsigned &leafOffset() { return path.back().offset; } 805 806 /// valid - Return true if path is at a valid node, not at end(). 807 bool valid() const { 808 return !path.empty() && path.front().offset < path.front().size; 809 } 810 811 /// height - Return the height of the tree corresponding to this path. 812 /// This matches map->height in a full path. 813 unsigned height() const { return path.size() - 1; } 814 815 /// subtree - Get the subtree referenced from Level. When the path is 816 /// consistent, node(Level + 1) == subtree(Level). 817 /// @param Level 0..height-1. The leaves have no subtrees. 818 NodeRef &subtree(unsigned Level) const { 819 return path[Level].subtree(path[Level].offset); 820 } 821 822 /// reset - Reset cached information about node(Level) from subtree(Level -1). 823 /// @param Level 1..height. THe node to update after parent node changed. 824 void reset(unsigned Level) { 825 path[Level] = Entry(subtree(Level - 1), offset(Level)); 826 } 827 828 /// push - Add entry to path. 829 /// @param Node Node to add, should be subtree(path.size()-1). 830 /// @param Offset Offset into Node. 831 void push(NodeRef Node, unsigned Offset) { 832 path.push_back(Entry(Node, Offset)); 833 } 834 835 /// pop - Remove the last path entry. 836 void pop() { 837 path.pop_back(); 838 } 839 840 /// setSize - Set the size of a node both in the path and in the tree. 841 /// @param Level 0..height. Note that setting the root size won't change 842 /// map->rootSize. 843 /// @param Size New node size. 844 void setSize(unsigned Level, unsigned Size) { 845 path[Level].size = Size; 846 if (Level) 847 subtree(Level - 1).setSize(Size); 848 } 849 850 /// setRoot - Clear the path and set a new root node. 851 /// @param Node New root node. 852 /// @param Size New root size. 853 /// @param Offset Offset into root node. 854 void setRoot(void *Node, unsigned Size, unsigned Offset) { 855 path.clear(); 856 path.push_back(Entry(Node, Size, Offset)); 857 } 858 859 /// replaceRoot - Replace the current root node with two new entries after the 860 /// tree height has increased. 861 /// @param Root The new root node. 862 /// @param Size Number of entries in the new root. 863 /// @param Offsets Offsets into the root and first branch nodes. 864 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets); 865 866 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. 867 /// @param Level Get the sibling to node(Level). 868 /// @return Left sibling, or NodeRef(). 869 NodeRef getLeftSibling(unsigned Level) const; 870 871 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level 872 /// unaltered. 873 /// @param Level Move node(Level). 874 void moveLeft(unsigned Level); 875 876 /// fillLeft - Grow path to Height by taking leftmost branches. 877 /// @param Height The target height. 878 void fillLeft(unsigned Height) { 879 while (height() < Height) 880 push(subtree(height()), 0); 881 } 882 883 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. 884 /// @param Level Get the sinbling to node(Level). 885 /// @return Left sibling, or NodeRef(). 886 NodeRef getRightSibling(unsigned Level) const; 887 888 /// moveRight - Move path to the left sibling at Level. Leave nodes below 889 /// Level unaltered. 890 /// @param Level Move node(Level). 891 void moveRight(unsigned Level); 892 893 /// atBegin - Return true if path is at begin(). 894 bool atBegin() const { 895 for (unsigned i = 0, e = path.size(); i != e; ++i) 896 if (path[i].offset != 0) 897 return false; 898 return true; 899 } 900 901 /// atLastEntry - Return true if the path is at the last entry of the node at 902 /// Level. 903 /// @param Level Node to examine. 904 bool atLastEntry(unsigned Level) const { 905 return path[Level].offset == path[Level].size - 1; 906 } 907 908 /// legalizeForInsert - Prepare the path for an insertion at Level. When the 909 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert 910 /// ensures that node(Level) is real by moving back to the last node at Level, 911 /// and setting offset(Level) to size(Level) if required. 912 /// @param Level The level where an insertion is about to take place. 913 void legalizeForInsert(unsigned Level) { 914 if (valid()) 915 return; 916 moveLeft(Level); 917 ++path[Level].offset; 918 } 919 }; 920 921 } // namespace IntervalMapImpl 922 923 924 //===----------------------------------------------------------------------===// 925 //--- IntervalMap ----// 926 //===----------------------------------------------------------------------===// 927 928 template <typename KeyT, typename ValT, 929 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize, 930 typename Traits = IntervalMapInfo<KeyT> > 931 class IntervalMap { 932 typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer; 933 typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf; 934 typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits> 935 Branch; 936 typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf; 937 typedef IntervalMapImpl::IdxPair IdxPair; 938 939 // The RootLeaf capacity is given as a template parameter. We must compute the 940 // corresponding RootBranch capacity. 941 enum { 942 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) / 943 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)), 944 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1 945 }; 946 947 typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits> 948 RootBranch; 949 950 // When branched, we store a global start key as well as the branch node. 951 struct RootBranchData { 952 KeyT start; 953 RootBranch node; 954 }; 955 956 enum { 957 RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ? 