1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-reduce" 81 82 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 83 /// bail out. This threshold is far beyond the number of users that LSR can 84 /// conceivably solve, so it should not affect generated code, but catches the 85 /// worst cases before LSR burns too much compile time and stack space. 86 static const unsigned MaxIVUsers = 200; 87 88 // Temporary flag to cleanup congruent phis after LSR phi expansion. 89 // It's currently disabled until we can determine whether it's truly useful or 90 // not. The flag should be removed after the v3.0 release. 91 // This is now needed for ivchains. 92 static cl::opt<bool> EnablePhiElim( 93 "enable-lsr-phielim", cl::Hidden, cl::init(true), 94 cl::desc("Enable LSR phi elimination")); 95 96 #ifndef NDEBUG 97 // Stress test IV chain generation. 98 static cl::opt<bool> StressIVChain( 99 "stress-ivchain", cl::Hidden, cl::init(false), 100 cl::desc("Stress test LSR IV chains")); 101 #else 102 static bool StressIVChain = false; 103 #endif 104 105 namespace { 106 107 /// RegSortData - This class holds data which is used to order reuse candidates. 108 class RegSortData { 109 public: 110 /// UsedByIndices - This represents the set of LSRUse indices which reference 111 /// a particular register. 112 SmallBitVector UsedByIndices; 113 114 RegSortData() {} 115 116 void print(raw_ostream &OS) const; 117 void dump() const; 118 }; 119 120 } 121 122 void RegSortData::print(raw_ostream &OS) const { 123 OS << "[NumUses=" << UsedByIndices.count() << ']'; 124 } 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void RegSortData::dump() const { 128 print(errs()); errs() << '\n'; 129 } 130 #endif 131 132 namespace { 133 134 /// RegUseTracker - Map register candidates to information about how they are 135 /// used. 136 class RegUseTracker { 137 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 138 139 RegUsesTy RegUsesMap; 140 SmallVector<const SCEV *, 16> RegSequence; 141 142 public: 143 void CountRegister(const SCEV *Reg, size_t LUIdx); 144 void DropRegister(const SCEV *Reg, size_t LUIdx); 145 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 146 147 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 148 149 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 150 151 void clear(); 152 153 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 154 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 155 iterator begin() { return RegSequence.begin(); } 156 iterator end() { return RegSequence.end(); } 157 const_iterator begin() const { return RegSequence.begin(); } 158 const_iterator end() const { return RegSequence.end(); } 159 }; 160 161 } 162 163 void 164 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 165 std::pair<RegUsesTy::iterator, bool> Pair = 166 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 167 RegSortData &RSD = Pair.first->second; 168 if (Pair.second) 169 RegSequence.push_back(Reg); 170 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 171 RSD.UsedByIndices.set(LUIdx); 172 } 173 174 void 175 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 176 RegUsesTy::iterator It = RegUsesMap.find(Reg); 177 assert(It != RegUsesMap.end()); 178 RegSortData &RSD = It->second; 179 assert(RSD.UsedByIndices.size() > LUIdx); 180 RSD.UsedByIndices.reset(LUIdx); 181 } 182 183 void 184 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 185 assert(LUIdx <= LastLUIdx); 186 187 // Update RegUses. The data structure is not optimized for this purpose; 188 // we must iterate through it and update each of the bit vectors. 189 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 190 I != E; ++I) { 191 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 192 if (LUIdx < UsedByIndices.size()) 193 UsedByIndices[LUIdx] = 194 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 195 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 196 } 197 } 198 199 bool 200 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 201 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 202 if (I == RegUsesMap.end()) 203 return false; 204 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 205 int i = UsedByIndices.find_first(); 206 if (i == -1) return false; 207 if ((size_t)i != LUIdx) return true; 208 return UsedByIndices.find_next(i) != -1; 209 } 210 211 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 212 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 213 assert(I != RegUsesMap.end() && "Unknown register!"); 214 return I->second.UsedByIndices; 215 } 216 217 void RegUseTracker::clear() { 218 RegUsesMap.clear(); 219 RegSequence.clear(); 220 } 221 222 namespace { 223 224 /// Formula - This class holds information that describes a formula for 225 /// computing satisfying a use. It may include broken-out immediates and scaled 226 /// registers. 227 struct Formula { 228 /// Global base address used for complex addressing. 229 GlobalValue *BaseGV; 230 231 /// Base offset for complex addressing. 232 int64_t BaseOffset; 233 234 /// Whether any complex addressing has a base register. 235 bool HasBaseReg; 236 237 /// The scale of any complex addressing. 238 int64_t Scale; 239 240 /// BaseRegs - The list of "base" registers for this use. When this is 241 /// non-empty. The canonical representation of a formula is 242 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 243 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 244 /// #1 enforces that the scaled register is always used when at least two 245 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 246 /// #2 enforces that 1 * reg is reg. 247 /// This invariant can be temporarly broken while building a formula. 248 /// However, every formula inserted into the LSRInstance must be in canonical 249 /// form. 250 SmallVector<const SCEV *, 4> BaseRegs; 251 252 /// ScaledReg - The 'scaled' register for this use. This should be non-null 253 /// when Scale is not zero. 254 const SCEV *ScaledReg; 255 256 /// UnfoldedOffset - An additional constant offset which added near the 257 /// use. This requires a temporary register, but the offset itself can 258 /// live in an add immediate field rather than a register. 259 int64_t UnfoldedOffset; 260 261 Formula() 262 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 263 ScaledReg(nullptr), UnfoldedOffset(0) {} 264 265 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 266 267 bool isCanonical() const; 268 269 void Canonicalize(); 270 271 bool Unscale(); 272 273 size_t getNumRegs() const; 274 Type *getType() const; 275 276 void DeleteBaseReg(const SCEV *&S); 277 278 bool referencesReg(const SCEV *S) const; 279 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 280 const RegUseTracker &RegUses) const; 281 282 void print(raw_ostream &OS) const; 283 void dump() const; 284 }; 285 286 } 287 288 /// DoInitialMatch - Recursion helper for InitialMatch. 289 static void DoInitialMatch(const SCEV *S, Loop *L, 290 SmallVectorImpl<const SCEV *> &Good, 291 SmallVectorImpl<const SCEV *> &Bad, 292 ScalarEvolution &SE) { 293 // Collect expressions which properly dominate the loop header. 294 if (SE.properlyDominates(S, L->getHeader())) { 295 Good.push_back(S); 296 return; 297 } 298 299 // Look at add operands. 300 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 301 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 302 I != E; ++I) 303 DoInitialMatch(*I, L, Good, Bad, SE); 304 return; 305 } 306 307 // Look at addrec operands. 308 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 309 if (!AR->getStart()->isZero()) { 310 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 311 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 312 AR->getStepRecurrence(SE), 313 // FIXME: AR->getNoWrapFlags() 314 AR->getLoop(), SCEV::FlagAnyWrap), 315 L, Good, Bad, SE); 316 return; 317 } 318 319 // Handle a multiplication by -1 (negation) if it didn't fold. 320 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 321 if (Mul->getOperand(0)->isAllOnesValue()) { 322 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 323 const SCEV *NewMul = SE.getMulExpr(Ops); 324 325 SmallVector<const SCEV *, 4> MyGood; 326 SmallVector<const SCEV *, 4> MyBad; 327 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 328 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 329 SE.getEffectiveSCEVType(NewMul->getType()))); 330 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 331 E = MyGood.end(); I != E; ++I) 332 Good.push_back(SE.getMulExpr(NegOne, *I)); 333 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 334 E = MyBad.end(); I != E; ++I) 335 Bad.push_back(SE.getMulExpr(NegOne, *I)); 336 return; 337 } 338 339 // Ok, we can't do anything interesting. Just stuff the whole thing into a 340 // register and hope for the best. 341 Bad.push_back(S); 342 } 343 344 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 345 /// attempting to keep all loop-invariant and loop-computable values in a 346 /// single base register. 347 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 348 SmallVector<const SCEV *, 4> Good; 349 SmallVector<const SCEV *, 4> Bad; 350 DoInitialMatch(S, L, Good, Bad, SE); 351 if (!Good.empty()) { 352 const SCEV *Sum = SE.getAddExpr(Good); 353 if (!Sum->isZero()) 354 BaseRegs.push_back(Sum); 355 HasBaseReg = true; 356 } 357 if (!Bad.empty()) { 358 const SCEV *Sum = SE.getAddExpr(Bad); 359 if (!Sum->isZero()) 360 BaseRegs.push_back(Sum); 361 HasBaseReg = true; 362 } 363 Canonicalize(); 364 } 365 366 /// \brief Check whether or not this formula statisfies the canonical 367 /// representation. 368 /// \see Formula::BaseRegs. 369 bool Formula::isCanonical() const { 370 if (ScaledReg) 371 return Scale != 1 || !BaseRegs.empty(); 372 return BaseRegs.size() <= 1; 373 } 374 375 /// \brief Helper method to morph a formula into its canonical representation. 376 /// \see Formula::BaseRegs. 377 /// Every formula having more than one base register, must use the ScaledReg 378 /// field. Otherwise, we would have to do special cases everywhere in LSR 379 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 380 /// On the other hand, 1*reg should be canonicalized into reg. 381 void Formula::Canonicalize() { 382 if (isCanonical()) 383 return; 384 // So far we did not need this case. This is easy to implement but it is 385 // useless to maintain dead code. Beside it could hurt compile time. 386 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 387 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 388 ScaledReg = BaseRegs.back(); 389 BaseRegs.pop_back(); 390 Scale = 1; 391 size_t BaseRegsSize = BaseRegs.size(); 392 size_t Try = 0; 393 // If ScaledReg is an invariant, try to find a variant expression. 394 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 395 std::swap(ScaledReg, BaseRegs[Try++]); 396 } 397 398 /// \brief Get rid of the scale in the formula. 399 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 400 /// \return true if it was possible to get rid of the scale, false otherwise. 401 /// \note After this operation the formula may not be in the canonical form. 402 bool Formula::Unscale() { 403 if (Scale != 1) 404 return false; 405 Scale = 0; 406 BaseRegs.push_back(ScaledReg); 407 ScaledReg = nullptr; 408 return true; 409 } 410 411 /// getNumRegs - Return the total number of register operands used by this 412 /// formula. This does not include register uses implied by non-constant 413 /// addrec strides. 414 size_t Formula::getNumRegs() const { 415 return !!ScaledReg + BaseRegs.size(); 416 } 417 418 /// getType - Return the type of this formula, if it has one, or null 419 /// otherwise. This type is meaningless except for the bit size. 420 Type *Formula::getType() const { 421 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 422 ScaledReg ? ScaledReg->getType() : 423 BaseGV ? BaseGV->getType() : 424 nullptr; 425 } 426 427 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 428 void Formula::DeleteBaseReg(const SCEV *&S) { 429 if (&S != &BaseRegs.back()) 430 std::swap(S, BaseRegs.back()); 431 BaseRegs.pop_back(); 432 } 433 434 /// referencesReg - Test if this formula references the given register. 435 bool Formula::referencesReg(const SCEV *S) const { 436 return S == ScaledReg || 437 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 438 } 439 440 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 441 /// which are used by uses other than the use with the given index. 442 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 443 const RegUseTracker &RegUses) const { 444 if (ScaledReg) 445 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 446 return true; 447 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 448 E = BaseRegs.end(); I != E; ++I) 449 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 450 return true; 451 return false; 452 } 453 454 void Formula::print(raw_ostream &OS) const { 455 bool First = true; 456 if (BaseGV) { 457 if (!First) OS << " + "; else First = false; 458 BaseGV->printAsOperand(OS, /*PrintType=*/false); 459 } 460 if (BaseOffset != 0) { 461 if (!First) OS << " + "; else First = false; 462 OS << BaseOffset; 463 } 464 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 465 E = BaseRegs.end(); I != E; ++I) { 466 if (!First) OS << " + "; else First = false; 467 OS << "reg(" << **I << ')'; 468 } 469 if (HasBaseReg && BaseRegs.empty()) { 470 if (!First) OS << " + "; else First = false; 471 OS << "**error: HasBaseReg**"; 472 } else if (!HasBaseReg && !BaseRegs.empty()) { 473 if (!First) OS << " + "; else First = false; 474 OS << "**error: !HasBaseReg**"; 475 } 476 if (Scale != 0) { 477 if (!First) OS << " + "; else First = false; 478 OS << Scale << "*reg("; 479 if (ScaledReg) 480 OS << *ScaledReg; 481 else 482 OS << "<unknown>"; 483 OS << ')'; 484 } 485 if (UnfoldedOffset != 0) { 486 if (!First) OS << " + "; 487 OS << "imm(" << UnfoldedOffset << ')'; 488 } 489 } 490 491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 492 void Formula::dump() const { 493 print(errs()); errs() << '\n'; 494 } 495 #endif 496 497 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 498 /// without changing its value. 499 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 500 Type *WideTy = 501 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 502 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 503 } 504 505 /// isAddSExtable - Return true if the given add can be sign-extended 506 /// without changing its value. 507 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 508 Type *WideTy = 509 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 510 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 511 } 512 513 /// isMulSExtable - Return true if the given mul can be sign-extended 514 /// without changing its value. 515 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 516 Type *WideTy = 517 IntegerType::get(SE.getContext(), 518 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 519 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 520 } 521 522 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 523 /// and if the remainder is known to be zero, or null otherwise. If 524 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 525 /// to Y, ignoring that the multiplication may overflow, which is useful when 526 /// the result will be used in a context where the most significant bits are 527 /// ignored. 528 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 529 ScalarEvolution &SE, 530 bool IgnoreSignificantBits = false) { 531 // Handle the trivial case, which works for any SCEV type. 532 if (LHS == RHS) 533 return SE.getConstant(LHS->getType(), 1); 534 535 // Handle a few RHS special cases. 536 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 537 if (RC) { 538 const APInt &RA = RC->getValue()->getValue(); 539 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 540 // some folding. 541 if (RA.isAllOnesValue()) 542 return SE.getMulExpr(LHS, RC); 543 // Handle x /s 1 as x. 544 if (RA == 1) 545 return LHS; 546 } 547 548 // Check for a division of a constant by a constant. 549 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 550 if (!RC) 551 return nullptr; 552 const APInt &LA = C->getValue()->getValue(); 553 const APInt &RA = RC->getValue()->getValue(); 554 if (LA.srem(RA) != 0) 555 return nullptr; 556 return SE.getConstant(LA.sdiv(RA)); 557 } 558 559 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 560 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 561 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 562 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 563 IgnoreSignificantBits); 564 if (!Step) return nullptr; 565 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 566 IgnoreSignificantBits); 567 if (!Start) return nullptr; 568 // FlagNW is independent of the start value, step direction, and is 569 // preserved with smaller magnitude steps. 570 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 571 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 572 } 573 return nullptr; 574 } 575 576 // Distribute the sdiv over add operands, if the add doesn't overflow. 577 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 578 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 579 SmallVector<const SCEV *, 8> Ops; 580 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 581 I != E; ++I) { 582 const SCEV *Op = getExactSDiv(*I, RHS, SE, 583 IgnoreSignificantBits); 584 if (!Op) return nullptr; 585 Ops.push_back(Op); 586 } 587 return SE.getAddExpr(Ops); 588 } 589 return nullptr; 590 } 591 592 // Check for a multiply operand that we can pull RHS out of. 593 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 594 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 595 SmallVector<const SCEV *, 4> Ops; 596 bool Found = false; 597 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 598 I != E; ++I) { 599 const SCEV *S = *I; 600 if (!Found) 601 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 602 IgnoreSignificantBits)) { 603 S = Q; 604 Found = true; 605 } 606 Ops.push_back(S); 607 } 608 return Found ? SE.getMulExpr(Ops) : nullptr; 609 } 610 return nullptr; 611 } 612 613 // Otherwise we don't know. 614 return nullptr; 615 } 616 617 /// ExtractImmediate - If S involves the addition of a constant integer value, 618 /// return that integer value, and mutate S to point to a new SCEV with that 619 /// value excluded. 620 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 621 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 622 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 623 S = SE.getConstant(C->getType(), 0); 624 return C->getValue()->getSExtValue(); 625 } 626 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 627 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 628 int64_t Result = ExtractImmediate(NewOps.front(), SE); 629 if (Result != 0) 630 S = SE.getAddExpr(NewOps); 631 return Result; 632 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 633 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 634 int64_t Result = ExtractImmediate(NewOps.front(), SE); 635 if (Result != 0) 636 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 637 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 638 SCEV::FlagAnyWrap); 639 return Result; 640 } 641 return 0; 642 } 643 644 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 645 /// return that symbol, and mutate S to point to a new SCEV with that 646 /// value excluded. 647 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 648 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 649 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 650 S = SE.getConstant(GV->getType(), 0); 651 return GV; 652 } 653 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 654 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 655 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 656 if (Result) 657 S = SE.getAddExpr(NewOps); 658 return Result; 659 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 660 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 661 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 662 if (Result) 663 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 664 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 665 SCEV::FlagAnyWrap); 666 return Result; 667 } 668 return nullptr; 669 } 670 671 /// isAddressUse - Returns true if the specified instruction is using the 672 /// specified value as an address. 673 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 674 bool isAddress = isa<LoadInst>(Inst); 675 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 676 if (SI->getOperand(1) == OperandVal) 677 isAddress = true; 678 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 679 // Addressing modes can also be folded into prefetches and a variety 680 // of intrinsics. 681 switch (II->getIntrinsicID()) { 682 default: break; 683 case Intrinsic::prefetch: 684 case Intrinsic::x86_sse_storeu_ps: 685 case Intrinsic::x86_sse2_storeu_pd: 686 case Intrinsic::x86_sse2_storeu_dq: 687 case Intrinsic::x86_sse2_storel_dq: 688 if (II->getArgOperand(0) == OperandVal) 689 isAddress = true; 690 break; 691 } 692 } 693 return isAddress; 694 } 695 696 /// getAccessType - Return the type of the memory being accessed. 697 static Type *getAccessType(const Instruction *Inst) { 698 Type *AccessTy = Inst->getType(); 699 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 700 AccessTy = SI->getOperand(0)->getType(); 701 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 702 // Addressing modes can also be folded into prefetches and a variety 703 // of intrinsics. 704 switch (II->getIntrinsicID()) { 705 default: break; 706 case Intrinsic::x86_sse_storeu_ps: 707 case Intrinsic::x86_sse2_storeu_pd: 708 case Intrinsic::x86_sse2_storeu_dq: 709 case Intrinsic::x86_sse2_storel_dq: 710 AccessTy = II->getArgOperand(0)->getType(); 711 break; 712 } 713 } 714 715 // All pointers have the same requirements, so canonicalize them to an 716 // arbitrary pointer type to minimize variation. 717 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 718 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 719 PTy->getAddressSpace()); 720 721 return AccessTy; 722 } 723 724 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 725 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 726 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 727 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 728 if (SE.isSCEVable(PN->getType()) && 729 (SE.getEffectiveSCEVType(PN->getType()) == 730 SE.getEffectiveSCEVType(AR->getType())) && 731 SE.getSCEV(PN) == AR) 732 return true; 733 } 734 return false; 735 } 736 737 /// Check if expanding this expression is likely to incur significant cost. This 738 /// is tricky because SCEV doesn't track which expressions are actually computed 739 /// by the current IR. 740 /// 741 /// We currently allow expansion of IV increments that involve adds, 742 /// multiplication by constants, and AddRecs from existing phis. 743 /// 744 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 745 /// obvious multiple of the UDivExpr. 