1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 //===----------------------------------------------------------------------===// 15 // 16 // TODO List: 17 // 18 // Future loop memory idioms to recognize: 19 // memcmp, memmove, strlen, etc. 20 // Future floating point idioms to recognize in -ffast-math mode: 21 // fpowi 22 // Future integer operation idioms to recognize: 23 // ctpop, ctlz, cttz 24 // 25 // Beware that isel's default lowering for ctpop is highly inefficient for 26 // i64 and larger types when i64 is legal and the value has few bits set. It 27 // would be good to enhance isel to emit a loop for ctpop in this case. 28 // 29 // We should enhance the memset/memcpy recognition to handle multiple stores in 30 // the loop. This would handle things like: 31 // void foo(_Complex float *P) 32 // for (i) { __real__(*P) = 0; __imag__(*P) = 0; } 33 // 34 // We should enhance this to handle negative strides through memory. 35 // Alternatively (and perhaps better) we could rely on an earlier pass to force 36 // forward iteration through memory, which is generally better for cache 37 // behavior. Negative strides *do* happen for memset/memcpy loops. 38 // 39 // This could recognize common matrix multiplies and dot product idioms and 40 // replace them with calls to BLAS (if linked in??). 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/Scalar.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolutionExpander.h" 49 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetLibraryInfo.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 using namespace llvm; 62 63 #define DEBUG_TYPE "loop-idiom" 64 65 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 66 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 67 68 namespace { 69 70 class LoopIdiomRecognize; 71 72 /// This class defines some utility functions for loop idiom recognization. 73 class LIRUtil { 74 public: 75 /// Return true iff the block contains nothing but an uncondition branch 76 /// (aka goto instruction). 77 static bool isAlmostEmpty(BasicBlock *); 78 79 static BranchInst *getBranch(BasicBlock *BB) { 80 return dyn_cast<BranchInst>(BB->getTerminator()); 81 } 82 83 /// Derive the precondition block (i.e the block that guards the loop 84 /// preheader) from the given preheader. 85 static BasicBlock *getPrecondBb(BasicBlock *PreHead); 86 }; 87 88 /// This class is to recoginize idioms of population-count conducted in 89 /// a noncountable loop. Currently it only recognizes this pattern: 90 /// \code 91 /// while(x) {cnt++; ...; x &= x - 1; ...} 92 /// \endcode 93 class NclPopcountRecognize { 94 LoopIdiomRecognize &LIR; 95 Loop *CurLoop; 96 BasicBlock *PreCondBB; 97 98 typedef IRBuilder<> IRBuilderTy; 99 100 public: 101 explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR); 102 bool recognize(); 103 104 private: 105 /// Take a glimpse of the loop to see if we need to go ahead recoginizing 106 /// the idiom. 107 bool preliminaryScreen(); 108 109 /// Check if the given conditional branch is based on the comparison 110 /// between a variable and zero, and if the variable is non-zero, the 111 /// control yields to the loop entry. If the branch matches the behavior, 112 /// the variable involved in the comparion is returned. This function will 113 /// be called to see if the precondition and postcondition of the loop 114 /// are in desirable form. 115 Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const; 116 117 /// Return true iff the idiom is detected in the loop. and 1) \p CntInst 118 /// is set to the instruction counting the population bit. 2) \p CntPhi 119 /// is set to the corresponding phi node. 3) \p Var is set to the value 120 /// whose population bits are being counted. 121 bool detectIdiom 122 (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const; 123 124 /// Insert ctpop intrinsic function and some obviously dead instructions. 125 void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var); 126 127 /// Create llvm.ctpop.* intrinsic function. 128 CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL); 129 }; 130 131 class LoopIdiomRecognize : public LoopPass { 132 Loop *CurLoop; 133 const DataLayout *DL; 134 DominatorTree *DT; 135 ScalarEvolution *SE; 136 TargetLibraryInfo *TLI; 137 const TargetTransformInfo *TTI; 138 public: 139 static char ID; 140 explicit LoopIdiomRecognize() : LoopPass(ID) { 141 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); 142 DL = nullptr; DT = nullptr; SE = nullptr; TLI = nullptr; TTI = nullptr; 143 } 144 145 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 146 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 147 SmallVectorImpl<BasicBlock*> &ExitBlocks); 148 149 bool processLoopStore(StoreInst *SI, const SCEV *BECount); 150 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 151 152 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 153 unsigned StoreAlignment, 154 Value *SplatValue, Instruction *TheStore, 155 const SCEVAddRecExpr *Ev, 156 const SCEV *BECount); 157 bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, 