1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_BLAS_COMMON_H 11 #define EIGEN_BLAS_COMMON_H 12 13 #include <Eigen/Core> 14 #include <Eigen/Jacobi> 15 16 #include <iostream> 17 #include <complex> 18 19 #ifndef SCALAR 20 #error the token SCALAR must be defined to compile this file 21 #endif 22 23 #include <Eigen/src/misc/blas.h> 24 25 26 #define NOTR 0 27 #define TR 1 28 #define ADJ 2 29 30 #define LEFT 0 31 #define RIGHT 1 32 33 #define UP 0 34 #define LO 1 35 36 #define NUNIT 0 37 #define UNIT 1 38 39 #define INVALID 0xff 40 41 #define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \ 42 : ((X)=='T' || (X)=='t') ? TR \ 43 : ((X)=='C' || (X)=='c') ? ADJ \ 44 : INVALID) 45 46 #define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \ 47 : ((X)=='R' || (X)=='r') ? RIGHT \ 48 : INVALID) 49 50 #define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \ 51 : ((X)=='L' || (X)=='l') ? LO \ 52 : INVALID) 53 54 #define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \ 55 : ((X)=='U' || (X)=='u') ? UNIT \ 56 : INVALID) 57 58 59 inline bool check_op(const char* op) 60 { 61 return OP(*op)!=0xff; 62 } 63 64 inline bool check_side(const char* side) 65 { 66 return SIDE(*side)!=0xff; 67 } 68 69 inline bool check_uplo(const char* uplo) 70 { 71 return UPLO(*uplo)!=0xff; 72 } 73 74 75 namespace Eigen { 76 #include "BandTriangularSolver.h" 77 #include "GeneralRank1Update.h" 78 #include "PackedSelfadjointProduct.h" 79 #include "PackedTriangularMatrixVector.h" 80 #include "PackedTriangularSolverVector.h" 81 #include "Rank2Update.h" 82 } 83 84 using namespace Eigen; 85 86 typedef SCALAR Scalar; 87 typedef NumTraits<Scalar>::Real RealScalar; 88 typedef std::complex<RealScalar> Complex; 89 90 enum 91 { 92 IsComplex = Eigen::NumTraits<SCALAR>::IsComplex, 93 Conj = IsComplex 94 }; 95 96 typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType; 97 typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType; 98 typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType; 99 typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType; 100 101 template<typename T> 102 Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > 103 matrix(T* data, int rows, int cols, int stride) 104 { 105 return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride)); 106 } 107 108 template<typename T> 109 Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > vector(T* data, int size, int incr) 110 { 111 return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr)); 112 } 113 114 template<typename T> 115 Map<Matrix<T,Dynamic,1> > vector(T* data, int size) 116 { 117 return Map<Matrix<T,Dynamic,1> >(data, size); 118 } 119 120 template<typename T> 121 T* get_compact_vector(T* x, int n, int incx) 122 { 123 if(incx==1) 124 return x; 125 126 T* ret = new Scalar[n]; 127 if(incx<0) vector(ret,n) = vector(x,n,-incx).reverse(); 128 else vector(ret,n) = vector(x,n, incx); 129 return ret; 130 } 131 132 template<typename T> 133 T* copy_back(T* x_cpy, T* x, int n, int incx) 134 { 135 if(x_cpy==x) 136 return 0; 137 138 if(incx<0) vector(x,n,-incx).reverse() = vector(x_cpy,n); 139 else vector(x,n, incx) = vector(x_cpy,n); 140 return x_cpy; 141 } 142 143 #define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_) 144 145 #endif // EIGEN_BLAS_COMMON_H 146