Home | History | Annotate | Download | only in CodeGen
      1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass munges the code in the input function to better prepare it for
     11 // SelectionDAG-based code generation. This works around limitations in it's
     12 // basic-block-at-a-time approach. It should eventually be removed.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/GetElementPtrTypeIterator.h"
     28 #include "llvm/IR/IRBuilder.h"
     29 #include "llvm/IR/InlineAsm.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/PatternMatch.h"
     33 #include "llvm/IR/ValueHandle.h"
     34 #include "llvm/IR/ValueMap.h"
     35 #include "llvm/Pass.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/Target/TargetLibraryInfo.h"
     40 #include "llvm/Target/TargetLowering.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     43 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     44 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
     45 #include "llvm/Transforms/Utils/Local.h"
     46 using namespace llvm;
     47 using namespace llvm::PatternMatch;
     48 
     49 #define DEBUG_TYPE "codegenprepare"
     50 
     51 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
     52 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
     53 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
     54 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
     55                       "sunken Cmps");
     56 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
     57                        "of sunken Casts");
     58 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
     59                           "computations were sunk");
     60 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
     61 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
     62 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
     63 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
     64 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
     65 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
     66 
     67 static cl::opt<bool> DisableBranchOpts(
     68   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
     69   cl::desc("Disable branch optimizations in CodeGenPrepare"));
     70 
     71 static cl::opt<bool> DisableSelectToBranch(
     72   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
     73   cl::desc("Disable select to branch conversion."));
     74 
     75 static cl::opt<bool> AddrSinkUsingGEPs(
     76   "addr-sink-using-gep", cl::Hidden, cl::init(false),
     77   cl::desc("Address sinking in CGP using GEPs."));
     78 
     79 static cl::opt<bool> EnableAndCmpSinking(
     80    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
     81    cl::desc("Enable sinkinig and/cmp into branches."));
     82 
     83 namespace {
     84 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
     85 typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
     86 
     87   class CodeGenPrepare : public FunctionPass {
     88     /// TLI - Keep a pointer of a TargetLowering to consult for determining
     89     /// transformation profitability.
     90     const TargetMachine *TM;
     91     const TargetLowering *TLI;
     92     const TargetLibraryInfo *TLInfo;
     93     DominatorTree *DT;
     94 
     95     /// CurInstIterator - As we scan instructions optimizing them, this is the
     96     /// next instruction to optimize.  Xforms that can invalidate this should
     97     /// update it.
     98     BasicBlock::iterator CurInstIterator;
     99 
    100     /// Keeps track of non-local addresses that have been sunk into a block.
    101     /// This allows us to avoid inserting duplicate code for blocks with
    102     /// multiple load/stores of the same address.
    103     ValueMap<Value*, Value*> SunkAddrs;
    104 
    105     /// Keeps track of all truncates inserted for the current function.
    106     SetOfInstrs InsertedTruncsSet;
    107     /// Keeps track of the type of the related instruction before their
    108     /// promotion for the current function.
    109     InstrToOrigTy PromotedInsts;
    110 
    111     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
    112     /// be updated.
    113     bool ModifiedDT;
    114 
    115     /// OptSize - True if optimizing for size.
    116     bool OptSize;
    117 
    118   public:
    119     static char ID; // Pass identification, replacement for typeid
    120     explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
    121       : FunctionPass(ID), TM(TM), TLI(nullptr) {
    122         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
    123       }
    124     bool runOnFunction(Function &F) override;
    125 
    126     const char *getPassName() const override { return "CodeGen Prepare"; }
    127 
    128     void getAnalysisUsage(AnalysisUsage &AU) const override {
    129       AU.addPreserved<DominatorTreeWrapperPass>();
    130       AU.addRequired<TargetLibraryInfo>();
    131     }
    132 
    133   private:
    134     bool EliminateFallThrough(Function &F);
    135     bool EliminateMostlyEmptyBlocks(Function &F);
    136     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    137     void EliminateMostlyEmptyBlock(BasicBlock *BB);
    138     bool OptimizeBlock(BasicBlock &BB);
    139     bool OptimizeInst(Instruction *I);
    140     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
    141     bool OptimizeInlineAsmInst(CallInst *CS);
    142     bool OptimizeCallInst(CallInst *CI);
    143     bool MoveExtToFormExtLoad(Instruction *I);
    144     bool OptimizeExtUses(Instruction *I);
    145     bool OptimizeSelectInst(SelectInst *SI);
    146     bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
    147     bool DupRetToEnableTailCallOpts(BasicBlock *BB);
    148     bool PlaceDbgValues(Function &F);
    149     bool sinkAndCmp(Function &F);
    150   };
    151 }
    152 
    153 char CodeGenPrepare::ID = 0;
    154 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
    155                    "Optimize for code generation", false, false)
    156 
    157 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
    158   return new CodeGenPrepare(TM);
    159 }
    160 
    161 bool CodeGenPrepare::runOnFunction(Function &F) {
    162   if (skipOptnoneFunction(F))
    163     return false;
    164 
    165   bool EverMadeChange = false;
    166   // Clear per function information.
    167   InsertedTruncsSet.clear();
    168   PromotedInsts.clear();
    169 
    170   ModifiedDT = false;
    171   if (TM) TLI = TM->getTargetLowering();
    172   TLInfo = &getAnalysis<TargetLibraryInfo>();
    173   DominatorTreeWrapperPass *DTWP =
    174       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    175   DT = DTWP ? &DTWP->getDomTree() : nullptr;
    176   OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    177                                            Attribute::OptimizeForSize);
    178 
    179   /// This optimization identifies DIV instructions that can be
    180   /// profitably bypassed and carried out with a shorter, faster divide.
    181   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
    182     const DenseMap<unsigned int, unsigned int> &BypassWidths =
    183        TLI->getBypassSlowDivWidths();
    184     for (Function::iterator I = F.begin(); I != F.end(); I++)
    185       EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
    186   }
    187 
    188   // Eliminate blocks that contain only PHI nodes and an
    189   // unconditional branch.
    190   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
    191 
    192   // llvm.dbg.value is far away from the value then iSel may not be able
    193   // handle it properly. iSel will drop llvm.dbg.value if it can not
    194   // find a node corresponding to the value.
    195   EverMadeChange |= PlaceDbgValues(F);
    196 
    197   // If there is a mask, compare against zero, and branch that can be combined
    198   // into a single target instruction, push the mask and compare into branch
    199   // users. Do this before OptimizeBlock -> OptimizeInst ->
    200   // OptimizeCmpExpression, which perturbs the pattern being searched for.
    201   if (!DisableBranchOpts)
    202     EverMadeChange |= sinkAndCmp(F);
    203 
    204   bool MadeChange = true;
    205   while (MadeChange) {
    206     MadeChange = false;
    207     for (Function::iterator I = F.begin(); I != F.end(); ) {
    208       BasicBlock *BB = I++;
    209       MadeChange |= OptimizeBlock(*BB);
    210     }
    211     EverMadeChange |= MadeChange;
    212   }
    213 
    214   SunkAddrs.clear();
    215 
    216   if (!DisableBranchOpts) {
    217     MadeChange = false;
    218     SmallPtrSet<BasicBlock*, 8> WorkList;
    219     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    220       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
    221       MadeChange |= ConstantFoldTerminator(BB, true);
    222       if (!MadeChange) continue;
    223 
    224       for (SmallVectorImpl<BasicBlock*>::iterator
    225              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    226         if (pred_begin(*II) == pred_end(*II))
    227           WorkList.insert(*II);
    228     }
    229 
    230     // Delete the dead blocks and any of their dead successors.
    231     MadeChange |= !WorkList.empty();
    232     while (!WorkList.empty()) {
    233       BasicBlock *BB = *WorkList.begin();
    234       WorkList.erase(BB);
    235       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
    236 
    237       DeleteDeadBlock(BB);
    238 
    239       for (SmallVectorImpl<BasicBlock*>::iterator
    240              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    241         if (pred_begin(*II) == pred_end(*II))
    242           WorkList.insert(*II);
    243     }
    244 
    245     // Merge pairs of basic blocks with unconditional branches, connected by
    246     // a single edge.
    247     if (EverMadeChange || MadeChange)
    248       MadeChange |= EliminateFallThrough(F);
    249 
    250     if (MadeChange)
    251       ModifiedDT = true;
    252     EverMadeChange |= MadeChange;
    253   }
    254 
    255   if (ModifiedDT && DT)
    256     DT->recalculate(F);
    257 
    258   return EverMadeChange;
    259 }
    260 
    261 /// EliminateFallThrough - Merge basic blocks which are connected
    262 /// by a single edge, where one of the basic blocks has a single successor
    263 /// pointing to the other basic block, which has a single predecessor.
    264 bool CodeGenPrepare::EliminateFallThrough(Function &F) {
    265   bool Changed = false;
    266   // Scan all of the blocks in the function, except for the entry block.
    267   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
    268     BasicBlock *BB = I++;
    269     // If the destination block has a single pred, then this is a trivial
    270     // edge, just collapse it.
    271     BasicBlock *SinglePred = BB->getSinglePredecessor();
    272 
    273     // Don't merge if BB's address is taken.
    274     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
    275 
    276     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
    277     if (Term && !Term->isConditional()) {
    278       Changed = true;
    279       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
    280       // Remember if SinglePred was the entry block of the function.
    281       // If so, we will need to move BB back to the entry position.
    282       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    283       MergeBasicBlockIntoOnlyPred(BB, this);
    284 
    285       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    286         BB->moveBefore(&BB->getParent()->getEntryBlock());
    287 
    288       // We have erased a block. Update the iterator.
    289       I = BB;
    290     }
    291   }
    292   return Changed;
    293 }
    294 
    295 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
    296 /// debug info directives, and an unconditional branch.  Passes before isel
    297 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
    298 /// isel.  Start by eliminating these blocks so we can split them the way we
    299 /// want them.
    300 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
    301   bool MadeChange = false;
    302   // Note that this intentionally skips the entry block.
    303   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
    304     BasicBlock *BB = I++;
    305 
    306     // If this block doesn't end with an uncond branch, ignore it.
    307     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    308     if (!BI || !BI->isUnconditional())
    309       continue;
    310 
    311     // If the instruction before the branch (skipping debug info) isn't a phi
    312     // node, then other stuff is happening here.