158 const SCEVAddRecExpr *StoreEv, 159 const SCEVAddRecExpr *LoadEv, 160 const SCEV *BECount); 161 162 /// This transformation requires natural loop information & requires that 163 /// loop preheaders be inserted into the CFG. 164 /// 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.addRequired<LoopInfo>(); 167 AU.addPreserved<LoopInfo>(); 168 AU.addRequiredID(LoopSimplifyID); 169 AU.addPreservedID(LoopSimplifyID); 170 AU.addRequiredID(LCSSAID); 171 AU.addPreservedID(LCSSAID); 172 AU.addRequired<AliasAnalysis>(); 173 AU.addPreserved<AliasAnalysis>(); 174 AU.addRequired<ScalarEvolution>(); 175 AU.addPreserved<ScalarEvolution>(); 176 AU.addPreserved<DominatorTreeWrapperPass>(); 177 AU.addRequired<DominatorTreeWrapperPass>(); 178 AU.addRequired<TargetLibraryInfo>(); 179 AU.addRequired<TargetTransformInfo>(); 180 } 181 182 const DataLayout *getDataLayout() { 183 if (DL) 184 return DL; 185 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 186 DL = DLP ? &DLP->getDataLayout() : nullptr; 187 return DL; 188 } 189 190 DominatorTree *getDominatorTree() { 191 return DT ? DT 192 : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 193 } 194 195 ScalarEvolution *getScalarEvolution() { 196 return SE ? SE : (SE = &getAnalysis<ScalarEvolution>()); 197 } 198 199 TargetLibraryInfo *getTargetLibraryInfo() { 200 return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>()); 201 } 202 203 const TargetTransformInfo *getTargetTransformInfo() { 204 return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>()); 205 } 206 207 Loop *getLoop() const { return CurLoop; } 208 209 private: 210 bool runOnNoncountableLoop(); 211 bool runOnCountableLoop(); 212 }; 213 } 214 215 char LoopIdiomRecognize::ID = 0; 216 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 217 false, false) 218 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 219 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 220 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 221 INITIALIZE_PASS_DEPENDENCY(LCSSA) 222 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 223 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 224 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 225 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 226 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 227 false, false) 228 229 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } 230 231 /// deleteDeadInstruction - Delete this instruction. Before we do, go through 232 /// and zero out all the operands of this instruction. If any of them become 233 /// dead, delete them and the computation tree that feeds them. 234 /// 235 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE, 236 const TargetLibraryInfo *TLI) { 237 SmallVector<Instruction*, 32> NowDeadInsts; 238 239 NowDeadInsts.push_back(I); 240 241 // Before we touch this instruction, remove it from SE! 242 do { 243 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 244 245 // This instruction is dead, zap it, in stages. Start by removing it from 246 // SCEV. 247 SE.forgetValue(DeadInst); 248 249 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { 250 Value *Op = DeadInst->getOperand(op); 251 DeadInst->setOperand(op, nullptr); 252 253 // If this operand just became dead, add it to the NowDeadInsts list. 254 if (!Op->use_empty()) continue; 255 256 if (Instruction *OpI = dyn_cast<Instruction>(Op)) 257 if (isInstructionTriviallyDead(OpI, TLI)) 258 NowDeadInsts.push_back(OpI); 259 } 260 261 DeadInst->eraseFromParent(); 262 263 } while (!NowDeadInsts.empty()); 264 } 265 266 /// deleteIfDeadInstruction - If the specified value is a dead instruction, 267 /// delete it and any recursively used instructions. 268 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE, 269 const TargetLibraryInfo *TLI) { 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (isInstructionTriviallyDead(I, TLI)) 272 deleteDeadInstruction(I, SE, TLI); 273 } 274 275 //===----------------------------------------------------------------------===// 276 // 277 // Implementation of LIRUtil 278 // 279 //===----------------------------------------------------------------------===// 280 281 // This function will return true iff the given block contains nothing but goto. 282 // A typical usage of this function is to check if the preheader function is 283 // "almost" empty such that generated intrinsic functions can be moved across 284 // the preheader and be placed at the end of the precondition block without 285 // the concern of breaking data dependence. 286 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) { 287 if (BranchInst *Br = getBranch(BB)) { 288 return Br->isUnconditional() && BB->size() == 1; 289 } 290 return false; 291 } 292 293 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) { 294 if (BasicBlock *BB = PreHead->getSinglePredecessor()) { 295 BranchInst *Br = getBranch(BB); 296 return Br && Br->isConditional() ? BB : nullptr; 297 } 298 return nullptr; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // 303 // Implementation of NclPopcountRecognize 304 // 305 //===----------------------------------------------------------------------===// 306 307 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR): 308 LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) { 309 } 310 311 bool NclPopcountRecognize::preliminaryScreen() { 312 const TargetTransformInfo *TTI = LIR.getTargetTransformInfo(); 313 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 314 return false; 315 316 // Counting population are usually conducted by few arithmetic instructions. 