746 static bool isHighCostExpansion(const SCEV *S, 747 SmallPtrSet<const SCEV*, 8> &Processed, 748 ScalarEvolution &SE) { 749 // Zero/One operand expressions 750 switch (S->getSCEVType()) { 751 case scUnknown: 752 case scConstant: 753 return false; 754 case scTruncate: 755 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 756 Processed, SE); 757 case scZeroExtend: 758 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 759 Processed, SE); 760 case scSignExtend: 761 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 762 Processed, SE); 763 } 764 765 if (!Processed.insert(S)) 766 return false; 767 768 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 769 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 770 I != E; ++I) { 771 if (isHighCostExpansion(*I, Processed, SE)) 772 return true; 773 } 774 return false; 775 } 776 777 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 778 if (Mul->getNumOperands() == 2) { 779 // Multiplication by a constant is ok 780 if (isa<SCEVConstant>(Mul->getOperand(0))) 781 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 782 783 // If we have the value of one operand, check if an existing 784 // multiplication already generates this expression. 785 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 786 Value *UVal = U->getValue(); 787 for (User *UR : UVal->users()) { 788 // If U is a constant, it may be used by a ConstantExpr. 789 Instruction *UI = dyn_cast<Instruction>(UR); 790 if (UI && UI->getOpcode() == Instruction::Mul && 791 SE.isSCEVable(UI->getType())) { 792 return SE.getSCEV(UI) == Mul; 793 } 794 } 795 } 796 } 797 } 798 799 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 800 if (isExistingPhi(AR, SE)) 801 return false; 802 } 803 804 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 805 return true; 806 } 807 808 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 809 /// specified set are trivially dead, delete them and see if this makes any of 810 /// their operands subsequently dead. 811 static bool 812 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 813 bool Changed = false; 814 815 while (!DeadInsts.empty()) { 816 Value *V = DeadInsts.pop_back_val(); 817 Instruction *I = dyn_cast_or_null<Instruction>(V); 818 819 if (!I || !isInstructionTriviallyDead(I)) 820 continue; 821 822 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 823 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 824 *OI = nullptr; 825 if (U->use_empty()) 826 DeadInsts.push_back(U); 827 } 828 829 I->eraseFromParent(); 830 Changed = true; 831 } 832 833 return Changed; 834 } 835 836 namespace { 837 class LSRUse; 838 } 839 840 /// \brief Check if the addressing mode defined by \p F is completely 841 /// folded in \p LU at isel time. 842 /// This includes address-mode folding and special icmp tricks. 843 /// This function returns true if \p LU can accommodate what \p F 844 /// defines and up to 1 base + 1 scaled + offset. 845 /// In other words, if \p F has several base registers, this function may 846 /// still return true. Therefore, users still need to account for 847 /// additional base registers and/or unfolded offsets to derive an 848 /// accurate cost model. 849 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 850 const LSRUse &LU, const Formula &F); 851 // Get the cost of the scaling factor used in F for LU. 852 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 853 const LSRUse &LU, const Formula &F); 854 855 namespace { 856 857 /// Cost - This class is used to measure and compare candidate formulae. 858 class Cost { 859 /// TODO: Some of these could be merged. Also, a lexical ordering 860 /// isn't always optimal. 861 unsigned NumRegs; 862 unsigned AddRecCost; 863 unsigned NumIVMuls; 864 unsigned NumBaseAdds; 865 unsigned ImmCost; 866 unsigned SetupCost; 867 unsigned ScaleCost; 868 869 public: 870 Cost() 871 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 872 SetupCost(0), ScaleCost(0) {} 873 874 bool operator<(const Cost &Other) const; 875 876 void Lose(); 877 878 #ifndef NDEBUG 879 // Once any of the metrics loses, they must all remain losers. 880 bool isValid() { 881 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 882 | ImmCost | SetupCost | ScaleCost) != ~0u) 883 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 884 & ImmCost & SetupCost & ScaleCost) == ~0u); 885 } 886 #endif 887 888 bool isLoser() { 889 assert(isValid() && "invalid cost"); 890 return NumRegs == ~0u; 891 } 892 893 void RateFormula(const TargetTransformInfo &TTI, 894 const Formula &F, 895 SmallPtrSet<const SCEV *, 16> &Regs, 896 const DenseSet<const SCEV *> &VisitedRegs, 897 const Loop *L, 898 const SmallVectorImpl<int64_t> &Offsets, 899 ScalarEvolution &SE, DominatorTree &DT, 900 const LSRUse &LU, 901 SmallPtrSet<const SCEV *, 16> *LoserRegs = nullptr); 902 903 void print(raw_ostream &OS) const; 904 void dump() const; 905 906 private: 907 void RateRegister(const SCEV *Reg, 908 SmallPtrSet<const SCEV *, 16> &Regs, 909 const Loop *L, 910 ScalarEvolution &SE, DominatorTree &DT); 911 void RatePrimaryRegister(const SCEV *Reg, 912 SmallPtrSet<const SCEV *, 16> &Regs, 913 const Loop *L, 914 ScalarEvolution &SE, DominatorTree &DT, 915 SmallPtrSet<const SCEV *, 16> *LoserRegs); 916 }; 917 918 } 919 920 /// RateRegister - Tally up interesting quantities from the given register. 921 void Cost::RateRegister(const SCEV *Reg, 922 SmallPtrSet<const SCEV *, 16> &Regs, 923 const Loop *L, 924 ScalarEvolution &SE, DominatorTree &DT) { 925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 926 // If this is an addrec for another loop, don't second-guess its addrec phi 927 // nodes. LSR isn't currently smart enough to reason about more than one 928 // loop at a time. LSR has already run on inner loops, will not run on outer 929 // loops, and cannot be expected to change sibling loops. 930 if (AR->getLoop() != L) { 931 // If the AddRec exists, consider it's register free and leave it alone. 932 if (isExistingPhi(AR, SE)) 933 return; 934 935 // Otherwise, do not consider this formula at all. 936 Lose(); 937 return; 938 } 939 AddRecCost += 1; /// TODO: This should be a function of the stride. 940 941 // Add the step value register, if it needs one. 942 // TODO: The non-affine case isn't precisely modeled here. 943 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 944 if (!Regs.count(AR->getOperand(1))) { 945 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 946 if (isLoser()) 947 return; 948 } 949 } 950 } 951 ++NumRegs; 952 953 // Rough heuristic; favor registers which don't require extra setup 954 // instructions in the preheader. 955 if (!isa<SCEVUnknown>(Reg) && 956 !isa<SCEVConstant>(Reg) && 957 !(isa<SCEVAddRecExpr>(Reg) && 958 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 959 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 960 ++SetupCost; 961 962 NumIVMuls += isa<SCEVMulExpr>(Reg) && 963 SE.hasComputableLoopEvolution(Reg, L); 964 } 965 966 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 967 /// before, rate it. Optional LoserRegs provides a way to declare any formula 968 /// that refers to one of those regs an instant loser. 969 void Cost::RatePrimaryRegister(const SCEV *Reg, 970 SmallPtrSet<const SCEV *, 16> &Regs, 971 const Loop *L, 972 ScalarEvolution &SE, DominatorTree &DT, 973 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 974 if (LoserRegs && LoserRegs->count(Reg)) { 975 Lose(); 976 return; 977 } 978 if (Regs.insert(Reg)) { 979 RateRegister(Reg, Regs, L, SE, DT); 980 if (LoserRegs && isLoser()) 981 LoserRegs->insert(Reg); 982 } 983 } 984 985 void Cost::RateFormula(const TargetTransformInfo &TTI, 986 const Formula &F, 987 SmallPtrSet<const SCEV *, 16> &Regs, 988 const DenseSet<const SCEV *> &VisitedRegs, 989 const Loop *L, 990 const SmallVectorImpl<int64_t> &Offsets, 991 ScalarEvolution &SE, DominatorTree &DT, 992 const LSRUse &LU, 993 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 994 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 995 // Tally up the registers. 996 if (const SCEV *ScaledReg = F.ScaledReg) { 997 if (VisitedRegs.count(ScaledReg)) { 998 Lose(); 999 return; 1000 } 1001 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1002 if (isLoser()) 1003 return; 1004 } 1005 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 1006 E = F.BaseRegs.end(); I != E; ++I) { 1007 const SCEV *BaseReg = *I; 1008 if (VisitedRegs.count(BaseReg)) { 1009 Lose(); 1010 return; 1011 } 1012 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1013 if (isLoser()) 1014 return; 1015 } 1016 1017 // Determine how many (unfolded) adds we'll need inside the loop. 1018 size_t NumBaseParts = F.getNumRegs(); 1019 if (NumBaseParts > 1) 1020 // Do not count the base and a possible second register if the target 1021 // allows to fold 2 registers. 1022 NumBaseAdds += 1023 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1024 NumBaseAdds += (F.UnfoldedOffset != 0); 1025 1026 // Accumulate non-free scaling amounts. 1027 ScaleCost += getScalingFactorCost(TTI, LU, F); 1028 1029 // Tally up the non-zero immediates. 1030 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1031 E = Offsets.end(); I != E; ++I) { 1032 int64_t Offset = (uint64_t)*I + F.BaseOffset; 1033 if (F.BaseGV) 1034 ImmCost += 64; // Handle symbolic values conservatively. 1035 // TODO: This should probably be the pointer size. 1036 else if (Offset != 0) 1037 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1038 } 1039 assert(isValid() && "invalid cost"); 1040 } 1041 1042 /// Lose - Set this cost to a losing value. 1043 void Cost::Lose() { 1044 NumRegs = ~0u; 1045 AddRecCost = ~0u; 1046 NumIVMuls = ~0u; 1047 NumBaseAdds = ~0u; 1048 ImmCost = ~0u; 1049 SetupCost = ~0u; 1050 ScaleCost = ~0u; 1051 } 1052 1053 /// operator< - Choose the lower cost. 1054 bool Cost::operator<(const Cost &Other) const { 1055 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1056 ImmCost, SetupCost) < 1057 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1058 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1059 Other.SetupCost); 1060 } 1061 1062 void Cost::print(raw_ostream &OS) const { 1063 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1064 if (AddRecCost != 0) 1065 OS << ", with addrec cost " << AddRecCost; 1066 if (NumIVMuls != 0) 1067 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1068 if (NumBaseAdds != 0) 1069 OS << ", plus " << NumBaseAdds << " base add" 1070 << (NumBaseAdds == 1 ? "" : "s"); 1071 if (ScaleCost != 0) 1072 OS << ", plus " << ScaleCost << " scale cost"; 1073 if (ImmCost != 0) 1074 OS << ", plus " << ImmCost << " imm cost"; 1075 if (SetupCost != 0) 1076 OS << ", plus " << SetupCost << " setup cost"; 1077 } 1078 1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1080 void Cost::dump() const { 1081 print(errs()); errs() << '\n'; 1082 } 1083 #endif 1084 1085 namespace { 1086 1087 /// LSRFixup - An operand value in an instruction which is to be replaced 1088 /// with some equivalent, possibly strength-reduced, replacement. 1089 struct LSRFixup { 1090 /// UserInst - The instruction which will be updated. 1091 Instruction *UserInst; 1092 1093 /// OperandValToReplace - The operand of the instruction which will 1094 /// be replaced. The operand may be used more than once; every instance 1095 /// will be replaced. 1096 Value *OperandValToReplace; 1097 1098 /// PostIncLoops - If this user is to use the post-incremented value of an 1099 /// induction variable, this variable is non-null and holds the loop 1100 /// associated with the induction variable. 1101 PostIncLoopSet PostIncLoops; 1102 1103 /// LUIdx - The index of the LSRUse describing the expression which 1104 /// this fixup needs, minus an offset (below). 1105 size_t LUIdx; 1106 1107 /// Offset - A constant offset to be added to the LSRUse expression. 1108 /// This allows multiple fixups to share the same LSRUse with different 1109 /// offsets, for example in an unrolled loop. 1110 int64_t Offset; 1111 1112 bool isUseFullyOutsideLoop(const Loop *L) const; 1113 1114 LSRFixup(); 1115 1116 void print(raw_ostream &OS) const; 1117 void dump() const; 1118 }; 1119 1120 } 1121 1122 LSRFixup::LSRFixup() 1123 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1124 Offset(0) {} 1125 1126 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1127 /// value outside of the given loop. 1128 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1129 // PHI nodes use their value in their incoming blocks. 1130 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1131 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1132 if (PN->getIncomingValue(i) == OperandValToReplace && 1133 L->contains(PN->getIncomingBlock(i))) 1134 return false; 1135 return true; 1136 } 1137 1138 return !L->contains(UserInst); 1139 } 1140 1141 void LSRFixup::print(raw_ostream &OS) const { 1142 OS << "UserInst="; 1143 // Store is common and interesting enough to be worth special-casing. 1144 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1145 OS << "store "; 1146 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1147 } else if (UserInst->getType()->isVoidTy()) 1148 OS << UserInst->getOpcodeName(); 1149 else 1150 UserInst->printAsOperand(OS, /*PrintType=*/false); 1151 1152 OS << ", OperandValToReplace="; 1153 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1154 1155 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1156 E = PostIncLoops.end(); I != E; ++I) { 1157 OS << ", PostIncLoop="; 1158 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1159 } 1160 1161 if (LUIdx != ~size_t(0)) 1162 OS << ", LUIdx=" << LUIdx; 1163 1164 if (Offset != 0) 1165 OS << ", Offset=" << Offset; 1166 } 1167 1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1169 void LSRFixup::dump() const { 1170 print(errs()); errs() << '\n'; 1171 } 1172 #endif 1173 1174 namespace { 1175 1176 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1177 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1178 struct UniquifierDenseMapInfo { 1179 static SmallVector<const SCEV *, 4> getEmptyKey() { 1180 SmallVector<const SCEV *, 4> V; 1181 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1182 return V; 1183 } 1184 1185 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1186 SmallVector<const SCEV *, 4> V; 1187 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1188 return V; 1189 } 1190 1191 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1192 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1193 } 1194 1195 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1196 const SmallVector<const SCEV *, 4> &RHS) { 1197 return LHS == RHS; 1198 } 1199 }; 1200 1201 /// LSRUse - This class holds the state that LSR keeps for each use in 1202 /// IVUsers, as well as uses invented by LSR itself. It includes information 1203 /// about what kinds of things can be folded into the user, information about 1204 /// the user itself, and information about how the use may be satisfied. 1205 /// TODO: Represent multiple users of the same expression in common? 1206 class LSRUse { 1207 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1208 1209 public: 1210 /// KindType - An enum for a kind of use, indicating what types of 1211 /// scaled and immediate operands it might support. 1212 enum KindType { 1213 Basic, ///< A normal use, with no folding. 1214 Special, ///< A special case of basic, allowing -1 scales. 1215 Address, ///< An address use; folding according to TargetLowering 1216 ICmpZero ///< An equality icmp with both operands folded into one. 1217 // TODO: Add a generic icmp too? 1218 }; 1219 1220 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1221 1222 KindType Kind; 1223 Type *AccessTy; 1224 1225 SmallVector<int64_t, 8> Offsets; 1226 int64_t MinOffset; 1227 int64_t MaxOffset; 1228 1229 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1230 /// LSRUse are outside of the loop, in which case some special-case heuristics 1231 /// may be used. 1232 bool AllFixupsOutsideLoop; 1233 1234 /// RigidFormula is set to true to guarantee that this use will be associated 1235 /// with a single formula--the one that initially matched. Some SCEV 1236 /// expressions cannot be expanded. This allows LSR to consider the registers 1237 /// used by those expressions without the need to expand them later after 1238 /// changing the formula. 1239 bool RigidFormula; 1240 1241 /// WidestFixupType - This records the widest use type for any fixup using 1242 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1243 /// max fixup widths to be equivalent, because the narrower one may be relying 1244 /// on the implicit truncation to truncate away bogus bits. 1245 Type *WidestFixupType; 1246 1247 /// Formulae - A list of ways to build a value that can satisfy this user. 1248 /// After the list is populated, one of these is selected heuristically and 1249 /// used to formulate a replacement for OperandValToReplace in UserInst. 1250 SmallVector<Formula, 12> Formulae; 1251 1252 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1253 SmallPtrSet<const SCEV *, 4> Regs; 1254 1255 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1256 MinOffset(INT64_MAX), 1257 MaxOffset(INT64_MIN), 1258 AllFixupsOutsideLoop(true), 1259 RigidFormula(false), 1260 WidestFixupType(nullptr) {} 1261 1262 bool HasFormulaWithSameRegs(const Formula &F) const; 1263 bool InsertFormula(const Formula &F); 1264 void DeleteFormula(Formula &F); 1265 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1266 1267 void print(raw_ostream &OS) const; 1268 void dump() const; 1269 }; 1270 1271 } 1272 1273 /// HasFormula - Test whether this use as a formula which has the same 1274 /// registers as the given formula. 1275 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1276 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1277 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1278 // Unstable sort by host order ok, because this is only used for uniquifying. 1279 std::sort(Key.begin(), Key.end()); 1280 return Uniquifier.count(Key); 1281 } 1282 1283 /// InsertFormula - If the given formula has not yet been inserted, add it to 1284 /// the list, and return true. Return false otherwise. 1285 /// The formula must be in canonical form. 1286 bool LSRUse::InsertFormula(const Formula &F) { 1287 assert(F.isCanonical() && "Invalid canonical representation"); 1288 1289 if (!Formulae.empty() && RigidFormula) 1290 return false; 1291 1292 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1293 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1294 // Unstable sort by host order ok, because this is only used for uniquifying. 1295 std::sort(Key.begin(), Key.end()); 1296 1297 if (!Uniquifier.insert(Key).second) 1298 return false; 1299 1300 // Using a register to hold the value of 0 is not profitable. 1301 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1302 "Zero allocated in a scaled register!"); 1303 #ifndef NDEBUG 1304 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1305 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1306 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1307 #endif 1308 1309 // Add the formula to the list. 1310 Formulae.push_back(F); 1311 1312 // Record registers now being used by this use. 1313 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1314 if (F.ScaledReg) 1315 Regs.insert(F.ScaledReg); 1316 1317 return true; 1318 } 1319 1320 /// DeleteFormula - Remove the given formula from this use's list. 1321 void LSRUse::DeleteFormula(Formula &F) { 1322 if (&F != &Formulae.back()) 1323 std::swap(F, Formulae.back()); 1324 Formulae.pop_back(); 1325 } 1326 1327 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1328 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1329 // Now that we've filtered out some formulae, recompute the Regs set. 1330 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1331 Regs.clear(); 1332 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1333 E = Formulae.end(); I != E; ++I) { 1334 const Formula &F = *I; 1335 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1336 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1337 } 1338 1339 // Update the RegTracker. 1340 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1341 E = OldRegs.end(); I != E; ++I) 1342 if (!Regs.count(*I)) 1343 RegUses.DropRegister(*I, LUIdx); 1344 } 1345 1346 void LSRUse::print(raw_ostream &OS) const { 1347 OS << "LSR Use: Kind="; 1348 switch (Kind) { 1349 case Basic: OS << "Basic"; break; 1350 case Special: OS << "Special"; break; 1351 case ICmpZero: OS << "ICmpZero"; break; 1352 case Address: 1353 OS << "Address of "; 1354 if (AccessTy->isPointerTy()) 1355 OS << "pointer"; // the full pointer type could be really verbose 1356 else 1357 OS << *AccessTy; 1358 } 1359 1360 OS << ", Offsets={"; 1361 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1362 E = Offsets.end(); I != E; ++I) { 1363 OS << *I; 1364 if (std::next(I) != E) 1365 OS << ','; 1366 } 1367 OS << '}'; 1368 1369 if (AllFixupsOutsideLoop) 1370 OS << ", all-fixups-outside-loop"; 1371 1372 if (WidestFixupType) 1373 OS << ", widest fixup type: " << *WidestFixupType; 1374 } 1375 1376 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1377 void LSRUse::dump() const { 1378 print(errs()); errs() << '\n'; 1379 } 1380 #endif 1381 1382 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1383 LSRUse::KindType Kind, Type *AccessTy, 1384 GlobalValue *BaseGV, int64_t BaseOffset, 1385 bool HasBaseReg, int64_t Scale) { 1386 switch (Kind) { 1387 case LSRUse::Address: 1388 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1389 1390 // Otherwise, just guess that reg+reg addressing is legal. 1391 //return ; 1392 1393 case LSRUse::ICmpZero: 1394 // There's not even a target hook for querying whether it would be legal to 1395 // fold a GV into an ICmp. 1396 if (BaseGV) 1397 return false; 1398 1399 // ICmp only has two operands; don't allow more than two non-trivial parts. 