    313     BasicBlock::iterator BBI = BI;
    314     if (BBI != BB->begin()) {
    315       --BBI;
    316       while (isa<DbgInfoIntrinsic>(BBI)) {
    317         if (BBI == BB->begin())
    318           break;
    319         --BBI;
    320       }
    321       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
    322         continue;
    323     }
    324 
    325     // Do not break infinite loops.
    326     BasicBlock *DestBB = BI->getSuccessor(0);
    327     if (DestBB == BB)
    328       continue;
    329 
    330     if (!CanMergeBlocks(BB, DestBB))
    331       continue;
    332 
    333     EliminateMostlyEmptyBlock(BB);
    334     MadeChange = true;
    335   }
    336   return MadeChange;
    337 }
    338 
    339 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
    340 /// single uncond branch between them, and BB contains no other non-phi
    341 /// instructions.
    342 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
    343                                     const BasicBlock *DestBB) const {
    344   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
    345   // the successor.  If there are more complex condition (e.g. preheaders),
    346   // don't mess around with them.
    347   BasicBlock::const_iterator BBI = BB->begin();
    348   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    349     for (const User *U : PN->users()) {
    350       const Instruction *UI = cast<Instruction>(U);
    351       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
    352         return false;
    353       // If User is inside DestBB block and it is a PHINode then check
    354       // incoming value. If incoming value is not from BB then this is
    355       // a complex condition (e.g. preheaders) we want to avoid here.
    356       if (UI->getParent() == DestBB) {
    357         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
    358           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
    359             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
    360             if (Insn && Insn->getParent() == BB &&
    361                 Insn->getParent() != UPN->getIncomingBlock(I))
    362               return false;
    363           }
    364       }
    365     }
    366   }
    367 
    368   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
    369   // and DestBB may have conflicting incoming values for the block.  If so, we
    370   // can't merge the block.
    371   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
    372   if (!DestBBPN) return true;  // no conflict.
    373 
    374   // Collect the preds of BB.
    375   SmallPtrSet<const BasicBlock*, 16> BBPreds;
    376   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    377     // It is faster to get preds from a PHI than with pred_iterator.
    378     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    379       BBPreds.insert(BBPN->getIncomingBlock(i));
    380   } else {
    381     BBPreds.insert(pred_begin(BB), pred_end(BB));
    382   }
    383 
    384   // Walk the preds of DestBB.
    385   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    386     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    387     if (BBPreds.count(Pred)) {   // Common predecessor?
    388       BBI = DestBB->begin();
    389       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    390         const Value *V1 = PN->getIncomingValueForBlock(Pred);
    391         const Value *V2 = PN->getIncomingValueForBlock(BB);
    392 
    393         // If V2 is a phi node in BB, look up what the mapped value will be.
    394         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
    395           if (V2PN->getParent() == BB)
    396             V2 = V2PN->getIncomingValueForBlock(Pred);
    397 
    398         // If there is a conflict, bail out.
    399         if (V1 != V2) return false;
    400       }
    401     }
    402   }
    403 
    404   return true;
    405 }
    406 
    407 
    408 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
    409 /// an unconditional branch in it.
    410 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
    411   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
    412   BasicBlock *DestBB = BI->getSuccessor(0);
    413 
    414   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
    415 
    416   // If the destination block has a single pred, then this is a trivial edge,
    417   // just collapse it.
    418   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    419     if (SinglePred != DestBB) {
    420       // Remember if SinglePred was the entry block of the function.  If so, we
    421       // will need to move BB back to the entry position.
    422       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    423       MergeBasicBlockIntoOnlyPred(DestBB, this);
    424 
    425       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    426         BB->moveBefore(&BB->getParent()->getEntryBlock());
    427 
    428       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    429       return;
    430     }
    431   }
    432 
    433   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
    434   // to handle the new incoming edges it is about to have.
    435   PHINode *PN;
    436   for (BasicBlock::iterator BBI = DestBB->begin();
    437        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    438     // Remove the incoming value for BB, and remember it.
    439     Value *InVal = PN->removeIncomingValue(BB, false);
    440 
    441     // Two options: either the InVal is a phi node defined in BB or it is some
    442     // value that dominates BB.
    443     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    444     if (InValPhi && InValPhi->getParent() == BB) {
    445       // Add all of the input values of the input PHI as inputs of this phi.
    446       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
    447         PN->addIncoming(InValPhi->getIncomingValue(i),
    448                         InValPhi->getIncomingBlock(i));
    449     } else {
    450       // Otherwise, add one instance of the dominating value for each edge that
    451       // we will be adding.
    452       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    453         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    454           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
    455       } else {
    456         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    457           PN->addIncoming(InVal, *PI);
    458       }
    459     }
    460   }
    461 
    462   // The PHIs are now updated, change everything that refers to BB to use
    463   // DestBB and remove BB.
    464   BB->replaceAllUsesWith(DestBB);
    465   if (DT && !ModifiedDT) {
    466     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
    467     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
    468     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
    469     DT->changeImmediateDominator(DestBB, NewIDom);
    470     DT->eraseNode(BB);
    471   }
    472   BB->eraseFromParent();
    473   ++NumBlocksElim;
    474 
    475   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    476 }
    477 
    478 /// SinkCast - Sink the specified cast instruction into its user blocks
    479 static bool SinkCast(CastInst *CI) {
    480   BasicBlock *DefBB = CI->getParent();
    481 
    482   /// InsertedCasts - Only insert a cast in each block once.
    483   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
    484 
    485   bool MadeChange = false;
    486   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
    487        UI != E; ) {
    488     Use &TheUse = UI.getUse();
    489     Instruction *User = cast<Instruction>(*UI);
    490 
    491     // Figure out which BB this cast is used in.  For PHI's this is the
    492     // appropriate predecessor block.
    493     BasicBlock *UserBB = User->getParent();
    494     if (PHINode *PN = dyn_cast<PHINode>(User)) {
    495       UserBB = PN->getIncomingBlock(TheUse);
    496     }
    497 
    498     // Preincrement use iterator so we don't invalidate it.
    499     ++UI;
    500 
    501     // If this user is in the same block as the cast, don't change the cast.
    502     if (UserBB == DefBB) continue;
    503 
    504     // If we have already inserted a cast into this block, use it.
    505     CastInst *&InsertedCast = InsertedCasts[UserBB];
    506 
    507     if (!InsertedCast) {
    508       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    509       InsertedCast =
    510         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
    511                          InsertPt);
    512       MadeChange = true;
    513     }
    514 
    515     // Replace a use of the cast with a use of the new cast.
    516     TheUse = InsertedCast;
    517     ++NumCastUses;
    518   }
    519 
    520   // If we removed all uses, nuke the cast.
    521   if (CI->use_empty()) {
    522     CI->eraseFromParent();
    523     MadeChange = true;
    524   }
    525 
    526   return MadeChange;
    527 }
    528 
    529 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
    530 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
    531 /// sink it into user blocks to reduce the number of virtual
    532 /// registers that must be created and coalesced.
    533 ///
    534 /// Return true if any changes are made.
    535 ///
    536 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
    537   // If this is a noop copy,
    538   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
    539   EVT DstVT = TLI.getValueType(CI->getType());
    540 
    541   // This is an fp<->int conversion?
    542   if (SrcVT.isInteger() != DstVT.isInteger())
    543     return false;
    544 
    545   // If this is an extension, it will be a zero or sign extension, which
    546   // isn't a noop.
    547   if (SrcVT.bitsLT(DstVT)) return false;
    548 
    549   // If these values will be promoted, find out what they will be promoted
    550   // to.  This helps us consider truncates on PPC as noop copies when they
    551   // are.
    552   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
    553       TargetLowering::TypePromoteInteger)
    554     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
    555   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
    556       TargetLowering::TypePromoteInteger)
    557     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
    558 
    559   // If, after promotion, these are the same types, this is a noop copy.
    560   if (SrcVT != DstVT)
    561     return false;
    562 
    563   return SinkCast(CI);
    564 }
    565 
    566 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
    567 /// the number of virtual registers that must be created and coalesced.  This is
    568 /// a clear win except on targets with multiple condition code registers
    569 ///  (PowerPC), where it might lose; some adjustment may be wanted there.
    570 ///
    571 /// Return true if any changes are made.
    572 static bool OptimizeCmpExpression(CmpInst *CI) {
    573   BasicBlock *DefBB = CI->getParent();
    574 
    575   /// InsertedCmp - Only insert a cmp in each block once.
    576   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
    577 
    578   bool MadeChange = false;
    579   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
    580        UI != E; ) {
    581     Use &TheUse = UI.getUse();
    582     Instruction *User = cast<Instruction>(*UI);
    583 
    584     // Preincrement use iterator so we don't invalidate it.
    585     ++UI;
    586 
    587     // Don't bother for PHI nodes.
    588     if (isa<PHINode>(User))
    589       continue;
    590 
    591     // Figure out which BB this cmp is used in.
    592     BasicBlock *UserBB = User->getParent();
    593 
    594     // If this user is in the same block as the cmp, don't change the cmp.
    595     if (UserBB == DefBB) continue;
    596 
    597     // If we have already inserted a cmp into this block, use it.
    598     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
    599 
    600     if (!InsertedCmp) {
    601       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    602       InsertedCmp =
    603         CmpInst::Create(CI->getOpcode(),
    604                         CI->getPredicate(),  CI->getOperand(0),
    605                         CI->getOperand(1), "", InsertPt);
    606       MadeChange = true;
    607     }
    608 
    609     // Replace a use of the cmp with a use of the new cmp.
    610     TheUse = InsertedCmp;
    611     ++NumCmpUses;
    612   }
    613 
    614   // If we removed all uses, nuke the cmp.
    615   if (CI->use_empty())
    616     CI->eraseFromParent();
    617 
    618   return MadeChange;
    619 }
    620 
    621 /// isExtractBitsCandidateUse - Check if the candidates could
    622 /// be combined with shift instruction, which includes:
    623 /// 1. Truncate instruction
    624 /// 2. And instruction and the imm is a mask of the low bits:
    625 /// imm & (imm+1) == 0
    626 static bool isExtractBitsCandidateUse(Instruction *User) {
    627   if (!isa<TruncInst>(User)) {
    628     if (User->getOpcode() != Instruction::And ||
    629         !isa<ConstantInt>(User->getOperand(1)))
    630       return false;
    631 
    632     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
    633 
    634     if ((Cimm & (Cimm + 1)).getBoolValue())
    635       return false;
    636   }
    637   return true;
    638 }
    639 
    640 /// SinkShiftAndTruncate - sink both shift and truncate instruction
    641 /// to the use of truncate's BB.