958 sizeof(RootBranchData) : sizeof(RootLeaf) 959 }; 960 961 public: 962 typedef typename Sizer::Allocator Allocator; 963 typedef KeyT KeyType; 964 typedef ValT ValueType; 965 typedef Traits KeyTraits; 966 967 private: 968 // The root data is either a RootLeaf or a RootBranchData instance. 969 // We can't put them in a union since C++03 doesn't allow non-trivial 970 // constructors in unions. 971 // Instead, we use a char array with pointer alignment. The alignment is 972 // ensured by the allocator member in the class, but still verified in the 973 // constructor. We don't support keys or values that are more aligned than a 974 // pointer. 975 char data[RootDataSize]; 976 977 // Tree height. 978 // 0: Leaves in root. 979 // 1: Root points to leaf. 980 // 2: root->branch->leaf ... 981 unsigned height; 982 983 // Number of entries in the root node. 984 unsigned rootSize; 985 986 // Allocator used for creating external nodes. 987 Allocator &allocator; 988 989 /// dataAs - Represent data as a node type without breaking aliasing rules. 990 template <typename T> 991 T &dataAs() const { 992 union { 993 const char *d; 994 T *t; 995 } u; 996 u.d = data; 997 return *u.t; 998 } 999 1000 const RootLeaf &rootLeaf() const { 1001 assert(!branched() && "Cannot acces leaf data in branched root"); 1002 return dataAs<RootLeaf>(); 1003 } 1004 RootLeaf &rootLeaf() { 1005 assert(!branched() && "Cannot acces leaf data in branched root"); 1006 return dataAs<RootLeaf>(); 1007 } 1008 RootBranchData &rootBranchData() const { 1009 assert(branched() && "Cannot access branch data in non-branched root"); 1010 return dataAs<RootBranchData>(); 1011 } 1012 RootBranchData &rootBranchData() { 1013 assert(branched() && "Cannot access branch data in non-branched root"); 1014 return dataAs<RootBranchData>(); 1015 } 1016 const RootBranch &rootBranch() const { return rootBranchData().node; } 1017 RootBranch &rootBranch() { return rootBranchData().node; } 1018 KeyT rootBranchStart() const { return rootBranchData().start; } 1019 KeyT &rootBranchStart() { return rootBranchData().start; } 1020 1021 template <typename NodeT> NodeT *newNode() { 1022 return new(allocator.template Allocate<NodeT>()) NodeT(); 1023 } 1024 1025 template <typename NodeT> void deleteNode(NodeT *P) { 1026 P->~NodeT(); 1027 allocator.Deallocate(P); 1028 } 1029 1030 IdxPair branchRoot(unsigned Position); 1031 IdxPair splitRoot(unsigned Position); 1032 1033 void switchRootToBranch() { 1034 rootLeaf().~RootLeaf(); 1035 height = 1; 1036 new (&rootBranchData()) RootBranchData(); 1037 } 1038 1039 void switchRootToLeaf() { 1040 rootBranchData().~RootBranchData(); 1041 height = 0; 1042 new(&rootLeaf()) RootLeaf(); 1043 } 1044 1045 bool branched() const { return height > 0; } 1046 1047 ValT treeSafeLookup(KeyT x, ValT NotFound) const; 1048 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, 1049 unsigned Level)); 1050 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level); 1051 1052 public: 1053 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) { 1054 assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 && 1055 "Insufficient alignment"); 1056 new(&rootLeaf()) RootLeaf(); 1057 } 1058 1059 ~IntervalMap() { 1060 clear(); 1061 rootLeaf().~RootLeaf(); 1062 } 1063 1064 /// empty - Return true when no intervals are mapped. 1065 bool empty() const { 1066 return rootSize == 0; 1067 } 1068 1069 /// start - Return the smallest mapped key in a non-empty map. 1070 KeyT start() const { 1071 assert(!empty() && "Empty IntervalMap has no start"); 1072 return !branched() ? rootLeaf().start(0) : rootBranchStart(); 1073 } 1074 1075 /// stop - Return the largest mapped key in a non-empty map. 1076 KeyT stop() const { 1077 assert(!empty() && "Empty IntervalMap has no stop"); 1078 return !branched() ? rootLeaf().stop(rootSize - 1) : 1079 rootBranch().stop(rootSize - 1); 1080 } 1081 1082 /// lookup - Return the mapped value at x or NotFound. 1083 ValT lookup(KeyT x, ValT NotFound = ValT()) const { 1084 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x)) 1085 return NotFound; 1086 return branched() ? treeSafeLookup(x, NotFound) : 1087 rootLeaf().safeLookup(x, NotFound); 1088 } 1089 1090 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals. 1091 /// It is assumed that no key in the interval is mapped to another value, but 1092 /// overlapping intervals already mapped to y will be coalesced. 1093 void insert(KeyT a, KeyT b, ValT y) { 1094 if (branched() || rootSize == RootLeaf::Capacity) 1095 return find(a).insert(a, b, y); 1096 1097 // Easy insert into root leaf. 1098 unsigned p = rootLeaf().findFrom(0, rootSize, a); 1099 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y); 1100 } 1101 1102 /// clear - Remove all entries. 1103 void clear(); 1104 1105 class const_iterator; 1106 class iterator; 1107 friend class const_iterator; 1108 friend class iterator; 1109 1110 const_iterator begin() const { 1111 const_iterator I(*this); 1112 I.goToBegin(); 1113 return I; 1114 } 1115 1116 iterator begin() { 1117 iterator I(*this); 1118 I.goToBegin(); 1119 return I; 1120 } 1121 1122 const_iterator end() const { 1123 const_iterator I(*this); 1124 I.goToEnd(); 1125 return I; 1126 } 1127 1128 iterator end() { 1129 iterator I(*this); 1130 I.goToEnd(); 1131 return I; 1132 } 1133 1134 /// find - Return an iterator pointing to the first interval ending at or 1135 /// after x, or end(). 1136 const_iterator find(KeyT x) const { 1137 const_iterator I(*this); 1138 I.find(x); 1139 return I; 1140 } 1141 1142 iterator find(KeyT x) { 1143 iterator I(*this); 1144 I.find(x); 1145 return I; 1146 } 1147 }; 1148 1149 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a 1150 /// branched root. 1151 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1152 ValT IntervalMap<KeyT, ValT, N, Traits>:: 1153 treeSafeLookup(KeyT x, ValT NotFound) const { 1154 assert(branched() && "treeLookup assumes a branched root"); 1155 1156 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x); 1157 for (unsigned h = height-1; h; --h) 1158 NR = NR.get<Branch>().safeLookup(x); 1159 return NR.get<Leaf>().safeLookup(x, NotFound); 1160 } 1161 1162 1163 // branchRoot - Switch from a leaf root to a branched root. 1164 // Return the new (root offset, node offset) corresponding to Position. 