1400 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1401 return false; 1402 1403 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1404 // putting the scaled register in the other operand of the icmp. 1405 if (Scale != 0 && Scale != -1) 1406 return false; 1407 1408 // If we have low-level target information, ask the target if it can fold an 1409 // integer immediate on an icmp. 1410 if (BaseOffset != 0) { 1411 // We have one of: 1412 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1413 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1414 // Offs is the ICmp immediate. 1415 if (Scale == 0) 1416 // The cast does the right thing with INT64_MIN. 1417 BaseOffset = -(uint64_t)BaseOffset; 1418 return TTI.isLegalICmpImmediate(BaseOffset); 1419 } 1420 1421 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1422 return true; 1423 1424 case LSRUse::Basic: 1425 // Only handle single-register values. 1426 return !BaseGV && Scale == 0 && BaseOffset == 0; 1427 1428 case LSRUse::Special: 1429 // Special case Basic to handle -1 scales. 1430 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1431 } 1432 1433 llvm_unreachable("Invalid LSRUse Kind!"); 1434 } 1435 1436 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1437 int64_t MinOffset, int64_t MaxOffset, 1438 LSRUse::KindType Kind, Type *AccessTy, 1439 GlobalValue *BaseGV, int64_t BaseOffset, 1440 bool HasBaseReg, int64_t Scale) { 1441 // Check for overflow. 1442 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1443 (MinOffset > 0)) 1444 return false; 1445 MinOffset = (uint64_t)BaseOffset + MinOffset; 1446 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1447 (MaxOffset > 0)) 1448 return false; 1449 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1450 1451 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1452 HasBaseReg, Scale) && 1453 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1454 HasBaseReg, Scale); 1455 } 1456 1457 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1458 int64_t MinOffset, int64_t MaxOffset, 1459 LSRUse::KindType Kind, Type *AccessTy, 1460 const Formula &F) { 1461 // For the purpose of isAMCompletelyFolded either having a canonical formula 1462 // or a scale not equal to zero is correct. 1463 // Problems may arise from non canonical formulae having a scale == 0. 1464 // Strictly speaking it would best to just rely on canonical formulae. 1465 // However, when we generate the scaled formulae, we first check that the 1466 // scaling factor is profitable before computing the actual ScaledReg for 1467 // compile time sake. 1468 assert((F.isCanonical() || F.Scale != 0)); 1469 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1470 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1471 } 1472 1473 /// isLegalUse - Test whether we know how to expand the current formula. 1474 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1475 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1476 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1477 int64_t Scale) { 1478 // We know how to expand completely foldable formulae. 1479 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1480 BaseOffset, HasBaseReg, Scale) || 1481 // Or formulae that use a base register produced by a sum of base 1482 // registers. 1483 (Scale == 1 && 1484 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1485 BaseGV, BaseOffset, true, 0)); 1486 } 1487 1488 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1489 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1490 const Formula &F) { 1491 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1492 F.BaseOffset, F.HasBaseReg, F.Scale); 1493 } 1494 1495 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1496 const LSRUse &LU, const Formula &F) { 1497 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1498 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1499 F.Scale); 1500 } 1501 1502 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1503 const LSRUse &LU, const Formula &F) { 1504 if (!F.Scale) 1505 return 0; 1506 1507 // If the use is not completely folded in that instruction, we will have to 1508 // pay an extra cost only for scale != 1. 1509 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1510 LU.AccessTy, F)) 1511 return F.Scale != 1; 1512 1513 switch (LU.Kind) { 1514 case LSRUse::Address: { 1515 // Check the scaling factor cost with both the min and max offsets. 1516 int ScaleCostMinOffset = 1517 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1518 F.BaseOffset + LU.MinOffset, 1519 F.HasBaseReg, F.Scale); 1520 int ScaleCostMaxOffset = 1521 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1522 F.BaseOffset + LU.MaxOffset, 1523 F.HasBaseReg, F.Scale); 1524 1525 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1526 "Legal addressing mode has an illegal cost!"); 1527 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1528 } 1529 case LSRUse::ICmpZero: 1530 case LSRUse::Basic: 1531 case LSRUse::Special: 1532 // The use is completely folded, i.e., everything is folded into the 1533 // instruction. 1534 return 0; 1535 } 1536 1537 llvm_unreachable("Invalid LSRUse Kind!"); 1538 } 1539 1540 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1541 LSRUse::KindType Kind, Type *AccessTy, 1542 GlobalValue *BaseGV, int64_t BaseOffset, 1543 bool HasBaseReg) { 1544 // Fast-path: zero is always foldable. 1545 if (BaseOffset == 0 && !BaseGV) return true; 1546 1547 // Conservatively, create an address with an immediate and a 1548 // base and a scale. 1549 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1550 1551 // Canonicalize a scale of 1 to a base register if the formula doesn't 1552 // already have a base register. 1553 if (!HasBaseReg && Scale == 1) { 1554 Scale = 0; 1555 HasBaseReg = true; 1556 } 1557 1558 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1559 HasBaseReg, Scale); 1560 } 1561 1562 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1563 ScalarEvolution &SE, int64_t MinOffset, 1564 int64_t MaxOffset, LSRUse::KindType Kind, 1565 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1566 // Fast-path: zero is always foldable. 1567 if (S->isZero()) return true; 1568 1569 // Conservatively, create an address with an immediate and a 1570 // base and a scale. 1571 int64_t BaseOffset = ExtractImmediate(S, SE); 1572 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1573 1574 // If there's anything else involved, it's not foldable. 1575 if (!S->isZero()) return false; 1576 1577 // Fast-path: zero is always foldable. 1578 if (BaseOffset == 0 && !BaseGV) return true; 1579 1580 // Conservatively, create an address with an immediate and a 1581 // base and a scale. 1582 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1583 1584 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1585 BaseOffset, HasBaseReg, Scale); 1586 } 1587 1588 namespace { 1589 1590 /// IVInc - An individual increment in a Chain of IV increments. 1591 /// Relate an IV user to an expression that computes the IV it uses from the IV 1592 /// used by the previous link in the Chain. 1593 /// 1594 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1595 /// original IVOperand. The head of the chain's IVOperand is only valid during 1596 /// chain collection, before LSR replaces IV users. During chain generation, 1597 /// IncExpr can be used to find the new IVOperand that computes the same 1598 /// expression. 1599 struct IVInc { 1600 Instruction *UserInst; 1601 Value* IVOperand; 1602 const SCEV *IncExpr; 1603 1604 IVInc(Instruction *U, Value *O, const SCEV *E): 1605 UserInst(U), IVOperand(O), IncExpr(E) {} 1606 }; 1607 1608 // IVChain - The list of IV increments in program order. 1609 // We typically add the head of a chain without finding subsequent links. 1610 struct IVChain { 1611 SmallVector<IVInc,1> Incs; 1612 const SCEV *ExprBase; 1613 1614 IVChain() : ExprBase(nullptr) {} 1615 1616 IVChain(const IVInc &Head, const SCEV *Base) 1617 : Incs(1, Head), ExprBase(Base) {} 1618 1619 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1620 1621 // begin - return the first increment in the chain. 1622 const_iterator begin() const { 1623 assert(!Incs.empty()); 1624 return std::next(Incs.begin()); 1625 } 1626 const_iterator end() const { 1627 return Incs.end(); 1628 } 1629 1630 // hasIncs - Returns true if this chain contains any increments. 1631 bool hasIncs() const { return Incs.size() >= 2; } 1632 1633 // add - Add an IVInc to the end of this chain. 1634 void add(const IVInc &X) { Incs.push_back(X); } 1635 1636 // tailUserInst - Returns the last UserInst in the chain. 1637 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1638 1639 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1640 // this chain. 1641 bool isProfitableIncrement(const SCEV *OperExpr, 1642 const SCEV *IncExpr, 1643 ScalarEvolution&); 1644 }; 1645 1646 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1647 /// Distinguish between FarUsers that definitely cross IV increments and 1648 /// NearUsers that may be used between IV increments. 1649 struct ChainUsers { 1650 SmallPtrSet<Instruction*, 4> FarUsers; 1651 SmallPtrSet<Instruction*, 4> NearUsers; 1652 }; 1653 1654 /// LSRInstance - This class holds state for the main loop strength reduction 1655 /// logic. 1656 class LSRInstance { 1657 IVUsers &IU; 1658 ScalarEvolution &SE; 1659 DominatorTree &DT; 1660 LoopInfo &LI; 1661 const TargetTransformInfo &TTI; 1662 Loop *const L; 1663 bool Changed; 1664 1665 /// IVIncInsertPos - This is the insert position that the current loop's 1666 /// induction variable increment should be placed. In simple loops, this is 1667 /// the latch block's terminator. But in more complicated cases, this is a 1668 /// position which will dominate all the in-loop post-increment users. 1669 Instruction *IVIncInsertPos; 1670 1671 /// Factors - Interesting factors between use strides. 1672 SmallSetVector<int64_t, 8> Factors; 1673 1674 /// Types - Interesting use types, to facilitate truncation reuse. 1675 SmallSetVector<Type *, 4> Types; 1676 1677 /// Fixups - The list of operands which are to be replaced. 1678 SmallVector<LSRFixup, 16> Fixups; 1679 1680 /// Uses - The list of interesting uses. 1681 SmallVector<LSRUse, 16> Uses; 1682 1683 /// RegUses - Track which uses use which register candidates. 1684 RegUseTracker RegUses; 1685 1686 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1687 // have more than a few IV increment chains in a loop. Missing a Chain falls 1688 // back to normal LSR behavior for those uses. 1689 static const unsigned MaxChains = 8; 1690 1691 /// IVChainVec - IV users can form a chain of IV increments. 1692 SmallVector<IVChain, MaxChains> IVChainVec; 1693 1694 /// IVIncSet - IV users that belong to profitable IVChains. 1695 SmallPtrSet<Use*, MaxChains> IVIncSet; 1696 1697 void OptimizeShadowIV(); 1698 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1699 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1700 void OptimizeLoopTermCond(); 1701 1702 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1703 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1704 void FinalizeChain(IVChain &Chain); 1705 void CollectChains(); 1706 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1707 SmallVectorImpl<WeakVH> &DeadInsts); 1708 1709 void CollectInterestingTypesAndFactors(); 1710 void CollectFixupsAndInitialFormulae(); 1711 1712 LSRFixup &getNewFixup() { 1713 Fixups.push_back(LSRFixup()); 1714 return Fixups.back(); 1715 } 1716 1717 // Support for sharing of LSRUses between LSRFixups. 1718 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1719 UseMapTy UseMap; 1720 1721 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1722 LSRUse::KindType Kind, Type *AccessTy); 1723 1724 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1725 LSRUse::KindType Kind, 1726 Type *AccessTy); 1727 1728 void DeleteUse(LSRUse &LU, size_t LUIdx); 1729 1730 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1731 1732 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1733 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1734 void CountRegisters(const Formula &F, size_t LUIdx); 1735 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1736 1737 void CollectLoopInvariantFixupsAndFormulae(); 1738 1739 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1740 unsigned Depth = 0); 1741 1742 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1743 const Formula &Base, unsigned Depth, 1744 size_t Idx, bool IsScaledReg = false); 1745 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1746 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1747 const Formula &Base, size_t Idx, 1748 bool IsScaledReg = false); 1749 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1750 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1751 const Formula &Base, 1752 const SmallVectorImpl<int64_t> &Worklist, 1753 size_t Idx, bool IsScaledReg = false); 1754 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1755 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1756 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1757 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1758 void GenerateCrossUseConstantOffsets(); 1759 void GenerateAllReuseFormulae(); 1760 1761 void FilterOutUndesirableDedicatedRegisters(); 1762 1763 size_t EstimateSearchSpaceComplexity() const; 1764 void NarrowSearchSpaceByDetectingSupersets(); 1765 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1766 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1767 void NarrowSearchSpaceByPickingWinnerRegs(); 1768 void NarrowSearchSpaceUsingHeuristics(); 1769 1770 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1771 Cost &SolutionCost, 1772 SmallVectorImpl<const Formula *> &Workspace, 1773 const Cost &CurCost, 1774 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1775 DenseSet<const SCEV *> &VisitedRegs) const; 1776 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1777 1778 BasicBlock::iterator 1779 HoistInsertPosition(BasicBlock::iterator IP, 1780 const SmallVectorImpl<Instruction *> &Inputs) const; 1781 BasicBlock::iterator 1782 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1783 const LSRFixup &LF, 1784 const LSRUse &LU, 1785 SCEVExpander &Rewriter) const; 1786 1787 Value *Expand(const LSRFixup &LF, 1788 const Formula &F, 1789 BasicBlock::iterator IP, 1790 SCEVExpander &Rewriter, 1791 SmallVectorImpl<WeakVH> &DeadInsts) const; 1792 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1793 const Formula &F, 1794 SCEVExpander &Rewriter, 1795 SmallVectorImpl<WeakVH> &DeadInsts, 1796 Pass *P) const; 1797 void Rewrite(const LSRFixup &LF, 1798 const Formula &F, 1799 SCEVExpander &Rewriter, 1800 SmallVectorImpl<WeakVH> &DeadInsts, 1801 Pass *P) const; 1802 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1803 Pass *P); 1804 1805 public: 1806 LSRInstance(Loop *L, Pass *P); 1807 1808 bool getChanged() const { return Changed; } 1809 1810 void print_factors_and_types(raw_ostream &OS) const; 1811 void print_fixups(raw_ostream &OS) const; 1812 void print_uses(raw_ostream &OS) const; 1813 void print(raw_ostream &OS) const; 1814 void dump() const; 1815 }; 1816 1817 } 1818 1819 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1820 /// inside the loop then try to eliminate the cast operation. 1821 void LSRInstance::OptimizeShadowIV() { 1822 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1823 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1824 return; 1825 1826 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1827 UI != E; /* empty */) { 1828 IVUsers::const_iterator CandidateUI = UI; 1829 ++UI; 1830 Instruction *ShadowUse = CandidateUI->getUser(); 1831 Type *DestTy = nullptr; 1832 bool IsSigned = false; 1833 1834 /* If shadow use is a int->float cast then insert a second IV 1835 to eliminate this cast. 1836 1837 for (unsigned i = 0; i < n; ++i) 1838 foo((double)i); 1839 1840 is transformed into 1841 1842 double d = 0.0; 1843 for (unsigned i = 0; i < n; ++i, ++d) 1844 foo(d); 1845 */ 1846 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1847 IsSigned = false; 1848 DestTy = UCast->getDestTy(); 1849 } 1850 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1851 IsSigned = true; 1852 DestTy = SCast->getDestTy(); 1853 } 1854 if (!DestTy) continue; 1855 1856 // If target does not support DestTy natively then do not apply 1857 // this transformation. 1858 if (!TTI.isTypeLegal(DestTy)) continue; 1859 1860 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1861 if (!PH) continue; 1862 if (PH->getNumIncomingValues() != 2) continue; 1863 1864 Type *SrcTy = PH->getType(); 1865 int Mantissa = DestTy->getFPMantissaWidth(); 1866 if (Mantissa == -1) continue; 1867 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1868 continue; 1869 1870 unsigned Entry, Latch; 1871 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1872 Entry = 0; 1873 Latch = 1; 1874 } else { 1875 Entry = 1; 1876 Latch = 0; 1877 } 1878 1879 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1880 if (!Init) continue; 1881 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1882 (double)Init->getSExtValue() : 1883 (double)Init->getZExtValue()); 1884 1885 BinaryOperator *Incr = 1886 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1887 if (!Incr) continue; 1888 if (Incr->getOpcode() != Instruction::Add 1889 && Incr->getOpcode() != Instruction::Sub) 1890 continue; 1891 1892 /* Initialize new IV, double d = 0.0 in above example. */ 1893 ConstantInt *C = nullptr; 1894 if (Incr->getOperand(0) == PH) 1895 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1896 else if (Incr->getOperand(1) == PH) 1897 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1898 else 1899 continue; 1900 1901 if (!C) continue; 1902 1903 // Ignore negative constants, as the code below doesn't handle them 1904 // correctly. TODO: Remove this restriction. 1905 if (!C->getValue().isStrictlyPositive()) continue; 1906 1907 /* Add new PHINode. */ 1908 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1909 1910 /* create new increment. '++d' in above example. */ 1911 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1912 BinaryOperator *NewIncr = 1913 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1914 Instruction::FAdd : Instruction::FSub, 1915 NewPH, CFP, "IV.S.next.", Incr); 1916 1917 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1918 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1919 1920 /* Remove cast operation */ 1921 ShadowUse->replaceAllUsesWith(NewPH); 1922 ShadowUse->eraseFromParent(); 1923 Changed = true; 1924 break; 1925 } 1926 } 1927 1928 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1929 /// set the IV user and stride information and return true, otherwise return 1930 /// false. 1931 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1932 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1933 if (UI->getUser() == Cond) { 1934 // NOTE: we could handle setcc instructions with multiple uses here, but 1935 // InstCombine does it as well for simple uses, it's not clear that it 1936 // occurs enough in real life to handle. 1937 CondUse = UI; 1938 return true; 1939 } 1940 return false; 1941 } 1942 1943 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1944 /// a max computation. 1945 /// 1946 /// This is a narrow solution to a specific, but acute, problem. For loops 1947 /// like this: 1948 /// 1949 /// i = 0; 1950 /// do { 1951 /// p[i] = 0.0; 1952 /// } while (++i < n); 1953 /// 1954 /// the trip count isn't just 'n', because 'n' might not be positive. And 1955 /// unfortunately this can come up even for loops where the user didn't use 1956 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1957 /// will commonly be lowered like this: 1958 // 1959 /// if (n > 0) { 1960 /// i = 0; 1961 /// do { 1962 /// p[i] = 0.0; 1963 /// } while (++i < n); 1964 /// } 1965 /// 1966 /// and then it's possible for subsequent optimization to obscure the if 1967 /// test in such a way that indvars can't find it. 1968 /// 1969 /// When indvars can't find the if test in loops like this, it creates a 1970 /// max expression, which allows it to give the loop a canonical 1971 /// induction variable: 1972 /// 1973 /// i = 0; 1974 /// max = n < 1 ? 1 : n; 1975 /// do { 1976 /// p[i] = 0.0; 1977 /// } while (++i != max); 1978 /// 1979 /// Canonical induction variables are necessary because the loop passes 1980 /// are designed around them. The most obvious example of this is the 1981 /// LoopInfo analysis, which doesn't remember trip count values. It 1982 /// expects to be able to rediscover the trip count each time it is 1983 /// needed, and it does this using a simple analysis that only succeeds if 1984 /// the loop has a canonical induction variable. 1985 /// 1986 /// However, when it comes time to generate code, the maximum operation 1987 /// can be quite costly, especially if it's inside of an outer loop. 1988 /// 1989 /// This function solves this problem by detecting this type of loop and 1990 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1991 /// the instructions for the maximum computation. 1992 /// 1993 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1994 // Check that the loop matches the pattern we're looking for. 1995 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1996 Cond->getPredicate() != CmpInst::ICMP_NE) 1997 return Cond; 1998 1999 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2000 if (!Sel || !Sel->hasOneUse()) return Cond; 2001 2002 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2003 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2004 return Cond; 2005 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2006 2007 // Add one to the backedge-taken count to get the trip count. 2008 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2009 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2010 2011 // Check for a max calculation that matches the pattern. There's no check 2012 // for ICMP_ULE here because the comparison would be with zero, which 2013 // isn't interesting. 2014 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2015 const SCEVNAryExpr *Max = nullptr; 2016 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2017 Pred = ICmpInst::ICMP_SLE; 2018 Max = S; 2019 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2020 Pred = ICmpInst::ICMP_SLT; 2021 Max = S; 2022 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2023 Pred = ICmpInst::ICMP_ULT; 2024 Max = U; 2025 } else { 2026 // No match; bail. 2027 return Cond; 2028 } 2029 2030 // To handle a max with more than two operands, this optimization would 2031 // require additional checking and setup. 