    642 static bool
    643 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
    644                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
    645                      const TargetLowering &TLI) {
    646   BasicBlock *UserBB = User->getParent();
    647   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
    648   TruncInst *TruncI = dyn_cast<TruncInst>(User);
    649   bool MadeChange = false;
    650 
    651   for (Value::user_iterator TruncUI = TruncI->user_begin(),
    652                             TruncE = TruncI->user_end();
    653        TruncUI != TruncE;) {
    654 
    655     Use &TruncTheUse = TruncUI.getUse();
    656     Instruction *TruncUser = cast<Instruction>(*TruncUI);
    657     // Preincrement use iterator so we don't invalidate it.
    658 
    659     ++TruncUI;
    660 
    661     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
    662     if (!ISDOpcode)
    663       continue;
    664 
    665     // If the use is actually a legal node, there will not be an implicit
    666     // truncate.
    667     if (TLI.isOperationLegalOrCustom(ISDOpcode,
    668                                      EVT::getEVT(TruncUser->getType())))
    669       continue;
    670 
    671     // Don't bother for PHI nodes.
    672     if (isa<PHINode>(TruncUser))
    673       continue;
    674 
    675     BasicBlock *TruncUserBB = TruncUser->getParent();
    676 
    677     if (UserBB == TruncUserBB)
    678       continue;
    679 
    680     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
    681     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
    682 
    683     if (!InsertedShift && !InsertedTrunc) {
    684       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
    685       // Sink the shift
    686       if (ShiftI->getOpcode() == Instruction::AShr)
    687         InsertedShift =
    688             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
    689       else
    690         InsertedShift =
    691             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
    692 
    693       // Sink the trunc
    694       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
    695       TruncInsertPt++;
    696 
    697       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
    698                                        TruncI->getType(), "", TruncInsertPt);
    699 
    700       MadeChange = true;
    701 
    702       TruncTheUse = InsertedTrunc;
    703     }
    704   }
    705   return MadeChange;
    706 }
    707 
    708 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
    709 /// the uses could potentially be combined with this shift instruction and
    710 /// generate BitExtract instruction. It will only be applied if the architecture
    711 /// supports BitExtract instruction. Here is an example:
    712 /// BB1:
    713 ///   %x.extract.shift = lshr i64 %arg1, 32
    714 /// BB2:
    715 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
    716 /// ==>
    717 ///
    718 /// BB2:
    719 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
    720 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
    721 ///
    722 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
    723 /// instruction.
    724 /// Return true if any changes are made.
    725 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
    726                                 const TargetLowering &TLI) {
    727   BasicBlock *DefBB = ShiftI->getParent();
    728 
    729   /// Only insert instructions in each block once.
    730   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
    731 
    732   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
    733 
    734   bool MadeChange = false;
    735   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
    736        UI != E;) {
    737     Use &TheUse = UI.getUse();
    738     Instruction *User = cast<Instruction>(*UI);
    739     // Preincrement use iterator so we don't invalidate it.
    740     ++UI;
    741 
    742     // Don't bother for PHI nodes.
    743     if (isa<PHINode>(User))
    744       continue;
    745 
    746     if (!isExtractBitsCandidateUse(User))
    747       continue;
    748 
    749     BasicBlock *UserBB = User->getParent();
    750 
    751     if (UserBB == DefBB) {
    752       // If the shift and truncate instruction are in the same BB. The use of
    753       // the truncate(TruncUse) may still introduce another truncate if not
    754       // legal. In this case, we would like to sink both shift and truncate
    755       // instruction to the BB of TruncUse.
    756       // for example:
    757       // BB1:
    758       // i64 shift.result = lshr i64 opnd, imm
    759       // trunc.result = trunc shift.result to i16
    760       //
    761       // BB2:
    762       //   ----> We will have an implicit truncate here if the architecture does
    763       //   not have i16 compare.
    764       // cmp i16 trunc.result, opnd2
    765       //
    766       if (isa<TruncInst>(User) && shiftIsLegal
    767           // If the type of the truncate is legal, no trucate will be
    768           // introduced in other basic blocks.
    769           && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
    770         MadeChange =
    771             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
    772 
    773       continue;
    774     }
    775     // If we have already inserted a shift into this block, use it.
    776     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
    777 
    778     if (!InsertedShift) {
    779       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    780 
    781       if (ShiftI->getOpcode() == Instruction::AShr)
    782         InsertedShift =
    783             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
    784       else
    785         InsertedShift =
    786             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
    787 
    788       MadeChange = true;
    789     }
    790 
    791     // Replace a use of the shift with a use of the new shift.
    792     TheUse = InsertedShift;
    793   }
    794 
    795   // If we removed all uses, nuke the shift.
    796   if (ShiftI->use_empty())
    797     ShiftI->eraseFromParent();
    798 
    799   return MadeChange;
    800 }
    801 
    802 namespace {
    803 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
    804 protected:
    805   void replaceCall(Value *With) override {
    806     CI->replaceAllUsesWith(With);
    807     CI->eraseFromParent();
    808   }
    809   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
    810       if (ConstantInt *SizeCI =
    811                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
    812         return SizeCI->isAllOnesValue();
    813     return false;
    814   }
    815 };
    816 } // end anonymous namespace
    817 
    818 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
    819   BasicBlock *BB = CI->getParent();
    820 
    821   // Lower inline assembly if we can.
    822   // If we found an inline asm expession, and if the target knows how to
    823   // lower it to normal LLVM code, do so now.
    824   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
    825     if (TLI->ExpandInlineAsm(CI)) {
    826       // Avoid invalidating the iterator.
    827       CurInstIterator = BB->begin();
    828       // Avoid processing instructions out of order, which could cause
    829       // reuse before a value is defined.
    830       SunkAddrs.clear();
    831       return true;
    832     }
    833     // Sink address computing for memory operands into the block.
    834     if (OptimizeInlineAsmInst(CI))
    835       return true;
    836   }
    837 
    838   // Lower all uses of llvm.objectsize.*
    839   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
    840   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
    841     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
    842     Type *ReturnTy = CI->getType();
    843     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
    844 
    845     // Substituting this can cause recursive simplifications, which can
    846     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
    847     // happens.
    848     WeakVH IterHandle(CurInstIterator);
    849 
    850     replaceAndRecursivelySimplify(CI, RetVal,
    851                                   TLI ? TLI->getDataLayout() : nullptr,
    852                                   TLInfo, ModifiedDT ? nullptr : DT);
    853 
    854     // If the iterator instruction was recursively deleted, start over at the
    855     // start of the block.
    856     if (IterHandle != CurInstIterator) {
    857       CurInstIterator = BB->begin();
    858       SunkAddrs.clear();
    859     }
    860     return true;
    861   }
    862 
    863   if (II && TLI) {
    864     SmallVector<Value*, 2> PtrOps;
    865     Type *AccessTy;
    866     if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
    867       while (!PtrOps.empty())
    868         if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
    869           return true;
    870   }
    871 
    872   // From here on out we're working with named functions.
    873   if (!CI->getCalledFunction()) return false;
    874 
    875   // We'll need DataLayout from here on out.
    876   const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
    877   if (!TD) return false;
    878 
    879   // Lower all default uses of _chk calls.  This is very similar
    880   // to what InstCombineCalls does, but here we are only lowering calls
    881   // that have the default "don't know" as the objectsize.  Anything else
    882   // should be left alone.
    883   CodeGenPrepareFortifiedLibCalls Simplifier;
    884   return Simplifier.fold(CI, TD, TLInfo);
    885 }
    886 
    887 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
    888 /// instructions to the predecessor to enable tail call optimizations. The
    889 /// case it is currently looking for is:
    890 /// @code
    891 /// bb0:
    892 ///   %tmp0 = tail call i32 @f0()
    893 ///   br label %return
    894 /// bb1:
    895 ///   %tmp1 = tail call i32 @f1()
    896 ///   br label %return
    897 /// bb2:
    898 ///   %tmp2 = tail call i32 @f2()
    899 ///   br label %return
    900 /// return:
    901 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
    902 ///   ret i32 %retval
    903 /// @endcode
    904 ///
    905 /// =>
    906 ///
    907 /// @code
    908 /// bb0:
    909 ///   %tmp0 = tail call i32 @f0()
    910 ///   ret i32 %tmp0
    911 /// bb1:
    912 ///   %tmp1 = tail call i32 @f1()
    913 ///   ret i32 %tmp1
    914 /// bb2:
    915 ///   %tmp2 = tail call i32 @f2()
    916 ///   ret i32 %tmp2
    917 /// @endcode
    918 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
    919   if (!TLI)
    920     return false;
    921 
    922   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
    923   if (!RI)
    924     return false;
    925 
    926   PHINode *PN = nullptr;
    927   BitCastInst *BCI = nullptr;
    928   Value *V = RI->getReturnValue();
    929   if (V) {
    930     BCI = dyn_cast<BitCastInst>(V);
    931     if (BCI)
    932       V = BCI->getOperand(0);
    933 
    934     PN = dyn_cast<PHINode>(V);
    935     if (!PN)
    936       return false;
    937   }
    938 
    939   if (PN && PN->getParent() != BB)
    940     return false;
    941 
    942   // It's not safe to eliminate the sign / zero extension of the return value.
    943   // See llvm::isInTailCallPosition().
    944   const Function *F = BB->getParent();
    945   AttributeSet CallerAttrs = F->getAttributes();
    946   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
    947       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
    948     return false;
    949 
    950   // Make sure there are no instructions between the PHI and return, or that the
    951   // return is the first instruction in the block.
    952   if (PN) {
    953     BasicBlock::iterator BI = BB->begin();
    954     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
    955     if (&*BI == BCI)
    956       // Also skip over the bitcast.
    957       ++BI;
    958     if (&*BI != RI)
    959       return false;
    960   } else {
    961     BasicBlock::iterator BI = BB->begin();
    962     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
    963     if (&*BI != RI)
    964       return false;
    965   }
    966 
    967   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
    968   /// call.
    969   SmallVector<CallInst*, 4> TailCalls;
    970   if (PN) {
    971     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
    972       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
    973       // Make sure the phi value is indeed produced by the tail call.