1165 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1166 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: 1167 branchRoot(unsigned Position) { 1168 using namespace IntervalMapImpl; 1169 // How many external leaf nodes to hold RootLeaf+1? 1170 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1; 1171 1172 // Compute element distribution among new nodes. 1173 unsigned size[Nodes]; 1174 IdxPair NewOffset(0, Position); 1175 1176 // Is is very common for the root node to be smaller than external nodes. 1177 if (Nodes == 1) 1178 size[0] = rootSize; 1179 else 1180 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size, 1181 Position, true); 1182 1183 // Allocate new nodes. 1184 unsigned pos = 0; 1185 NodeRef node[Nodes]; 1186 for (unsigned n = 0; n != Nodes; ++n) { 1187 Leaf *L = newNode<Leaf>(); 1188 L->copy(rootLeaf(), pos, 0, size[n]); 1189 node[n] = NodeRef(L, size[n]); 1190 pos += size[n]; 1191 } 1192 1193 // Destroy the old leaf node, construct branch node instead. 1194 switchRootToBranch(); 1195 for (unsigned n = 0; n != Nodes; ++n) { 1196 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1); 1197 rootBranch().subtree(n) = node[n]; 1198 } 1199 rootBranchStart() = node[0].template get<Leaf>().start(0); 1200 rootSize = Nodes; 1201 return NewOffset; 1202 } 1203 1204 // splitRoot - Split the current BranchRoot into multiple Branch nodes. 1205 // Return the new (root offset, node offset) corresponding to Position. 1206 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1207 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: 1208 splitRoot(unsigned Position) { 1209 using namespace IntervalMapImpl; 1210 // How many external leaf nodes to hold RootBranch+1? 1211 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1; 1212 1213 // Compute element distribution among new nodes. 1214 unsigned Size[Nodes]; 1215 IdxPair NewOffset(0, Position); 1216 1217 // Is is very common for the root node to be smaller than external nodes. 1218 if (Nodes == 1) 1219 Size[0] = rootSize; 1220 else 1221 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size, 1222 Position, true); 1223 1224 // Allocate new nodes. 1225 unsigned Pos = 0; 1226 NodeRef Node[Nodes]; 1227 for (unsigned n = 0; n != Nodes; ++n) { 1228 Branch *B = newNode<Branch>(); 1229 B->copy(rootBranch(), Pos, 0, Size[n]); 1230 Node[n] = NodeRef(B, Size[n]); 1231 Pos += Size[n]; 1232 } 1233 1234 for (unsigned n = 0; n != Nodes; ++n) { 1235 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1); 1236 rootBranch().subtree(n) = Node[n]; 1237 } 1238 rootSize = Nodes; 1239 ++height; 1240 return NewOffset; 1241 } 1242 1243 /// visitNodes - Visit each external node. 1244 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1245 void IntervalMap<KeyT, ValT, N, Traits>:: 1246 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) { 1247 if (!branched()) 1248 return; 1249 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs; 1250 1251 // Collect level 0 nodes from the root. 1252 for (unsigned i = 0; i != rootSize; ++i) 1253 Refs.push_back(rootBranch().subtree(i)); 1254 1255 // Visit all branch nodes. 1256 for (unsigned h = height - 1; h; --h) { 1257 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 1258 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j) 1259 NextRefs.push_back(Refs[i].subtree(j)); 1260 (this->*f)(Refs[i], h); 1261 } 1262 Refs.clear(); 1263 Refs.swap(NextRefs); 1264 } 1265 1266 // Visit all leaf nodes. 1267 for (unsigned i = 0, e = Refs.size(); i != e; ++i) 1268 (this->*f)(Refs[i], 0); 1269 } 1270 1271 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1272 void IntervalMap<KeyT, ValT, N, Traits>:: 1273 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) { 1274 if (Level) 1275 deleteNode(&Node.get<Branch>()); 1276 else 1277 deleteNode(&Node.get<Leaf>()); 1278 } 1279 1280 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1281 void IntervalMap<KeyT, ValT, N, Traits>:: 1282 clear() { 1283 if (branched()) { 1284 visitNodes(&IntervalMap::deleteNode); 1285 switchRootToLeaf(); 1286 } 1287 rootSize = 0; 1288 } 1289 1290 //===----------------------------------------------------------------------===// 1291 //--- IntervalMap::const_iterator ----// 1292 //===----------------------------------------------------------------------===// 1293 1294 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1295 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator : 1296 public std::iterator<std::bidirectional_iterator_tag, ValT> { 1297 protected: 1298 friend class IntervalMap; 1299 1300 // The map referred to. 1301 IntervalMap *map; 1302 1303 // We store a full path from the root to the current position. 1304 // The path may be partially filled, but never between iterator calls. 1305 IntervalMapImpl::Path path; 1306 1307 explicit const_iterator(const IntervalMap &map) : 1308 map(const_cast<IntervalMap*>(&map)) {} 1309 1310 bool branched() const { 1311 assert(map && "Invalid iterator"); 1312 return map->branched(); 1313 } 1314 1315 void setRoot(unsigned Offset) { 1316 if (branched()) 1317 path.setRoot(&map->rootBranch(), map->rootSize, Offset); 1318 else 1319 path.setRoot(&map->rootLeaf(), map->rootSize, Offset); 1320 } 1321 1322 void pathFillFind(KeyT x); 1323 void treeFind(KeyT x); 1324 void treeAdvanceTo(KeyT x); 1325 1326 /// unsafeStart - Writable access to start() for iterator. 