317 // Such instructions can be easilly "absorbed" by vacant slots in a 318 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 319 // in a compact loop. 320 321 // Give up if the loop has multiple blocks or multiple backedges. 322 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 323 return false; 324 325 BasicBlock *LoopBody = *(CurLoop->block_begin()); 326 if (LoopBody->size() >= 20) { 327 // The loop is too big, bail out. 328 return false; 329 } 330 331 // It should have a preheader containing nothing but a goto instruction. 332 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 333 if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead)) 334 return false; 335 336 // It should have a precondition block where the generated popcount instrinsic 337 // function will be inserted. 338 PreCondBB = LIRUtil::getPrecondBb(PreHead); 339 if (!PreCondBB) 340 return false; 341 342 return true; 343 } 344 345 Value *NclPopcountRecognize::matchCondition(BranchInst *Br, 346 BasicBlock *LoopEntry) const { 347 if (!Br || !Br->isConditional()) 348 return nullptr; 349 350 ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition()); 351 if (!Cond) 352 return nullptr; 353 354 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 355 if (!CmpZero || !CmpZero->isZero()) 356 return nullptr; 357 358 ICmpInst::Predicate Pred = Cond->getPredicate(); 359 if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) || 360 (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry)) 361 return Cond->getOperand(0); 362 363 return nullptr; 364 } 365 366 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst, 367 PHINode *&CntPhi, 368 Value *&Var) const { 369 // Following code tries to detect this idiom: 370 // 371 // if (x0 != 0) 372 // goto loop-exit // the precondition of the loop 373 // cnt0 = init-val; 374 // do { 375 // x1 = phi (x0, x2); 376 // cnt1 = phi(cnt0, cnt2); 377 // 378 // cnt2 = cnt1 + 1; 379 // ... 380 // x2 = x1 & (x1 - 1); 381 // ... 382 // } while(x != 0); 383 // 384 // loop-exit: 385 // 386 387 // step 1: Check to see if the look-back branch match this pattern: 388 // "if (a!=0) goto loop-entry". 389 BasicBlock *LoopEntry; 390 Instruction *DefX2, *CountInst; 391 Value *VarX1, *VarX0; 392 PHINode *PhiX, *CountPhi; 393 394 DefX2 = CountInst = nullptr; 395 VarX1 = VarX0 = nullptr; 396 PhiX = CountPhi = nullptr; 397 LoopEntry = *(CurLoop->block_begin()); 398 399 // step 1: Check if the loop-back branch is in desirable form. 400 { 401 if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry)) 402 DefX2 = dyn_cast<Instruction>(T); 403 else 404 return false; 405 } 406 407 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 408 { 409 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 410 return false; 411 412 BinaryOperator *SubOneOp; 413 414 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 415 VarX1 = DefX2->getOperand(1); 416 else { 417 VarX1 = DefX2->getOperand(0); 418 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 419 } 420 if (!SubOneOp) 421 return false; 422 423 Instruction *SubInst = cast<Instruction>(SubOneOp); 424 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 425 if (!Dec || 426 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 427 (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) { 428 return false; 429 } 430 } 431 432 // step 3: Check the recurrence of variable X 433 { 434 PhiX = dyn_cast<PHINode>(VarX1); 435 if (!PhiX || 436 (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { 437 return false; 438 } 439 } 440 441 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 442 { 443 CountInst = nullptr; 444 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(), 445 IterE = LoopEntry->end(); Iter != IterE; Iter++) { 446 Instruction *Inst = Iter; 447 if (Inst->getOpcode() != Instruction::Add) 448 continue; 449 450 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 451 if (!Inc || !Inc->isOne()) 452 continue; 453 454 PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); 455 if (!Phi || Phi->getParent() != LoopEntry) 456 continue; 457 458 // Check if the result of the instruction is live of the loop. 459 bool LiveOutLoop = false; 460 for (User *U : Inst->users()) { 461 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 462 LiveOutLoop = true; break; 463 } 464 } 465 466 if (LiveOutLoop) { 467 CountInst = Inst; 468 CountPhi = Phi; 469 break; 470 } 471 } 472 473 if (!CountInst) 474 return false; 475 } 476 477 // step 5: check if the precondition is in this form: 478 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 479 { 480 BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); 481 Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader()); 482 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 483 return false; 484 485 CntInst = CountInst; 486 CntPhi = CountPhi; 487 Var = T; 488 } 489 490 return true; 491 } 492 493 void NclPopcountRecognize::transform(Instruction *CntInst, 494 PHINode *CntPhi, Value *Var) { 495 496 ScalarEvolution *SE = LIR.getScalarEvolution(); 497 TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo(); 498 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 499 BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); 500 const DebugLoc DL = CntInst->getDebugLoc(); 501 502 // Assuming before transformation, the loop is following: 503 // if (x) // the precondition 504 // do { cnt++; x &= x - 1; } while(x); 505 506 // Step 1: Insert the ctpop instruction at the end of the precondition block 507 IRBuilderTy Builder(PreCondBr); 508 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 509 { 510 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 511 NewCount = PopCntZext = 512 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 513 514 if (NewCount != PopCnt) 515 (cast<Instruction>(NewCount))->setDebugLoc(DL); 516 517 // TripCnt is exactly the number of iterations the loop has 518 TripCnt = NewCount; 519 520 // If the population counter's initial value is not zero, insert Add Inst. 521 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 522 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 523 if (!InitConst || !InitConst->isZero()) { 524 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 525 (cast<Instruction>(NewCount))->setDebugLoc(DL); 526 } 527 } 528 529 // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to 530 // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic 531 // function would be partial dead code, and downstream passes will drag 532 // it back from the precondition block to the preheader. 533 { 534 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 535 536 Value *Opnd0 = PopCntZext; 537 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 538 if (PreCond->getOperand(0) != Var) 539 std::swap(Opnd0, Opnd1); 540 541 ICmpInst *NewPreCond = 542 cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 543 PreCond->replaceAllUsesWith(NewPreCond); 544 545 deleteDeadInstruction(PreCond, *SE, TLI); 546 } 547 548 // Step 3: Note that the population count is exactly the trip count of the 549 // loop in question, which enble us to to convert the loop from noncountable 550 // loop into a countable one. The benefit is twofold: 551 // 552 // - If the loop only counts population, the entire loop become dead after 553 // the transformation. It is lots easier to prove a countable loop dead 554 // than to prove a noncountable one. (In some C dialects, a infite loop 555 // isn't dead even if it computes nothing useful. In general, DCE needs 556 // to prove a noncountable loop finite before safely delete it.) 557 // 558 // - If the loop also performs something else, it remains alive. 559 // Since it is transformed to countable form, it can be aggressively 560 // optimized by some optimizations which are in general not applicable 561 // to a noncountable loop. 562 // 563 // After this step, this loop (conceptually) would look like following: 564 // newcnt = __builtin_ctpop(x); 565 // t = newcnt; 566 // if (x) 567 // do { cnt++; x &= x-1; t--) } while (t > 0); 568 BasicBlock *Body = *(CurLoop->block_begin()); 569 { 570 BranchInst *LbBr = LIRUtil::getBranch(Body); 571 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 572 Type *Ty = TripCnt->getType(); 573 574 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin()); 575 576 Builder.SetInsertPoint(LbCond); 577 Value *Opnd1 = cast<Value>(TcPhi); 578 Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1)); 579 Instruction *TcDec = 580 cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true)); 581 582 TcPhi->addIncoming(TripCnt, PreHead); 583 TcPhi->addIncoming(TcDec, Body); 584 585 CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? 586 CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 587 LbCond->setPredicate(Pred); 588 LbCond->setOperand(0, TcDec); 589 LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0))); 590 } 591 592 // Step 4: All the references to the original population counter outside 593 // the loop are replaced with the NewCount -- the value returned from 594 // __builtin_ctpop(). 595 { 596 SmallVector<Value *, 4> CntUses; 597 for (User *U : CntInst->users()) 598 if (cast<Instruction>(U)->getParent() != Body) 599 CntUses.push_back(U); 600 for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) { 601 (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount); 602 } 603 } 604 605 // step 5: Forget the "non-computable" trip-count SCEV associated with the 606 // loop. The loop would otherwise not be deleted even if it becomes empty. 