Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "dex/compiler_internals.h"
     18 #include "dex/dataflow_iterator-inl.h"
     19 #include "dex/quick/dex_file_method_inliner.h"
     20 #include "mir_to_lir-inl.h"
     21 #include "thread-inl.h"
     22 
     23 namespace art {
     24 
     25 RegisterClass Mir2Lir::ShortyToRegClass(char shorty_type) {
     26   RegisterClass res;
     27   switch (shorty_type) {
     28     case 'L':
     29       res = kRefReg;
     30       break;
     31     case 'F':
     32       // Expected fallthrough.
     33     case 'D':
     34       res = kFPReg;
     35       break;
     36     default:
     37       res = kCoreReg;
     38   }
     39   return res;
     40 }
     41 
     42 RegisterClass Mir2Lir::LocToRegClass(RegLocation loc) {
     43   RegisterClass res;
     44   if (loc.fp) {
     45     DCHECK(!loc.ref) << "At most, one of ref/fp may be set";
     46     res = kFPReg;
     47   } else if (loc.ref) {
     48     res = kRefReg;
     49   } else {
     50     res = kCoreReg;
     51   }
     52   return res;
     53 }
     54 
     55 void Mir2Lir::LockArg(int in_position, bool wide) {
     56   RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
     57   RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
     58       RegStorage::InvalidReg();
     59 
     60   if (reg_arg_low.Valid()) {
     61     LockTemp(reg_arg_low);
     62   }
     63   if (reg_arg_high.Valid() && reg_arg_low.NotExactlyEquals(reg_arg_high)) {
     64     LockTemp(reg_arg_high);
     65   }
     66 }
     67 
     68 // TODO: simplify when 32-bit targets go hard-float.
     69 RegStorage Mir2Lir::LoadArg(int in_position, RegisterClass reg_class, bool wide) {
     70   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
     71   int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
     72 
     73   if (cu_->instruction_set == kX86) {
     74     /*
     75      * When doing a call for x86, it moves the stack pointer in order to push return.
     76      * Thus, we add another 4 bytes to figure out the out of caller (in of callee).
     77      */
     78     offset += sizeof(uint32_t);
     79   }
     80 
     81   if (cu_->instruction_set == kX86_64) {
     82     /*
     83      * When doing a call for x86, it moves the stack pointer in order to push return.
     84      * Thus, we add another 8 bytes to figure out the out of caller (in of callee).
     85      */
     86     offset += sizeof(uint64_t);
     87   }
     88 
     89   if (cu_->target64) {
     90     RegStorage reg_arg = GetArgMappingToPhysicalReg(in_position);
     91     if (!reg_arg.Valid()) {
     92       RegStorage new_reg =
     93           wide ?  AllocTypedTempWide(false, reg_class) : AllocTypedTemp(false, reg_class);
     94       LoadBaseDisp(TargetPtrReg(kSp), offset, new_reg, wide ? k64 : k32, kNotVolatile);
     95       return new_reg;
     96     } else {
     97       // Check if we need to copy the arg to a different reg_class.
     98       if (!RegClassMatches(reg_class, reg_arg)) {
     99         if (wide) {
    100           RegStorage new_reg = AllocTypedTempWide(false, reg_class);
    101           OpRegCopyWide(new_reg, reg_arg);
    102           reg_arg = new_reg;
    103         } else {
    104           RegStorage new_reg = AllocTypedTemp(false, reg_class);
    105           OpRegCopy(new_reg, reg_arg);
    106           reg_arg = new_reg;
    107         }
    108       }
    109     }
    110     return reg_arg;
    111   }
    112 
    113   RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
    114   RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
    115       RegStorage::InvalidReg();
    116 
    117   // If the VR is wide and there is no register for high part, we need to load it.
    118   if (wide && !reg_arg_high.Valid()) {
    119     // If the low part is not in a reg, we allocate a pair. Otherwise, we just load to high reg.
    120     if (!reg_arg_low.Valid()) {
    121       RegStorage new_regs = AllocTypedTempWide(false, reg_class);
    122       LoadBaseDisp(TargetPtrReg(kSp), offset, new_regs, k64, kNotVolatile);
    123       return new_regs;  // The reg_class is OK, we can return.
    124     } else {
    125       // Assume that no ABI allows splitting a wide fp reg between a narrow fp reg and memory,
    126       // i.e. the low part is in a core reg. Load the second part in a core reg as well for now.
    127       DCHECK(!reg_arg_low.IsFloat());
    128       reg_arg_high = AllocTemp();
    129       int offset_high = offset + sizeof(uint32_t);
    130       Load32Disp(TargetPtrReg(kSp), offset_high, reg_arg_high);
    131       // Continue below to check the reg_class.
    132     }
    133   }
    134 
    135   // If the low part is not in a register yet, we need to load it.
    136   if (!reg_arg_low.Valid()) {
    137     // Assume that if the low part of a wide arg is passed in memory, so is the high part,
    138     // thus we don't get here for wide args as it's handled above. Big-endian ABIs could
    139     // conceivably break this assumption but Android supports only little-endian architectures.
    140     DCHECK(!wide);
    141     reg_arg_low = AllocTypedTemp(false, reg_class);
    142     Load32Disp(TargetPtrReg(kSp), offset, reg_arg_low);
    143     return reg_arg_low;  // The reg_class is OK, we can return.
    144   }
    145 
    146   RegStorage reg_arg = wide ? RegStorage::MakeRegPair(reg_arg_low, reg_arg_high) : reg_arg_low;
    147   // Check if we need to copy the arg to a different reg_class.
    148   if (!RegClassMatches(reg_class, reg_arg)) {
    149     if (wide) {
    150       RegStorage new_regs = AllocTypedTempWide(false, reg_class);
    151       OpRegCopyWide(new_regs, reg_arg);
    152       reg_arg = new_regs;
    153     } else {
    154       RegStorage new_reg = AllocTypedTemp(false, reg_class);
    155       OpRegCopy(new_reg, reg_arg);
    156       reg_arg = new_reg;
    157     }
    158   }
    159   return reg_arg;
    160 }
    161 
    162 // TODO: simpilfy when 32-bit targets go hard float.
    163 void Mir2Lir::LoadArgDirect(int in_position, RegLocation rl_dest) {
    164   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    165   int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
    166   if (cu_->instruction_set == kX86) {
    167     /*
    168      * When doing a call for x86, it moves the stack pointer in order to push return.
    169      * Thus, we add another 4 bytes to figure out the out of caller (in of callee).
    170      */
    171     offset += sizeof(uint32_t);
    172   }
    173 
    174   if (cu_->instruction_set == kX86_64) {
    175     /*
    176      * When doing a call for x86, it moves the stack pointer in order to push return.