1327 KeyT &unsafeStart() const { 1328 assert(valid() && "Cannot access invalid iterator"); 1329 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) : 1330 path.leaf<RootLeaf>().start(path.leafOffset()); 1331 } 1332 1333 /// unsafeStop - Writable access to stop() for iterator. 1334 KeyT &unsafeStop() const { 1335 assert(valid() && "Cannot access invalid iterator"); 1336 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) : 1337 path.leaf<RootLeaf>().stop(path.leafOffset()); 1338 } 1339 1340 /// unsafeValue - Writable access to value() for iterator. 1341 ValT &unsafeValue() const { 1342 assert(valid() && "Cannot access invalid iterator"); 1343 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) : 1344 path.leaf<RootLeaf>().value(path.leafOffset()); 1345 } 1346 1347 public: 1348 /// const_iterator - Create an iterator that isn't pointing anywhere. 1349 const_iterator() : map(nullptr) {} 1350 1351 /// setMap - Change the map iterated over. This call must be followed by a 1352 /// call to goToBegin(), goToEnd(), or find() 1353 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); } 1354 1355 /// valid - Return true if the current position is valid, false for end(). 1356 bool valid() const { return path.valid(); } 1357 1358 /// atBegin - Return true if the current position is the first map entry. 1359 bool atBegin() const { return path.atBegin(); } 1360 1361 /// start - Return the beginning of the current interval. 1362 const KeyT &start() const { return unsafeStart(); } 1363 1364 /// stop - Return the end of the current interval. 1365 const KeyT &stop() const { return unsafeStop(); } 1366 1367 /// value - Return the mapped value at the current interval. 1368 const ValT &value() const { return unsafeValue(); } 1369 1370 const ValT &operator*() const { return value(); } 1371 1372 bool operator==(const const_iterator &RHS) const { 1373 assert(map == RHS.map && "Cannot compare iterators from different maps"); 1374 if (!valid()) 1375 return !RHS.valid(); 1376 if (path.leafOffset() != RHS.path.leafOffset()) 1377 return false; 1378 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>(); 1379 } 1380 1381 bool operator!=(const const_iterator &RHS) const { 1382 return !operator==(RHS); 1383 } 1384 1385 /// goToBegin - Move to the first interval in map. 1386 void goToBegin() { 1387 setRoot(0); 1388 if (branched()) 1389 path.fillLeft(map->height); 1390 } 1391 1392 /// goToEnd - Move beyond the last interval in map. 1393 void goToEnd() { 1394 setRoot(map->rootSize); 1395 } 1396 1397 /// preincrement - move to the next interval. 1398 const_iterator &operator++() { 1399 assert(valid() && "Cannot increment end()"); 1400 if (++path.leafOffset() == path.leafSize() && branched()) 1401 path.moveRight(map->height); 1402 return *this; 1403 } 1404 1405 /// postincrement - Dont do that! 1406 const_iterator operator++(int) { 1407 const_iterator tmp = *this; 1408 operator++(); 1409 return tmp; 1410 } 1411 1412 /// predecrement - move to the previous interval. 1413 const_iterator &operator--() { 1414 if (path.leafOffset() && (valid() || !branched())) 1415 --path.leafOffset(); 1416 else 1417 path.moveLeft(map->height); 1418 return *this; 1419 } 1420 1421 /// postdecrement - Dont do that! 1422 const_iterator operator--(int) { 1423 const_iterator tmp = *this; 1424 operator--(); 1425 return tmp; 1426 } 1427 1428 /// find - Move to the first interval with stop >= x, or end(). 1429 /// This is a full search from the root, the current position is ignored. 1430 void find(KeyT x) { 1431 if (branched()) 1432 treeFind(x); 1433 else 1434 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x)); 1435 } 1436 1437 /// advanceTo - Move to the first interval with stop >= x, or end(). 1438 /// The search is started from the current position, and no earlier positions 1439 /// can be found. This is much faster than find() for small moves. 1440 void advanceTo(KeyT x) { 1441 if (!valid()) 1442 return; 1443 if (branched()) 1444 treeAdvanceTo(x); 1445 else 1446 path.leafOffset() = 1447 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x); 1448 } 1449 1450 }; 1451 1452 /// pathFillFind - Complete path by searching for x. 1453 /// @param x Key to search for. 1454 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1455 void IntervalMap<KeyT, ValT, N, Traits>:: 1456 const_iterator::pathFillFind(KeyT x) { 1457 IntervalMapImpl::NodeRef NR = path.subtree(path.height()); 1458 for (unsigned i = map->height - path.height() - 1; i; --i) { 1459 unsigned p = NR.get<Branch>().safeFind(0, x); 1460 path.push(NR, p); 1461 NR = NR.subtree(p); 1462 } 1463 path.push(NR, NR.get<Leaf>().safeFind(0, x)); 1464 } 1465 1466 /// treeFind - Find in a branched tree. 1467 /// @param x Key to search for. 1468 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1469 void IntervalMap<KeyT, ValT, N, Traits>:: 1470 const_iterator::treeFind(KeyT x) { 1471 setRoot(map->rootBranch().findFrom(0, map->rootSize, x)); 1472 if (valid()) 1473 pathFillFind(x); 1474 } 1475 1476 /// treeAdvanceTo - Find position after the current one. 1477 /// @param x Key to search for. 1478 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1479 void IntervalMap<KeyT, ValT, N, Traits>:: 1480 const_iterator::treeAdvanceTo(KeyT x) { 1481 // Can we stay on the same leaf node? 1482 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) { 1483 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x); 1484 return; 1485 } 1486 1487 // Drop the current leaf. 1488 path.pop(); 1489 1490 // Search towards the root for a usable subtree. 1491 if (path.height()) { 1492 for (unsigned l = path.height() - 1; l; --l) { 1493 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) { 1494 // The branch node at l+1 is usable 1495 path.offset(l + 1) = 1496 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x); 1497 return pathFillFind(x); 1498 } 1499 path.pop(); 1500 } 1501 // Is the level-1 Branch usable? 