607 SE->forgetLoop(CurLoop); 608 } 609 610 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder, 611 Value *Val, DebugLoc DL) { 612 Value *Ops[] = { Val }; 613 Type *Tys[] = { Val->getType() }; 614 615 Module *M = (*(CurLoop->block_begin()))->getParent()->getParent(); 616 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 617 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 618 CI->setDebugLoc(DL); 619 620 return CI; 621 } 622 623 /// recognize - detect population count idiom in a non-countable loop. If 624 /// detected, transform the relevant code to popcount intrinsic function 625 /// call, and return true; otherwise, return false. 626 bool NclPopcountRecognize::recognize() { 627 628 if (!LIR.getTargetTransformInfo()) 629 return false; 630 631 LIR.getScalarEvolution(); 632 633 if (!preliminaryScreen()) 634 return false; 635 636 Instruction *CntInst; 637 PHINode *CntPhi; 638 Value *Val; 639 if (!detectIdiom(CntInst, CntPhi, Val)) 640 return false; 641 642 transform(CntInst, CntPhi, Val); 643 return true; 644 } 645 646 //===----------------------------------------------------------------------===// 647 // 648 // Implementation of LoopIdiomRecognize 649 // 650 //===----------------------------------------------------------------------===// 651 652 bool LoopIdiomRecognize::runOnCountableLoop() { 653 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 654 if (isa<SCEVCouldNotCompute>(BECount)) return false; 655 656 // If this loop executes exactly one time, then it should be peeled, not 657 // optimized by this pass. 658 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 659 if (BECst->getValue()->getValue() == 0) 660 return false; 661 662 // We require target data for now. 663 if (!getDataLayout()) 664 return false; 665 666 // set DT 667 (void)getDominatorTree(); 668 669 LoopInfo &LI = getAnalysis<LoopInfo>(); 670 TLI = &getAnalysis<TargetLibraryInfo>(); 671 672 // set TLI 673 (void)getTargetLibraryInfo(); 674 675 SmallVector<BasicBlock*, 8> ExitBlocks; 676 CurLoop->getUniqueExitBlocks(ExitBlocks); 677 678 DEBUG(dbgs() << "loop-idiom Scanning: F[" 679 << CurLoop->getHeader()->getParent()->getName() 680 << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); 681 682 bool MadeChange = false; 683 // Scan all the blocks in the loop that are not in subloops. 684 for (Loop::block_iterator BI = CurLoop->block_begin(), 685 E = CurLoop->block_end(); BI != E; ++BI) { 686 // Ignore blocks in subloops. 687 if (LI.getLoopFor(*BI) != CurLoop) 688 continue; 689 690 MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks); 691 } 692 return MadeChange; 693 } 694 695 bool LoopIdiomRecognize::runOnNoncountableLoop() { 696 NclPopcountRecognize Popcount(*this); 697 if (Popcount.recognize()) 698 return true; 699 700 return false; 701 } 702 703 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { 704 if (skipOptnoneFunction(L)) 705 return false; 706 707 CurLoop = L; 708 709 // If the loop could not be converted to canonical form, it must have an 710 // indirectbr in it, just give up. 711 if (!L->getLoopPreheader()) 712 return false; 713 714 // Disable loop idiom recognition if the function's name is a common idiom. 715 StringRef Name = L->getHeader()->getParent()->getName(); 716 if (Name == "memset" || Name == "memcpy") 717 return false; 718 719 SE = &getAnalysis<ScalarEvolution>(); 720 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 721 return runOnCountableLoop(); 722 return runOnNoncountableLoop(); 723 } 724 725 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 726 /// with the specified backedge count. This block is known to be in the current 727 /// loop and not in any subloops. 728 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 729 SmallVectorImpl<BasicBlock*> &ExitBlocks) { 730 // We can only promote stores in this block if they are unconditionally 731 // executed in the loop. For a block to be unconditionally executed, it has 732 // to dominate all the exit blocks of the loop. Verify this now. 733 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 734 if (!DT->dominates(BB, ExitBlocks[i])) 735 return false; 736 737 bool MadeChange = false; 738 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 739 Instruction *Inst = I++; 740 // Look for store instructions, which may be optimized to memset/memcpy. 741 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 742 WeakVH InstPtr(I); 743 if (!processLoopStore(SI, BECount)) continue; 744 MadeChange = true; 745 746 // If processing the store invalidated our iterator, start over from the 747 // top of the block. 748 if (!InstPtr) 749 I = BB->begin(); 750 continue; 751 } 752 753 // Look for memset instructions, which may be optimized to a larger memset. 754 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 755 WeakVH InstPtr(I); 756 if (!processLoopMemSet(MSI, BECount)) continue; 757 MadeChange = true; 758 759 // If processing the memset invalidated our iterator, start over from the 760 // top of the block. 761 if (!InstPtr) 762 I = BB->begin(); 763 continue; 764 } 765 } 766 767 return MadeChange; 768 } 769 770 771 /// processLoopStore - See if this store can be promoted to a memset or memcpy. 