2032 if (Max->getNumOperands() != 2) 2033 return Cond; 2034 2035 const SCEV *MaxLHS = Max->getOperand(0); 2036 const SCEV *MaxRHS = Max->getOperand(1); 2037 2038 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2039 // for a comparison with 1. For <= and >=, a comparison with zero. 2040 if (!MaxLHS || 2041 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2042 return Cond; 2043 2044 // Check the relevant induction variable for conformance to 2045 // the pattern. 2046 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2047 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2048 if (!AR || !AR->isAffine() || 2049 AR->getStart() != One || 2050 AR->getStepRecurrence(SE) != One) 2051 return Cond; 2052 2053 assert(AR->getLoop() == L && 2054 "Loop condition operand is an addrec in a different loop!"); 2055 2056 // Check the right operand of the select, and remember it, as it will 2057 // be used in the new comparison instruction. 2058 Value *NewRHS = nullptr; 2059 if (ICmpInst::isTrueWhenEqual(Pred)) { 2060 // Look for n+1, and grab n. 2061 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2062 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2063 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2064 NewRHS = BO->getOperand(0); 2065 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2066 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2067 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2068 NewRHS = BO->getOperand(0); 2069 if (!NewRHS) 2070 return Cond; 2071 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2072 NewRHS = Sel->getOperand(1); 2073 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2074 NewRHS = Sel->getOperand(2); 2075 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2076 NewRHS = SU->getValue(); 2077 else 2078 // Max doesn't match expected pattern. 2079 return Cond; 2080 2081 // Determine the new comparison opcode. It may be signed or unsigned, 2082 // and the original comparison may be either equality or inequality. 2083 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2084 Pred = CmpInst::getInversePredicate(Pred); 2085 2086 // Ok, everything looks ok to change the condition into an SLT or SGE and 2087 // delete the max calculation. 2088 ICmpInst *NewCond = 2089 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2090 2091 // Delete the max calculation instructions. 2092 Cond->replaceAllUsesWith(NewCond); 2093 CondUse->setUser(NewCond); 2094 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2095 Cond->eraseFromParent(); 2096 Sel->eraseFromParent(); 2097 if (Cmp->use_empty()) 2098 Cmp->eraseFromParent(); 2099 return NewCond; 2100 } 2101 2102 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2103 /// postinc iv when possible. 2104 void 2105 LSRInstance::OptimizeLoopTermCond() { 2106 SmallPtrSet<Instruction *, 4> PostIncs; 2107 2108 BasicBlock *LatchBlock = L->getLoopLatch(); 2109 SmallVector<BasicBlock*, 8> ExitingBlocks; 2110 L->getExitingBlocks(ExitingBlocks); 2111 2112 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2113 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2114 2115 // Get the terminating condition for the loop if possible. If we 2116 // can, we want to change it to use a post-incremented version of its 2117 // induction variable, to allow coalescing the live ranges for the IV into 2118 // one register value. 2119 2120 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2121 if (!TermBr) 2122 continue; 2123 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2124 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2125 continue; 2126 2127 // Search IVUsesByStride to find Cond's IVUse if there is one. 2128 IVStrideUse *CondUse = nullptr; 2129 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2130 if (!FindIVUserForCond(Cond, CondUse)) 2131 continue; 2132 2133 // If the trip count is computed in terms of a max (due to ScalarEvolution 2134 // being unable to find a sufficient guard, for example), change the loop 2135 // comparison to use SLT or ULT instead of NE. 2136 // One consequence of doing this now is that it disrupts the count-down 2137 // optimization. That's not always a bad thing though, because in such 2138 // cases it may still be worthwhile to avoid a max. 2139 Cond = OptimizeMax(Cond, CondUse); 2140 2141 // If this exiting block dominates the latch block, it may also use 2142 // the post-inc value if it won't be shared with other uses. 2143 // Check for dominance. 2144 if (!DT.dominates(ExitingBlock, LatchBlock)) 2145 continue; 2146 2147 // Conservatively avoid trying to use the post-inc value in non-latch 2148 // exits if there may be pre-inc users in intervening blocks. 2149 if (LatchBlock != ExitingBlock) 2150 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2151 // Test if the use is reachable from the exiting block. This dominator 2152 // query is a conservative approximation of reachability. 2153 if (&*UI != CondUse && 2154 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2155 // Conservatively assume there may be reuse if the quotient of their 2156 // strides could be a legal scale. 2157 const SCEV *A = IU.getStride(*CondUse, L); 2158 const SCEV *B = IU.getStride(*UI, L); 2159 if (!A || !B) continue; 2160 if (SE.getTypeSizeInBits(A->getType()) != 2161 SE.getTypeSizeInBits(B->getType())) { 2162 if (SE.getTypeSizeInBits(A->getType()) > 2163 SE.getTypeSizeInBits(B->getType())) 2164 B = SE.getSignExtendExpr(B, A->getType()); 2165 else 2166 A = SE.getSignExtendExpr(A, B->getType()); 2167 } 2168 if (const SCEVConstant *D = 2169 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2170 const ConstantInt *C = D->getValue(); 2171 // Stride of one or negative one can have reuse with non-addresses. 2172 if (C->isOne() || C->isAllOnesValue()) 2173 goto decline_post_inc; 2174 // Avoid weird situations. 2175 if (C->getValue().getMinSignedBits() >= 64 || 2176 C->getValue().isMinSignedValue()) 2177 goto decline_post_inc; 2178 // Check for possible scaled-address reuse. 2179 Type *AccessTy = getAccessType(UI->getUser()); 2180 int64_t Scale = C->getSExtValue(); 2181 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2182 /*BaseOffset=*/ 0, 2183 /*HasBaseReg=*/ false, Scale)) 2184 goto decline_post_inc; 2185 Scale = -Scale; 2186 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2187 /*BaseOffset=*/ 0, 2188 /*HasBaseReg=*/ false, Scale)) 2189 goto decline_post_inc; 2190 } 2191 } 2192 2193 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2194 << *Cond << '\n'); 2195 2196 // It's possible for the setcc instruction to be anywhere in the loop, and 2197 // possible for it to have multiple users. If it is not immediately before 2198 // the exiting block branch, move it. 2199 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2200 if (Cond->hasOneUse()) { 2201 Cond->moveBefore(TermBr); 2202 } else { 2203 // Clone the terminating condition and insert into the loopend. 2204 ICmpInst *OldCond = Cond; 2205 Cond = cast<ICmpInst>(Cond->clone()); 2206 Cond->setName(L->getHeader()->getName() + ".termcond"); 2207 ExitingBlock->getInstList().insert(TermBr, Cond); 2208 2209 // Clone the IVUse, as the old use still exists! 2210 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2211 TermBr->replaceUsesOfWith(OldCond, Cond); 2212 } 2213 } 2214 2215 // If we get to here, we know that we can transform the setcc instruction to 2216 // use the post-incremented version of the IV, allowing us to coalesce the 2217 // live ranges for the IV correctly. 2218 CondUse->transformToPostInc(L); 2219 Changed = true; 2220 2221 PostIncs.insert(Cond); 2222 decline_post_inc:; 2223 } 2224 2225 // Determine an insertion point for the loop induction variable increment. It 2226 // must dominate all the post-inc comparisons we just set up, and it must 2227 // dominate the loop latch edge. 2228 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2229 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 2230 E = PostIncs.end(); I != E; ++I) { 2231 BasicBlock *BB = 2232 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2233 (*I)->getParent()); 2234 if (BB == (*I)->getParent()) 2235 IVIncInsertPos = *I; 2236 else if (BB != IVIncInsertPos->getParent()) 2237 IVIncInsertPos = BB->getTerminator(); 2238 } 2239 } 2240 2241 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2242 /// at the given offset and other details. If so, update the use and 2243 /// return true. 2244 bool 2245 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2246 LSRUse::KindType Kind, Type *AccessTy) { 2247 int64_t NewMinOffset = LU.MinOffset; 2248 int64_t NewMaxOffset = LU.MaxOffset; 2249 Type *NewAccessTy = AccessTy; 2250 2251 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2252 // something conservative, however this can pessimize in the case that one of 2253 // the uses will have all its uses outside the loop, for example. 2254 if (LU.Kind != Kind) 2255 return false; 2256 2257 // Check for a mismatched access type, and fall back conservatively as needed. 2258 // TODO: Be less conservative when the type is similar and can use the same 2259 // addressing modes. 2260 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2261 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2262 2263 // Conservatively assume HasBaseReg is true for now. 2264 if (NewOffset < LU.MinOffset) { 2265 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2266 LU.MaxOffset - NewOffset, HasBaseReg)) 2267 return false; 2268 NewMinOffset = NewOffset; 2269 } else if (NewOffset > LU.MaxOffset) { 2270 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2271 NewOffset - LU.MinOffset, HasBaseReg)) 2272 return false; 2273 NewMaxOffset = NewOffset; 2274 } 2275 2276 // Update the use. 2277 LU.MinOffset = NewMinOffset; 2278 LU.MaxOffset = NewMaxOffset; 2279 LU.AccessTy = NewAccessTy; 2280 if (NewOffset != LU.Offsets.back()) 2281 LU.Offsets.push_back(NewOffset); 2282 return true; 2283 } 2284 2285 /// getUse - Return an LSRUse index and an offset value for a fixup which 2286 /// needs the given expression, with the given kind and optional access type. 2287 /// Either reuse an existing use or create a new one, as needed. 2288 std::pair<size_t, int64_t> 2289 LSRInstance::getUse(const SCEV *&Expr, 2290 LSRUse::KindType Kind, Type *AccessTy) { 2291 const SCEV *Copy = Expr; 2292 int64_t Offset = ExtractImmediate(Expr, SE); 2293 2294 // Basic uses can't accept any offset, for example. 2295 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2296 Offset, /*HasBaseReg=*/ true)) { 2297 Expr = Copy; 2298 Offset = 0; 2299 } 2300 2301 std::pair<UseMapTy::iterator, bool> P = 2302 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2303 if (!P.second) { 2304 // A use already existed with this base. 2305 size_t LUIdx = P.first->second; 2306 LSRUse &LU = Uses[LUIdx]; 2307 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2308 // Reuse this use. 2309 return std::make_pair(LUIdx, Offset); 2310 } 2311 2312 // Create a new use. 2313 size_t LUIdx = Uses.size(); 2314 P.first->second = LUIdx; 2315 Uses.push_back(LSRUse(Kind, AccessTy)); 2316 LSRUse &LU = Uses[LUIdx]; 2317 2318 // We don't need to track redundant offsets, but we don't need to go out 2319 // of our way here to avoid them. 2320 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2321 LU.Offsets.push_back(Offset); 2322 2323 LU.MinOffset = Offset; 2324 LU.MaxOffset = Offset; 2325 return std::make_pair(LUIdx, Offset); 2326 } 2327 2328 /// DeleteUse - Delete the given use from the Uses list. 2329 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2330 if (&LU != &Uses.back()) 2331 std::swap(LU, Uses.back()); 2332 Uses.pop_back(); 2333 2334 // Update RegUses. 2335 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2336 } 2337 2338 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2339 /// a formula that has the same registers as the given formula. 2340 LSRUse * 2341 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2342 const LSRUse &OrigLU) { 2343 // Search all uses for the formula. This could be more clever. 2344 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2345 LSRUse &LU = Uses[LUIdx]; 2346 // Check whether this use is close enough to OrigLU, to see whether it's 2347 // worthwhile looking through its formulae. 2348 // Ignore ICmpZero uses because they may contain formulae generated by 2349 // GenerateICmpZeroScales, in which case adding fixup offsets may 2350 // be invalid. 2351 if (&LU != &OrigLU && 2352 LU.Kind != LSRUse::ICmpZero && 2353 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2354 LU.WidestFixupType == OrigLU.WidestFixupType && 2355 LU.HasFormulaWithSameRegs(OrigF)) { 2356 // Scan through this use's formulae. 2357 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2358 E = LU.Formulae.end(); I != E; ++I) { 2359 const Formula &F = *I; 2360 // Check to see if this formula has the same registers and symbols 2361 // as OrigF. 2362 if (F.BaseRegs == OrigF.BaseRegs && 2363 F.ScaledReg == OrigF.ScaledReg && 2364 F.BaseGV == OrigF.BaseGV && 2365 F.Scale == OrigF.Scale && 2366 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2367 if (F.BaseOffset == 0) 2368 return &LU; 2369 // This is the formula where all the registers and symbols matched; 2370 // there aren't going to be any others. Since we declined it, we 2371 // can skip the rest of the formulae and proceed to the next LSRUse. 2372 break; 2373 } 2374 } 2375 } 2376 } 2377 2378 // Nothing looked good. 2379 return nullptr; 2380 } 2381 2382 void LSRInstance::CollectInterestingTypesAndFactors() { 2383 SmallSetVector<const SCEV *, 4> Strides; 2384 2385 // Collect interesting types and strides. 2386 SmallVector<const SCEV *, 4> Worklist; 2387 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2388 const SCEV *Expr = IU.getExpr(*UI); 2389 2390 // Collect interesting types. 2391 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2392 2393 // Add strides for mentioned loops. 2394 Worklist.push_back(Expr); 2395 do { 2396 const SCEV *S = Worklist.pop_back_val(); 2397 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2398 if (AR->getLoop() == L) 2399 Strides.insert(AR->getStepRecurrence(SE)); 2400 Worklist.push_back(AR->getStart()); 2401 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2402 Worklist.append(Add->op_begin(), Add->op_end()); 2403 } 2404 } while (!Worklist.empty()); 2405 } 2406 2407 // Compute interesting factors from the set of interesting strides. 2408 for (SmallSetVector<const SCEV *, 4>::const_iterator 2409 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2410 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2411 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2412 const SCEV *OldStride = *I; 2413 const SCEV *NewStride = *NewStrideIter; 2414 2415 if (SE.getTypeSizeInBits(OldStride->getType()) != 2416 SE.getTypeSizeInBits(NewStride->getType())) { 2417 if (SE.getTypeSizeInBits(OldStride->getType()) > 2418 SE.getTypeSizeInBits(NewStride->getType())) 2419 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2420 else 2421 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2422 } 2423 if (const SCEVConstant *Factor = 2424 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2425 SE, true))) { 2426 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2427 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2428 } else if (const SCEVConstant *Factor = 2429 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2430 NewStride, 2431 SE, true))) { 2432 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2433 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2434 } 2435 } 2436 2437 // If all uses use the same type, don't bother looking for truncation-based 2438 // reuse. 2439 if (Types.size() == 1) 2440 Types.clear(); 2441 2442 DEBUG(print_factors_and_types(dbgs())); 2443 } 2444 2445 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2446 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2447 /// Instructions to IVStrideUses, we could partially skip this. 2448 static User::op_iterator 2449 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2450 Loop *L, ScalarEvolution &SE) { 2451 for(; OI != OE; ++OI) { 2452 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2453 if (!SE.isSCEVable(Oper->getType())) 2454 continue; 2455 2456 if (const SCEVAddRecExpr *AR = 2457 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2458 if (AR->getLoop() == L) 2459 break; 2460 } 2461 } 2462 } 2463 return OI; 2464 } 2465 2466 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2467 /// operands, so wrap it in a convenient helper. 2468 static Value *getWideOperand(Value *Oper) { 2469 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2470 return Trunc->getOperand(0); 2471 return Oper; 2472 } 2473 2474 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2475 /// types. 2476 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2477 Type *LType = LVal->getType(); 2478 Type *RType = RVal->getType(); 2479 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2480 } 2481 2482 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2483 /// NULL for any constant. Returning the expression itself is 2484 /// conservative. Returning a deeper subexpression is more precise and valid as 2485 /// long as it isn't less complex than another subexpression. For expressions 2486 /// involving multiple unscaled values, we need to return the pointer-type 2487 /// SCEVUnknown. This avoids forming chains across objects, such as: 2488 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2489 /// 2490 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2491 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2492 static const SCEV *getExprBase(const SCEV *S) { 2493 switch (S->getSCEVType()) { 2494 default: // uncluding scUnknown. 2495 return S; 2496 case scConstant: 2497 return nullptr; 2498 case scTruncate: 2499 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2500 case scZeroExtend: 2501 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2502 case scSignExtend: 2503 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2504 case scAddExpr: { 2505 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2506 // there's nothing more complex. 2507 // FIXME: not sure if we want to recognize negation. 2508 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2509 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2510 E(Add->op_begin()); I != E; ++I) { 2511 const SCEV *SubExpr = *I; 2512 if (SubExpr->getSCEVType() == scAddExpr) 2513 return getExprBase(SubExpr); 2514 2515 if (SubExpr->getSCEVType() != scMulExpr) 2516 return SubExpr; 2517 } 2518 return S; // all operands are scaled, be conservative. 2519 } 2520 case scAddRecExpr: 2521 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2522 } 2523 } 2524 2525 /// Return true if the chain increment is profitable to expand into a loop 2526 /// invariant value, which may require its own register. A profitable chain 2527 /// increment will be an offset relative to the same base. We allow such offsets 2528 /// to potentially be used as chain increment as long as it's not obviously 2529 /// expensive to expand using real instructions. 2530 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2531 const SCEV *IncExpr, 2532 ScalarEvolution &SE) { 2533 // Aggressively form chains when -stress-ivchain. 2534 if (StressIVChain) 2535 return true; 2536 2537 // Do not replace a constant offset from IV head with a nonconstant IV 2538 // increment. 2539 if (!isa<SCEVConstant>(IncExpr)) { 2540 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2541 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2542 return 0; 2543 } 2544 2545 SmallPtrSet<const SCEV*, 8> Processed; 2546 return !isHighCostExpansion(IncExpr, Processed, SE); 2547 } 2548 2549 /// Return true if the number of registers needed for the chain is estimated to 2550 /// be less than the number required for the individual IV users. First prohibit 2551 /// any IV users that keep the IV live across increments (the Users set should 2552 /// be empty). Next count the number and type of increments in the chain. 2553 /// 2554 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2555 /// effectively use postinc addressing modes. Only consider it profitable it the 2556 /// increments can be computed in fewer registers when chained. 2557 /// 2558 /// TODO: Consider IVInc free if it's already used in another chains. 2559 static bool 2560 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2561 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2562 if (StressIVChain) 2563 return true; 2564 2565 if (!Chain.hasIncs()) 2566 return false; 2567 2568 if (!Users.empty()) { 2569 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2570 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), 2571 E = Users.end(); I != E; ++I) { 2572 dbgs() << " " << **I << "\n"; 2573 }); 2574 return false; 2575 } 2576 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2577 2578 // The chain itself may require a register, so intialize cost to 1. 2579 int cost = 1; 2580 2581 // A complete chain likely eliminates the need for keeping the original IV in 2582 // a register. LSR does not currently know how to form a complete chain unless 2583 // the header phi already exists. 2584 if (isa<PHINode>(Chain.tailUserInst()) 2585 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2586 --cost; 2587 } 2588 const SCEV *LastIncExpr = nullptr; 2589 unsigned NumConstIncrements = 0; 2590 unsigned NumVarIncrements = 0; 2591 unsigned NumReusedIncrements = 0; 2592 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2593 I != E; ++I) { 2594 2595 if (I->IncExpr->isZero()) 2596 continue; 2597 2598 // Incrementing by zero or some constant is neutral. We assume constants can 2599 // be folded into an addressing mode or an add's immediate operand. 2600 if (isa<SCEVConstant>(I->IncExpr)) { 2601 ++NumConstIncrements; 2602 continue; 2603 } 2604 2605 if (I->IncExpr == LastIncExpr) 2606 ++NumReusedIncrements; 2607 else 2608 ++NumVarIncrements; 2609 2610 LastIncExpr = I->IncExpr; 2611 } 2612 // An IV chain with a single increment is handled by LSR's postinc 2613 // uses. However, a chain with multiple increments requires keeping the IV's 2614 // value live longer than it needs to be if chained. 2615 if (NumConstIncrements > 1) 2616 --cost; 2617 2618 // Materializing increment expressions in the preheader that didn't exist in 2619 // the original code may cost a register. For example, sign-extended array 2620 // indices can produce ridiculous increments like this: 2621 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2622 cost += NumVarIncrements; 2623 2624 // Reusing variable increments likely saves a register to hold the multiple of 2625 // the stride. 