1502 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) { 1503 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x); 1504 return pathFillFind(x); 1505 } 1506 } 1507 1508 // We reached the root. 1509 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x)); 1510 if (valid()) 1511 pathFillFind(x); 1512 } 1513 1514 //===----------------------------------------------------------------------===// 1515 //--- IntervalMap::iterator ----// 1516 //===----------------------------------------------------------------------===// 1517 1518 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1519 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator { 1520 friend class IntervalMap; 1521 typedef IntervalMapImpl::IdxPair IdxPair; 1522 1523 explicit iterator(IntervalMap &map) : const_iterator(map) {} 1524 1525 void setNodeStop(unsigned Level, KeyT Stop); 1526 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop); 1527 template <typename NodeT> bool overflow(unsigned Level); 1528 void treeInsert(KeyT a, KeyT b, ValT y); 1529 void eraseNode(unsigned Level); 1530 void treeErase(bool UpdateRoot = true); 1531 bool canCoalesceLeft(KeyT Start, ValT x); 1532 bool canCoalesceRight(KeyT Stop, ValT x); 1533 1534 public: 1535 /// iterator - Create null iterator. 1536 iterator() {} 1537 1538 /// setStart - Move the start of the current interval. 1539 /// This may cause coalescing with the previous interval. 1540 /// @param a New start key, must not overlap the previous interval. 1541 void setStart(KeyT a); 1542 1543 /// setStop - Move the end of the current interval. 1544 /// This may cause coalescing with the following interval. 1545 /// @param b New stop key, must not overlap the following interval. 1546 void setStop(KeyT b); 1547 1548 /// setValue - Change the mapped value of the current interval. 1549 /// This may cause coalescing with the previous and following intervals. 1550 /// @param x New value. 1551 void setValue(ValT x); 1552 1553 /// setStartUnchecked - Move the start of the current interval without 1554 /// checking for coalescing or overlaps. 1555 /// This should only be used when it is known that coalescing is not required. 1556 /// @param a New start key. 1557 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; } 1558 1559 /// setStopUnchecked - Move the end of the current interval without checking 1560 /// for coalescing or overlaps. 1561 /// This should only be used when it is known that coalescing is not required. 1562 /// @param b New stop key. 1563 void setStopUnchecked(KeyT b) { 1564 this->unsafeStop() = b; 1565 // Update keys in branch nodes as well. 1566 if (this->path.atLastEntry(this->path.height())) 1567 setNodeStop(this->path.height(), b); 1568 } 1569 1570 /// setValueUnchecked - Change the mapped value of the current interval 1571 /// without checking for coalescing. 1572 /// @param x New value. 1573 void setValueUnchecked(ValT x) { this->unsafeValue() = x; } 1574 1575 /// insert - Insert mapping [a;b] -> y before the current position. 1576 void insert(KeyT a, KeyT b, ValT y); 1577 1578 /// erase - Erase the current interval. 1579 void erase(); 1580 1581 iterator &operator++() { 1582 const_iterator::operator++(); 1583 return *this; 1584 } 1585 1586 iterator operator++(int) { 1587 iterator tmp = *this; 1588 operator++(); 1589 return tmp; 1590 } 1591 1592 iterator &operator--() { 1593 const_iterator::operator--(); 1594 return *this; 1595 } 1596 1597 iterator operator--(int) { 1598 iterator tmp = *this; 1599 operator--(); 1600 return tmp; 1601 } 1602 1603 }; 1604 1605 /// canCoalesceLeft - Can the current interval coalesce to the left after 1606 /// changing start or value? 1607 /// @param Start New start of current interval. 1608 /// @param Value New value for current interval. 1609 /// @return True when updating the current interval would enable coalescing. 1610 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1611 bool IntervalMap<KeyT, ValT, N, Traits>:: 1612 iterator::canCoalesceLeft(KeyT Start, ValT Value) { 1613 using namespace IntervalMapImpl; 1614 Path &P = this->path; 1615 if (!this->branched()) { 1616 unsigned i = P.leafOffset(); 1617 RootLeaf &Node = P.leaf<RootLeaf>(); 1618 return i && Node.value(i-1) == Value && 1619 Traits::adjacent(Node.stop(i-1), Start); 1620 } 1621 // Branched. 1622 if (unsigned i = P.leafOffset()) { 1623 Leaf &Node = P.leaf<Leaf>(); 1624 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start); 1625 } else if (NodeRef NR = P.getLeftSibling(P.height())) { 1626 unsigned i = NR.size() - 1; 1627 Leaf &Node = NR.get<Leaf>(); 1628 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start); 1629 } 1630 return false; 1631 } 1632 1633 /// canCoalesceRight - Can the current interval coalesce to the right after 1634 /// changing stop or value? 1635 /// @param Stop New stop of current interval. 1636 /// @param Value New value for current interval. 1637 /// @return True when updating the current interval would enable coalescing. 1638 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1639 bool IntervalMap<KeyT, ValT, N, Traits>:: 1640 iterator::canCoalesceRight(KeyT Stop, ValT Value) { 1641 using namespace IntervalMapImpl; 1642 Path &P = this->path; 1643 unsigned i = P.leafOffset() + 1; 1644 if (!this->branched()) { 1645 if (i >= P.leafSize()) 1646 return false; 1647 RootLeaf &Node = P.leaf<RootLeaf>(); 1648 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); 1649 } 1650 // Branched. 