772 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { 773 if (!SI->isSimple()) return false; 774 775 Value *StoredVal = SI->getValueOperand(); 776 Value *StorePtr = SI->getPointerOperand(); 777 778 // Reject stores that are so large that they overflow an unsigned. 779 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 780 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 781 return false; 782 783 // See if the pointer expression is an AddRec like {base,+,1} on the current 784 // loop, which indicates a strided store. If we have something else, it's a 785 // random store we can't handle. 786 const SCEVAddRecExpr *StoreEv = 787 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 788 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 789 return false; 790 791 // Check to see if the stride matches the size of the store. If so, then we 792 // know that every byte is touched in the loop. 793 unsigned StoreSize = (unsigned)SizeInBits >> 3; 794 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 795 796 if (!Stride || StoreSize != Stride->getValue()->getValue()) { 797 // TODO: Could also handle negative stride here someday, that will require 798 // the validity check in mayLoopAccessLocation to be updated though. 799 // Enable this to print exact negative strides. 800 if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) { 801 dbgs() << "NEGATIVE STRIDE: " << *SI << "\n"; 802 dbgs() << "BB: " << *SI->getParent(); 803 } 804 805 return false; 806 } 807 808 // See if we can optimize just this store in isolation. 809 if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(), 810 StoredVal, SI, StoreEv, BECount)) 811 return true; 812 813 // If the stored value is a strided load in the same loop with the same stride 814 // this this may be transformable into a memcpy. This kicks in for stuff like 815 // for (i) A[i] = B[i]; 816 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 817 const SCEVAddRecExpr *LoadEv = 818 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0))); 819 if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() && 820 StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple()) 821 if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount)) 822 return true; 823 } 824 //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n"; 825 826 return false; 827 } 828 829 /// processLoopMemSet - See if this memset can be promoted to a large memset. 830 bool LoopIdiomRecognize:: 831 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { 832 // We can only handle non-volatile memsets with a constant size. 833 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; 834 835 // If we're not allowed to hack on memset, we fail. 836 if (!TLI->has(LibFunc::memset)) 837 return false; 838 839 Value *Pointer = MSI->getDest(); 840 841 // See if the pointer expression is an AddRec like {base,+,1} on the current 842 // loop, which indicates a strided store. If we have something else, it's a 843 // random store we can't handle. 844 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 845 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 846 return false; 847 848 // Reject memsets that are so large that they overflow an unsigned. 849 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 850 if ((SizeInBytes >> 32) != 0) 851 return false; 852 853 // Check to see if the stride matches the size of the memset. If so, then we 854 // know that every byte is touched in the loop. 855 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 856 857 // TODO: Could also handle negative stride here someday, that will require the 858 // validity check in mayLoopAccessLocation to be updated though. 859 if (!Stride || MSI->getLength() != Stride->getValue()) 860 return false; 861 862 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 863 MSI->getAlignment(), MSI->getValue(), 864 MSI, Ev, BECount); 865 } 866 867 868 /// mayLoopAccessLocation - Return true if the specified loop might access the 869 /// specified pointer location, which is a loop-strided access. The 'Access' 870 /// argument specifies what the verboten forms of access are (read or write). 871 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access, 872 Loop *L, const SCEV *BECount, 873 unsigned StoreSize, AliasAnalysis &AA, 874 Instruction *IgnoredStore) { 875 // Get the location that may be stored across the loop. Since the access is 876 // strided positively through memory, we say that the modified location starts 877 // at the pointer and has infinite size. 878 uint64_t AccessSize = AliasAnalysis::UnknownSize; 879 880 // If the loop iterates a fixed number of times, we can refine the access size 881 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 882 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 883 AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize; 884 885 // TODO: For this to be really effective, we have to dive into the pointer 886 // operand in the store. Store to &A[i] of 100 will always return may alias 887 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 888 // which will then no-alias a store to &A[100]. 