2626 cost -= NumReusedIncrements; 2627 2628 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2629 << "\n"); 2630 2631 return cost < 0; 2632 } 2633 2634 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2635 /// of a new chain. 2636 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2637 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2638 // When IVs are used as types of varying widths, they are generally converted 2639 // to a wider type with some uses remaining narrow under a (free) trunc. 2640 Value *const NextIV = getWideOperand(IVOper); 2641 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2642 const SCEV *const OperExprBase = getExprBase(OperExpr); 2643 2644 // Visit all existing chains. Check if its IVOper can be computed as a 2645 // profitable loop invariant increment from the last link in the Chain. 2646 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2647 const SCEV *LastIncExpr = nullptr; 2648 for (; ChainIdx < NChains; ++ChainIdx) { 2649 IVChain &Chain = IVChainVec[ChainIdx]; 2650 2651 // Prune the solution space aggressively by checking that both IV operands 2652 // are expressions that operate on the same unscaled SCEVUnknown. This 2653 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2654 // first avoids creating extra SCEV expressions. 2655 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2656 continue; 2657 2658 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2659 if (!isCompatibleIVType(PrevIV, NextIV)) 2660 continue; 2661 2662 // A phi node terminates a chain. 2663 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2664 continue; 2665 2666 // The increment must be loop-invariant so it can be kept in a register. 2667 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2668 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2669 if (!SE.isLoopInvariant(IncExpr, L)) 2670 continue; 2671 2672 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2673 LastIncExpr = IncExpr; 2674 break; 2675 } 2676 } 2677 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2678 // bother for phi nodes, because they must be last in the chain. 2679 if (ChainIdx == NChains) { 2680 if (isa<PHINode>(UserInst)) 2681 return; 2682 if (NChains >= MaxChains && !StressIVChain) { 2683 DEBUG(dbgs() << "IV Chain Limit\n"); 2684 return; 2685 } 2686 LastIncExpr = OperExpr; 2687 // IVUsers may have skipped over sign/zero extensions. We don't currently 2688 // attempt to form chains involving extensions unless they can be hoisted 2689 // into this loop's AddRec. 2690 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2691 return; 2692 ++NChains; 2693 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2694 OperExprBase)); 2695 ChainUsersVec.resize(NChains); 2696 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2697 << ") IV=" << *LastIncExpr << "\n"); 2698 } else { 2699 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2700 << ") IV+" << *LastIncExpr << "\n"); 2701 // Add this IV user to the end of the chain. 2702 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2703 } 2704 IVChain &Chain = IVChainVec[ChainIdx]; 2705 2706 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2707 // This chain's NearUsers become FarUsers. 2708 if (!LastIncExpr->isZero()) { 2709 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2710 NearUsers.end()); 2711 NearUsers.clear(); 2712 } 2713 2714 // All other uses of IVOperand become near uses of the chain. 2715 // We currently ignore intermediate values within SCEV expressions, assuming 2716 // they will eventually be used be the current chain, or can be computed 2717 // from one of the chain increments. To be more precise we could 2718 // transitively follow its user and only add leaf IV users to the set. 2719 for (User *U : IVOper->users()) { 2720 Instruction *OtherUse = dyn_cast<Instruction>(U); 2721 if (!OtherUse) 2722 continue; 2723 // Uses in the chain will no longer be uses if the chain is formed. 2724 // Include the head of the chain in this iteration (not Chain.begin()). 2725 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2726 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2727 for( ; IncIter != IncEnd; ++IncIter) { 2728 if (IncIter->UserInst == OtherUse) 2729 break; 2730 } 2731 if (IncIter != IncEnd) 2732 continue; 2733 2734 if (SE.isSCEVable(OtherUse->getType()) 2735 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2736 && IU.isIVUserOrOperand(OtherUse)) { 2737 continue; 2738 } 2739 NearUsers.insert(OtherUse); 2740 } 2741 2742 // Since this user is part of the chain, it's no longer considered a use 2743 // of the chain. 2744 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2745 } 2746 2747 /// CollectChains - Populate the vector of Chains. 2748 /// 2749 /// This decreases ILP at the architecture level. Targets with ample registers, 2750 /// multiple memory ports, and no register renaming probably don't want 2751 /// this. However, such targets should probably disable LSR altogether. 2752 /// 2753 /// The job of LSR is to make a reasonable choice of induction variables across 2754 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2755 /// ILP *within the loop* if the target wants it. 2756 /// 2757 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2758 /// will not reorder memory operations, it will recognize this as a chain, but 2759 /// will generate redundant IV increments. Ideally this would be corrected later 2760 /// by a smart scheduler: 2761 /// = A[i] 2762 /// = A[i+x] 2763 /// A[i] = 2764 /// A[i+x] = 2765 /// 2766 /// TODO: Walk the entire domtree within this loop, not just the path to the 2767 /// loop latch. This will discover chains on side paths, but requires 2768 /// maintaining multiple copies of the Chains state. 2769 void LSRInstance::CollectChains() { 2770 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2771 SmallVector<ChainUsers, 8> ChainUsersVec; 2772 2773 SmallVector<BasicBlock *,8> LatchPath; 2774 BasicBlock *LoopHeader = L->getHeader(); 2775 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2776 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2777 LatchPath.push_back(Rung->getBlock()); 2778 } 2779 LatchPath.push_back(LoopHeader); 2780 2781 // Walk the instruction stream from the loop header to the loop latch. 2782 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2783 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2784 BBIter != BBEnd; ++BBIter) { 2785 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2786 I != E; ++I) { 2787 // Skip instructions that weren't seen by IVUsers analysis. 2788 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2789 continue; 2790 2791 // Ignore users that are part of a SCEV expression. This way we only 2792 // consider leaf IV Users. This effectively rediscovers a portion of 2793 // IVUsers analysis but in program order this time. 2794 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2795 continue; 2796 2797 // Remove this instruction from any NearUsers set it may be in. 2798 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2799 ChainIdx < NChains; ++ChainIdx) { 2800 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2801 } 2802 // Search for operands that can be chained. 2803 SmallPtrSet<Instruction*, 4> UniqueOperands; 2804 User::op_iterator IVOpEnd = I->op_end(); 2805 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2806 while (IVOpIter != IVOpEnd) { 2807 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2808 if (UniqueOperands.insert(IVOpInst)) 2809 ChainInstruction(I, IVOpInst, ChainUsersVec); 2810 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2811 } 2812 } // Continue walking down the instructions. 2813 } // Continue walking down the domtree. 2814 // Visit phi backedges to determine if the chain can generate the IV postinc. 2815 for (BasicBlock::iterator I = L->getHeader()->begin(); 2816 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2817 if (!SE.isSCEVable(PN->getType())) 2818 continue; 2819 2820 Instruction *IncV = 2821 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2822 if (IncV) 2823 ChainInstruction(PN, IncV, ChainUsersVec); 2824 } 2825 // Remove any unprofitable chains. 2826 unsigned ChainIdx = 0; 2827 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2828 UsersIdx < NChains; ++UsersIdx) { 2829 if (!isProfitableChain(IVChainVec[UsersIdx], 2830 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2831 continue; 2832 // Preserve the chain at UsesIdx. 2833 if (ChainIdx != UsersIdx) 2834 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2835 FinalizeChain(IVChainVec[ChainIdx]); 2836 ++ChainIdx; 2837 } 2838 IVChainVec.resize(ChainIdx); 2839 } 2840 2841 void LSRInstance::FinalizeChain(IVChain &Chain) { 2842 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2843 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2844 2845 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2846 I != E; ++I) { 2847 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2848 User::op_iterator UseI = 2849 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2850 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2851 IVIncSet.insert(UseI); 2852 } 2853 } 2854 2855 /// Return true if the IVInc can be folded into an addressing mode. 2856 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2857 Value *Operand, const TargetTransformInfo &TTI) { 2858 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2859 if (!IncConst || !isAddressUse(UserInst, Operand)) 2860 return false; 2861 2862 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2863 return false; 2864 2865 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2866 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2867 getAccessType(UserInst), /*BaseGV=*/ nullptr, 2868 IncOffset, /*HaseBaseReg=*/ false)) 2869 return false; 2870 2871 return true; 2872 } 2873 2874 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2875 /// materialize the IV user's operand from the previous IV user's operand. 2876 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2877 SmallVectorImpl<WeakVH> &DeadInsts) { 2878 // Find the new IVOperand for the head of the chain. It may have been replaced 2879 // by LSR. 2880 const IVInc &Head = Chain.Incs[0]; 2881 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2882 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2883 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2884 IVOpEnd, L, SE); 2885 Value *IVSrc = nullptr; 2886 while (IVOpIter != IVOpEnd) { 2887 IVSrc = getWideOperand(*IVOpIter); 2888 2889 // If this operand computes the expression that the chain needs, we may use 2890 // it. (Check this after setting IVSrc which is used below.) 2891 // 2892 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2893 // narrow for the chain, so we can no longer use it. We do allow using a 2894 // wider phi, assuming the LSR checked for free truncation. In that case we 2895 // should already have a truncate on this operand such that 2896 // getSCEV(IVSrc) == IncExpr. 2897 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2898 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2899 break; 2900 } 2901 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2902 } 2903 if (IVOpIter == IVOpEnd) { 2904 // Gracefully give up on this chain. 2905 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2906 return; 2907 } 2908 2909 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2910 Type *IVTy = IVSrc->getType(); 2911 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2912 const SCEV *LeftOverExpr = nullptr; 2913 for (IVChain::const_iterator IncI = Chain.begin(), 2914 IncE = Chain.end(); IncI != IncE; ++IncI) { 2915 2916 Instruction *InsertPt = IncI->UserInst; 2917 if (isa<PHINode>(InsertPt)) 2918 InsertPt = L->getLoopLatch()->getTerminator(); 2919 2920 // IVOper will replace the current IV User's operand. IVSrc is the IV 2921 // value currently held in a register. 2922 Value *IVOper = IVSrc; 2923 if (!IncI->IncExpr->isZero()) { 2924 // IncExpr was the result of subtraction of two narrow values, so must 2925 // be signed. 2926 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2927 LeftOverExpr = LeftOverExpr ? 2928 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2929 } 2930 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2931 // Expand the IV increment. 2932 Rewriter.clearPostInc(); 2933 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2934 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2935 SE.getUnknown(IncV)); 2936 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2937 2938 // If an IV increment can't be folded, use it as the next IV value. 2939 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2940 TTI)) { 2941 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2942 IVSrc = IVOper; 2943 LeftOverExpr = nullptr; 2944 } 2945 } 2946 Type *OperTy = IncI->IVOperand->getType(); 2947 if (IVTy != OperTy) { 2948 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2949 "cannot extend a chained IV"); 2950 IRBuilder<> Builder(InsertPt); 2951 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2952 } 2953 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2954 DeadInsts.push_back(IncI->IVOperand); 2955 } 2956 // If LSR created a new, wider phi, we may also replace its postinc. We only 2957 // do this if we also found a wide value for the head of the chain. 2958 if (isa<PHINode>(Chain.tailUserInst())) { 2959 for (BasicBlock::iterator I = L->getHeader()->begin(); 2960 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2961 if (!isCompatibleIVType(Phi, IVSrc)) 2962 continue; 2963 Instruction *PostIncV = dyn_cast<Instruction>( 2964 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2965 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2966 continue; 2967 Value *IVOper = IVSrc; 2968 Type *PostIncTy = PostIncV->getType(); 2969 if (IVTy != PostIncTy) { 2970 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2971 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2972 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2973 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2974 } 2975 Phi->replaceUsesOfWith(PostIncV, IVOper); 2976 DeadInsts.push_back(PostIncV); 2977 } 2978 } 2979 } 2980 2981 void LSRInstance::CollectFixupsAndInitialFormulae() { 2982 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2983 Instruction *UserInst = UI->getUser(); 2984 // Skip IV users that are part of profitable IV Chains. 2985 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2986 UI->getOperandValToReplace()); 2987 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2988 if (IVIncSet.count(UseI)) 2989 continue; 2990 2991 // Record the uses. 2992 LSRFixup &LF = getNewFixup(); 2993 LF.UserInst = UserInst; 2994 LF.OperandValToReplace = UI->getOperandValToReplace(); 2995 LF.PostIncLoops = UI->getPostIncLoops(); 2996 2997 LSRUse::KindType Kind = LSRUse::Basic; 2998 Type *AccessTy = nullptr; 2999 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 3000 Kind = LSRUse::Address; 3001 AccessTy = getAccessType(LF.UserInst); 3002 } 3003 3004 const SCEV *S = IU.getExpr(*UI); 3005 3006 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3007 // (N - i == 0), and this allows (N - i) to be the expression that we work 3008 // with rather than just N or i, so we can consider the register 3009 // requirements for both N and i at the same time. Limiting this code to 3010 // equality icmps is not a problem because all interesting loops use 3011 // equality icmps, thanks to IndVarSimplify. 3012 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 3013 if (CI->isEquality()) { 3014 // Swap the operands if needed to put the OperandValToReplace on the 3015 // left, for consistency. 3016 Value *NV = CI->getOperand(1); 3017 if (NV == LF.OperandValToReplace) { 3018 CI->setOperand(1, CI->getOperand(0)); 3019 CI->setOperand(0, NV); 3020 NV = CI->getOperand(1); 3021 Changed = true; 3022 } 3023 3024 // x == y --> x - y == 0 3025 const SCEV *N = SE.getSCEV(NV); 3026 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3027 // S is normalized, so normalize N before folding it into S 3028 // to keep the result normalized. 3029 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3030 LF.PostIncLoops, SE, DT); 3031 Kind = LSRUse::ICmpZero; 3032 S = SE.getMinusSCEV(N, S); 3033 } 3034 3035 // -1 and the negations of all interesting strides (except the negation 3036 // of -1) are now also interesting. 3037 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3038 if (Factors[i] != -1) 3039 Factors.insert(-(uint64_t)Factors[i]); 3040 Factors.insert(-1); 3041 } 3042 3043 // Set up the initial formula for this use. 3044 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3045 LF.LUIdx = P.first; 3046 LF.Offset = P.second; 3047 LSRUse &LU = Uses[LF.LUIdx]; 3048 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3049 if (!LU.WidestFixupType || 3050 SE.getTypeSizeInBits(LU.WidestFixupType) < 3051 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3052 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3053 3054 // If this is the first use of this LSRUse, give it a formula. 3055 if (LU.Formulae.empty()) { 3056 InsertInitialFormula(S, LU, LF.LUIdx); 3057 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3058 } 3059 } 3060 3061 DEBUG(print_fixups(dbgs())); 3062 } 3063 3064 /// InsertInitialFormula - Insert a formula for the given expression into 3065 /// the given use, separating out loop-variant portions from loop-invariant 3066 /// and loop-computable portions. 3067 void 3068 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3069 // Mark uses whose expressions cannot be expanded. 3070 if (!isSafeToExpand(S, SE)) 3071 LU.RigidFormula = true; 3072 3073 Formula F; 3074 F.InitialMatch(S, L, SE); 3075 bool Inserted = InsertFormula(LU, LUIdx, F); 3076 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3077 } 3078 3079 /// InsertSupplementalFormula - Insert a simple single-register formula for 3080 /// the given expression into the given use. 3081 void 3082 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3083 LSRUse &LU, size_t LUIdx) { 3084 Formula F; 3085 F.BaseRegs.push_back(S); 3086 F.HasBaseReg = true; 3087 bool Inserted = InsertFormula(LU, LUIdx, F); 3088 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3089 } 3090 3091 /// CountRegisters - Note which registers are used by the given formula, 3092 /// updating RegUses. 3093 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3094 if (F.ScaledReg) 3095 RegUses.CountRegister(F.ScaledReg, LUIdx); 3096 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3097 E = F.BaseRegs.end(); I != E; ++I) 3098 RegUses.CountRegister(*I, LUIdx); 3099 } 3100 3101 /// InsertFormula - If the given formula has not yet been inserted, add it to 3102 /// the list, and return true. Return false otherwise. 3103 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3104 // Do not insert formula that we will not be able to expand. 3105 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3106 "Formula is illegal"); 3107 if (!LU.InsertFormula(F)) 3108 return false; 3109 3110 CountRegisters(F, LUIdx); 3111 return true; 3112 } 3113 3114 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3115 /// loop-invariant values which we're tracking. These other uses will pin these 3116 /// values in registers, making them less profitable for elimination. 3117 /// TODO: This currently misses non-constant addrec step registers. 3118 /// TODO: Should this give more weight to users inside the loop? 3119 void 3120 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3121 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3122 SmallPtrSet<const SCEV *, 8> Inserted; 3123 3124 while (!Worklist.empty()) { 3125 const SCEV *S = Worklist.pop_back_val(); 3126 3127 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3128 Worklist.append(N->op_begin(), N->op_end()); 3129 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3130 Worklist.push_back(C->getOperand()); 3131 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3132 Worklist.push_back(D->getLHS()); 3133 Worklist.push_back(D->getRHS()); 3134 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3135 if (!Inserted.insert(US)) continue; 3136 const Value *V = US->getValue(); 3137 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3138 // Look for instructions defined outside the loop. 3139 if (L->contains(Inst)) continue; 3140 } else if (isa<UndefValue>(V)) 3141 // Undef doesn't have a live range, so it doesn't matter. 3142 continue; 3143 for (const Use &U : V->uses()) { 3144 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3145 // Ignore non-instructions. 3146 if (!UserInst) 3147 continue; 3148 // Ignore instructions in other functions (as can happen with 3149 // Constants). 3150 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3151 continue; 3152 // Ignore instructions not dominated by the loop. 3153 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3154 UserInst->getParent() : 3155 cast<PHINode>(UserInst)->getIncomingBlock( 3156 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3157 if (!DT.dominates(L->getHeader(), UseBB)) 3158 continue; 3159 // Ignore uses which are part of other SCEV expressions, to avoid 3160 // analyzing them multiple times. 3161 if (SE.isSCEVable(UserInst->getType())) { 3162 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3163 // If the user is a no-op, look through to its uses. 3164 if (!isa<SCEVUnknown>(UserS)) 3165 continue; 3166 if (UserS == US) { 3167 Worklist.push_back( 3168 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3169 continue; 3170 } 3171 } 3172 // Ignore icmp instructions which are already being analyzed. 3173 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3174 unsigned OtherIdx = !U.getOperandNo(); 3175 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3176 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3177 continue; 3178 } 3179 3180 LSRFixup &LF = getNewFixup(); 3181 LF.UserInst = const_cast<Instruction *>(UserInst); 3182 LF.OperandValToReplace = U; 3183 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); 3184 LF.LUIdx = P.first; 3185 LF.Offset = P.second; 3186 LSRUse &LU = Uses[LF.LUIdx]; 3187 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3188 if (!LU.WidestFixupType || 3189 SE.getTypeSizeInBits(LU.WidestFixupType) < 3190 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3191 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3192 InsertSupplementalFormula(US, LU, LF.LUIdx); 3193 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3194 break; 3195 } 3196 } 3197 } 3198 } 3199 3200 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3201 /// separate registers. If C is non-null, multiply each subexpression by C. 3202 /// 3203 /// Return remainder expression after factoring the subexpressions captured by 3204 /// Ops. If Ops is complete, return NULL. 3205 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3206 SmallVectorImpl<const SCEV *> &Ops, 3207 const Loop *L, 3208 ScalarEvolution &SE, 3209 unsigned Depth = 0) { 3210 // Arbitrarily cap recursion to protect compile time. 3211 if (Depth >= 3) 3212 return S; 3213 3214 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3215 // Break out add operands. 