    177      * Thus, we add another 8 bytes to figure out the out of caller (in of callee).
    178      */
    179     offset += sizeof(uint64_t);
    180   }
    181 
    182   if (!rl_dest.wide) {
    183     RegStorage reg = GetArgMappingToPhysicalReg(in_position);
    184     if (reg.Valid()) {
    185       OpRegCopy(rl_dest.reg, reg);
    186     } else {
    187       Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg);
    188     }
    189   } else {
    190     if (cu_->target64) {
    191       RegStorage reg = GetArgMappingToPhysicalReg(in_position);
    192       if (reg.Valid()) {
    193         OpRegCopy(rl_dest.reg, reg);
    194       } else {
    195         LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile);
    196       }
    197       return;
    198     }
    199 
    200     RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
    201     RegStorage reg_arg_high = GetArgMappingToPhysicalReg(in_position + 1);
    202 
    203     if (cu_->instruction_set == kX86) {
    204       // Can't handle double split between reg & memory.  Flush reg half to memory.
    205       if (rl_dest.reg.IsDouble() && (reg_arg_low.Valid() != reg_arg_high.Valid())) {
    206         DCHECK(reg_arg_low.Valid());
    207         DCHECK(!reg_arg_high.Valid());
    208         Store32Disp(TargetPtrReg(kSp), offset, reg_arg_low);
    209         reg_arg_low = RegStorage::InvalidReg();
    210       }
    211     }
    212 
    213     if (reg_arg_low.Valid() && reg_arg_high.Valid()) {
    214       OpRegCopyWide(rl_dest.reg, RegStorage::MakeRegPair(reg_arg_low, reg_arg_high));
    215     } else if (reg_arg_low.Valid() && !reg_arg_high.Valid()) {
    216       OpRegCopy(rl_dest.reg, reg_arg_low);
    217       int offset_high = offset + sizeof(uint32_t);
    218       Load32Disp(TargetPtrReg(kSp), offset_high, rl_dest.reg.GetHigh());
    219     } else if (!reg_arg_low.Valid() && reg_arg_high.Valid()) {
    220       OpRegCopy(rl_dest.reg.GetHigh(), reg_arg_high);
    221       Load32Disp(TargetPtrReg(kSp), offset, rl_dest.reg.GetLow());
    222     } else {
    223       LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, k64, kNotVolatile);
    224     }
    225   }
    226 }
    227 
    228 bool Mir2Lir::GenSpecialIGet(MIR* mir, const InlineMethod& special) {
    229   // FastInstance() already checked by DexFileMethodInliner.
    230   const InlineIGetIPutData& data = special.d.ifield_data;
    231   if (data.method_is_static != 0u || data.object_arg != 0u) {
    232     // The object is not "this" and has to be null-checked.
    233     return false;
    234   }
    235 
    236   bool wide = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE));
    237   bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT));
    238   OpSize size = LoadStoreOpSize(wide, ref);
    239 
    240   // Point of no return - no aborts after this
    241   GenPrintLabel(mir);
    242   LockArg(data.object_arg);
    243   RegStorage reg_obj = LoadArg(data.object_arg, kRefReg);
    244   RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile);
    245   RegisterClass ret_reg_class = ShortyToRegClass(cu_->shorty[0]);
    246   RegLocation rl_dest = wide ? GetReturnWide(ret_reg_class) : GetReturn(ret_reg_class);
    247   RegStorage r_result = rl_dest.reg;
    248   if (!RegClassMatches(reg_class, r_result)) {
    249     r_result = wide ? AllocTypedTempWide(rl_dest.fp, reg_class)
    250                     : AllocTypedTemp(rl_dest.fp, reg_class);
    251   }
    252   if (ref) {
    253     LoadRefDisp(reg_obj, data.field_offset, r_result, data.is_volatile ? kVolatile : kNotVolatile);
    254   } else {
    255     LoadBaseDisp(reg_obj, data.field_offset, r_result, size, data.is_volatile ? kVolatile :
    256         kNotVolatile);
    257   }
    258   if (r_result.NotExactlyEquals(rl_dest.reg)) {
    259     if (wide) {
    260       OpRegCopyWide(rl_dest.reg, r_result);
    261     } else {
    262       OpRegCopy(rl_dest.reg, r_result);
    263     }
    264   }
    265   return true;
    266 }
    267 
    268 bool Mir2Lir::GenSpecialIPut(MIR* mir, const InlineMethod& special) {
    269   // FastInstance() already checked by DexFileMethodInliner.
    270   const InlineIGetIPutData& data = special.d.ifield_data;
    271   if (data.method_is_static != 0u || data.object_arg != 0u) {
    272     // The object is not "this" and has to be null-checked.
    273     return false;
    274   }
    275   if (data.return_arg_plus1 != 0u) {
    276     // The setter returns a method argument which we don't support here.
    277     return false;
    278   }
    279 
    280   bool wide = (data.op_variant == InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE));
    281   bool ref = (data.op_variant == InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT));
    282   OpSize size = LoadStoreOpSize(wide, ref);
    283 
    284   // Point of no return - no aborts after this
    285   GenPrintLabel(mir);
    286   LockArg(data.object_arg);
    287   LockArg(data.src_arg, wide);
    288   RegStorage reg_obj = LoadArg(data.object_arg, kRefReg);
    289   RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile);
    290   RegStorage reg_src = LoadArg(data.src_arg, reg_class, wide);
    291   if (ref) {
    292     StoreRefDisp(reg_obj, data.field_offset, reg_src, data.is_volatile ? kVolatile : kNotVolatile);
    293   } else {
    294     StoreBaseDisp(reg_obj, data.field_offset, reg_src, size, data.is_volatile ? kVolatile :
    295         kNotVolatile);
    296   }
    297   if (ref) {
    298     MarkGCCard(reg_src, reg_obj);
    299   }
    300   return true;
    301 }
    302 
    303 bool Mir2Lir::GenSpecialIdentity(MIR* mir, const InlineMethod& special) {
    304   const InlineReturnArgData& data = special.d.return_data;
    305   bool wide = (data.is_wide != 0u);
    306 
    307   // Point of no return - no aborts after this
    308   GenPrintLabel(mir);
    309   LockArg(data.arg, wide);
    310   RegisterClass reg_class = ShortyToRegClass(cu_->shorty[0]);
    311   RegLocation rl_dest = wide ? GetReturnWide(reg_class) : GetReturn(reg_class);
    312   LoadArgDirect(data.arg, rl_dest);
    313   return true;
    314 }
    315 
    316 /*
    317  * Special-case code generation for simple non-throwing leaf methods.