889 AliasAnalysis::Location StoreLoc(Ptr, AccessSize); 890 891 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 892 ++BI) 893 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) 894 if (&*I != IgnoredStore && 895 (AA.getModRefInfo(I, StoreLoc) & Access)) 896 return true; 897 898 return false; 899 } 900 901 /// getMemSetPatternValue - If a strided store of the specified value is safe to 902 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 903 /// be passed in. Otherwise, return null. 904 /// 905 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 906 /// just replicate their input array and then pass on to memset_pattern16. 907 static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) { 908 // If the value isn't a constant, we can't promote it to being in a constant 909 // array. We could theoretically do a store to an alloca or something, but 910 // that doesn't seem worthwhile. 911 Constant *C = dyn_cast<Constant>(V); 912 if (!C) return nullptr; 913 914 // Only handle simple values that are a power of two bytes in size. 915 uint64_t Size = DL.getTypeSizeInBits(V->getType()); 916 if (Size == 0 || (Size & 7) || (Size & (Size-1))) 917 return nullptr; 918 919 // Don't care enough about darwin/ppc to implement this. 920 if (DL.isBigEndian()) 921 return nullptr; 922 923 // Convert to size in bytes. 924 Size /= 8; 925 926 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 927 // if the top and bottom are the same (e.g. for vectors and large integers). 928 if (Size > 16) return nullptr; 929 930 // If the constant is exactly 16 bytes, just use it. 931 if (Size == 16) return C; 932 933 // Otherwise, we'll use an array of the constants. 934 unsigned ArraySize = 16/Size; 935 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 936 return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C)); 937 } 938 939 940 /// processLoopStridedStore - We see a strided store of some value. If we can 941 /// transform this into a memset or memset_pattern in the loop preheader, do so. 942 bool LoopIdiomRecognize:: 943 processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 944 unsigned StoreAlignment, Value *StoredVal, 945 Instruction *TheStore, const SCEVAddRecExpr *Ev, 946 const SCEV *BECount) { 947 948 // If the stored value is a byte-wise value (like i32 -1), then it may be 949 // turned into a memset of i8 -1, assuming that all the consecutive bytes 950 // are stored. A store of i32 0x01020304 can never be turned into a memset, 951 // but it can be turned into memset_pattern if the target supports it. 952 Value *SplatValue = isBytewiseValue(StoredVal); 953 Constant *PatternValue = nullptr; 954 955 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 956 957 // If we're allowed to form a memset, and the stored value would be acceptable 958 // for memset, use it. 959 if (SplatValue && TLI->has(LibFunc::memset) && 960 // Verify that the stored value is loop invariant. If not, we can't 961 // promote the memset. 962 CurLoop->isLoopInvariant(SplatValue)) { 963 // Keep and use SplatValue. 964 PatternValue = nullptr; 965 } else if (DestAS == 0 && 966 TLI->has(LibFunc::memset_pattern16) && 967 (PatternValue = getMemSetPatternValue(StoredVal, *DL))) { 968 // Don't create memset_pattern16s with address spaces. 969 // It looks like we can use PatternValue! 970 SplatValue = nullptr; 971 } else { 972 // Otherwise, this isn't an idiom we can transform. For example, we can't 973 // do anything with a 3-byte store. 974 return false; 975 } 976 977 // The trip count of the loop and the base pointer of the addrec SCEV is 978 // guaranteed to be loop invariant, which means that it should dominate the 979 // header. This allows us to insert code for it in the preheader. 980 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 981 IRBuilder<> Builder(Preheader->getTerminator()); 982 SCEVExpander Expander(*SE, "loop-idiom"); 983 984 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 985 986 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 987 // this into a memset in the loop preheader now if we want. However, this 988 // would be unsafe to do if there is anything else in the loop that may read 989 // or write to the aliased location. Check for any overlap by generating the 990 // base pointer and checking the region. 991 Value *BasePtr = 992 Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy, 993 Preheader->getTerminator()); 994 995 if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef, 996 CurLoop, BECount, 997 StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) { 998 Expander.clear(); 999 // If we generated new code for the base pointer, clean up. 1000 deleteIfDeadInstruction(BasePtr, *SE, TLI); 1001 return false; 1002 } 1003 1004 // Okay, everything looks good, insert the memset. 1005 1006 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 1007 // pointer size if it isn't already. 