3216 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3217 I != E; ++I) { 3218 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3219 if (Remainder) 3220 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3221 } 3222 return nullptr; 3223 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3224 // Split a non-zero base out of an addrec. 3225 if (AR->getStart()->isZero()) 3226 return S; 3227 3228 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3229 C, Ops, L, SE, Depth+1); 3230 // Split the non-zero AddRec unless it is part of a nested recurrence that 3231 // does not pertain to this loop. 3232 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3233 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3234 Remainder = nullptr; 3235 } 3236 if (Remainder != AR->getStart()) { 3237 if (!Remainder) 3238 Remainder = SE.getConstant(AR->getType(), 0); 3239 return SE.getAddRecExpr(Remainder, 3240 AR->getStepRecurrence(SE), 3241 AR->getLoop(), 3242 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3243 SCEV::FlagAnyWrap); 3244 } 3245 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3246 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3247 if (Mul->getNumOperands() != 2) 3248 return S; 3249 if (const SCEVConstant *Op0 = 3250 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3251 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3252 const SCEV *Remainder = 3253 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3254 if (Remainder) 3255 Ops.push_back(SE.getMulExpr(C, Remainder)); 3256 return nullptr; 3257 } 3258 } 3259 return S; 3260 } 3261 3262 /// \brief Helper function for LSRInstance::GenerateReassociations. 3263 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3264 const Formula &Base, 3265 unsigned Depth, size_t Idx, 3266 bool IsScaledReg) { 3267 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3268 SmallVector<const SCEV *, 8> AddOps; 3269 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3270 if (Remainder) 3271 AddOps.push_back(Remainder); 3272 3273 if (AddOps.size() == 1) 3274 return; 3275 3276 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3277 JE = AddOps.end(); 3278 J != JE; ++J) { 3279 3280 // Loop-variant "unknown" values are uninteresting; we won't be able to 3281 // do anything meaningful with them. 3282 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3283 continue; 3284 3285 // Don't pull a constant into a register if the constant could be folded 3286 // into an immediate field. 3287 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3288 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3289 continue; 3290 3291 // Collect all operands except *J. 3292 SmallVector<const SCEV *, 8> InnerAddOps( 3293 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3294 InnerAddOps.append(std::next(J), 3295 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3296 3297 // Don't leave just a constant behind in a register if the constant could 3298 // be folded into an immediate field. 3299 if (InnerAddOps.size() == 1 && 3300 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3301 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3302 continue; 3303 3304 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3305 if (InnerSum->isZero()) 3306 continue; 3307 Formula F = Base; 3308 3309 // Add the remaining pieces of the add back into the new formula. 3310 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3311 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3312 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3313 InnerSumSC->getValue()->getZExtValue())) { 3314 F.UnfoldedOffset = 3315 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3316 if (IsScaledReg) 3317 F.ScaledReg = nullptr; 3318 else 3319 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3320 } else if (IsScaledReg) 3321 F.ScaledReg = InnerSum; 3322 else 3323 F.BaseRegs[Idx] = InnerSum; 3324 3325 // Add J as its own register, or an unfolded immediate. 3326 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3327 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3328 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3329 SC->getValue()->getZExtValue())) 3330 F.UnfoldedOffset = 3331 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3332 else 3333 F.BaseRegs.push_back(*J); 3334 // We may have changed the number of register in base regs, adjust the 3335 // formula accordingly. 3336 F.Canonicalize(); 3337 3338 if (InsertFormula(LU, LUIdx, F)) 3339 // If that formula hadn't been seen before, recurse to find more like 3340 // it. 3341 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3342 } 3343 } 3344 3345 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3346 /// addrecs. 3347 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3348 Formula Base, unsigned Depth) { 3349 assert(Base.isCanonical() && "Input must be in the canonical form"); 3350 // Arbitrarily cap recursion to protect compile time. 3351 if (Depth >= 3) 3352 return; 3353 3354 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3355 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3356 3357 if (Base.Scale == 1) 3358 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3359 /* Idx */ -1, /* IsScaledReg */ true); 3360 } 3361 3362 /// GenerateCombinations - Generate a formula consisting of all of the 3363 /// loop-dominating registers added into a single register. 3364 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3365 Formula Base) { 3366 // This method is only interesting on a plurality of registers. 3367 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3368 return; 3369 3370 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3371 // processing the formula. 3372 Base.Unscale(); 3373 Formula F = Base; 3374 F.BaseRegs.clear(); 3375 SmallVector<const SCEV *, 4> Ops; 3376 for (SmallVectorImpl<const SCEV *>::const_iterator 3377 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3378 const SCEV *BaseReg = *I; 3379 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3380 !SE.hasComputableLoopEvolution(BaseReg, L)) 3381 Ops.push_back(BaseReg); 3382 else 3383 F.BaseRegs.push_back(BaseReg); 3384 } 3385 if (Ops.size() > 1) { 3386 const SCEV *Sum = SE.getAddExpr(Ops); 3387 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3388 // opportunity to fold something. For now, just ignore such cases 3389 // rather than proceed with zero in a register. 3390 if (!Sum->isZero()) { 3391 F.BaseRegs.push_back(Sum); 3392 F.Canonicalize(); 3393 (void)InsertFormula(LU, LUIdx, F); 3394 } 3395 } 3396 } 3397 3398 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3399 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3400 const Formula &Base, size_t Idx, 3401 bool IsScaledReg) { 3402 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3403 GlobalValue *GV = ExtractSymbol(G, SE); 3404 if (G->isZero() || !GV) 3405 return; 3406 Formula F = Base; 3407 F.BaseGV = GV; 3408 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3409 return; 3410 if (IsScaledReg) 3411 F.ScaledReg = G; 3412 else 3413 F.BaseRegs[Idx] = G; 3414 (void)InsertFormula(LU, LUIdx, F); 3415 } 3416 3417 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3418 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3419 Formula Base) { 3420 // We can't add a symbolic offset if the address already contains one. 3421 if (Base.BaseGV) return; 3422 3423 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3424 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3425 if (Base.Scale == 1) 3426 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3427 /* IsScaledReg */ true); 3428 } 3429 3430 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3431 void LSRInstance::GenerateConstantOffsetsImpl( 3432 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3433 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3434 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3435 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3436 E = Worklist.end(); 3437 I != E; ++I) { 3438 Formula F = Base; 3439 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3440 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3441 LU.AccessTy, F)) { 3442 // Add the offset to the base register. 3443 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3444 // If it cancelled out, drop the base register, otherwise update it. 3445 if (NewG->isZero()) { 3446 if (IsScaledReg) { 3447 F.Scale = 0; 3448 F.ScaledReg = nullptr; 3449 } else 3450 F.DeleteBaseReg(F.BaseRegs[Idx]); 3451 F.Canonicalize(); 3452 } else if (IsScaledReg) 3453 F.ScaledReg = NewG; 3454 else 3455 F.BaseRegs[Idx] = NewG; 3456 3457 (void)InsertFormula(LU, LUIdx, F); 3458 } 3459 } 3460 3461 int64_t Imm = ExtractImmediate(G, SE); 3462 if (G->isZero() || Imm == 0) 3463 return; 3464 Formula F = Base; 3465 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3466 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3467 return; 3468 if (IsScaledReg) 3469 F.ScaledReg = G; 3470 else 3471 F.BaseRegs[Idx] = G; 3472 (void)InsertFormula(LU, LUIdx, F); 3473 } 3474 3475 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3476 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3477 Formula Base) { 3478 // TODO: For now, just add the min and max offset, because it usually isn't 3479 // worthwhile looking at everything inbetween. 3480 SmallVector<int64_t, 2> Worklist; 3481 Worklist.push_back(LU.MinOffset); 3482 if (LU.MaxOffset != LU.MinOffset) 3483 Worklist.push_back(LU.MaxOffset); 3484 3485 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3486 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3487 if (Base.Scale == 1) 3488 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3489 /* IsScaledReg */ true); 3490 } 3491 3492 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3493 /// the comparison. For example, x == y -> x*c == y*c. 3494 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3495 Formula Base) { 3496 if (LU.Kind != LSRUse::ICmpZero) return; 3497 3498 // Determine the integer type for the base formula. 3499 Type *IntTy = Base.getType(); 3500 if (!IntTy) return; 3501 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3502 3503 // Don't do this if there is more than one offset. 3504 if (LU.MinOffset != LU.MaxOffset) return; 3505 3506 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3507 3508 // Check each interesting stride. 3509 for (SmallSetVector<int64_t, 8>::const_iterator 3510 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3511 int64_t Factor = *I; 3512 3513 // Check that the multiplication doesn't overflow. 3514 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3515 continue; 3516 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3517 if (NewBaseOffset / Factor != Base.BaseOffset) 3518 continue; 3519 // If the offset will be truncated at this use, check that it is in bounds. 3520 if (!IntTy->isPointerTy() && 3521 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3522 continue; 3523 3524 // Check that multiplying with the use offset doesn't overflow. 3525 int64_t Offset = LU.MinOffset; 3526 if (Offset == INT64_MIN && Factor == -1) 3527 continue; 3528 Offset = (uint64_t)Offset * Factor; 3529 if (Offset / Factor != LU.MinOffset) 3530 continue; 3531 // If the offset will be truncated at this use, check that it is in bounds. 3532 if (!IntTy->isPointerTy() && 3533 !ConstantInt::isValueValidForType(IntTy, Offset)) 3534 continue; 3535 3536 Formula F = Base; 3537 F.BaseOffset = NewBaseOffset; 3538 3539 // Check that this scale is legal. 3540 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3541 continue; 3542 3543 // Compensate for the use having MinOffset built into it. 3544 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3545 3546 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3547 3548 // Check that multiplying with each base register doesn't overflow. 3549 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3550 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3551 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3552 goto next; 3553 } 3554 3555 // Check that multiplying with the scaled register doesn't overflow. 3556 if (F.ScaledReg) { 3557 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3558 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3559 continue; 3560 } 3561 3562 // Check that multiplying with the unfolded offset doesn't overflow. 3563 if (F.UnfoldedOffset != 0) { 3564 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3565 continue; 3566 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3567 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3568 continue; 3569 // If the offset will be truncated, check that it is in bounds. 3570 if (!IntTy->isPointerTy() && 3571 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3572 continue; 3573 } 3574 3575 // If we make it here and it's legal, add it. 3576 (void)InsertFormula(LU, LUIdx, F); 3577 next:; 3578 } 3579 } 3580 3581 /// GenerateScales - Generate stride factor reuse formulae by making use of 3582 /// scaled-offset address modes, for example. 3583 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3584 // Determine the integer type for the base formula. 3585 Type *IntTy = Base.getType(); 3586 if (!IntTy) return; 3587 3588 // If this Formula already has a scaled register, we can't add another one. 3589 // Try to unscale the formula to generate a better scale. 3590 if (Base.Scale != 0 && !Base.Unscale()) 3591 return; 3592 3593 assert(Base.Scale == 0 && "Unscale did not did its job!"); 3594 3595 // Check each interesting stride. 3596 for (SmallSetVector<int64_t, 8>::const_iterator 3597 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3598 int64_t Factor = *I; 3599 3600 Base.Scale = Factor; 3601 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3602 // Check whether this scale is going to be legal. 3603 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3604 Base)) { 3605 // As a special-case, handle special out-of-loop Basic users specially. 3606 // TODO: Reconsider this special case. 3607 if (LU.Kind == LSRUse::Basic && 3608 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3609 LU.AccessTy, Base) && 3610 LU.AllFixupsOutsideLoop) 3611 LU.Kind = LSRUse::Special; 3612 else 3613 continue; 3614 } 3615 // For an ICmpZero, negating a solitary base register won't lead to 3616 // new solutions. 3617 if (LU.Kind == LSRUse::ICmpZero && 3618 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3619 continue; 3620 // For each addrec base reg, apply the scale, if possible. 3621 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3622 if (const SCEVAddRecExpr *AR = 3623 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3624 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3625 if (FactorS->isZero()) 3626 continue; 3627 // Divide out the factor, ignoring high bits, since we'll be 3628 // scaling the value back up in the end. 3629 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3630 // TODO: This could be optimized to avoid all the copying. 3631 Formula F = Base; 3632 F.ScaledReg = Quotient; 3633 F.DeleteBaseReg(F.BaseRegs[i]); 3634 // The canonical representation of 1*reg is reg, which is already in 3635 // Base. In that case, do not try to insert the formula, it will be 3636 // rejected anyway. 3637 if (F.Scale == 1 && F.BaseRegs.empty()) 3638 continue; 3639 (void)InsertFormula(LU, LUIdx, F); 3640 } 3641 } 3642 } 3643 } 3644 3645 /// GenerateTruncates - Generate reuse formulae from different IV types. 3646 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3647 // Don't bother truncating symbolic values. 3648 if (Base.BaseGV) return; 3649 3650 // Determine the integer type for the base formula. 3651 Type *DstTy = Base.getType(); 3652 if (!DstTy) return; 3653 DstTy = SE.getEffectiveSCEVType(DstTy); 3654 3655 for (SmallSetVector<Type *, 4>::const_iterator 3656 I = Types.begin(), E = Types.end(); I != E; ++I) { 3657 Type *SrcTy = *I; 3658 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3659 Formula F = Base; 3660 3661 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3662 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3663 JE = F.BaseRegs.end(); J != JE; ++J) 3664 *J = SE.getAnyExtendExpr(*J, SrcTy); 3665 3666 // TODO: This assumes we've done basic processing on all uses and 3667 // have an idea what the register usage is. 3668 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3669 continue; 3670 3671 (void)InsertFormula(LU, LUIdx, F); 3672 } 3673 } 3674 } 3675 3676 namespace { 3677 3678 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3679 /// defer modifications so that the search phase doesn't have to worry about 3680 /// the data structures moving underneath it. 3681 struct WorkItem { 3682 size_t LUIdx; 3683 int64_t Imm; 3684 const SCEV *OrigReg; 3685 3686 WorkItem(size_t LI, int64_t I, const SCEV *R) 3687 : LUIdx(LI), Imm(I), OrigReg(R) {} 3688 3689 void print(raw_ostream &OS) const; 3690 void dump() const; 3691 }; 3692 3693 } 3694 3695 void WorkItem::print(raw_ostream &OS) const { 3696 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3697 << " , add offset " << Imm; 3698 } 3699 3700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3701 void WorkItem::dump() const { 3702 print(errs()); errs() << '\n'; 3703 } 3704 #endif 3705 3706 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3707 /// distance apart and try to form reuse opportunities between them. 3708 void LSRInstance::GenerateCrossUseConstantOffsets() { 3709 // Group the registers by their value without any added constant offset. 3710 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3711 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3712 RegMapTy Map; 3713 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3714 SmallVector<const SCEV *, 8> Sequence; 3715 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3716 I != E; ++I) { 3717 const SCEV *Reg = *I; 3718 int64_t Imm = ExtractImmediate(Reg, SE); 3719 std::pair<RegMapTy::iterator, bool> Pair = 3720 Map.insert(std::make_pair(Reg, ImmMapTy())); 3721 if (Pair.second) 3722 Sequence.push_back(Reg); 3723 Pair.first->second.insert(std::make_pair(Imm, *I)); 3724 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3725 } 3726 3727 // Now examine each set of registers with the same base value. Build up 3728 // a list of work to do and do the work in a separate step so that we're 3729 // not adding formulae and register counts while we're searching. 3730 SmallVector<WorkItem, 32> WorkItems; 3731 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3732 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3733 E = Sequence.end(); I != E; ++I) { 3734 const SCEV *Reg = *I; 3735 const ImmMapTy &Imms = Map.find(Reg)->second; 3736 3737 // It's not worthwhile looking for reuse if there's only one offset. 3738 if (Imms.size() == 1) 3739 continue; 3740 3741 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3742 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3743 J != JE; ++J) 3744 dbgs() << ' ' << J->first; 3745 dbgs() << '\n'); 3746 3747 // Examine each offset. 3748 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3749 J != JE; ++J) { 3750 const SCEV *OrigReg = J->second; 3751 3752 int64_t JImm = J->first; 3753 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3754 3755 if (!isa<SCEVConstant>(OrigReg) && 3756 UsedByIndicesMap[Reg].count() == 1) { 3757 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3758 continue; 3759 } 3760 3761 // Conservatively examine offsets between this orig reg a few selected 3762 // other orig regs. 3763 ImmMapTy::const_iterator OtherImms[] = { 3764 Imms.begin(), std::prev(Imms.end()), 3765 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3766 2) 3767 }; 3768 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3769 ImmMapTy::const_iterator M = OtherImms[i]; 3770 if (M == J || M == JE) continue; 3771 3772 // Compute the difference between the two. 3773 int64_t Imm = (uint64_t)JImm - M->first; 3774 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3775 LUIdx = UsedByIndices.find_next(LUIdx)) 3776 // Make a memo of this use, offset, and register tuple. 3777 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3778 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3779 } 3780 } 3781 } 3782 3783 Map.clear(); 3784 Sequence.clear(); 3785 UsedByIndicesMap.clear(); 3786 UniqueItems.clear(); 3787 3788 // Now iterate through the worklist and add new formulae. 3789 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3790 E = WorkItems.end(); I != E; ++I) { 3791 const WorkItem &WI = *I; 3792 size_t LUIdx = WI.LUIdx; 3793 LSRUse &LU = Uses[LUIdx]; 3794 int64_t Imm = WI.Imm; 3795 const SCEV *OrigReg = WI.OrigReg; 3796 3797 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3798 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3799 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3800 3801 // TODO: Use a more targeted data structure. 3802 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3803 Formula F = LU.Formulae[L]; 3804 // FIXME: The code for the scaled and unscaled registers looks 3805 // very similar but slightly different. Investigate if they 3806 // could be merged. That way, we would not have to unscale the 3807 // Formula. 3808 F.Unscale(); 3809 // Use the immediate in the scaled register. 3810 if (F.ScaledReg == OrigReg) { 3811 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3812 // Don't create 50 + reg(-50). 3813 if (F.referencesReg(SE.getSCEV( 3814 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3815 continue; 3816 Formula NewF = F; 3817 NewF.BaseOffset = Offset; 3818 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3819 NewF)) 3820 continue; 3821 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3822 3823 // If the new scale is a constant in a register, and adding the constant 3824 // value to the immediate would produce a value closer to zero than the 3825 // immediate itself, then the formula isn't worthwhile. 