    318  */
    319 bool Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) {
    320   DCHECK(special.flags & kInlineSpecial);
    321   current_dalvik_offset_ = mir->offset;
    322   MIR* return_mir = nullptr;
    323   bool successful = false;
    324 
    325   switch (special.opcode) {
    326     case kInlineOpNop:
    327       successful = true;
    328       DCHECK_EQ(mir->dalvikInsn.opcode, Instruction::RETURN_VOID);
    329       return_mir = mir;
    330       break;
    331     case kInlineOpNonWideConst: {
    332       successful = true;
    333       RegLocation rl_dest = GetReturn(ShortyToRegClass(cu_->shorty[0]));
    334       GenPrintLabel(mir);
    335       LoadConstant(rl_dest.reg, static_cast<int>(special.d.data));
    336       return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
    337       break;
    338     }
    339     case kInlineOpReturnArg:
    340       successful = GenSpecialIdentity(mir, special);
    341       return_mir = mir;
    342       break;
    343     case kInlineOpIGet:
    344       successful = GenSpecialIGet(mir, special);
    345       return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
    346       break;
    347     case kInlineOpIPut:
    348       successful = GenSpecialIPut(mir, special);
    349       return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir);
    350       break;
    351     default:
    352       break;
    353   }
    354 
    355   if (successful) {
    356     if (kIsDebugBuild) {
    357       // Clear unreachable catch entries.
    358       mir_graph_->catches_.clear();
    359     }
    360 
    361     // Handle verbosity for return MIR.
    362     if (return_mir != nullptr) {
    363       current_dalvik_offset_ = return_mir->offset;
    364       // Not handling special identity case because it already generated code as part
    365       // of the return. The label should have been added before any code was generated.
    366       if (special.opcode != kInlineOpReturnArg) {
    367         GenPrintLabel(return_mir);
    368       }
    369     }
    370     GenSpecialExitSequence();
    371 
    372     core_spill_mask_ = 0;
    373     num_core_spills_ = 0;
    374     fp_spill_mask_ = 0;
    375     num_fp_spills_ = 0;
    376     frame_size_ = 0;
    377     core_vmap_table_.clear();
    378     fp_vmap_table_.clear();
    379   }
    380 
    381   return successful;
    382 }
    383 
    384 /*
    385  * Target-independent code generation.  Use only high-level
    386  * load/store utilities here, or target-dependent genXX() handlers
    387  * when necessary.
    388  */
    389 void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) {
    390   RegLocation rl_src[3];
    391   RegLocation rl_dest = mir_graph_->GetBadLoc();
    392   RegLocation rl_result = mir_graph_->GetBadLoc();
    393   Instruction::Code opcode = mir->dalvikInsn.opcode;
    394   int opt_flags = mir->optimization_flags;
    395   uint32_t vB = mir->dalvikInsn.vB;
    396   uint32_t vC = mir->dalvikInsn.vC;
    397   DCHECK(CheckCorePoolSanity()) << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " @ 0x:"
    398                                 << std::hex << current_dalvik_offset_;
    399 
    400   // Prep Src and Dest locations.
    401   int next_sreg = 0;
    402   int next_loc = 0;
    403   uint64_t attrs = MIRGraph::GetDataFlowAttributes(opcode);
    404   rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
    405   if (attrs & DF_UA) {
    406     if (attrs & DF_A_WIDE) {
    407       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
    408       next_sreg+= 2;
    409     } else {
    410       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
    411       next_sreg++;
    412     }
    413   }
    414   if (attrs & DF_UB) {
    415     if (attrs & DF_B_WIDE) {
    416       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
    417       next_sreg+= 2;
    418     } else {
    419       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
    420       next_sreg++;
    421     }
    422   }
    423   if (attrs & DF_UC) {
    424     if (attrs & DF_C_WIDE) {
    425       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
    426     } else {
    427       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
    428     }
    429   }
    430   if (attrs & DF_DA) {
    431     if (attrs & DF_A_WIDE) {
    432       rl_dest = mir_graph_->GetDestWide(mir);
    433     } else {
    434       rl_dest = mir_graph_->GetDest(mir);
    435     }
    436   }
    437   switch (opcode) {
    438     case Instruction::NOP:
    439       break;
    440 
    441     case Instruction::MOVE_EXCEPTION:
    442       GenMoveException(rl_dest);
    443       break;
    444 
    445     case Instruction::RETURN_VOID:
    446       if (((cu_->access_flags & kAccConstructor) != 0) &&
    447           cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file,
    448                                                           cu_->class_def_idx)) {
    449         GenMemBarrier(kStoreStore);
    450       }
    451       if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
    452         GenSuspendTest(opt_flags);
    453       }
    454       break;
    455 
    456     case Instruction::RETURN_OBJECT:
    457       DCHECK(rl_src[0].ref);
    458       // Intentional fallthrough.
    459     case Instruction::RETURN:
    460       if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
    461         GenSuspendTest(opt_flags);
    462       }
    463       DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0]));
    464       StoreValue(GetReturn(LocToRegClass(rl_src[0])), rl_src[0]);
    465       break;
    466 
    467     case Instruction::RETURN_WIDE:
    468       if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) {
    469         GenSuspendTest(opt_flags);
    470       }
    471       DCHECK_EQ(LocToRegClass(rl_src[0]), ShortyToRegClass(cu_->shorty[0]));
    472       StoreValueWide(GetReturnWide(LocToRegClass(rl_src[0])), rl_src[0]);
    473       break;
    474 
    475     case Instruction::MOVE_RESULT_WIDE:
    476       if ((opt_flags & MIR_INLINED) != 0) {
    477         break;  // Nop - combined w/ previous invoke.
    478       }
    479       StoreValueWide(rl_dest, GetReturnWide(LocToRegClass(rl_dest)));
    480       break;
    481 
    482     case Instruction::MOVE_RESULT:
    483     case Instruction::MOVE_RESULT_OBJECT:
    484       if ((opt_flags & MIR_INLINED) != 0) {
    485         break;  // Nop - combined w/ previous invoke.