    974       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
    975           TLI->mayBeEmittedAsTailCall(CI))
    976         TailCalls.push_back(CI);
    977     }
    978   } else {
    979     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
    980     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
    981       if (!VisitedBBs.insert(*PI))
    982         continue;
    983 
    984       BasicBlock::InstListType &InstList = (*PI)->getInstList();
    985       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
    986       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
    987       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
    988       if (RI == RE)
    989         continue;
    990 
    991       CallInst *CI = dyn_cast<CallInst>(&*RI);
    992       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
    993         TailCalls.push_back(CI);
    994     }
    995   }
    996 
    997   bool Changed = false;
    998   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
    999     CallInst *CI = TailCalls[i];
   1000     CallSite CS(CI);
   1001 
   1002     // Conservatively require the attributes of the call to match those of the
   1003     // return. Ignore noalias because it doesn't affect the call sequence.
   1004     AttributeSet CalleeAttrs = CS.getAttributes();
   1005     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
   1006           removeAttribute(Attribute::NoAlias) !=
   1007         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
   1008           removeAttribute(Attribute::NoAlias))
   1009       continue;
   1010 
   1011     // Make sure the call instruction is followed by an unconditional branch to
   1012     // the return block.
   1013     BasicBlock *CallBB = CI->getParent();
   1014     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
   1015     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
   1016       continue;
   1017 
   1018     // Duplicate the return into CallBB.
   1019     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
   1020     ModifiedDT = Changed = true;
   1021     ++NumRetsDup;
   1022   }
   1023 
   1024   // If we eliminated all predecessors of the block, delete the block now.
   1025   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
   1026     BB->eraseFromParent();
   1027 
   1028   return Changed;
   1029 }
   1030 
   1031 //===----------------------------------------------------------------------===//
   1032 // Memory Optimization
   1033 //===----------------------------------------------------------------------===//
   1034 
   1035 namespace {
   1036 
   1037 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
   1038 /// which holds actual Value*'s for register values.
   1039 struct ExtAddrMode : public TargetLowering::AddrMode {
   1040   Value *BaseReg;
   1041   Value *ScaledReg;
   1042   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
   1043   void print(raw_ostream &OS) const;
   1044   void dump() const;
   1045 
   1046   bool operator==(const ExtAddrMode& O) const {
   1047     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
   1048            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
   1049            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
   1050   }
   1051 };
   1052 
   1053 #ifndef NDEBUG
   1054 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
   1055   AM.print(OS);
   1056   return OS;
   1057 }
   1058 #endif
   1059 
   1060 void ExtAddrMode::print(raw_ostream &OS) const {
   1061   bool NeedPlus = false;
   1062   OS << "[";
   1063   if (BaseGV) {
   1064     OS << (NeedPlus ? " + " : "")
   1065        << "GV:";
   1066     BaseGV->printAsOperand(OS, /*PrintType=*/false);
   1067     NeedPlus = true;
   1068   }
   1069 
   1070   if (BaseOffs) {
   1071     OS << (NeedPlus ? " + " : "")
   1072        << BaseOffs;
   1073     NeedPlus = true;
   1074   }
   1075 
   1076   if (BaseReg) {
   1077     OS << (NeedPlus ? " + " : "")
   1078        << "Base:";
   1079     BaseReg->printAsOperand(OS, /*PrintType=*/false);
   1080     NeedPlus = true;
   1081   }
   1082   if (Scale) {
   1083     OS << (NeedPlus ? " + " : "")
   1084        << Scale << "*";
   1085     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
   1086   }
   1087 
   1088   OS << ']';
   1089 }
   1090 
   1091 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1092 void ExtAddrMode::dump() const {
   1093   print(dbgs());
   1094   dbgs() << '\n';
   1095 }
   1096 #endif
   1097 
   1098 /// \brief This class provides transaction based operation on the IR.
   1099 /// Every change made through this class is recorded in the internal state and
   1100 /// can be undone (rollback) until commit is called.
   1101 class TypePromotionTransaction {
   1102 
   1103   /// \brief This represents the common interface of the individual transaction.
   1104   /// Each class implements the logic for doing one specific modification on
   1105   /// the IR via the TypePromotionTransaction.
   1106   class TypePromotionAction {
   1107   protected:
   1108     /// The Instruction modified.
   1109     Instruction *Inst;
   1110 
   1111   public:
   1112     /// \brief Constructor of the action.
   1113     /// The constructor performs the related action on the IR.
   1114     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
   1115 
   1116     virtual ~TypePromotionAction() {}
   1117 
   1118     /// \brief Undo the modification done by this action.
   1119     /// When this method is called, the IR must be in the same state as it was
   1120     /// before this action was applied.
   1121     /// \pre Undoing the action works if and only if the IR is in the exact same
   1122     /// state as it was directly after this action was applied.
   1123     virtual void undo() = 0;
   1124 
   1125     /// \brief Advocate every change made by this action.
   1126     /// When the results on the IR of the action are to be kept, it is important
   1127     /// to call this function, otherwise hidden information may be kept forever.
   1128     virtual void commit() {
   1129       // Nothing to be done, this action is not doing anything.
   1130     }
   1131   };
   1132 
   1133   /// \brief Utility to remember the position of an instruction.
   1134   class InsertionHandler {
   1135     /// Position of an instruction.
   1136     /// Either an instruction:
   1137     /// - Is the first in a basic block: BB is used.
   1138     /// - Has a previous instructon: PrevInst is used.
   1139     union {
   1140       Instruction *PrevInst;
   1141       BasicBlock *BB;
   1142     } Point;
   1143     /// Remember whether or not the instruction had a previous instruction.
   1144     bool HasPrevInstruction;
   1145 
   1146   public:
   1147     /// \brief Record the position of \p Inst.
   1148     InsertionHandler(Instruction *Inst) {
   1149       BasicBlock::iterator It = Inst;
   1150       HasPrevInstruction = (It != (Inst->getParent()->begin()));
   1151       if (HasPrevInstruction)
   1152         Point.PrevInst = --It;
   1153       else
   1154         Point.BB = Inst->getParent();
   1155     }
   1156 
   1157     /// \brief Insert \p Inst at the recorded position.
   1158     void insert(Instruction *Inst) {
   1159       if (HasPrevInstruction) {
   1160         if (Inst->getParent())
   1161           Inst->removeFromParent();
   1162         Inst->insertAfter(Point.PrevInst);
   1163       } else {
   1164         Instruction *Position = Point.BB->getFirstInsertionPt();
   1165         if (Inst->getParent())
   1166           Inst->moveBefore(Position);
   1167         else
   1168           Inst->insertBefore(Position);
   1169       }
   1170     }
   1171   };
   1172 
   1173   /// \brief Move an instruction before another.
   1174   class InstructionMoveBefore : public TypePromotionAction {
   1175     /// Original position of the instruction.
   1176     InsertionHandler Position;
   1177 
   1178   public:
   1179     /// \brief Move \p Inst before \p Before.
   1180     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
   1181         : TypePromotionAction(Inst), Position(Inst) {
   1182       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
   1183       Inst->moveBefore(Before);
   1184     }
   1185 
   1186     /// \brief Move the instruction back to its original position.
   1187     void undo() override {
   1188       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
   1189       Position.insert(Inst);
   1190     }
   1191   };
   1192 
   1193   /// \brief Set the operand of an instruction with a new value.
   1194   class OperandSetter : public TypePromotionAction {
   1195     /// Original operand of the instruction.
   1196     Value *Origin;
   1197     /// Index of the modified instruction.
   1198     unsigned Idx;
   1199 
   1200   public:
   1201     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
   1202     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
   1203         : TypePromotionAction(Inst), Idx(Idx) {
   1204       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
   1205                    << "for:" << *Inst << "\n"
   1206                    << "with:" << *NewVal << "\n");
   1207       Origin = Inst->getOperand(Idx);
   1208       Inst->setOperand(Idx, NewVal);
   1209     }
   1210 
   1211     /// \brief Restore the original value of the instruction.
   1212     void undo() override {
   1213       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
   1214                    << "for: " << *Inst << "\n"
   1215                    << "with: " << *Origin << "\n");
   1216       Inst->setOperand(Idx, Origin);
   1217     }
   1218   };
   1219 
   1220   /// \brief Hide the operands of an instruction.
   1221   /// Do as if this instruction was not using any of its operands.
   1222   class OperandsHider : public TypePromotionAction {
   1223     /// The list of original operands.
   1224     SmallVector<Value *, 4> OriginalValues;
   1225 
   1226   public:
   1227     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
   1228     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
   1229       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
   1230       unsigned NumOpnds = Inst->getNumOperands();
   1231       OriginalValues.reserve(NumOpnds);
   1232       for (unsigned It = 0; It < NumOpnds; ++It) {
   1233         // Save the current operand.
   1234         Value *Val = Inst->getOperand(It);
   1235         OriginalValues.push_back(Val);
   1236         // Set a dummy one.
   1237         // We could use OperandSetter here, but that would implied an overhead
   1238         // that we are not willing to pay.
   1239         Inst->setOperand(It, UndefValue::get(Val->getType()));
   1240       }
   1241     }
   1242 
   1243     /// \brief Restore the original list of uses.
   1244     void undo() override {
   1245       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
   1246       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
   1247         Inst->setOperand(It, OriginalValues[It]);
   1248     }
   1249   };
   1250 
   1251   /// \brief Build a truncate instruction.
   1252   class TruncBuilder : public TypePromotionAction {
   1253   public:
   1254     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
   1255     /// result.
   1256     /// trunc Opnd to Ty.
   1257     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
   1258       IRBuilder<> Builder(Opnd);
   1259       Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
   1260       DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
   1261     }
   1262 
   1263     /// \brief Get the built instruction.
   1264     Instruction *getBuiltInstruction() { return Inst; }
   1265 
   1266     /// \brief Remove the built instruction.
   1267     void undo() override {
   1268       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
   1269       Inst->eraseFromParent();
   1270     }
   1271   };
   1272 
   1273   /// \brief Build a sign extension instruction.
   1274   class SExtBuilder : public TypePromotionAction {
   1275   public:
   1276     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
   1277     /// result.
   1278     /// sext Opnd to Ty.
   1279     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
   1280         : TypePromotionAction(Inst) {
   1281       IRBuilder<> Builder(InsertPt);
   1282       Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
   1283       DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
   1284     }
   1285 
   1286     /// \brief Get the built instruction.