1008 Type *IntPtr = Builder.getIntPtrTy(DL, DestAS); 1009 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1010 1011 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), 1012 SCEV::FlagNUW); 1013 if (StoreSize != 1) { 1014 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 1015 SCEV::FlagNUW); 1016 } 1017 1018 Value *NumBytes = 1019 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 1020 1021 CallInst *NewCall; 1022 if (SplatValue) { 1023 NewCall = Builder.CreateMemSet(BasePtr, 1024 SplatValue, 1025 NumBytes, 1026 StoreAlignment); 1027 } else { 1028 // Everything is emitted in default address space 1029 Type *Int8PtrTy = DestInt8PtrTy; 1030 1031 Module *M = TheStore->getParent()->getParent()->getParent(); 1032 Value *MSP = M->getOrInsertFunction("memset_pattern16", 1033 Builder.getVoidTy(), 1034 Int8PtrTy, 1035 Int8PtrTy, 1036 IntPtr, 1037 (void*)nullptr); 1038 1039 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1040 // an constant array of 16-bytes. Plop the value into a mergable global. 1041 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1042 GlobalValue::InternalLinkage, 1043 PatternValue, ".memset_pattern"); 1044 GV->setUnnamedAddr(true); // Ok to merge these. 1045 GV->setAlignment(16); 1046 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1047 NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes); 1048 } 1049 1050 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1051 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 1052 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1053 1054 // Okay, the memset has been formed. Zap the original store and anything that 1055 // feeds into it. 1056 deleteDeadInstruction(TheStore, *SE, TLI); 1057 ++NumMemSet; 1058 return true; 1059 } 1060 1061 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a 1062 /// same-strided load. 1063 bool LoopIdiomRecognize:: 1064 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, 1065 const SCEVAddRecExpr *StoreEv, 1066 const SCEVAddRecExpr *LoadEv, 1067 const SCEV *BECount) { 1068 // If we're not allowed to form memcpy, we fail. 1069 if (!TLI->has(LibFunc::memcpy)) 1070 return false; 1071 1072 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1073 1074 // The trip count of the loop and the base pointer of the addrec SCEV is 1075 // guaranteed to be loop invariant, which means that it should dominate the 1076 // header. This allows us to insert code for it in the preheader. 1077 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1078 IRBuilder<> Builder(Preheader->getTerminator()); 1079 SCEVExpander Expander(*SE, "loop-idiom"); 1080 1081 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1082 // this into a memcpy in the loop preheader now if we want. However, this 1083 // would be unsafe to do if there is anything else in the loop that may read 1084 // or write the memory region we're storing to. This includes the load that 1085 // feeds the stores. Check for an alias by generating the base address and 1086 // checking everything. 1087 Value *StoreBasePtr = 1088 Expander.expandCodeFor(StoreEv->getStart(), 1089 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), 1090 Preheader->getTerminator()); 1091 1092 if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef, 1093 CurLoop, BECount, StoreSize, 1094 getAnalysis<AliasAnalysis>(), SI)) { 1095 Expander.clear(); 1096 // If we generated new code for the base pointer, clean up. 1097 deleteIfDeadInstruction(StoreBasePtr, *SE, TLI); 1098 return false; 1099 } 1100 1101 // For a memcpy, we have to make sure that the input array is not being 1102 // mutated by the loop. 1103 Value *LoadBasePtr = 1104 Expander.expandCodeFor(LoadEv->getStart(), 1105 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), 1106 Preheader->getTerminator()); 1107 1108 if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount, 1109 StoreSize, getAnalysis<AliasAnalysis>(), SI)) { 1110 Expander.clear(); 1111 // If we generated new code for the base pointer, clean up. 1112 deleteIfDeadInstruction(LoadBasePtr, *SE, TLI); 1113 deleteIfDeadInstruction(StoreBasePtr, *SE, TLI); 1114 return false; 1115 } 1116 1117 // Okay, everything is safe, we can transform this! 1118 1119 1120 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 1121 // pointer size if it isn't already. 1122 Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace()); 1123 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); 1124 1125 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1), 1126 SCEV::FlagNUW); 1127 if (StoreSize != 1) 1128 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), 1129 SCEV::FlagNUW); 1130 1131 Value *NumBytes = 1132 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 1133 1134 CallInst *NewCall = 1135 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, 1136 std::min(SI->getAlignment(), LI->getAlignment())); 1137 NewCall->setDebugLoc(SI->getDebugLoc()); 1138 1139 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1140 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1141 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 1142 1143 1144 // Okay, the memset has been formed. Zap the original store and anything that 1145 // feeds into it. 1146 deleteDeadInstruction(SI, *SE, TLI); 1147 ++NumMemCpy; 1148 return true; 1149 } 1150