    486       }
    487       StoreValue(rl_dest, GetReturn(LocToRegClass(rl_dest)));
    488       break;
    489 
    490     case Instruction::MOVE:
    491     case Instruction::MOVE_OBJECT:
    492     case Instruction::MOVE_16:
    493     case Instruction::MOVE_OBJECT_16:
    494     case Instruction::MOVE_FROM16:
    495     case Instruction::MOVE_OBJECT_FROM16:
    496       StoreValue(rl_dest, rl_src[0]);
    497       break;
    498 
    499     case Instruction::MOVE_WIDE:
    500     case Instruction::MOVE_WIDE_16:
    501     case Instruction::MOVE_WIDE_FROM16:
    502       StoreValueWide(rl_dest, rl_src[0]);
    503       break;
    504 
    505     case Instruction::CONST:
    506     case Instruction::CONST_4:
    507     case Instruction::CONST_16:
    508       GenConst(rl_dest, vB);
    509       break;
    510 
    511     case Instruction::CONST_HIGH16:
    512       GenConst(rl_dest, vB << 16);
    513       break;
    514 
    515     case Instruction::CONST_WIDE_16:
    516     case Instruction::CONST_WIDE_32:
    517       GenConstWide(rl_dest, static_cast<int64_t>(static_cast<int32_t>(vB)));
    518       break;
    519 
    520     case Instruction::CONST_WIDE:
    521       GenConstWide(rl_dest, mir->dalvikInsn.vB_wide);
    522       break;
    523 
    524     case Instruction::CONST_WIDE_HIGH16:
    525       rl_result = EvalLoc(rl_dest, kAnyReg, true);
    526       LoadConstantWide(rl_result.reg, static_cast<int64_t>(vB) << 48);
    527       StoreValueWide(rl_dest, rl_result);
    528       break;
    529 
    530     case Instruction::MONITOR_ENTER:
    531       GenMonitorEnter(opt_flags, rl_src[0]);
    532       break;
    533 
    534     case Instruction::MONITOR_EXIT:
    535       GenMonitorExit(opt_flags, rl_src[0]);
    536       break;
    537 
    538     case Instruction::CHECK_CAST: {
    539       GenCheckCast(mir->offset, vB, rl_src[0]);
    540       break;
    541     }
    542     case Instruction::INSTANCE_OF:
    543       GenInstanceof(vC, rl_dest, rl_src[0]);
    544       break;
    545 
    546     case Instruction::NEW_INSTANCE:
    547       GenNewInstance(vB, rl_dest);
    548       break;
    549 
    550     case Instruction::THROW:
    551       GenThrow(rl_src[0]);
    552       break;
    553 
    554     case Instruction::ARRAY_LENGTH:
    555       int len_offset;
    556       len_offset = mirror::Array::LengthOffset().Int32Value();
    557       rl_src[0] = LoadValue(rl_src[0], kRefReg);
    558       GenNullCheck(rl_src[0].reg, opt_flags);
    559       rl_result = EvalLoc(rl_dest, kCoreReg, true);
    560       Load32Disp(rl_src[0].reg, len_offset, rl_result.reg);
    561       MarkPossibleNullPointerException(opt_flags);
    562       StoreValue(rl_dest, rl_result);
    563       break;
    564 
    565     case Instruction::CONST_STRING:
    566     case Instruction::CONST_STRING_JUMBO:
    567       GenConstString(vB, rl_dest);
    568       break;
    569 
    570     case Instruction::CONST_CLASS:
    571       GenConstClass(vB, rl_dest);
    572       break;
    573 
    574     case Instruction::FILL_ARRAY_DATA:
    575       GenFillArrayData(vB, rl_src[0]);
    576       break;
    577 
    578     case Instruction::FILLED_NEW_ARRAY:
    579       GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
    580                         false /* not range */));
    581       break;
    582 
    583     case Instruction::FILLED_NEW_ARRAY_RANGE:
    584       GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
    585                         true /* range */));
    586       break;
    587 
    588     case Instruction::NEW_ARRAY:
    589       GenNewArray(vC, rl_dest, rl_src[0]);
    590       break;
    591 
    592     case Instruction::GOTO:
    593     case Instruction::GOTO_16:
    594     case Instruction::GOTO_32:
    595       if (mir_graph_->IsBackedge(bb, bb->taken) &&
    596           (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken))) {
    597         GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken]);
    598       } else {
    599         OpUnconditionalBranch(&label_list[bb->taken]);
    600       }
    601       break;
    602 
    603     case Instruction::PACKED_SWITCH:
    604       GenPackedSwitch(mir, vB, rl_src[0]);
    605       break;
    606 
    607     case Instruction::SPARSE_SWITCH:
    608       GenSparseSwitch(mir, vB, rl_src[0]);
    609       break;
    610 
    611     case Instruction::CMPL_FLOAT:
    612     case Instruction::CMPG_FLOAT:
    613     case Instruction::CMPL_DOUBLE:
    614     case Instruction::CMPG_DOUBLE:
    615       GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]);
    616       break;
    617 
    618     case Instruction::CMP_LONG:
    619       GenCmpLong(rl_dest, rl_src[0], rl_src[1]);
    620       break;
    621 
    622     case Instruction::IF_EQ:
    623     case Instruction::IF_NE:
    624     case Instruction::IF_LT:
    625     case Instruction::IF_GE:
    626     case Instruction::IF_GT:
    627     case Instruction::IF_LE: {
    628       LIR* taken = &label_list[bb->taken];
    629       LIR* fall_through = &label_list[bb->fall_through];
    630       // Result known at compile time?
    631       if (rl_src[0].is_const && rl_src[1].is_const) {
    632         bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg),
    633                                        mir_graph_->ConstantValue(rl_src[1].orig_sreg));
    634         BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through;
    635         if (mir_graph_->IsBackedge(bb, target_id) &&
    636             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) {
    637           GenSuspendTest(opt_flags);
    638         }
    639         OpUnconditionalBranch(&label_list[target_id]);
    640       } else {
    641         if (mir_graph_->IsBackwardsBranch(bb) &&
    642             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) ||
    643              !mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) {
    644           GenSuspendTest(opt_flags);
    645         }
    646         GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken, fall_through);
    647       }
    648       break;
    649       }
    650 
    651     case Instruction::IF_EQZ:
    652     case Instruction::IF_NEZ:
    653     case Instruction::IF_LTZ:
    654     case Instruction::IF_GEZ:
    655     case Instruction::IF_GTZ:
    656     case Instruction::IF_LEZ: {
    657       LIR* taken = &label_list[bb->taken];
    658       LIR* fall_through = &label_list[bb->fall_through];
    659       // Result known at compile time?