   1287     Instruction *getBuiltInstruction() { return Inst; }
   1288 
   1289     /// \brief Remove the built instruction.
   1290     void undo() override {
   1291       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
   1292       Inst->eraseFromParent();
   1293     }
   1294   };
   1295 
   1296   /// \brief Mutate an instruction to another type.
   1297   class TypeMutator : public TypePromotionAction {
   1298     /// Record the original type.
   1299     Type *OrigTy;
   1300 
   1301   public:
   1302     /// \brief Mutate the type of \p Inst into \p NewTy.
   1303     TypeMutator(Instruction *Inst, Type *NewTy)
   1304         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
   1305       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
   1306                    << "\n");
   1307       Inst->mutateType(NewTy);
   1308     }
   1309 
   1310     /// \brief Mutate the instruction back to its original type.
   1311     void undo() override {
   1312       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
   1313                    << "\n");
   1314       Inst->mutateType(OrigTy);
   1315     }
   1316   };
   1317 
   1318   /// \brief Replace the uses of an instruction by another instruction.
   1319   class UsesReplacer : public TypePromotionAction {
   1320     /// Helper structure to keep track of the replaced uses.
   1321     struct InstructionAndIdx {
   1322       /// The instruction using the instruction.
   1323       Instruction *Inst;
   1324       /// The index where this instruction is used for Inst.
   1325       unsigned Idx;
   1326       InstructionAndIdx(Instruction *Inst, unsigned Idx)
   1327           : Inst(Inst), Idx(Idx) {}
   1328     };
   1329 
   1330     /// Keep track of the original uses (pair Instruction, Index).
   1331     SmallVector<InstructionAndIdx, 4> OriginalUses;
   1332     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
   1333 
   1334   public:
   1335     /// \brief Replace all the use of \p Inst by \p New.
   1336     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
   1337       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
   1338                    << "\n");
   1339       // Record the original uses.
   1340       for (Use &U : Inst->uses()) {
   1341         Instruction *UserI = cast<Instruction>(U.getUser());
   1342         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
   1343       }
   1344       // Now, we can replace the uses.
   1345       Inst->replaceAllUsesWith(New);
   1346     }
   1347 
   1348     /// \brief Reassign the original uses of Inst to Inst.
   1349     void undo() override {
   1350       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
   1351       for (use_iterator UseIt = OriginalUses.begin(),
   1352                         EndIt = OriginalUses.end();
   1353            UseIt != EndIt; ++UseIt) {
   1354         UseIt->Inst->setOperand(UseIt->Idx, Inst);
   1355       }
   1356     }
   1357   };
   1358 
   1359   /// \brief Remove an instruction from the IR.
   1360   class InstructionRemover : public TypePromotionAction {
   1361     /// Original position of the instruction.
   1362     InsertionHandler Inserter;
   1363     /// Helper structure to hide all the link to the instruction. In other
   1364     /// words, this helps to do as if the instruction was removed.
   1365     OperandsHider Hider;
   1366     /// Keep track of the uses replaced, if any.
   1367     UsesReplacer *Replacer;
   1368 
   1369   public:
   1370     /// \brief Remove all reference of \p Inst and optinally replace all its
   1371     /// uses with New.
   1372     /// \pre If !Inst->use_empty(), then New != nullptr
   1373     InstructionRemover(Instruction *Inst, Value *New = nullptr)
   1374         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
   1375           Replacer(nullptr) {
   1376       if (New)
   1377         Replacer = new UsesReplacer(Inst, New);
   1378       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
   1379       Inst->removeFromParent();
   1380     }
   1381 
   1382     ~InstructionRemover() { delete Replacer; }
   1383 
   1384     /// \brief Really remove the instruction.
   1385     void commit() override { delete Inst; }
   1386 
   1387     /// \brief Resurrect the instruction and reassign it to the proper uses if
   1388     /// new value was provided when build this action.
   1389     void undo() override {
   1390       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
   1391       Inserter.insert(Inst);
   1392       if (Replacer)
   1393         Replacer->undo();
   1394       Hider.undo();
   1395     }
   1396   };
   1397 
   1398 public:
   1399   /// Restoration point.
   1400   /// The restoration point is a pointer to an action instead of an iterator
   1401   /// because the iterator may be invalidated but not the pointer.
   1402   typedef const TypePromotionAction *ConstRestorationPt;
   1403   /// Advocate every changes made in that transaction.
   1404   void commit();
   1405   /// Undo all the changes made after the given point.
   1406   void rollback(ConstRestorationPt Point);
   1407   /// Get the current restoration point.
   1408   ConstRestorationPt getRestorationPoint() const;
   1409 
   1410   /// \name API for IR modification with state keeping to support rollback.
   1411   /// @{
   1412   /// Same as Instruction::setOperand.
   1413   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
   1414   /// Same as Instruction::eraseFromParent.
   1415   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
   1416   /// Same as Value::replaceAllUsesWith.
   1417   void replaceAllUsesWith(Instruction *Inst, Value *New);
   1418   /// Same as Value::mutateType.
   1419   void mutateType(Instruction *Inst, Type *NewTy);
   1420   /// Same as IRBuilder::createTrunc.
   1421   Instruction *createTrunc(Instruction *Opnd, Type *Ty);
   1422   /// Same as IRBuilder::createSExt.
   1423   Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
   1424   /// Same as Instruction::moveBefore.
   1425   void moveBefore(Instruction *Inst, Instruction *Before);
   1426   /// @}
   1427 
   1428 private:
   1429   /// The ordered list of actions made so far.
   1430   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
   1431   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
   1432 };
   1433 
   1434 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
   1435                                           Value *NewVal) {
   1436   Actions.push_back(
   1437       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
   1438 }
   1439 
   1440 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
   1441                                                 Value *NewVal) {
   1442   Actions.push_back(
   1443       make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
   1444 }
   1445 
   1446 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
   1447                                                   Value *New) {
   1448   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
   1449 }
   1450 
   1451 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
   1452   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
   1453 }
   1454 
   1455 Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
   1456                                                    Type *Ty) {
   1457   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
   1458   Instruction *I = Ptr->getBuiltInstruction();
   1459   Actions.push_back(std::move(Ptr));
   1460   return I;
   1461 }
   1462 
   1463 Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
   1464                                                   Value *Opnd, Type *Ty) {
   1465   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
   1466   Instruction *I = Ptr->getBuiltInstruction();
   1467   Actions.push_back(std::move(Ptr));
   1468   return I;
   1469 }
   1470 
   1471 void TypePromotionTransaction::moveBefore(Instruction *Inst,
   1472                                           Instruction *Before) {
   1473   Actions.push_back(
   1474       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
   1475 }
   1476 
   1477 TypePromotionTransaction::ConstRestorationPt
   1478 TypePromotionTransaction::getRestorationPoint() const {
   1479   return !Actions.empty() ? Actions.back().get() : nullptr;
   1480 }
   1481 
   1482 void TypePromotionTransaction::commit() {
   1483   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
   1484        ++It)
   1485     (*It)->commit();
   1486   Actions.clear();
   1487 }
   1488 
   1489 void TypePromotionTransaction::rollback(
   1490     TypePromotionTransaction::ConstRestorationPt Point) {
   1491   while (!Actions.empty() && Point != Actions.back().get()) {
   1492     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
   1493     Curr->undo();
   1494   }
   1495 }
   1496 
   1497 /// \brief A helper class for matching addressing modes.
   1498 ///
   1499 /// This encapsulates the logic for matching the target-legal addressing modes.
   1500 class AddressingModeMatcher {
   1501   SmallVectorImpl<Instruction*> &AddrModeInsts;
   1502   const TargetLowering &TLI;
   1503 
   1504   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
   1505   /// the memory instruction that we're computing this address for.
   1506   Type *AccessTy;
   1507   Instruction *MemoryInst;
   1508 
   1509   /// AddrMode - This is the addressing mode that we're building up.  This is
   1510   /// part of the return value of this addressing mode matching stuff.
   1511   ExtAddrMode &AddrMode;
   1512 
   1513   /// The truncate instruction inserted by other CodeGenPrepare optimizations.
   1514   const SetOfInstrs &InsertedTruncs;
   1515   /// A map from the instructions to their type before promotion.
   1516   InstrToOrigTy &PromotedInsts;
   1517   /// The ongoing transaction where every action should be registered.
   1518   TypePromotionTransaction &TPT;
   1519 
   1520   /// IgnoreProfitability - This is set to true when we should not do
   1521   /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
   1522   /// always returns true.
   1523   bool IgnoreProfitability;
   1524 
   1525   AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
   1526                         const TargetLowering &T, Type *AT,
   1527                         Instruction *MI, ExtAddrMode &AM,
   1528                         const SetOfInstrs &InsertedTruncs,
   1529                         InstrToOrigTy &PromotedInsts,
   1530                         TypePromotionTransaction &TPT)
   1531       : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
   1532         InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
   1533     IgnoreProfitability = false;
   1534   }
   1535 public:
   1536 
   1537   /// Match - Find the maximal addressing mode that a load/store of V can fold,
   1538   /// give an access type of AccessTy.  This returns a list of involved
   1539   /// instructions in AddrModeInsts.
   1540   /// \p InsertedTruncs The truncate instruction inserted by other
   1541   /// CodeGenPrepare
   1542   /// optimizations.
   1543   /// \p PromotedInsts maps the instructions to their type before promotion.
   1544   /// \p The ongoing transaction where every action should be registered.
   1545   static ExtAddrMode Match(Value *V, Type *AccessTy,
   1546                            Instruction *MemoryInst,
   1547                            SmallVectorImpl<Instruction*> &AddrModeInsts,
   1548                            const TargetLowering &TLI,
   1549                            const SetOfInstrs &InsertedTruncs,
   1550                            InstrToOrigTy &PromotedInsts,
   1551                            TypePromotionTransaction &TPT) {
   1552     ExtAddrMode Result;
   1553 
   1554     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
   1555                                          MemoryInst, Result, InsertedTruncs,
   1556                                          PromotedInsts, TPT).MatchAddr(V, 0);
   1557     (void)Success; assert(Success && "Couldn't select *anything*?");
   1558     return Result;
   1559   }
   1560 private:
   1561   bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
   1562   bool MatchAddr(Value *V, unsigned Depth);
   1563   bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
   1564                           bool *MovedAway = nullptr);
   1565   bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
   1566                                             ExtAddrMode &AMBefore,
   1567                                             ExtAddrMode &AMAfter);
   1568   bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
   1569   bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
   1570                              Value *PromotedOperand) const;
   1571 };
   1572 
   1573 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
   1574 /// Return true and update AddrMode if this addr mode is legal for the target,
   1575 /// false if not.