1651 if (i < P.leafSize()) { 1652 Leaf &Node = P.leaf<Leaf>(); 1653 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); 1654 } else if (NodeRef NR = P.getRightSibling(P.height())) { 1655 Leaf &Node = NR.get<Leaf>(); 1656 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0)); 1657 } 1658 return false; 1659 } 1660 1661 /// setNodeStop - Update the stop key of the current node at level and above. 1662 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1663 void IntervalMap<KeyT, ValT, N, Traits>:: 1664 iterator::setNodeStop(unsigned Level, KeyT Stop) { 1665 // There are no references to the root node, so nothing to update. 1666 if (!Level) 1667 return; 1668 IntervalMapImpl::Path &P = this->path; 1669 // Update nodes pointing to the current node. 1670 while (--Level) { 1671 P.node<Branch>(Level).stop(P.offset(Level)) = Stop; 1672 if (!P.atLastEntry(Level)) 1673 return; 1674 } 1675 // Update root separately since it has a different layout. 1676 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop; 1677 } 1678 1679 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1680 void IntervalMap<KeyT, ValT, N, Traits>:: 1681 iterator::setStart(KeyT a) { 1682 assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop"); 1683 KeyT &CurStart = this->unsafeStart(); 1684 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) { 1685 CurStart = a; 1686 return; 1687 } 1688 // Coalesce with the interval to the left. 1689 --*this; 1690 a = this->start(); 1691 erase(); 1692 setStartUnchecked(a); 1693 } 1694 1695 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1696 void IntervalMap<KeyT, ValT, N, Traits>:: 1697 iterator::setStop(KeyT b) { 1698 assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start"); 1699 if (Traits::startLess(b, this->stop()) || 1700 !canCoalesceRight(b, this->value())) { 1701 setStopUnchecked(b); 1702 return; 1703 } 1704 // Coalesce with interval to the right. 1705 KeyT a = this->start(); 1706 erase(); 1707 setStartUnchecked(a); 1708 } 1709 1710 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1711 void IntervalMap<KeyT, ValT, N, Traits>:: 1712 iterator::setValue(ValT x) { 1713 setValueUnchecked(x); 1714 if (canCoalesceRight(this->stop(), x)) { 1715 KeyT a = this->start(); 1716 erase(); 1717 setStartUnchecked(a); 1718 } 1719 if (canCoalesceLeft(this->start(), x)) { 1720 --*this; 1721 KeyT a = this->start(); 1722 erase(); 1723 setStartUnchecked(a); 1724 } 1725 } 1726 1727 /// insertNode - insert a node before the current path at level. 1728 /// Leave the current path pointing at the new node. 1729 /// @param Level path index of the node to be inserted. 1730 /// @param Node The node to be inserted. 1731 /// @param Stop The last index in the new node. 1732 /// @return True if the tree height was increased. 1733 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1734 bool IntervalMap<KeyT, ValT, N, Traits>:: 1735 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) { 1736 assert(Level && "Cannot insert next to the root"); 1737 bool SplitRoot = false; 1738 IntervalMap &IM = *this->map; 1739 IntervalMapImpl::Path &P = this->path; 1740 1741 if (Level == 1) { 1742 // Insert into the root branch node. 1743 if (IM.rootSize < RootBranch::Capacity) { 1744 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop); 1745 P.setSize(0, ++IM.rootSize); 1746 P.reset(Level); 1747 return SplitRoot; 1748 } 1749 1750 // We need to split the root while keeping our position. 1751 SplitRoot = true; 1752 IdxPair Offset = IM.splitRoot(P.offset(0)); 1753 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); 1754 1755 // Fall through to insert at the new higher level. 1756 ++Level; 1757 } 1758 1759 // When inserting before end(), make sure we have a valid path. 1760 P.legalizeForInsert(--Level); 1761 1762 // Insert into the branch node at Level-1. 1763 if (P.size(Level) == Branch::Capacity) { 1764 // Branch node is full, handle handle the overflow. 1765 assert(!SplitRoot && "Cannot overflow after splitting the root"); 1766 SplitRoot = overflow<Branch>(Level); 1767 Level += SplitRoot; 1768 } 1769 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop); 1770 P.setSize(Level, P.size(Level) + 1); 1771 if (P.atLastEntry(Level)) 1772 setNodeStop(Level, Stop); 1773 P.reset(Level + 1); 1774 return SplitRoot; 1775 } 1776 1777 // insert 1778 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1779 void IntervalMap<KeyT, ValT, N, Traits>:: 1780 iterator::insert(KeyT a, KeyT b, ValT y) { 1781 if (this->branched()) 1782 return treeInsert(a, b, y); 1783 IntervalMap &IM = *this->map; 1784 IntervalMapImpl::Path &P = this->path; 1785 1786 // Try simple root leaf insert. 1787 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y); 1788 1789 // Was the root node insert successful? 1790 if (Size <= RootLeaf::Capacity) { 1791 P.setSize(0, IM.rootSize = Size); 1792 return; 1793 } 1794 1795 // Root leaf node is full, we must branch. 1796 IdxPair Offset = IM.branchRoot(P.leafOffset()); 1797 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); 1798 1799 // Now it fits in the new leaf. 1800 treeInsert(a, b, y); 1801 } 1802 1803 1804 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1805 void IntervalMap<KeyT, ValT, N, Traits>:: 1806 iterator::treeInsert(KeyT a, KeyT b, ValT y) { 1807 using namespace IntervalMapImpl; 1808 Path &P = this->path; 1809 1810 if (!P.valid()) 1811 P.legalizeForInsert(this->map->height); 1812 1813 // Check if this insertion will extend the node to the left. 1814 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) { 1815 // Node is growing to the left, will it affect a left sibling node? 1816 if (NodeRef Sib = P.getLeftSibling(P.height())) { 1817 Leaf &SibLeaf = Sib.get<Leaf>(); 1818 unsigned SibOfs = Sib.size() - 1; 1819 if (SibLeaf.value(SibOfs) == y && 1820 Traits::adjacent(SibLeaf.stop(SibOfs), a)) { 1821 // This insertion will coalesce with the last entry in SibLeaf. We can 1822 // handle it in two ways: 1823 // 1. Extend SibLeaf.stop to b and be done, or 1824 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue. 1825 // We prefer 1., but need 2 when coalescing to the right as well. 1826 Leaf &CurLeaf = P.leaf<Leaf>(); 1827 P.moveLeft(P.height()); 1828 if (Traits::stopLess(b, CurLeaf.start(0)) && 1829 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) { 1830 // Easy, just extend SibLeaf and we're done. 1831 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b); 1832 return; 1833 } else { 1834 // We have both left and right coalescing. Erase the old SibLeaf entry 1835 // and continue inserting the larger interval. 