3826 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3827 if (C->getValue()->isNegative() != 3828 (NewF.BaseOffset < 0) && 3829 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3830 .ule(abs64(NewF.BaseOffset))) 3831 continue; 3832 3833 // OK, looks good. 3834 NewF.Canonicalize(); 3835 (void)InsertFormula(LU, LUIdx, NewF); 3836 } else { 3837 // Use the immediate in a base register. 3838 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3839 const SCEV *BaseReg = F.BaseRegs[N]; 3840 if (BaseReg != OrigReg) 3841 continue; 3842 Formula NewF = F; 3843 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3844 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3845 LU.Kind, LU.AccessTy, NewF)) { 3846 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3847 continue; 3848 NewF = F; 3849 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3850 } 3851 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3852 3853 // If the new formula has a constant in a register, and adding the 3854 // constant value to the immediate would produce a value closer to 3855 // zero than the immediate itself, then the formula isn't worthwhile. 3856 for (SmallVectorImpl<const SCEV *>::const_iterator 3857 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3858 J != JE; ++J) 3859 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3860 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3861 abs64(NewF.BaseOffset)) && 3862 (C->getValue()->getValue() + 3863 NewF.BaseOffset).countTrailingZeros() >= 3864 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3865 goto skip_formula; 3866 3867 // Ok, looks good. 3868 NewF.Canonicalize(); 3869 (void)InsertFormula(LU, LUIdx, NewF); 3870 break; 3871 skip_formula:; 3872 } 3873 } 3874 } 3875 } 3876 } 3877 3878 /// GenerateAllReuseFormulae - Generate formulae for each use. 3879 void 3880 LSRInstance::GenerateAllReuseFormulae() { 3881 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3882 // queries are more precise. 3883 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3884 LSRUse &LU = Uses[LUIdx]; 3885 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3886 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3887 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3888 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3889 } 3890 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3891 LSRUse &LU = Uses[LUIdx]; 3892 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3893 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3894 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3895 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3896 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3897 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3898 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3899 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3900 } 3901 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3902 LSRUse &LU = Uses[LUIdx]; 3903 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3904 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3905 } 3906 3907 GenerateCrossUseConstantOffsets(); 3908 3909 DEBUG(dbgs() << "\n" 3910 "After generating reuse formulae:\n"; 3911 print_uses(dbgs())); 3912 } 3913 3914 /// If there are multiple formulae with the same set of registers used 3915 /// by other uses, pick the best one and delete the others. 3916 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3917 DenseSet<const SCEV *> VisitedRegs; 3918 SmallPtrSet<const SCEV *, 16> Regs; 3919 SmallPtrSet<const SCEV *, 16> LoserRegs; 3920 #ifndef NDEBUG 3921 bool ChangedFormulae = false; 3922 #endif 3923 3924 // Collect the best formula for each unique set of shared registers. This 3925 // is reset for each use. 3926 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3927 BestFormulaeTy; 3928 BestFormulaeTy BestFormulae; 3929 3930 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3931 LSRUse &LU = Uses[LUIdx]; 3932 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3933 3934 bool Any = false; 3935 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3936 FIdx != NumForms; ++FIdx) { 3937 Formula &F = LU.Formulae[FIdx]; 3938 3939 // Some formulas are instant losers. For example, they may depend on 3940 // nonexistent AddRecs from other loops. These need to be filtered 3941 // immediately, otherwise heuristics could choose them over others leading 3942 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3943 // avoids the need to recompute this information across formulae using the 3944 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3945 // the corresponding bad register from the Regs set. 3946 Cost CostF; 3947 Regs.clear(); 3948 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3949 &LoserRegs); 3950 if (CostF.isLoser()) { 3951 // During initial formula generation, undesirable formulae are generated 3952 // by uses within other loops that have some non-trivial address mode or 3953 // use the postinc form of the IV. LSR needs to provide these formulae 3954 // as the basis of rediscovering the desired formula that uses an AddRec 3955 // corresponding to the existing phi. Once all formulae have been 3956 // generated, these initial losers may be pruned. 3957 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3958 dbgs() << "\n"); 3959 } 3960 else { 3961 SmallVector<const SCEV *, 4> Key; 3962 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3963 JE = F.BaseRegs.end(); J != JE; ++J) { 3964 const SCEV *Reg = *J; 3965 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3966 Key.push_back(Reg); 3967 } 3968 if (F.ScaledReg && 3969 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3970 Key.push_back(F.ScaledReg); 3971 // Unstable sort by host order ok, because this is only used for 3972 // uniquifying. 3973 std::sort(Key.begin(), Key.end()); 3974 3975 std::pair<BestFormulaeTy::const_iterator, bool> P = 3976 BestFormulae.insert(std::make_pair(Key, FIdx)); 3977 if (P.second) 3978 continue; 3979 3980 Formula &Best = LU.Formulae[P.first->second]; 3981 3982 Cost CostBest; 3983 Regs.clear(); 3984 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3985 DT, LU); 3986 if (CostF < CostBest) 3987 std::swap(F, Best); 3988 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3989 dbgs() << "\n" 3990 " in favor of formula "; Best.print(dbgs()); 3991 dbgs() << '\n'); 3992 } 3993 #ifndef NDEBUG 3994 ChangedFormulae = true; 3995 #endif 3996 LU.DeleteFormula(F); 3997 --FIdx; 3998 --NumForms; 3999 Any = true; 4000 } 4001 4002 // Now that we've filtered out some formulae, recompute the Regs set. 4003 if (Any) 4004 LU.RecomputeRegs(LUIdx, RegUses); 4005 4006 // Reset this to prepare for the next use. 4007 BestFormulae.clear(); 4008 } 4009 4010 DEBUG(if (ChangedFormulae) { 4011 dbgs() << "\n" 4012 "After filtering out undesirable candidates:\n"; 4013 print_uses(dbgs()); 4014 }); 4015 } 4016 4017 // This is a rough guess that seems to work fairly well. 4018 static const size_t ComplexityLimit = UINT16_MAX; 4019 4020 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 4021 /// solutions the solver might have to consider. It almost never considers 4022 /// this many solutions because it prune the search space, but the pruning 4023 /// isn't always sufficient. 4024 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4025 size_t Power = 1; 4026 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4027 E = Uses.end(); I != E; ++I) { 4028 size_t FSize = I->Formulae.size(); 4029 if (FSize >= ComplexityLimit) { 4030 Power = ComplexityLimit; 4031 break; 4032 } 4033 Power *= FSize; 4034 if (Power >= ComplexityLimit) 4035 break; 4036 } 4037 return Power; 4038 } 4039 4040 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 4041 /// of the registers of another formula, it won't help reduce register 4042 /// pressure (though it may not necessarily hurt register pressure); remove 4043 /// it to simplify the system. 4044 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4045 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4046 DEBUG(dbgs() << "The search space is too complex.\n"); 4047 4048 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4049 "which use a superset of registers used by other " 4050 "formulae.\n"); 4051 4052 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4053 LSRUse &LU = Uses[LUIdx]; 4054 bool Any = false; 4055 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4056 Formula &F = LU.Formulae[i]; 4057 // Look for a formula with a constant or GV in a register. If the use 4058 // also has a formula with that same value in an immediate field, 4059 // delete the one that uses a register. 4060 for (SmallVectorImpl<const SCEV *>::const_iterator 4061 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4062 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4063 Formula NewF = F; 4064 NewF.BaseOffset += C->getValue()->getSExtValue(); 4065 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4066 (I - F.BaseRegs.begin())); 4067 if (LU.HasFormulaWithSameRegs(NewF)) { 4068 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4069 LU.DeleteFormula(F); 4070 --i; 4071 --e; 4072 Any = true; 4073 break; 4074 } 4075 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4076 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4077 if (!F.BaseGV) { 4078 Formula NewF = F; 4079 NewF.BaseGV = GV; 4080 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4081 (I - F.BaseRegs.begin())); 4082 if (LU.HasFormulaWithSameRegs(NewF)) { 4083 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4084 dbgs() << '\n'); 4085 LU.DeleteFormula(F); 4086 --i; 4087 --e; 4088 Any = true; 4089 break; 4090 } 4091 } 4092 } 4093 } 4094 } 4095 if (Any) 4096 LU.RecomputeRegs(LUIdx, RegUses); 4097 } 4098 4099 DEBUG(dbgs() << "After pre-selection:\n"; 4100 print_uses(dbgs())); 4101 } 4102 } 4103 4104 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 4105 /// for expressions like A, A+1, A+2, etc., allocate a single register for 4106 /// them. 4107 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4108 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4109 return; 4110 4111 DEBUG(dbgs() << "The search space is too complex.\n" 4112 "Narrowing the search space by assuming that uses separated " 4113 "by a constant offset will use the same registers.\n"); 4114 4115 // This is especially useful for unrolled loops. 4116 4117 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4118 LSRUse &LU = Uses[LUIdx]; 4119 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4120 E = LU.Formulae.end(); I != E; ++I) { 4121 const Formula &F = *I; 4122 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4123 continue; 4124 4125 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4126 if (!LUThatHas) 4127 continue; 4128 4129 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4130 LU.Kind, LU.AccessTy)) 4131 continue; 4132 4133 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4134 4135 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4136 4137 // Update the relocs to reference the new use. 4138 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 4139 E = Fixups.end(); I != E; ++I) { 4140 LSRFixup &Fixup = *I; 4141 if (Fixup.LUIdx == LUIdx) { 4142 Fixup.LUIdx = LUThatHas - &Uses.front(); 4143 Fixup.Offset += F.BaseOffset; 4144 // Add the new offset to LUThatHas' offset list. 4145 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4146 LUThatHas->Offsets.push_back(Fixup.Offset); 4147 if (Fixup.Offset > LUThatHas->MaxOffset) 4148 LUThatHas->MaxOffset = Fixup.Offset; 4149 if (Fixup.Offset < LUThatHas->MinOffset) 4150 LUThatHas->MinOffset = Fixup.Offset; 4151 } 4152 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4153 } 4154 if (Fixup.LUIdx == NumUses-1) 4155 Fixup.LUIdx = LUIdx; 4156 } 4157 4158 // Delete formulae from the new use which are no longer legal. 4159 bool Any = false; 4160 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4161 Formula &F = LUThatHas->Formulae[i]; 4162 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4163 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4164 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4165 dbgs() << '\n'); 4166 LUThatHas->DeleteFormula(F); 4167 --i; 4168 --e; 4169 Any = true; 4170 } 4171 } 4172 4173 if (Any) 4174 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4175 4176 // Delete the old use. 4177 DeleteUse(LU, LUIdx); 4178 --LUIdx; 4179 --NumUses; 4180 break; 4181 } 4182 } 4183 4184 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4185 } 4186 4187 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4188 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4189 /// we've done more filtering, as it may be able to find more formulae to 4190 /// eliminate. 4191 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4192 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4193 DEBUG(dbgs() << "The search space is too complex.\n"); 4194 4195 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4196 "undesirable dedicated registers.\n"); 4197 4198 FilterOutUndesirableDedicatedRegisters(); 4199 4200 DEBUG(dbgs() << "After pre-selection:\n"; 4201 print_uses(dbgs())); 4202 } 4203 } 4204 4205 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4206 /// to be profitable, and then in any use which has any reference to that 4207 /// register, delete all formulae which do not reference that register. 4208 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4209 // With all other options exhausted, loop until the system is simple 4210 // enough to handle. 4211 SmallPtrSet<const SCEV *, 4> Taken; 4212 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4213 // Ok, we have too many of formulae on our hands to conveniently handle. 4214 // Use a rough heuristic to thin out the list. 4215 DEBUG(dbgs() << "The search space is too complex.\n"); 4216 4217 // Pick the register which is used by the most LSRUses, which is likely 4218 // to be a good reuse register candidate. 4219 const SCEV *Best = nullptr; 4220 unsigned BestNum = 0; 4221 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4222 I != E; ++I) { 4223 const SCEV *Reg = *I; 4224 if (Taken.count(Reg)) 4225 continue; 4226 if (!Best) 4227 Best = Reg; 4228 else { 4229 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4230 if (Count > BestNum) { 4231 Best = Reg; 4232 BestNum = Count; 4233 } 4234 } 4235 } 4236 4237 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4238 << " will yield profitable reuse.\n"); 4239 Taken.insert(Best); 4240 4241 // In any use with formulae which references this register, delete formulae 4242 // which don't reference it. 4243 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4244 LSRUse &LU = Uses[LUIdx]; 4245 if (!LU.Regs.count(Best)) continue; 4246 4247 bool Any = false; 4248 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4249 Formula &F = LU.Formulae[i]; 4250 if (!F.referencesReg(Best)) { 4251 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4252 LU.DeleteFormula(F); 4253 --e; 4254 --i; 4255 Any = true; 4256 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4257 continue; 4258 } 4259 } 4260 4261 if (Any) 4262 LU.RecomputeRegs(LUIdx, RegUses); 4263 } 4264 4265 DEBUG(dbgs() << "After pre-selection:\n"; 4266 print_uses(dbgs())); 4267 } 4268 } 4269 4270 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4271 /// formulae to choose from, use some rough heuristics to prune down the number 4272 /// of formulae. This keeps the main solver from taking an extraordinary amount 4273 /// of time in some worst-case scenarios. 4274 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4275 NarrowSearchSpaceByDetectingSupersets(); 4276 NarrowSearchSpaceByCollapsingUnrolledCode(); 4277 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4278 NarrowSearchSpaceByPickingWinnerRegs(); 4279 } 4280 4281 /// SolveRecurse - This is the recursive solver. 4282 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4283 Cost &SolutionCost, 4284 SmallVectorImpl<const Formula *> &Workspace, 4285 const Cost &CurCost, 4286 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4287 DenseSet<const SCEV *> &VisitedRegs) const { 4288 // Some ideas: 4289 // - prune more: 4290 // - use more aggressive filtering 4291 // - sort the formula so that the most profitable solutions are found first 4292 // - sort the uses too 4293 // - search faster: 4294 // - don't compute a cost, and then compare. compare while computing a cost 4295 // and bail early. 4296 // - track register sets with SmallBitVector 4297 4298 const LSRUse &LU = Uses[Workspace.size()]; 4299 4300 // If this use references any register that's already a part of the 4301 // in-progress solution, consider it a requirement that a formula must 4302 // reference that register in order to be considered. This prunes out 4303 // unprofitable searching. 4304 SmallSetVector<const SCEV *, 4> ReqRegs; 4305 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 4306 E = CurRegs.end(); I != E; ++I) 4307 if (LU.Regs.count(*I)) 4308 ReqRegs.insert(*I); 4309 4310 SmallPtrSet<const SCEV *, 16> NewRegs; 4311 Cost NewCost; 4312 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4313 E = LU.Formulae.end(); I != E; ++I) { 4314 const Formula &F = *I; 4315 4316 // Ignore formulae which may not be ideal in terms of register reuse of 4317 // ReqRegs. The formula should use all required registers before 4318 // introducing new ones. 4319 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4320 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4321 JE = ReqRegs.end(); J != JE; ++J) { 4322 const SCEV *Reg = *J; 4323 if ((F.ScaledReg && F.ScaledReg == Reg) || 4324 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4325 F.BaseRegs.end()) { 4326 --NumReqRegsToFind; 4327 if (NumReqRegsToFind == 0) 4328 break; 4329 } 4330 } 4331 if (NumReqRegsToFind != 0) { 4332 // If none of the formulae satisfied the required registers, then we could 4333 // clear ReqRegs and try again. Currently, we simply give up in this case. 4334 continue; 4335 } 4336 4337 // Evaluate the cost of the current formula. If it's already worse than 4338 // the current best, prune the search at that point. 4339 NewCost = CurCost; 4340 NewRegs = CurRegs; 4341 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4342 LU); 4343 if (NewCost < SolutionCost) { 4344 Workspace.push_back(&F); 4345 if (Workspace.size() != Uses.size()) { 4346 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4347 NewRegs, VisitedRegs); 4348 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4349 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4350 } else { 4351 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4352 dbgs() << ".\n Regs:"; 4353 for (SmallPtrSet<const SCEV *, 16>::const_iterator 4354 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 4355 dbgs() << ' ' << **I; 4356 dbgs() << '\n'); 4357 4358 SolutionCost = NewCost; 4359 Solution = Workspace; 4360 } 4361 Workspace.pop_back(); 4362 } 4363 } 4364 } 4365 4366 /// Solve - Choose one formula from each use. Return the results in the given 4367 /// Solution vector. 4368 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4369 SmallVector<const Formula *, 8> Workspace; 4370 Cost SolutionCost; 4371 SolutionCost.Lose(); 4372 Cost CurCost; 4373 SmallPtrSet<const SCEV *, 16> CurRegs; 4374 DenseSet<const SCEV *> VisitedRegs; 4375 Workspace.reserve(Uses.size()); 4376 4377 // SolveRecurse does all the work. 4378 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4379 CurRegs, VisitedRegs); 4380 if (Solution.empty()) { 4381 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4382 return; 4383 } 4384 4385 // Ok, we've now made all our decisions. 4386 DEBUG(dbgs() << "\n" 4387 "The chosen solution requires "; SolutionCost.print(dbgs()); 4388 dbgs() << ":\n"; 4389 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4390 dbgs() << " "; 4391 Uses[i].print(dbgs()); 4392 dbgs() << "\n" 4393 " "; 4394 Solution[i]->print(dbgs()); 4395 dbgs() << '\n'; 4396 }); 4397 4398 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4399 } 4400 4401 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4402 /// the dominator tree far as we can go while still being dominated by the 4403 /// input positions. This helps canonicalize the insert position, which 4404 /// encourages sharing. 4405 BasicBlock::iterator 4406 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4407 const SmallVectorImpl<Instruction *> &Inputs) 4408 const { 4409 for (;;) { 4410 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4411 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4412 4413 BasicBlock *IDom; 4414 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4415 if (!Rung) return IP; 4416 Rung = Rung->getIDom(); 4417 if (!Rung) return IP; 4418 IDom = Rung->getBlock(); 4419 4420 // Don't climb into a loop though. 4421 const Loop *IDomLoop = LI.getLoopFor(IDom); 4422 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4423 if (IDomDepth <= IPLoopDepth && 4424 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4425 break; 4426 } 4427 4428 bool AllDominate = true; 4429 Instruction *BetterPos = nullptr; 4430 Instruction *Tentative = IDom->getTerminator(); 4431 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4432 E = Inputs.end(); I != E; ++I) { 4433 Instruction *Inst = *I; 4434 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4435 AllDominate = false; 4436 break; 4437 } 4438 // Attempt to find an insert position in the middle of the block, 4439 // instead of at the end, so that it can be used for other expansions. 4440 if (IDom == Inst->getParent() && 4441 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4442 BetterPos = std::next(BasicBlock::iterator(Inst)); 4443 } 4444 if (!AllDominate) 4445 break; 4446 if (BetterPos) 4447 IP = BetterPos; 4448 else 4449 IP = Tentative; 4450 } 4451 4452 return IP; 4453 } 4454 4455 /// AdjustInsertPositionForExpand - Determine an input position which will be 4456 /// dominated by the operands and which will dominate the result. 4457 BasicBlock::iterator 4458 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4459 const LSRFixup &LF, 4460 const LSRUse &LU, 4461 SCEVExpander &Rewriter) const { 4462 // Collect some instructions which must be dominated by the 4463 // expanding replacement. These must be dominated by any operands that 4464 // will be required in the expansion. 