   1576 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
   1577                                              unsigned Depth) {
   1578   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
   1579   // mode.  Just process that directly.
   1580   if (Scale == 1)
   1581     return MatchAddr(ScaleReg, Depth);
   1582 
   1583   // If the scale is 0, it takes nothing to add this.
   1584   if (Scale == 0)
   1585     return true;
   1586 
   1587   // If we already have a scale of this value, we can add to it, otherwise, we
   1588   // need an available scale field.
   1589   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
   1590     return false;
   1591 
   1592   ExtAddrMode TestAddrMode = AddrMode;
   1593 
   1594   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
   1595   // [A+B + A*7] -> [B+A*8].
   1596   TestAddrMode.Scale += Scale;
   1597   TestAddrMode.ScaledReg = ScaleReg;
   1598 
   1599   // If the new address isn't legal, bail out.
   1600   if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
   1601     return false;
   1602 
   1603   // It was legal, so commit it.
   1604   AddrMode = TestAddrMode;
   1605 
   1606   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
   1607   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
   1608   // X*Scale + C*Scale to addr mode.
   1609   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
   1610   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
   1611       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
   1612     TestAddrMode.ScaledReg = AddLHS;
   1613     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
   1614 
   1615     // If this addressing mode is legal, commit it and remember that we folded
   1616     // this instruction.
   1617     if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
   1618       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
   1619       AddrMode = TestAddrMode;
   1620       return true;
   1621     }
   1622   }
   1623 
   1624   // Otherwise, not (x+c)*scale, just return what we have.
   1625   return true;
   1626 }
   1627 
   1628 /// MightBeFoldableInst - This is a little filter, which returns true if an
   1629 /// addressing computation involving I might be folded into a load/store
   1630 /// accessing it.  This doesn't need to be perfect, but needs to accept at least
   1631 /// the set of instructions that MatchOperationAddr can.
   1632 static bool MightBeFoldableInst(Instruction *I) {
   1633   switch (I->getOpcode()) {
   1634   case Instruction::BitCast:
   1635   case Instruction::AddrSpaceCast:
   1636     // Don't touch identity bitcasts.
   1637     if (I->getType() == I->getOperand(0)->getType())
   1638       return false;
   1639     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
   1640   case Instruction::PtrToInt:
   1641     // PtrToInt is always a noop, as we know that the int type is pointer sized.
   1642     return true;
   1643   case Instruction::IntToPtr:
   1644     // We know the input is intptr_t, so this is foldable.
   1645     return true;
   1646   case Instruction::Add:
   1647     return true;
   1648   case Instruction::Mul:
   1649   case Instruction::Shl:
   1650     // Can only handle X*C and X << C.
   1651     return isa<ConstantInt>(I->getOperand(1));
   1652   case Instruction::GetElementPtr:
   1653     return true;
   1654   default:
   1655     return false;
   1656   }
   1657 }
   1658 
   1659 /// \brief Hepler class to perform type promotion.
   1660 class TypePromotionHelper {
   1661   /// \brief Utility function to check whether or not a sign extension of
   1662   /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
   1663   /// using the operands of \p Inst or promoting \p Inst.
   1664   /// In other words, check if:
   1665   /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
   1666   /// #1 Promotion applies:
   1667   /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
   1668   /// #2 Operand reuses:
   1669   /// sext opnd1 to ConsideredSExtType.
   1670   /// \p PromotedInsts maps the instructions to their type before promotion.
   1671   static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
   1672                             const InstrToOrigTy &PromotedInsts);
   1673 
   1674   /// \brief Utility function to determine if \p OpIdx should be promoted when
   1675   /// promoting \p Inst.
   1676   static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
   1677     if (isa<SelectInst>(Inst) && OpIdx == 0)
   1678       return false;
   1679     return true;
   1680   }
   1681 
   1682   /// \brief Utility function to promote the operand of \p SExt when this
   1683   /// operand is a promotable trunc or sext.
   1684   /// \p PromotedInsts maps the instructions to their type before promotion.
   1685   /// \p CreatedInsts[out] contains how many non-free instructions have been
   1686   /// created to promote the operand of SExt.
   1687   /// Should never be called directly.
   1688   /// \return The promoted value which is used instead of SExt.
   1689   static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
   1690                                               TypePromotionTransaction &TPT,
   1691                                               InstrToOrigTy &PromotedInsts,
   1692                                               unsigned &CreatedInsts);
   1693 
   1694   /// \brief Utility function to promote the operand of \p SExt when this
   1695   /// operand is promotable and is not a supported trunc or sext.
   1696   /// \p PromotedInsts maps the instructions to their type before promotion.
   1697   /// \p CreatedInsts[out] contains how many non-free instructions have been
   1698   /// created to promote the operand of SExt.
   1699   /// Should never be called directly.
   1700   /// \return The promoted value which is used instead of SExt.
   1701   static Value *promoteOperandForOther(Instruction *SExt,
   1702                                        TypePromotionTransaction &TPT,
   1703                                        InstrToOrigTy &PromotedInsts,
   1704                                        unsigned &CreatedInsts);
   1705 
   1706 public:
   1707   /// Type for the utility function that promotes the operand of SExt.
   1708   typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
   1709                            InstrToOrigTy &PromotedInsts,
   1710                            unsigned &CreatedInsts);
   1711   /// \brief Given a sign extend instruction \p SExt, return the approriate
   1712   /// action to promote the operand of \p SExt instead of using SExt.
   1713   /// \return NULL if no promotable action is possible with the current
   1714   /// sign extension.
   1715   /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
   1716   /// the others CodeGenPrepare optimizations. This information is important
   1717   /// because we do not want to promote these instructions as CodeGenPrepare
   1718   /// will reinsert them later. Thus creating an infinite loop: create/remove.
   1719   /// \p PromotedInsts maps the instructions to their type before promotion.
   1720   static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
   1721                           const TargetLowering &TLI,
   1722                           const InstrToOrigTy &PromotedInsts);
   1723 };
   1724 
   1725 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
   1726                                         Type *ConsideredSExtType,
   1727                                         const InstrToOrigTy &PromotedInsts) {
   1728   // We can always get through sext.
   1729   if (isa<SExtInst>(Inst))
   1730     return true;
   1731 
   1732   // We can get through binary operator, if it is legal. In other words, the
   1733   // binary operator must have a nuw or nsw flag.
   1734   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
   1735   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
   1736       (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
   1737     return true;
   1738 
   1739   // Check if we can do the following simplification.
   1740   // sext(trunc(sext)) --> sext
   1741   if (!isa<TruncInst>(Inst))
   1742     return false;
   1743 
   1744   Value *OpndVal = Inst->getOperand(0);
   1745   // Check if we can use this operand in the sext.
   1746   // If the type is larger than the result type of the sign extension,
   1747   // we cannot.
   1748   if (OpndVal->getType()->getIntegerBitWidth() >
   1749       ConsideredSExtType->getIntegerBitWidth())
   1750     return false;
   1751 
   1752   // If the operand of the truncate is not an instruction, we will not have
   1753   // any information on the dropped bits.
   1754   // (Actually we could for constant but it is not worth the extra logic).
   1755   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
   1756   if (!Opnd)
   1757     return false;
   1758 
   1759   // Check if the source of the type is narrow enough.
   1760   // I.e., check that trunc just drops sign extended bits.
   1761   // #1 get the type of the operand.
   1762   const Type *OpndType;
   1763   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
   1764   if (It != PromotedInsts.end())
   1765     OpndType = It->second;
   1766   else if (isa<SExtInst>(Opnd))
   1767     OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
   1768   else
   1769     return false;
   1770 
   1771   // #2 check that the truncate just drop sign extended bits.
   1772   if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
   1773     return true;
   1774 
   1775   return false;
   1776 }
   1777 
   1778 TypePromotionHelper::Action TypePromotionHelper::getAction(
   1779     Instruction *SExt, const SetOfInstrs &InsertedTruncs,
   1780     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
   1781   Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
   1782   Type *SExtTy = SExt->getType();
   1783   // If the operand of the sign extension is not an instruction, we cannot
   1784   // get through.
   1785   // If it, check we can get through.
   1786   if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
   1787     return nullptr;
   1788 
   1789   // Do not promote if the operand has been added by codegenprepare.
   1790   // Otherwise, it means we are undoing an optimization that is likely to be
   1791   // redone, thus causing potential infinite loop.
   1792   if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
   1793     return nullptr;
   1794 
   1795   // SExt or Trunc instructions.
   1796   // Return the related handler.
   1797   if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
   1798     return promoteOperandForTruncAndSExt;
   1799 
   1800   // Regular instruction.
   1801   // Abort early if we will have to insert non-free instructions.
   1802   if (!SExtOpnd->hasOneUse() &&
   1803       !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
   1804     return nullptr;
   1805   return promoteOperandForOther;
   1806 }
   1807 
   1808 Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
   1809     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
   1810     InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
   1811   // By construction, the operand of SExt is an instruction. Otherwise we cannot
   1812   // get through it and this method should not be called.
   1813   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
   1814   // Replace sext(trunc(opnd)) or sext(sext(opnd))
   1815   // => sext(opnd).
   1816   TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
   1817   CreatedInsts = 0;
   1818 
   1819   // Remove dead code.
   1820   if (SExtOpnd->use_empty())
   1821     TPT.eraseInstruction(SExtOpnd);
   1822 
   1823   // Check if the sext is still needed.
   1824   if (SExt->getType() != SExt->getOperand(0)->getType())
   1825     return SExt;
   1826 
   1827   // At this point we have: sext ty opnd to ty.
   1828   // Reassign the uses of SExt to the opnd and remove SExt.
   1829   Value *NextVal = SExt->getOperand(0);
   1830   TPT.eraseInstruction(SExt, NextVal);
   1831   return NextVal;
   1832 }
   1833 
   1834 Value *
   1835 TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
   1836                                             TypePromotionTransaction &TPT,
   1837                                             InstrToOrigTy &PromotedInsts,
   1838                                             unsigned &CreatedInsts) {
   1839   // By construction, the operand of SExt is an instruction. Otherwise we cannot
   1840   // get through it and this method should not be called.