1836 a = SibLeaf.start(SibOfs); 1837 treeErase(/* UpdateRoot= */false); 1838 } 1839 } 1840 } else { 1841 // No left sibling means we are at begin(). Update cached bound. 1842 this->map->rootBranchStart() = a; 1843 } 1844 } 1845 1846 // When we are inserting at the end of a leaf node, we must update stops. 1847 unsigned Size = P.leafSize(); 1848 bool Grow = P.leafOffset() == Size; 1849 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y); 1850 1851 // Leaf insertion unsuccessful? Overflow and try again. 1852 if (Size > Leaf::Capacity) { 1853 overflow<Leaf>(P.height()); 1854 Grow = P.leafOffset() == P.leafSize(); 1855 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y); 1856 assert(Size <= Leaf::Capacity && "overflow() didn't make room"); 1857 } 1858 1859 // Inserted, update offset and leaf size. 1860 P.setSize(P.height(), Size); 1861 1862 // Insert was the last node entry, update stops. 1863 if (Grow) 1864 setNodeStop(P.height(), b); 1865 } 1866 1867 /// erase - erase the current interval and move to the next position. 1868 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1869 void IntervalMap<KeyT, ValT, N, Traits>:: 1870 iterator::erase() { 1871 IntervalMap &IM = *this->map; 1872 IntervalMapImpl::Path &P = this->path; 1873 assert(P.valid() && "Cannot erase end()"); 1874 if (this->branched()) 1875 return treeErase(); 1876 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize); 1877 P.setSize(0, --IM.rootSize); 1878 } 1879 1880 /// treeErase - erase() for a branched tree. 1881 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1882 void IntervalMap<KeyT, ValT, N, Traits>:: 1883 iterator::treeErase(bool UpdateRoot) { 1884 IntervalMap &IM = *this->map; 1885 IntervalMapImpl::Path &P = this->path; 1886 Leaf &Node = P.leaf<Leaf>(); 1887 1888 // Nodes are not allowed to become empty. 1889 if (P.leafSize() == 1) { 1890 IM.deleteNode(&Node); 1891 eraseNode(IM.height); 1892 // Update rootBranchStart if we erased begin(). 1893 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin()) 1894 IM.rootBranchStart() = P.leaf<Leaf>().start(0); 1895 return; 1896 } 1897 1898 // Erase current entry. 1899 Node.erase(P.leafOffset(), P.leafSize()); 1900 unsigned NewSize = P.leafSize() - 1; 1901 P.setSize(IM.height, NewSize); 1902 // When we erase the last entry, update stop and move to a legal position. 1903 if (P.leafOffset() == NewSize) { 1904 setNodeStop(IM.height, Node.stop(NewSize - 1)); 1905 P.moveRight(IM.height); 1906 } else if (UpdateRoot && P.atBegin()) 1907 IM.rootBranchStart() = P.leaf<Leaf>().start(0); 1908 } 1909 1910 /// eraseNode - Erase the current node at Level from its parent and move path to 1911 /// the first entry of the next sibling node. 1912 /// The node must be deallocated by the caller. 1913 /// @param Level 1..height, the root node cannot be erased. 1914 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1915 void IntervalMap<KeyT, ValT, N, Traits>:: 1916 iterator::eraseNode(unsigned Level) { 1917 assert(Level && "Cannot erase root node"); 1918 IntervalMap &IM = *this->map; 1919 IntervalMapImpl::Path &P = this->path; 1920 1921 if (--Level == 0) { 1922 IM.rootBranch().erase(P.offset(0), IM.rootSize); 1923 P.setSize(0, --IM.rootSize); 1924 // If this cleared the root, switch to height=0. 1925 if (IM.empty()) { 1926 IM.switchRootToLeaf(); 1927 this->setRoot(0); 1928 return; 1929 } 1930 } else { 1931 // Remove node ref from branch node at Level. 1932 Branch &Parent = P.node<Branch>(Level); 1933 if (P.size(Level) == 1) { 1934 // Branch node became empty, remove it recursively. 1935 IM.deleteNode(&Parent); 1936 eraseNode(Level); 1937 } else { 1938 // Branch node won't become empty. 1939 Parent.erase(P.offset(Level), P.size(Level)); 1940 unsigned NewSize = P.size(Level) - 1; 1941 P.setSize(Level, NewSize); 1942 // If we removed the last branch, update stop and move to a legal pos. 1943 if (P.offset(Level) == NewSize) { 1944 setNodeStop(Level, Parent.stop(NewSize - 1)); 1945 P.moveRight(Level); 1946 } 1947 } 1948 } 1949 // Update path cache for the new right sibling position. 1950 if (P.valid()) { 1951 P.reset(Level + 1); 1952 P.offset(Level + 1) = 0; 1953 } 1954 } 1955 1956 /// overflow - Distribute entries of the current node evenly among 1957 /// its siblings and ensure that the current node is not full. 1958 /// This may require allocating a new node. 1959 /// @tparam NodeT The type of node at Level (Leaf or Branch). 1960 /// @param Level path index of the overflowing node. 1961 /// @return True when the tree height was changed. 1962 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1963 template <typename NodeT> 1964 bool IntervalMap<KeyT, ValT, N, Traits>:: 1965 iterator::overflow(unsigned Level) { 1966 using namespace IntervalMapImpl; 1967 Path &P = this->path; 1968 unsigned CurSize[4]; 1969 NodeT *Node[4]; 1970 unsigned Nodes = 0; 1971 unsigned Elements = 0; 1972 unsigned Offset = P.offset(Level); 1973 1974 // Do we have a left sibling? 