    660       if (rl_src[0].is_const) {
    661         bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0);
    662         BasicBlockId target_id = is_taken ? bb->taken : bb->fall_through;
    663         if (mir_graph_->IsBackedge(bb, target_id) &&
    664             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, target_id))) {
    665           GenSuspendTest(opt_flags);
    666         }
    667         OpUnconditionalBranch(&label_list[target_id]);
    668       } else {
    669         if (mir_graph_->IsBackwardsBranch(bb) &&
    670             (kLeafOptimization || !mir_graph_->HasSuspendTestBetween(bb, bb->taken) ||
    671              !mir_graph_->HasSuspendTestBetween(bb, bb->fall_through))) {
    672           GenSuspendTest(opt_flags);
    673         }
    674         GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through);
    675       }
    676       break;
    677       }
    678 
    679     case Instruction::AGET_WIDE:
    680       GenArrayGet(opt_flags, k64, rl_src[0], rl_src[1], rl_dest, 3);
    681       break;
    682     case Instruction::AGET_OBJECT:
    683       GenArrayGet(opt_flags, kReference, rl_src[0], rl_src[1], rl_dest, 2);
    684       break;
    685     case Instruction::AGET:
    686       GenArrayGet(opt_flags, k32, rl_src[0], rl_src[1], rl_dest, 2);
    687       break;
    688     case Instruction::AGET_BOOLEAN:
    689       GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0);
    690       break;
    691     case Instruction::AGET_BYTE:
    692       GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0);
    693       break;
    694     case Instruction::AGET_CHAR:
    695       GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
    696       break;
    697     case Instruction::AGET_SHORT:
    698       GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
    699       break;
    700     case Instruction::APUT_WIDE:
    701       GenArrayPut(opt_flags, k64, rl_src[1], rl_src[2], rl_src[0], 3, false);
    702       break;
    703     case Instruction::APUT:
    704       GenArrayPut(opt_flags, k32, rl_src[1], rl_src[2], rl_src[0], 2, false);
    705       break;
    706     case Instruction::APUT_OBJECT: {
    707       bool is_null = mir_graph_->IsConstantNullRef(rl_src[0]);
    708       bool is_safe = is_null;  // Always safe to store null.
    709       if (!is_safe) {
    710         // Check safety from verifier type information.
    711         const DexCompilationUnit* unit = mir_graph_->GetCurrentDexCompilationUnit();
    712         is_safe = cu_->compiler_driver->IsSafeCast(unit, mir->offset);
    713       }
    714       if (is_null || is_safe) {
    715         // Store of constant null doesn't require an assignability test and can be generated inline
    716         // without fixed register usage or a card mark.
    717         GenArrayPut(opt_flags, kReference, rl_src[1], rl_src[2], rl_src[0], 2, !is_null);
    718       } else {
    719         GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0]);
    720       }
    721       break;
    722     }
    723     case Instruction::APUT_SHORT:
    724     case Instruction::APUT_CHAR:
    725       GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1, false);
    726       break;
    727     case Instruction::APUT_BYTE:
    728     case Instruction::APUT_BOOLEAN:
    729       GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2], rl_src[0], 0, false);
    730       break;
    731 
    732     case Instruction::IGET_OBJECT:
    733       GenIGet(mir, opt_flags, kReference, rl_dest, rl_src[0], false, true);
    734       break;
    735 
    736     case Instruction::IGET_WIDE:
    737       GenIGet(mir, opt_flags, k64, rl_dest, rl_src[0], true, false);
    738       break;
    739 
    740     case Instruction::IGET:
    741       GenIGet(mir, opt_flags, k32, rl_dest, rl_src[0], false, false);
    742       break;
    743 
    744     case Instruction::IGET_CHAR:
    745       GenIGet(mir, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false);
    746       break;
    747 
    748     case Instruction::IGET_SHORT:
    749       GenIGet(mir, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false);
    750       break;
    751 
    752     case Instruction::IGET_BOOLEAN:
    753     case Instruction::IGET_BYTE:
    754       GenIGet(mir, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false);
    755       break;
    756 
    757     case Instruction::IPUT_WIDE:
    758       GenIPut(mir, opt_flags, k64, rl_src[0], rl_src[1], true, false);
    759       break;
    760 
    761     case Instruction::IPUT_OBJECT:
    762       GenIPut(mir, opt_flags, kReference, rl_src[0], rl_src[1], false, true);
    763       break;
    764 
    765     case Instruction::IPUT:
    766       GenIPut(mir, opt_flags, k32, rl_src[0], rl_src[1], false, false);
    767       break;
    768 
    769     case Instruction::IPUT_BOOLEAN:
    770     case Instruction::IPUT_BYTE:
    771       GenIPut(mir, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false);
    772       break;
    773 
    774     case Instruction::IPUT_CHAR:
    775       GenIPut(mir, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false);
    776       break;
    777 
    778     case Instruction::IPUT_SHORT:
    779       GenIPut(mir, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false);
    780       break;
    781 
    782     case Instruction::SGET_OBJECT:
    783       GenSget(mir, rl_dest, false, true);
    784       break;
    785     case Instruction::SGET:
    786     case Instruction::SGET_BOOLEAN:
    787     case Instruction::SGET_BYTE:
    788     case Instruction::SGET_CHAR:
    789     case Instruction::SGET_SHORT:
    790       GenSget(mir, rl_dest, false, false);
    791       break;
    792 
    793     case Instruction::SGET_WIDE:
    794       GenSget(mir, rl_dest, true, false);
    795       break;
    796 
    797     case Instruction::SPUT_OBJECT:
    798       GenSput(mir, rl_src[0], false, true);
    799       break;
    800 
    801     case Instruction::SPUT:
    802     case Instruction::SPUT_BOOLEAN:
    803     case Instruction::SPUT_BYTE:
    804     case Instruction::SPUT_CHAR:
    805     case Instruction::SPUT_SHORT:
    806       GenSput(mir, rl_src[0], false, false);
    807       break;
    808 
    809     case Instruction::SPUT_WIDE:
    810       GenSput(mir, rl_src[0], true, false);
    811       break;
    812 
    813     case Instruction::INVOKE_STATIC_RANGE:
    814       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true));
    815       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    816         // If the invocation is not inlined, we can assume there is already a
    817         // suspend check at the return site
    818         mir_graph_->AppendGenSuspendTestList(bb);
    819       }
    820       break;
    821     case Instruction::INVOKE_STATIC:
    822       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false));
    823       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    824         mir_graph_->AppendGenSuspendTestList(bb);
    825       }
    826       break;
    827 
    828     case Instruction::INVOKE_DIRECT:
    829       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false));
    830       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    831         mir_graph_->AppendGenSuspendTestList(bb);
    832       }
    833       break;
    834     case Instruction::INVOKE_DIRECT_RANGE:
    835       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true));
    836       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    837         mir_graph_->AppendGenSuspendTestList(bb);
    838       }
    839       break;
    840 
    841     case Instruction::INVOKE_VIRTUAL:
    842       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false));
    843       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    844         mir_graph_->AppendGenSuspendTestList(bb);
    845       }
    846       break;
    847     case Instruction::INVOKE_VIRTUAL_RANGE:
    848       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true));
    849       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    850         mir_graph_->AppendGenSuspendTestList(bb);
    851       }
    852       break;
    853 
    854     case Instruction::INVOKE_SUPER:
    855       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false));
    856       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    857         mir_graph_->AppendGenSuspendTestList(bb);
    858       }
    859       break;
    860     case Instruction::INVOKE_SUPER_RANGE:
    861       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true));
    862       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    863         mir_graph_->AppendGenSuspendTestList(bb);
    864       }
    865       break;
    866 
    867     case Instruction::INVOKE_INTERFACE:
    868       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false));
    869       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    870         mir_graph_->AppendGenSuspendTestList(bb);
    871       }
    872       break;
    873     case Instruction::INVOKE_INTERFACE_RANGE:
    874       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true));
    875       if (!kLeafOptimization && (opt_flags & MIR_INLINED) == 0) {
    876         mir_graph_->AppendGenSuspendTestList(bb);
    877       }
    878       break;
    879 
    880     case Instruction::NEG_INT:
    881     case Instruction::NOT_INT:
    882       GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]);
    883       break;
    884 
    885     case Instruction::NEG_LONG:
    886     case Instruction::NOT_LONG:
    887       GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]);
    888       break;
    889 
    890     case Instruction::NEG_FLOAT:
    891       GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]);
    892       break;
    893 
    894     case Instruction::NEG_DOUBLE:
    895       GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]);
    896       break;
    897 
    898     case Instruction::INT_TO_LONG:
    899       GenIntToLong(rl_dest, rl_src[0]);
    900       break;
    901 
    902     case Instruction::LONG_TO_INT:
    903       rl_src[0] = UpdateLocWide(rl_src[0]);
    904       rl_src[0] = NarrowRegLoc(rl_src[0]);
    905       StoreValue(rl_dest, rl_src[0]);
    906       break;
    907 
    908     case Instruction::INT_TO_BYTE:
    909     case Instruction::INT_TO_SHORT:
    910     case Instruction::INT_TO_CHAR:
    911       GenIntNarrowing(opcode, rl_dest, rl_src[0]);
    912       break;
    913 
    914     case Instruction::INT_TO_FLOAT:
    915     case Instruction::INT_TO_DOUBLE:
    916     case Instruction::LONG_TO_FLOAT:
    917     case Instruction::LONG_TO_DOUBLE:
    918     case Instruction::FLOAT_TO_INT:
    919     case Instruction::FLOAT_TO_LONG:
    920     case Instruction::FLOAT_TO_DOUBLE:
    921     case Instruction::DOUBLE_TO_INT:
    922     case Instruction::DOUBLE_TO_LONG:
    923     case Instruction::DOUBLE_TO_FLOAT:
    924       GenConversion(opcode, rl_dest, rl_src[0]);
    925       break;
    926 
    927 
    928     case Instruction::ADD_INT:
    929     case Instruction::ADD_INT_2ADDR:
    930     case Instruction::MUL_INT:
    931     case Instruction::MUL_INT_2ADDR:
    932     case Instruction::AND_INT:
    933     case Instruction::AND_INT_2ADDR:
    934     case Instruction::OR_INT:
    935     case Instruction::OR_INT_2ADDR:
    936     case Instruction::XOR_INT:
    937     case Instruction::XOR_INT_2ADDR:
    938       if (rl_src[0].is_const &&
    939           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]), opcode)) {
    940         GenArithOpIntLit(opcode, rl_dest, rl_src[1],
    941                              mir_graph_->ConstantValue(rl_src[0].orig_sreg));
    942       } else if (rl_src[1].is_const &&
    943                  InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) {
    944         GenArithOpIntLit(opcode, rl_dest, rl_src[0],
    945                              mir_graph_->ConstantValue(rl_src[1].orig_sreg));
    946       } else {
    947         GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
    948       }
    949       break;
    950 
    951     case Instruction::SUB_INT:
    952     case Instruction::SUB_INT_2ADDR:
    953     case Instruction::DIV_INT:
    954     case Instruction::DIV_INT_2ADDR:
    955     case Instruction::REM_INT:
    956     case Instruction::REM_INT_2ADDR:
    957     case Instruction::SHL_INT:
    958     case Instruction::SHL_INT_2ADDR:
    959     case Instruction::SHR_INT:
    960     case Instruction::SHR_INT_2ADDR:
    961     case Instruction::USHR_INT:
    962     case Instruction::USHR_INT_2ADDR:
    963       if (rl_src[1].is_const &&
    964           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) {
    965         GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1]));
    966       } else {
    967         GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
    968       }
    969       break;
    970 
    971     case Instruction::ADD_LONG:
    972     case Instruction::SUB_LONG:
    973     case Instruction::AND_LONG:
    974     case Instruction::OR_LONG:
    975     case Instruction::XOR_LONG:
    976     case Instruction::ADD_LONG_2ADDR:
    977     case Instruction::SUB_LONG_2ADDR:
    978     case Instruction::AND_LONG_2ADDR:
    979     case Instruction::OR_LONG_2ADDR:
    980     case Instruction::XOR_LONG_2ADDR:
    981       if (rl_src[0].is_const || rl_src[1].is_const) {
    982         GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
    983         break;
    984       }
    985       // Note: intentional fallthrough.