   1841   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
   1842   CreatedInsts = 0;
   1843   if (!SExtOpnd->hasOneUse()) {
   1844     // SExtOpnd will be promoted.
   1845     // All its uses, but SExt, will need to use a truncated value of the
   1846     // promoted version.
   1847     // Create the truncate now.
   1848     Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
   1849     Trunc->removeFromParent();
   1850     // Insert it just after the definition.
   1851     Trunc->insertAfter(SExtOpnd);
   1852 
   1853     TPT.replaceAllUsesWith(SExtOpnd, Trunc);
   1854     // Restore the operand of SExt (which has been replace by the previous call
   1855     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
   1856     TPT.setOperand(SExt, 0, SExtOpnd);
   1857   }
   1858 
   1859   // Get through the Instruction:
   1860   // 1. Update its type.
   1861   // 2. Replace the uses of SExt by Inst.
   1862   // 3. Sign extend each operand that needs to be sign extended.
   1863 
   1864   // Remember the original type of the instruction before promotion.
   1865   // This is useful to know that the high bits are sign extended bits.
   1866   PromotedInsts.insert(
   1867       std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
   1868   // Step #1.
   1869   TPT.mutateType(SExtOpnd, SExt->getType());
   1870   // Step #2.
   1871   TPT.replaceAllUsesWith(SExt, SExtOpnd);
   1872   // Step #3.
   1873   Instruction *SExtForOpnd = SExt;
   1874 
   1875   DEBUG(dbgs() << "Propagate SExt to operands\n");
   1876   for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
   1877        ++OpIdx) {
   1878     DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
   1879     if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
   1880         !shouldSExtOperand(SExtOpnd, OpIdx)) {
   1881       DEBUG(dbgs() << "No need to propagate\n");
   1882       continue;
   1883     }
   1884     // Check if we can statically sign extend the operand.
   1885     Value *Opnd = SExtOpnd->getOperand(OpIdx);
   1886     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
   1887       DEBUG(dbgs() << "Statically sign extend\n");
   1888       TPT.setOperand(
   1889           SExtOpnd, OpIdx,
   1890           ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
   1891       continue;
   1892     }
   1893     // UndefValue are typed, so we have to statically sign extend them.
   1894     if (isa<UndefValue>(Opnd)) {
   1895       DEBUG(dbgs() << "Statically sign extend\n");
   1896       TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
   1897       continue;
   1898     }
   1899 
   1900     // Otherwise we have to explicity sign extend the operand.
   1901     // Check if SExt was reused to sign extend an operand.
   1902     if (!SExtForOpnd) {
   1903       // If yes, create a new one.
   1904       DEBUG(dbgs() << "More operands to sext\n");
   1905       SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
   1906       ++CreatedInsts;
   1907     }
   1908 
   1909     TPT.setOperand(SExtForOpnd, 0, Opnd);
   1910 
   1911     // Move the sign extension before the insertion point.
   1912     TPT.moveBefore(SExtForOpnd, SExtOpnd);
   1913     TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
   1914     // If more sext are required, new instructions will have to be created.
   1915     SExtForOpnd = nullptr;
   1916   }
   1917   if (SExtForOpnd == SExt) {
   1918     DEBUG(dbgs() << "Sign extension is useless now\n");
   1919     TPT.eraseInstruction(SExt);
   1920   }
   1921   return SExtOpnd;
   1922 }
   1923 
   1924 /// IsPromotionProfitable - Check whether or not promoting an instruction
   1925 /// to a wider type was profitable.
   1926 /// \p MatchedSize gives the number of instructions that have been matched
   1927 /// in the addressing mode after the promotion was applied.
   1928 /// \p SizeWithPromotion gives the number of created instructions for
   1929 /// the promotion plus the number of instructions that have been
   1930 /// matched in the addressing mode before the promotion.
   1931 /// \p PromotedOperand is the value that has been promoted.
   1932 /// \return True if the promotion is profitable, false otherwise.
   1933 bool
   1934 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
   1935                                              unsigned SizeWithPromotion,
   1936                                              Value *PromotedOperand) const {
   1937   // We folded less instructions than what we created to promote the operand.
   1938   // This is not profitable.
   1939   if (MatchedSize < SizeWithPromotion)
   1940     return false;
   1941   if (MatchedSize > SizeWithPromotion)
   1942     return true;
   1943   // The promotion is neutral but it may help folding the sign extension in
   1944   // loads for instance.
   1945   // Check that we did not create an illegal instruction.
   1946   Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
   1947   if (!PromotedInst)
   1948     return false;
   1949   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
   1950   // If the ISDOpcode is undefined, it was undefined before the promotion.
   1951   if (!ISDOpcode)
   1952     return true;
   1953   // Otherwise, check if the promoted instruction is legal or not.
   1954   return TLI.isOperationLegalOrCustom(ISDOpcode,
   1955                                       EVT::getEVT(PromotedInst->getType()));
   1956 }
   1957 
   1958 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
   1959 /// fold the operation into the addressing mode.  If so, update the addressing
   1960 /// mode and return true, otherwise return false without modifying AddrMode.
   1961 /// If \p MovedAway is not NULL, it contains the information of whether or
   1962 /// not AddrInst has to be folded into the addressing mode on success.
   1963 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
   1964 /// because it has been moved away.
   1965 /// Thus AddrInst must not be added in the matched instructions.
   1966 /// This state can happen when AddrInst is a sext, since it may be moved away.
   1967 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
   1968 /// not be referenced anymore.
   1969 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
   1970                                                unsigned Depth,
   1971                                                bool *MovedAway) {
   1972   // Avoid exponential behavior on extremely deep expression trees.
   1973   if (Depth >= 5) return false;
   1974 
   1975   // By default, all matched instructions stay in place.
   1976   if (MovedAway)
   1977     *MovedAway = false;
   1978 
   1979   switch (Opcode) {
   1980   case Instruction::PtrToInt:
   1981     // PtrToInt is always a noop, as we know that the int type is pointer sized.
   1982     return MatchAddr(AddrInst->getOperand(0), Depth);
   1983   case Instruction::IntToPtr:
   1984     // This inttoptr is a no-op if the integer type is pointer sized.
   1985     if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
   1986         TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
   1987       return MatchAddr(AddrInst->getOperand(0), Depth);
   1988     return false;
   1989   case Instruction::BitCast:
   1990   case Instruction::AddrSpaceCast:
   1991     // BitCast is always a noop, and we can handle it as long as it is
   1992     // int->int or pointer->pointer (we don't want int<->fp or something).
   1993     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
   1994          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
   1995         // Don't touch identity bitcasts.  These were probably put here by LSR,
   1996         // and we don't want to mess around with them.  Assume it knows what it
   1997         // is doing.
   1998         AddrInst->getOperand(0)->getType() != AddrInst->getType())
   1999       return MatchAddr(AddrInst->getOperand(0), Depth);
   2000     return false;
   2001   case Instruction::Add: {
   2002     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
   2003     ExtAddrMode BackupAddrMode = AddrMode;
   2004     unsigned OldSize = AddrModeInsts.size();
   2005     // Start a transaction at this point.
   2006     // The LHS may match but not the RHS.
   2007     // Therefore, we need a higher level restoration point to undo partially
   2008     // matched operation.
   2009     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   2010         TPT.getRestorationPoint();
   2011 
   2012     if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
   2013         MatchAddr(AddrInst->getOperand(0), Depth+1))
   2014       return true;
   2015 
   2016     // Restore the old addr mode info.
   2017     AddrMode = BackupAddrMode;
   2018     AddrModeInsts.resize(OldSize);
   2019     TPT.rollback(LastKnownGood);
   2020 
   2021     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
   2022     if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
   2023         MatchAddr(AddrInst->getOperand(1), Depth+1))
   2024       return true;
   2025 
   2026     // Otherwise we definitely can't merge the ADD in.
   2027     AddrMode = BackupAddrMode;
   2028     AddrModeInsts.resize(OldSize);
   2029     TPT.rollback(LastKnownGood);
   2030     break;
   2031   }
   2032   //case Instruction::Or:
   2033   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
   2034   //break;
   2035   case Instruction::Mul:
   2036   case Instruction::Shl: {
   2037     // Can only handle X*C and X << C.
   2038     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
   2039     if (!RHS) return false;
   2040     int64_t Scale = RHS->getSExtValue();
   2041     if (Opcode == Instruction::Shl)
   2042       Scale = 1LL << Scale;
   2043 
   2044     return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
   2045   }
   2046   case Instruction::GetElementPtr: {
   2047     // Scan the GEP.  We check it if it contains constant offsets and at most
   2048     // one variable offset.
   2049     int VariableOperand = -1;
   2050     unsigned VariableScale = 0;
   2051 
   2052     int64_t ConstantOffset = 0;
   2053     const DataLayout *TD = TLI.getDataLayout();
   2054     gep_type_iterator GTI = gep_type_begin(AddrInst);
   2055     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
   2056       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   2057         const StructLayout *SL = TD->getStructLayout(STy);
   2058         unsigned Idx =
   2059           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
   2060         ConstantOffset += SL->getElementOffset(Idx);
   2061       } else {
   2062         uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
   2063         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
   2064           ConstantOffset += CI->getSExtValue()*TypeSize;
   2065         } else if (TypeSize) {  // Scales of zero don't do anything.
   2066           // We only allow one variable index at the moment.
   2067           if (VariableOperand != -1)
   2068             return false;
   2069 
   2070           // Remember the variable index.
   2071           VariableOperand = i;
   2072           VariableScale = TypeSize;
   2073         }
   2074       }
   2075     }
   2076 
   2077     // A common case is for the GEP to only do a constant offset.  In this case,
   2078     // just add it to the disp field and check validity.
   2079     if (VariableOperand == -1) {
   2080       AddrMode.BaseOffs += ConstantOffset;
   2081       if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
   2082         // Check to see if we can fold the base pointer in too.
   2083         if (MatchAddr(AddrInst->getOperand(0), Depth+1))
   2084           return true;
   2085       }
   2086       AddrMode.BaseOffs -= ConstantOffset;
   2087       return false;
   2088     }
   2089 
   2090     // Save the valid addressing mode in case we can't match.
   2091     ExtAddrMode BackupAddrMode = AddrMode;
   2092     unsigned OldSize = AddrModeInsts.size();
   2093 
   2094     // See if the scale and offset amount is valid for this target.