1975 NodeRef LeftSib = P.getLeftSibling(Level); 1976 if (LeftSib) { 1977 Offset += Elements = CurSize[Nodes] = LeftSib.size(); 1978 Node[Nodes++] = &LeftSib.get<NodeT>(); 1979 } 1980 1981 // Current node. 1982 Elements += CurSize[Nodes] = P.size(Level); 1983 Node[Nodes++] = &P.node<NodeT>(Level); 1984 1985 // Do we have a right sibling? 1986 NodeRef RightSib = P.getRightSibling(Level); 1987 if (RightSib) { 1988 Elements += CurSize[Nodes] = RightSib.size(); 1989 Node[Nodes++] = &RightSib.get<NodeT>(); 1990 } 1991 1992 // Do we need to allocate a new node? 1993 unsigned NewNode = 0; 1994 if (Elements + 1 > Nodes * NodeT::Capacity) { 1995 // Insert NewNode at the penultimate position, or after a single node. 1996 NewNode = Nodes == 1 ? 1 : Nodes - 1; 1997 CurSize[Nodes] = CurSize[NewNode]; 1998 Node[Nodes] = Node[NewNode]; 1999 CurSize[NewNode] = 0; 2000 Node[NewNode] = this->map->template newNode<NodeT>(); 2001 ++Nodes; 2002 } 2003 2004 // Compute the new element distribution. 2005 unsigned NewSize[4]; 2006 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity, 2007 CurSize, NewSize, Offset, true); 2008 adjustSiblingSizes(Node, Nodes, CurSize, NewSize); 2009 2010 // Move current location to the leftmost node. 2011 if (LeftSib) 2012 P.moveLeft(Level); 2013 2014 // Elements have been rearranged, now update node sizes and stops. 2015 bool SplitRoot = false; 2016 unsigned Pos = 0; 2017 for (;;) { 2018 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1); 2019 if (NewNode && Pos == NewNode) { 2020 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop); 2021 Level += SplitRoot; 2022 } else { 2023 P.setSize(Level, NewSize[Pos]); 2024 setNodeStop(Level, Stop); 2025 } 2026 if (Pos + 1 == Nodes) 2027 break; 2028 P.moveRight(Level); 2029 ++Pos; 2030 } 2031 2032 // Where was I? Find NewOffset. 2033 while(Pos != NewOffset.first) { 2034 P.moveLeft(Level); 2035 --Pos; 2036 } 2037 P.offset(Level) = NewOffset.second; 2038 return SplitRoot; 2039 } 2040 2041 //===----------------------------------------------------------------------===// 2042 //--- IntervalMapOverlaps ----// 2043 //===----------------------------------------------------------------------===// 2044 2045 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two 2046 /// IntervalMaps. The maps may be different, but the KeyT and Traits types 2047 /// should be the same. 2048 /// 2049 /// Typical uses: 2050 /// 2051 /// 1. Test for overlap: 2052 /// bool overlap = IntervalMapOverlaps(a, b).valid(); 2053 /// 2054 /// 2. Enumerate overlaps: 2055 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... } 2056 /// 2057 template <typename MapA, typename MapB> 2058 class IntervalMapOverlaps { 2059 typedef typename MapA::KeyType KeyType; 2060 typedef typename MapA::KeyTraits Traits; 2061 typename MapA::const_iterator posA; 2062 typename MapB::const_iterator posB; 2063 2064 /// advance - Move posA and posB forward until reaching an overlap, or until 2065 /// either meets end. 2066 /// Don't move the iterators if they are already overlapping. 2067 void advance() { 2068 if (!valid()) 2069 return; 2070 2071 if (Traits::stopLess(posA.stop(), posB.start())) { 2072 // A ends before B begins. Catch up. 2073 posA.advanceTo(posB.start()); 2074 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) 2075 return; 2076 } else if (Traits::stopLess(posB.stop(), posA.start())) { 2077 // B ends before A begins. Catch up. 2078 posB.advanceTo(posA.start()); 2079 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) 2080 return; 2081 } else 2082 // Already overlapping. 2083 return; 2084 2085 for (;;) { 2086 // Make a.end > b.start. 2087 posA.advanceTo(posB.start()); 2088 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) 2089 return; 2090 // Make b.end > a.start. 2091 posB.advanceTo(posA.start()); 2092 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) 2093 return; 2094 } 2095 } 2096 2097 public: 2098 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b. 2099 IntervalMapOverlaps(const MapA &a, const MapB &b) 2100 : posA(b.empty() ? a.end() : a.find(b.start())), 2101 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); } 2102 2103 /// valid - Return true if iterator is at an overlap. 2104 bool valid() const { 2105 return posA.valid() && posB.valid(); 2106 } 2107 2108 /// a - access the left hand side in the overlap. 2109 const typename MapA::const_iterator &a() const { return posA; } 2110 2111 /// b - access the right hand side in the overlap. 2112 const typename MapB::const_iterator &b() const { return posB; } 2113 2114 /// start - Beginning of the overlapping interval. 2115 KeyType start() const { 2116 KeyType ak = a().start(); 2117 KeyType bk = b().start(); 2118 return Traits::startLess(ak, bk) ? bk : ak; 2119 } 2120 2121 /// stop - End of the overlapping interval. 2122 KeyType stop() const { 2123 KeyType ak = a().stop(); 2124 KeyType bk = b().stop(); 2125 return Traits::startLess(ak, bk) ? ak : bk; 2126 } 2127 2128 /// skipA - Move to the next overlap that doesn't involve a(). 2129 void skipA() { 2130 ++posA; 2131 advance(); 2132 } 2133 2134 /// skipB - Move to the next overlap that doesn't involve b(). 2135 void skipB() { 2136 ++posB; 2137 advance(); 2138 } 2139 2140 /// Preincrement - Move to the next overlap. 2141 IntervalMapOverlaps &operator++() { 2142 // Bump the iterator that ends first. The other one may have more overlaps. 2143 if (Traits::startLess(posB.stop(), posA.stop())) 2144 skipB(); 2145 else 2146 skipA(); 2147 return *this; 2148 } 2149 2150 /// advanceTo - Move to the first overlapping interval with 2151 /// stopLess(x, stop()). 2152 void advanceTo(KeyType x) { 2153 if (!valid()) 2154 return; 2155 // Make sure advanceTo sees monotonic keys. 2156 if (Traits::stopLess(posA.stop(), x)) 2157 posA.advanceTo(x); 2158 if (Traits::stopLess(posB.stop(), x)) 2159 posB.advanceTo(x); 2160 advance(); 2161 } 2162 }; 2163 2164 } // namespace llvm 2165 2166 #endif 2167