    986 
    987     case Instruction::MUL_LONG:
    988     case Instruction::DIV_LONG:
    989     case Instruction::REM_LONG:
    990     case Instruction::MUL_LONG_2ADDR:
    991     case Instruction::DIV_LONG_2ADDR:
    992     case Instruction::REM_LONG_2ADDR:
    993       GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
    994       break;
    995 
    996     case Instruction::SHL_LONG:
    997     case Instruction::SHR_LONG:
    998     case Instruction::USHR_LONG:
    999     case Instruction::SHL_LONG_2ADDR:
   1000     case Instruction::SHR_LONG_2ADDR:
   1001     case Instruction::USHR_LONG_2ADDR:
   1002       if (rl_src[1].is_const) {
   1003         GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
   1004       } else {
   1005         GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
   1006       }
   1007       break;
   1008 
   1009     case Instruction::ADD_FLOAT:
   1010     case Instruction::SUB_FLOAT:
   1011     case Instruction::MUL_FLOAT:
   1012     case Instruction::DIV_FLOAT:
   1013     case Instruction::REM_FLOAT:
   1014     case Instruction::ADD_FLOAT_2ADDR:
   1015     case Instruction::SUB_FLOAT_2ADDR:
   1016     case Instruction::MUL_FLOAT_2ADDR:
   1017     case Instruction::DIV_FLOAT_2ADDR:
   1018     case Instruction::REM_FLOAT_2ADDR:
   1019       GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]);
   1020       break;
   1021 
   1022     case Instruction::ADD_DOUBLE:
   1023     case Instruction::SUB_DOUBLE:
   1024     case Instruction::MUL_DOUBLE:
   1025     case Instruction::DIV_DOUBLE:
   1026     case Instruction::REM_DOUBLE:
   1027     case Instruction::ADD_DOUBLE_2ADDR:
   1028     case Instruction::SUB_DOUBLE_2ADDR:
   1029     case Instruction::MUL_DOUBLE_2ADDR:
   1030     case Instruction::DIV_DOUBLE_2ADDR:
   1031     case Instruction::REM_DOUBLE_2ADDR:
   1032       GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]);
   1033       break;
   1034 
   1035     case Instruction::RSUB_INT:
   1036     case Instruction::ADD_INT_LIT16:
   1037     case Instruction::MUL_INT_LIT16:
   1038     case Instruction::DIV_INT_LIT16:
   1039     case Instruction::REM_INT_LIT16:
   1040     case Instruction::AND_INT_LIT16:
   1041     case Instruction::OR_INT_LIT16:
   1042     case Instruction::XOR_INT_LIT16:
   1043     case Instruction::ADD_INT_LIT8:
   1044     case Instruction::RSUB_INT_LIT8:
   1045     case Instruction::MUL_INT_LIT8:
   1046     case Instruction::DIV_INT_LIT8:
   1047     case Instruction::REM_INT_LIT8:
   1048     case Instruction::AND_INT_LIT8:
   1049     case Instruction::OR_INT_LIT8:
   1050     case Instruction::XOR_INT_LIT8:
   1051     case Instruction::SHL_INT_LIT8:
   1052     case Instruction::SHR_INT_LIT8:
   1053     case Instruction::USHR_INT_LIT8:
   1054       GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC);
   1055       break;
   1056 
   1057     default:
   1058       LOG(FATAL) << "Unexpected opcode: " << opcode;
   1059   }
   1060   DCHECK(CheckCorePoolSanity());
   1061 }  // NOLINT(readability/fn_size)
   1062 
   1063 // Process extended MIR instructions
   1064 void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
   1065   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
   1066     case kMirOpCopy: {
   1067       RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
   1068       RegLocation rl_dest = mir_graph_->GetDest(mir);
   1069       StoreValue(rl_dest, rl_src);
   1070       break;
   1071     }
   1072     case kMirOpFusedCmplFloat:
   1073       GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/);
   1074       break;
   1075     case kMirOpFusedCmpgFloat:
   1076       GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/);
   1077       break;
   1078     case kMirOpFusedCmplDouble:
   1079       GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/);
   1080       break;
   1081     case kMirOpFusedCmpgDouble:
   1082       GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/);
   1083       break;
   1084     case kMirOpFusedCmpLong:
   1085       GenFusedLongCmpBranch(bb, mir);
   1086       break;
   1087     case kMirOpSelect:
   1088       GenSelect(bb, mir);
   1089       break;
   1090     case kMirOpPhi:
   1091     case kMirOpNop:
   1092     case kMirOpNullCheck:
   1093     case kMirOpRangeCheck:
   1094     case kMirOpDivZeroCheck:
   1095     case kMirOpCheck:
   1096     case kMirOpCheckPart2:
   1097       // Ignore these known opcodes
   1098       break;
   1099     default:
   1100       // Give the backends a chance to handle unknown extended MIR opcodes.
   1101       GenMachineSpecificExtendedMethodMIR(bb, mir);
   1102       break;
   1103   }
   1104 }
   1105 
   1106 void Mir2Lir::GenPrintLabel(MIR* mir) {
   1107   // Mark the beginning of a Dalvik instruction for line tracking.
   1108   if (cu_->verbose) {
   1109      char* inst_str = mir_graph_->GetDalvikDisassembly(mir);
   1110      MarkBoundary(mir->offset, inst_str);
   1111   }
   1112 }
   1113 
   1114 // Handle the content in each basic block.
   1115 bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) {
   1116   if (bb->block_type == kDead) return false;
   1117   current_dalvik_offset_ = bb->start_offset;
   1118   MIR* mir;
   1119   int block_id = bb->id;
   1120 
   1121   block_label_list_[block_id].operands[0] = bb->start_offset;
   1122 
   1123   // Insert the block label.
   1124   block_label_list_[block_id].opcode = kPseudoNormalBlockLabel;
   1125   block_label_list_[block_id].flags.fixup = kFixupLabel;
   1126   AppendLIR(&block_label_list_[block_id]);
   1127 
   1128   LIR* head_lir = NULL;
   1129 
   1130   // If this is a catch block, export the start address.
   1131   if (bb->catch_entry) {
   1132     head_lir = NewLIR0(kPseudoExportedPC);
   1133   }
   1134 
   1135   // Free temp registers and reset redundant store tracking.
   1136   ClobberAllTemps();
   1137 
   1138   if (bb->block_type == kEntryBlock) {
   1139     ResetRegPool();
   1140     int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
   1141     GenEntrySequence(&mir_graph_->reg_location_[start_vreg],
   1142                          mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]);
   1143   } else if (bb->block_type == kExitBlock) {
   1144     ResetRegPool();
   1145     GenExitSequence();
   1146   }
   1147 
   1148   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
   1149     ResetRegPool();
   1150     if (cu_->disable_opt & (1 << kTrackLiveTemps)) {
   1151       ClobberAllTemps();
   1152       // Reset temp allocation to minimize differences when A/B testing.
   1153       reg_pool_->ResetNextTemp();
   1154     }
   1155 
   1156     if (cu_->disable_opt & (1 << kSuppressLoads)) {
   1157       ResetDefTracking();
   1158     }
   1159 
   1160     // Reset temp tracking sanity check.
   1161     if (kIsDebugBuild) {
   1162       live_sreg_ = INVALID_SREG;
   1163     }
   1164 
   1165     current_dalvik_offset_ = mir->offset;
   1166     int opcode = mir->dalvikInsn.opcode;
   1167 
   1168     GenPrintLabel(mir);
   1169 
   1170     // Remember the first LIR for this block.
   1171     if (head_lir == NULL) {
   1172       head_lir = &block_label_list_[bb->id];
   1173       // Set the first label as a scheduling barrier.
   1174       DCHECK(!head_lir->flags.use_def_invalid);
   1175       head_lir->u.m.def_mask = &kEncodeAll;
   1176     }
   1177 
   1178     if (opcode == kMirOpCheck) {
   1179       // Combine check and work halves of throwing instruction.