4465 SmallVector<Instruction *, 4> Inputs; 4466 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4467 Inputs.push_back(I); 4468 if (LU.Kind == LSRUse::ICmpZero) 4469 if (Instruction *I = 4470 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4471 Inputs.push_back(I); 4472 if (LF.PostIncLoops.count(L)) { 4473 if (LF.isUseFullyOutsideLoop(L)) 4474 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4475 else 4476 Inputs.push_back(IVIncInsertPos); 4477 } 4478 // The expansion must also be dominated by the increment positions of any 4479 // loops it for which it is using post-inc mode. 4480 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4481 E = LF.PostIncLoops.end(); I != E; ++I) { 4482 const Loop *PIL = *I; 4483 if (PIL == L) continue; 4484 4485 // Be dominated by the loop exit. 4486 SmallVector<BasicBlock *, 4> ExitingBlocks; 4487 PIL->getExitingBlocks(ExitingBlocks); 4488 if (!ExitingBlocks.empty()) { 4489 BasicBlock *BB = ExitingBlocks[0]; 4490 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4491 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4492 Inputs.push_back(BB->getTerminator()); 4493 } 4494 } 4495 4496 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4497 && !isa<DbgInfoIntrinsic>(LowestIP) && 4498 "Insertion point must be a normal instruction"); 4499 4500 // Then, climb up the immediate dominator tree as far as we can go while 4501 // still being dominated by the input positions. 4502 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4503 4504 // Don't insert instructions before PHI nodes. 4505 while (isa<PHINode>(IP)) ++IP; 4506 4507 // Ignore landingpad instructions. 4508 while (isa<LandingPadInst>(IP)) ++IP; 4509 4510 // Ignore debug intrinsics. 4511 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4512 4513 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4514 // IP consistent across expansions and allows the previously inserted 4515 // instructions to be reused by subsequent expansion. 4516 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4517 4518 return IP; 4519 } 4520 4521 /// Expand - Emit instructions for the leading candidate expression for this 4522 /// LSRUse (this is called "expanding"). 4523 Value *LSRInstance::Expand(const LSRFixup &LF, 4524 const Formula &F, 4525 BasicBlock::iterator IP, 4526 SCEVExpander &Rewriter, 4527 SmallVectorImpl<WeakVH> &DeadInsts) const { 4528 const LSRUse &LU = Uses[LF.LUIdx]; 4529 if (LU.RigidFormula) 4530 return LF.OperandValToReplace; 4531 4532 // Determine an input position which will be dominated by the operands and 4533 // which will dominate the result. 4534 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4535 4536 // Inform the Rewriter if we have a post-increment use, so that it can 4537 // perform an advantageous expansion. 4538 Rewriter.setPostInc(LF.PostIncLoops); 4539 4540 // This is the type that the user actually needs. 4541 Type *OpTy = LF.OperandValToReplace->getType(); 4542 // This will be the type that we'll initially expand to. 4543 Type *Ty = F.getType(); 4544 if (!Ty) 4545 // No type known; just expand directly to the ultimate type. 4546 Ty = OpTy; 4547 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4548 // Expand directly to the ultimate type if it's the right size. 4549 Ty = OpTy; 4550 // This is the type to do integer arithmetic in. 4551 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4552 4553 // Build up a list of operands to add together to form the full base. 4554 SmallVector<const SCEV *, 8> Ops; 4555 4556 // Expand the BaseRegs portion. 4557 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4558 E = F.BaseRegs.end(); I != E; ++I) { 4559 const SCEV *Reg = *I; 4560 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4561 4562 // If we're expanding for a post-inc user, make the post-inc adjustment. 4563 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4564 Reg = TransformForPostIncUse(Denormalize, Reg, 4565 LF.UserInst, LF.OperandValToReplace, 4566 Loops, SE, DT); 4567 4568 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); 4569 } 4570 4571 // Expand the ScaledReg portion. 4572 Value *ICmpScaledV = nullptr; 4573 if (F.Scale != 0) { 4574 const SCEV *ScaledS = F.ScaledReg; 4575 4576 // If we're expanding for a post-inc user, make the post-inc adjustment. 4577 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4578 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4579 LF.UserInst, LF.OperandValToReplace, 4580 Loops, SE, DT); 4581 4582 if (LU.Kind == LSRUse::ICmpZero) { 4583 // Expand ScaleReg as if it was part of the base regs. 4584 if (F.Scale == 1) 4585 Ops.push_back( 4586 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); 4587 else { 4588 // An interesting way of "folding" with an icmp is to use a negated 4589 // scale, which we'll implement by inserting it into the other operand 4590 // of the icmp. 4591 assert(F.Scale == -1 && 4592 "The only scale supported by ICmpZero uses is -1!"); 4593 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4594 } 4595 } else { 4596 // Otherwise just expand the scaled register and an explicit scale, 4597 // which is expected to be matched as part of the address. 4598 4599 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4600 // Unless the addressing mode will not be folded. 4601 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4602 isAMCompletelyFolded(TTI, LU, F)) { 4603 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4604 Ops.clear(); 4605 Ops.push_back(SE.getUnknown(FullV)); 4606 } 4607 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); 4608 if (F.Scale != 1) 4609 ScaledS = 4610 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4611 Ops.push_back(ScaledS); 4612 } 4613 } 4614 4615 // Expand the GV portion. 4616 if (F.BaseGV) { 4617 // Flush the operand list to suppress SCEVExpander hoisting. 4618 if (!Ops.empty()) { 4619 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4620 Ops.clear(); 4621 Ops.push_back(SE.getUnknown(FullV)); 4622 } 4623 Ops.push_back(SE.getUnknown(F.BaseGV)); 4624 } 4625 4626 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4627 // unfolded offsets. LSR assumes they both live next to their uses. 4628 if (!Ops.empty()) { 4629 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4630 Ops.clear(); 4631 Ops.push_back(SE.getUnknown(FullV)); 4632 } 4633 4634 // Expand the immediate portion. 4635 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4636 if (Offset != 0) { 4637 if (LU.Kind == LSRUse::ICmpZero) { 4638 // The other interesting way of "folding" with an ICmpZero is to use a 4639 // negated immediate. 4640 if (!ICmpScaledV) 4641 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4642 else { 4643 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4644 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4645 } 4646 } else { 4647 // Just add the immediate values. These again are expected to be matched 4648 // as part of the address. 4649 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4650 } 4651 } 4652 4653 // Expand the unfolded offset portion. 4654 int64_t UnfoldedOffset = F.UnfoldedOffset; 4655 if (UnfoldedOffset != 0) { 4656 // Just add the immediate values. 4657 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4658 UnfoldedOffset))); 4659 } 4660 4661 // Emit instructions summing all the operands. 4662 const SCEV *FullS = Ops.empty() ? 4663 SE.getConstant(IntTy, 0) : 4664 SE.getAddExpr(Ops); 4665 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4666 4667 // We're done expanding now, so reset the rewriter. 4668 Rewriter.clearPostInc(); 4669 4670 // An ICmpZero Formula represents an ICmp which we're handling as a 4671 // comparison against zero. Now that we've expanded an expression for that 4672 // form, update the ICmp's other operand. 4673 if (LU.Kind == LSRUse::ICmpZero) { 4674 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4675 DeadInsts.push_back(CI->getOperand(1)); 4676 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4677 "a scale at the same time!"); 4678 if (F.Scale == -1) { 4679 if (ICmpScaledV->getType() != OpTy) { 4680 Instruction *Cast = 4681 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4682 OpTy, false), 4683 ICmpScaledV, OpTy, "tmp", CI); 4684 ICmpScaledV = Cast; 4685 } 4686 CI->setOperand(1, ICmpScaledV); 4687 } else { 4688 // A scale of 1 means that the scale has been expanded as part of the 4689 // base regs. 4690 assert((F.Scale == 0 || F.Scale == 1) && 4691 "ICmp does not support folding a global value and " 4692 "a scale at the same time!"); 4693 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4694 -(uint64_t)Offset); 4695 if (C->getType() != OpTy) 4696 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4697 OpTy, false), 4698 C, OpTy); 4699 4700 CI->setOperand(1, C); 4701 } 4702 } 4703 4704 return FullV; 4705 } 4706 4707 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4708 /// of their operands effectively happens in their predecessor blocks, so the 4709 /// expression may need to be expanded in multiple places. 4710 void LSRInstance::RewriteForPHI(PHINode *PN, 4711 const LSRFixup &LF, 4712 const Formula &F, 4713 SCEVExpander &Rewriter, 4714 SmallVectorImpl<WeakVH> &DeadInsts, 4715 Pass *P) const { 4716 DenseMap<BasicBlock *, Value *> Inserted; 4717 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4718 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4719 BasicBlock *BB = PN->getIncomingBlock(i); 4720 4721 // If this is a critical edge, split the edge so that we do not insert 4722 // the code on all predecessor/successor paths. We do this unless this 4723 // is the canonical backedge for this loop, which complicates post-inc 4724 // users. 4725 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4726 !isa<IndirectBrInst>(BB->getTerminator())) { 4727 BasicBlock *Parent = PN->getParent(); 4728 Loop *PNLoop = LI.getLoopFor(Parent); 4729 if (!PNLoop || Parent != PNLoop->getHeader()) { 4730 // Split the critical edge. 4731 BasicBlock *NewBB = nullptr; 4732 if (!Parent->isLandingPad()) { 4733 NewBB = SplitCriticalEdge(BB, Parent, P, 4734 /*MergeIdenticalEdges=*/true, 4735 /*DontDeleteUselessPhis=*/true); 4736 } else { 4737 SmallVector<BasicBlock*, 2> NewBBs; 4738 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4739 NewBB = NewBBs[0]; 4740 } 4741 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4742 // phi predecessors are identical. The simple thing to do is skip 4743 // splitting in this case rather than complicate the API. 4744 if (NewBB) { 4745 // If PN is outside of the loop and BB is in the loop, we want to 4746 // move the block to be immediately before the PHI block, not 4747 // immediately after BB. 4748 if (L->contains(BB) && !L->contains(PN)) 4749 NewBB->moveBefore(PN->getParent()); 4750 4751 // Splitting the edge can reduce the number of PHI entries we have. 4752 e = PN->getNumIncomingValues(); 4753 BB = NewBB; 4754 i = PN->getBasicBlockIndex(BB); 4755 } 4756 } 4757 } 4758 4759 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4760 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4761 if (!Pair.second) 4762 PN->setIncomingValue(i, Pair.first->second); 4763 else { 4764 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4765 4766 // If this is reuse-by-noop-cast, insert the noop cast. 4767 Type *OpTy = LF.OperandValToReplace->getType(); 4768 if (FullV->getType() != OpTy) 4769 FullV = 4770 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4771 OpTy, false), 4772 FullV, LF.OperandValToReplace->getType(), 4773 "tmp", BB->getTerminator()); 4774 4775 PN->setIncomingValue(i, FullV); 4776 Pair.first->second = FullV; 4777 } 4778 } 4779 } 4780 4781 /// Rewrite - Emit instructions for the leading candidate expression for this 4782 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4783 /// the newly expanded value. 4784 void LSRInstance::Rewrite(const LSRFixup &LF, 4785 const Formula &F, 4786 SCEVExpander &Rewriter, 4787 SmallVectorImpl<WeakVH> &DeadInsts, 4788 Pass *P) const { 4789 // First, find an insertion point that dominates UserInst. For PHI nodes, 4790 // find the nearest block which dominates all the relevant uses. 4791 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4792 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4793 } else { 4794 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4795 4796 // If this is reuse-by-noop-cast, insert the noop cast. 4797 Type *OpTy = LF.OperandValToReplace->getType(); 4798 if (FullV->getType() != OpTy) { 4799 Instruction *Cast = 4800 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4801 FullV, OpTy, "tmp", LF.UserInst); 4802 FullV = Cast; 4803 } 4804 4805 // Update the user. ICmpZero is handled specially here (for now) because 4806 // Expand may have updated one of the operands of the icmp already, and 4807 // its new value may happen to be equal to LF.OperandValToReplace, in 4808 // which case doing replaceUsesOfWith leads to replacing both operands 4809 // with the same value. TODO: Reorganize this. 4810 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4811 LF.UserInst->setOperand(0, FullV); 4812 else 4813 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4814 } 4815 4816 DeadInsts.push_back(LF.OperandValToReplace); 4817 } 4818 4819 /// ImplementSolution - Rewrite all the fixup locations with new values, 4820 /// following the chosen solution. 4821 void 4822 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4823 Pass *P) { 4824 // Keep track of instructions we may have made dead, so that 4825 // we can remove them after we are done working. 4826 SmallVector<WeakVH, 16> DeadInsts; 4827 4828 SCEVExpander Rewriter(SE, "lsr"); 4829 #ifndef NDEBUG 4830 Rewriter.setDebugType(DEBUG_TYPE); 4831 #endif 4832 Rewriter.disableCanonicalMode(); 4833 Rewriter.enableLSRMode(); 4834 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4835 4836 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4837 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4838 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4839 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4840 Rewriter.setChainedPhi(PN); 4841 } 4842 4843 // Expand the new value definitions and update the users. 4844 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4845 E = Fixups.end(); I != E; ++I) { 4846 const LSRFixup &Fixup = *I; 4847 4848 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4849 4850 Changed = true; 4851 } 4852 4853 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4854 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4855 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4856 Changed = true; 4857 } 4858 // Clean up after ourselves. This must be done before deleting any 4859 // instructions. 4860 Rewriter.clear(); 4861 4862 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4863 } 4864 4865 LSRInstance::LSRInstance(Loop *L, Pass *P) 4866 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4867 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4868 LI(P->getAnalysis<LoopInfo>()), 4869 TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false), 4870 IVIncInsertPos(nullptr) { 4871 // If LoopSimplify form is not available, stay out of trouble. 4872 if (!L->isLoopSimplifyForm()) 4873 return; 4874 4875 // If there's no interesting work to be done, bail early. 4876 if (IU.empty()) return; 4877 4878 // If there's too much analysis to be done, bail early. We won't be able to 4879 // model the problem anyway. 4880 unsigned NumUsers = 0; 4881 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4882 if (++NumUsers > MaxIVUsers) { 4883 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4884 << "\n"); 4885 return; 4886 } 4887 } 4888 4889 #ifndef NDEBUG 4890 // All dominating loops must have preheaders, or SCEVExpander may not be able 4891 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4892 // 4893 // IVUsers analysis should only create users that are dominated by simple loop 4894 // headers. Since this loop should dominate all of its users, its user list 4895 // should be empty if this loop itself is not within a simple loop nest. 4896 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4897 Rung; Rung = Rung->getIDom()) { 4898 BasicBlock *BB = Rung->getBlock(); 4899 const Loop *DomLoop = LI.getLoopFor(BB); 4900 if (DomLoop && DomLoop->getHeader() == BB) { 4901 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4902 } 4903 } 4904 #endif // DEBUG 4905 4906 DEBUG(dbgs() << "\nLSR on loop "; 4907 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4908 dbgs() << ":\n"); 4909 4910 // First, perform some low-level loop optimizations. 4911 OptimizeShadowIV(); 4912 OptimizeLoopTermCond(); 4913 4914 // If loop preparation eliminates all interesting IV users, bail. 4915 if (IU.empty()) return; 4916 4917 // Skip nested loops until we can model them better with formulae. 4918 if (!L->empty()) { 4919 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4920 return; 4921 } 4922 4923 // Start collecting data and preparing for the solver. 4924 CollectChains(); 4925 CollectInterestingTypesAndFactors(); 4926 CollectFixupsAndInitialFormulae(); 4927 CollectLoopInvariantFixupsAndFormulae(); 4928 4929 assert(!Uses.empty() && "IVUsers reported at least one use"); 4930 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4931 print_uses(dbgs())); 4932 4933 // Now use the reuse data to generate a bunch of interesting ways 4934 // to formulate the values needed for the uses. 4935 GenerateAllReuseFormulae(); 4936 4937 FilterOutUndesirableDedicatedRegisters(); 4938 NarrowSearchSpaceUsingHeuristics(); 4939 4940 SmallVector<const Formula *, 8> Solution; 4941 Solve(Solution); 4942 4943 // Release memory that is no longer needed. 4944 Factors.clear(); 4945 Types.clear(); 4946 RegUses.clear(); 4947 4948 if (Solution.empty()) 4949 return; 4950 4951 #ifndef NDEBUG 4952 // Formulae should be legal. 4953 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4954 I != E; ++I) { 4955 const LSRUse &LU = *I; 4956 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4957 JE = LU.Formulae.end(); 4958 J != JE; ++J) 4959 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4960 *J) && "Illegal formula generated!"); 4961 }; 4962 #endif 4963 4964 // Now that we've decided what we want, make it so. 4965 ImplementSolution(Solution, P); 4966 } 4967 4968 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4969 if (Factors.empty() && Types.empty()) return; 4970 4971 OS << "LSR has identified the following interesting factors and types: "; 4972 bool First = true; 4973 4974 for (SmallSetVector<int64_t, 8>::const_iterator 4975 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4976 if (!First) OS << ", "; 4977 First = false; 4978 OS << '*' << *I; 4979 } 4980 4981 for (SmallSetVector<Type *, 4>::const_iterator 4982 I = Types.begin(), E = Types.end(); I != E; ++I) { 4983 if (!First) OS << ", "; 4984 First = false; 4985 OS << '(' << **I << ')'; 4986 } 4987 OS << '\n'; 4988 } 4989 4990 void LSRInstance::print_fixups(raw_ostream &OS) const { 4991 OS << "LSR is examining the following fixup sites:\n"; 4992 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4993 E = Fixups.end(); I != E; ++I) { 4994 dbgs() << " "; 4995 I->print(OS); 4996 OS << '\n'; 4997 } 4998 } 4999 5000 void LSRInstance::print_uses(raw_ostream &OS) const { 5001 OS << "LSR is examining the following uses:\n"; 5002 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 5003 E = Uses.end(); I != E; ++I) { 5004 const LSRUse &LU = *I; 5005 dbgs() << " "; 5006 LU.print(OS); 5007 OS << '\n'; 5008 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 5009 JE = LU.Formulae.end(); J != JE; ++J) { 5010 OS << " "; 5011 J->print(OS); 5012 OS << '\n'; 5013 } 5014 } 5015 } 5016 5017 void LSRInstance::print(raw_ostream &OS) const { 5018 print_factors_and_types(OS); 5019 print_fixups(OS); 5020 print_uses(OS); 5021 } 5022 5023 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5024 void LSRInstance::dump() const { 5025 print(errs()); errs() << '\n'; 5026 } 5027 #endif 5028 5029 namespace { 5030 5031 class LoopStrengthReduce : public LoopPass { 5032 public: 5033 static char ID; // Pass ID, replacement for typeid 5034 LoopStrengthReduce(); 5035 5036 private: 5037 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5038 void getAnalysisUsage(AnalysisUsage &AU) const override; 5039 }; 5040 5041 } 5042 5043 char LoopStrengthReduce::ID = 0; 5044 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5045 "Loop Strength Reduction", false, false) 5046 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5047 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5048 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5049 INITIALIZE_PASS_DEPENDENCY(IVUsers) 5050 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5051 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5052 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5053 "Loop Strength Reduction", false, false) 5054 5055 5056 Pass *llvm::createLoopStrengthReducePass() { 5057 return new LoopStrengthReduce(); 5058 } 5059 5060 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5061 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5062 } 5063 5064 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5065 // We split critical edges, so we change the CFG. However, we do update 5066 // many analyses if they are around. 5067 AU.addPreservedID(LoopSimplifyID); 5068 5069 AU.addRequired<LoopInfo>(); 5070 AU.addPreserved<LoopInfo>(); 5071 AU.addRequiredID(LoopSimplifyID); 5072 AU.addRequired<DominatorTreeWrapperPass>(); 5073 AU.addPreserved<DominatorTreeWrapperPass>(); 5074 AU.addRequired<ScalarEvolution>(); 5075 AU.addPreserved<ScalarEvolution>(); 5076 // Requiring LoopSimplify a second time here prevents IVUsers from running 5077 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5078 AU.addRequiredID(LoopSimplifyID); 5079 AU.addRequired<IVUsers>(); 5080 AU.addPreserved<IVUsers>(); 5081 AU.addRequired<TargetTransformInfo>(); 5082 } 5083 5084 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5085 if (skipOptnoneFunction(L)) 5086 return false; 5087 5088 bool Changed = false; 5089 5090 // Run the main LSR transformation. 5091 Changed |= LSRInstance(L, this).getChanged(); 5092 5093 // Remove any extra phis created by processing inner loops. 5094 Changed |= DeleteDeadPHIs(L->getHeader()); 5095 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5096 SmallVector<WeakVH, 16> DeadInsts; 5097 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 5098 #ifndef NDEBUG 5099 Rewriter.setDebugType(DEBUG_TYPE); 5100 #endif 5101 unsigned numFolded = Rewriter.replaceCongruentIVs( 5102 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5103 &getAnalysis<TargetTransformInfo>()); 5104 if (numFolded) { 5105 Changed = true; 5106 DeleteTriviallyDeadInstructions(DeadInsts); 5107 DeleteDeadPHIs(L->getHeader()); 5108 } 5109 } 5110 return Changed; 5111 } 5112