   1180       MIR* work_half = mir->meta.throw_insn;
   1181       mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
   1182       mir->meta = work_half->meta;  // Whatever the work_half had, we need to copy it.
   1183       opcode = work_half->dalvikInsn.opcode;
   1184       SSARepresentation* ssa_rep = work_half->ssa_rep;
   1185       work_half->ssa_rep = mir->ssa_rep;
   1186       mir->ssa_rep = ssa_rep;
   1187       work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2);
   1188       work_half->meta.throw_insn = mir;
   1189     }
   1190 
   1191     if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
   1192       HandleExtendedMethodMIR(bb, mir);
   1193       continue;
   1194     }
   1195 
   1196     CompileDalvikInstruction(mir, bb, block_label_list_);
   1197   }
   1198 
   1199   if (head_lir) {
   1200     // Eliminate redundant loads/stores and delay stores into later slots.
   1201     ApplyLocalOptimizations(head_lir, last_lir_insn_);
   1202   }
   1203   return false;
   1204 }
   1205 
   1206 bool Mir2Lir::SpecialMIR2LIR(const InlineMethod& special) {
   1207   cu_->NewTimingSplit("SpecialMIR2LIR");
   1208   // Find the first DalvikByteCode block.
   1209   int num_reachable_blocks = mir_graph_->GetNumReachableBlocks();
   1210   BasicBlock*bb = NULL;
   1211   for (int idx = 0; idx < num_reachable_blocks; idx++) {
   1212     // TODO: no direct access of growable lists.
   1213     int dfs_index = mir_graph_->GetDfsOrder()->Get(idx);
   1214     bb = mir_graph_->GetBasicBlock(dfs_index);
   1215     if (bb->block_type == kDalvikByteCode) {
   1216       break;
   1217     }
   1218   }
   1219   if (bb == NULL) {
   1220     return false;
   1221   }
   1222   DCHECK_EQ(bb->start_offset, 0);
   1223   DCHECK(bb->first_mir_insn != NULL);
   1224 
   1225   // Get the first instruction.
   1226   MIR* mir = bb->first_mir_insn;
   1227 
   1228   // Free temp registers and reset redundant store tracking.
   1229   ResetRegPool();
   1230   ResetDefTracking();
   1231   ClobberAllTemps();
   1232 
   1233   return GenSpecialCase(bb, mir, special);
   1234 }
   1235 
   1236 void Mir2Lir::MethodMIR2LIR() {
   1237   cu_->NewTimingSplit("MIR2LIR");
   1238 
   1239   // Hold the labels of each block.
   1240   block_label_list_ =
   1241       static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(),
   1242                                       kArenaAllocLIR));
   1243 
   1244   PreOrderDfsIterator iter(mir_graph_);
   1245   BasicBlock* curr_bb = iter.Next();
   1246   BasicBlock* next_bb = iter.Next();
   1247   while (curr_bb != NULL) {
   1248     MethodBlockCodeGen(curr_bb);
   1249     // If the fall_through block is no longer laid out consecutively, drop in a branch.
   1250     BasicBlock* curr_bb_fall_through = mir_graph_->GetBasicBlock(curr_bb->fall_through);
   1251     if ((curr_bb_fall_through != NULL) && (curr_bb_fall_through != next_bb)) {
   1252       OpUnconditionalBranch(&block_label_list_[curr_bb->fall_through]);
   1253     }
   1254     curr_bb = next_bb;
   1255     do {
   1256       next_bb = iter.Next();
   1257     } while ((next_bb != NULL) && (next_bb->block_type == kDead));
   1258   }
   1259   HandleSlowPaths();
   1260 }
   1261 
   1262 //
   1263 // LIR Slow Path
   1264 //
   1265 
   1266 LIR* Mir2Lir::LIRSlowPath::GenerateTargetLabel(int opcode) {
   1267   m2l_->SetCurrentDexPc(current_dex_pc_);
   1268   LIR* target = m2l_->NewLIR0(opcode);
   1269   fromfast_->target = target;
   1270   return target;
   1271 }
   1272 
   1273 
   1274 void Mir2Lir::CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp,
   1275                                   bool fail, bool report)
   1276     const  {
   1277   if (rs.Valid()) {
   1278     if (ref == RefCheck::kCheckRef) {
   1279       if (cu_->target64 && !rs.Is64Bit()) {
   1280         if (fail) {
   1281           CHECK(false) << "Reg storage not 64b for ref.";
   1282         } else if (report) {
   1283           LOG(WARNING) << "Reg storage not 64b for ref.";
   1284         }
   1285       }
   1286     }
   1287     if (wide == WidenessCheck::kCheckWide) {
   1288       if (!rs.Is64Bit()) {
   1289         if (fail) {
   1290           CHECK(false) << "Reg storage not 64b for wide.";
   1291         } else if (report) {
   1292           LOG(WARNING) << "Reg storage not 64b for wide.";
   1293         }
   1294       }
   1295     }
   1296     // A tighter check would be nice, but for now soft-float will not check float at all.
   1297     if (fp == FPCheck::kCheckFP && cu_->instruction_set != kArm) {
   1298       if (!rs.IsFloat()) {
   1299         if (fail) {
   1300           CHECK(false) << "Reg storage not float for fp.";
   1301         } else if (report) {
   1302           LOG(WARNING) << "Reg storage not float for fp.";
   1303         }
   1304       }
   1305     } else if (fp == FPCheck::kCheckNotFP) {
   1306       if (rs.IsFloat()) {
   1307         if (fail) {
   1308           CHECK(false) << "Reg storage float for not-fp.";
   1309         } else if (report) {
   1310           LOG(WARNING) << "Reg storage float for not-fp.";
   1311         }
   1312       }
   1313     }
   1314   }
   1315 }
   1316 
   1317 void Mir2Lir::CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const {
   1318   // Regrettably can't use the fp part of rl, as that is not really indicative of where a value
   1319   // will be stored.
   1320   CheckRegStorageImpl(rl.reg, rl.wide ? WidenessCheck::kCheckWide : WidenessCheck::kCheckNotWide,
   1321       rl.ref ? RefCheck::kCheckRef : RefCheck::kCheckNotRef, FPCheck::kIgnoreFP, fail, report);
   1322 }
   1323 
   1324 size_t Mir2Lir::GetInstructionOffset(LIR* lir) {
   1325   UNIMPLEMENTED(FATAL) << "Unsuppored GetInstructionOffset()";
   1326   return 0;
   1327 }
   1328 
   1329 }  // namespace art
   1330