   2095     AddrMode.BaseOffs += ConstantOffset;
   2096 
   2097     // Match the base operand of the GEP.
   2098     if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
   2099       // If it couldn't be matched, just stuff the value in a register.
   2100       if (AddrMode.HasBaseReg) {
   2101         AddrMode = BackupAddrMode;
   2102         AddrModeInsts.resize(OldSize);
   2103         return false;
   2104       }
   2105       AddrMode.HasBaseReg = true;
   2106       AddrMode.BaseReg = AddrInst->getOperand(0);
   2107     }
   2108 
   2109     // Match the remaining variable portion of the GEP.
   2110     if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
   2111                           Depth)) {
   2112       // If it couldn't be matched, try stuffing the base into a register
   2113       // instead of matching it, and retrying the match of the scale.
   2114       AddrMode = BackupAddrMode;
   2115       AddrModeInsts.resize(OldSize);
   2116       if (AddrMode.HasBaseReg)
   2117         return false;
   2118       AddrMode.HasBaseReg = true;
   2119       AddrMode.BaseReg = AddrInst->getOperand(0);
   2120       AddrMode.BaseOffs += ConstantOffset;
   2121       if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
   2122                             VariableScale, Depth)) {
   2123         // If even that didn't work, bail.
   2124         AddrMode = BackupAddrMode;
   2125         AddrModeInsts.resize(OldSize);
   2126         return false;
   2127       }
   2128     }
   2129 
   2130     return true;
   2131   }
   2132   case Instruction::SExt: {
   2133     // Try to move this sext out of the way of the addressing mode.
   2134     Instruction *SExt = cast<Instruction>(AddrInst);
   2135     // Ask for a method for doing so.
   2136     TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
   2137         SExt, InsertedTruncs, TLI, PromotedInsts);
   2138     if (!TPH)
   2139       return false;
   2140 
   2141     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   2142         TPT.getRestorationPoint();
   2143     unsigned CreatedInsts = 0;
   2144     Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
   2145     // SExt has been moved away.
   2146     // Thus either it will be rematched later in the recursive calls or it is
   2147     // gone. Anyway, we must not fold it into the addressing mode at this point.
   2148     // E.g.,
   2149     // op = add opnd, 1
   2150     // idx = sext op
   2151     // addr = gep base, idx
   2152     // is now:
   2153     // promotedOpnd = sext opnd           <- no match here
   2154     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
   2155     // addr = gep base, op                <- match
   2156     if (MovedAway)
   2157       *MovedAway = true;
   2158 
   2159     assert(PromotedOperand &&
   2160            "TypePromotionHelper should have filtered out those cases");
   2161 
   2162     ExtAddrMode BackupAddrMode = AddrMode;
   2163     unsigned OldSize = AddrModeInsts.size();
   2164 
   2165     if (!MatchAddr(PromotedOperand, Depth) ||
   2166         !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
   2167                                PromotedOperand)) {
   2168       AddrMode = BackupAddrMode;
   2169       AddrModeInsts.resize(OldSize);
   2170       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
   2171       TPT.rollback(LastKnownGood);
   2172       return false;
   2173     }
   2174     return true;
   2175   }
   2176   }
   2177   return false;
   2178 }
   2179 
   2180 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
   2181 /// addressing mode.  If Addr can't be added to AddrMode this returns false and
   2182 /// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
   2183 /// or intptr_t for the target.
   2184 ///
   2185 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
   2186   // Start a transaction at this point that we will rollback if the matching
   2187   // fails.
   2188   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   2189       TPT.getRestorationPoint();
   2190   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
   2191     // Fold in immediates if legal for the target.
   2192     AddrMode.BaseOffs += CI->getSExtValue();
   2193     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   2194       return true;
   2195     AddrMode.BaseOffs -= CI->getSExtValue();
   2196   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
   2197     // If this is a global variable, try to fold it into the addressing mode.
   2198     if (!AddrMode.BaseGV) {
   2199       AddrMode.BaseGV = GV;
   2200       if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   2201         return true;
   2202       AddrMode.BaseGV = nullptr;
   2203     }
   2204   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
   2205     ExtAddrMode BackupAddrMode = AddrMode;
   2206     unsigned OldSize = AddrModeInsts.size();
   2207 
   2208     // Check to see if it is possible to fold this operation.
   2209     bool MovedAway = false;
   2210     if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
   2211       // This instruction may have been move away. If so, there is nothing
   2212       // to check here.
   2213       if (MovedAway)
   2214         return true;
   2215       // Okay, it's possible to fold this.  Check to see if it is actually
   2216       // *profitable* to do so.  We use a simple cost model to avoid increasing
   2217       // register pressure too much.
   2218       if (I->hasOneUse() ||
   2219           IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
   2220         AddrModeInsts.push_back(I);
   2221         return true;
   2222       }
   2223 
   2224       // It isn't profitable to do this, roll back.
   2225       //cerr << "NOT FOLDING: " << *I;
   2226       AddrMode = BackupAddrMode;
   2227       AddrModeInsts.resize(OldSize);
   2228       TPT.rollback(LastKnownGood);
   2229     }
   2230   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
   2231     if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
   2232       return true;
   2233     TPT.rollback(LastKnownGood);
   2234   } else if (isa<ConstantPointerNull>(Addr)) {
   2235     // Null pointer gets folded without affecting the addressing mode.
   2236     return true;
   2237   }
   2238 
   2239   // Worse case, the target should support [reg] addressing modes. :)
   2240   if (!AddrMode.HasBaseReg) {
   2241     AddrMode.HasBaseReg = true;
   2242     AddrMode.BaseReg = Addr;
   2243     // Still check for legality in case the target supports [imm] but not [i+r].
   2244     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   2245       return true;
   2246     AddrMode.HasBaseReg = false;
   2247     AddrMode.BaseReg = nullptr;
   2248   }
   2249 
   2250   // If the base register is already taken, see if we can do [r+r].
   2251   if (AddrMode.Scale == 0) {
   2252     AddrMode.Scale = 1;
   2253     AddrMode.ScaledReg = Addr;
   2254     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
   2255       return true;
   2256     AddrMode.Scale = 0;
   2257     AddrMode.ScaledReg = nullptr;
   2258   }
   2259   // Couldn't match.
   2260   TPT.rollback(LastKnownGood);
   2261   return false;
   2262 }
   2263 
   2264 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
   2265 /// inline asm call are due to memory operands.  If so, return true, otherwise
   2266 /// return false.
   2267 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
   2268                                     const TargetLowering &TLI) {
   2269   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
   2270   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   2271     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   2272 
   2273     // Compute the constraint code and ConstraintType to use.
   2274     TLI.ComputeConstraintToUse(OpInfo, SDValue());
   2275 
   2276     // If this asm operand is our Value*, and if it isn't an indirect memory
   2277     // operand, we can't fold it!
   2278     if (OpInfo.CallOperandVal == OpVal &&
   2279         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
   2280          !OpInfo.isIndirect))
   2281       return false;
   2282   }
   2283 
   2284   return true;
   2285 }
   2286 
   2287 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
   2288 /// memory use.  If we find an obviously non-foldable instruction, return true.
   2289 /// Add the ultimately found memory instructions to MemoryUses.
   2290 static bool FindAllMemoryUses(Instruction *I,
   2291                 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
   2292                               SmallPtrSet<Instruction*, 16> &ConsideredInsts,
   2293                               const TargetLowering &TLI) {
   2294   // If we already considered this instruction, we're done.
   2295   if (!ConsideredInsts.insert(I))
   2296     return false;
   2297 
   2298   // If this is an obviously unfoldable instruction, bail out.
   2299   if (!MightBeFoldableInst(I))
   2300     return true;
   2301 
   2302   // Loop over all the uses, recursively processing them.
   2303   for (Use &U : I->uses()) {
   2304     Instruction *UserI = cast<Instruction>(U.getUser());
   2305 
   2306     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
   2307       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
   2308       continue;
   2309     }
   2310 
   2311     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
   2312       unsigned opNo = U.getOperandNo();
   2313       if (opNo == 0) return true; // Storing addr, not into addr.
   2314       MemoryUses.push_back(std::make_pair(SI, opNo));
   2315       continue;
   2316     }
   2317 
   2318     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
   2319       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
   2320       if (!IA) return true;
   2321 
   2322       // If this is a memory operand, we're cool, otherwise bail out.
   2323       if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
   2324         return true;
   2325       continue;
   2326     }
   2327 
   2328     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
   2329       return true;
   2330   }
   2331 
   2332   return false;
   2333 }
   2334 
   2335 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
   2336 /// the use site that we're folding it into.  If so, there is no cost to
   2337 /// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
   2338 /// that we know are live at the instruction already.
   2339 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
   2340                                                    Value *KnownLive2) {
   2341   // If Val is either of the known-live values, we know it is live!
   2342   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
   2343     return true;
   2344 
   2345   // All values other than instructions and arguments (e.g. constants) are live.
   2346   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
   2347 
   2348   // If Val is a constant sized alloca in the entry block, it is live, this is
   2349   // true because it is just a reference to the stack/frame pointer, which is
   2350   // live for the whole function.
   2351   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
   2352     if (AI->isStaticAlloca())
   2353       return true;
   2354 
   2355   // Check to see if this value is already used in the memory instruction's
   2356   // block.  If so, it's already live into the block at the very least, so we
   2357   // can reasonably fold it.
   2358   return Val->isUsedInBasicBlock(MemoryInst->getParent());
   2359 }
   2360 
   2361 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
   2362 /// mode of the machine to fold the specified instruction into a load or store
   2363 /// that ultimately uses it.  However, the specified instruction has multiple
   2364 /// uses.  Given this, it may actually increase register pressure to fold it
   2365 /// into the load.  For example, consider this code:
   2366 ///
   2367 ///     X = ...
   2368 ///     Y = X+1
   2369 ///     use(Y)   -> nonload/store
   2370 ///     Z = Y+1
   2371 ///     load Z
   2372 ///
   2373 /// In this case, Y has multiple uses, and can be folded into the load of Z
   2374 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
   2375 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
   2376 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
   2377 /// number of computations either.
   2378 ///
   2379 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
   2380 /// X was live across 'load Z' for other reasons, we actually *would* want to
   2381 /// fold the addressing mode in the Z case.  This would make Y die earlier.
   2382 bool AddressingModeMatcher::
   2383 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
   2384                                      ExtAddrMode &AMAfter) {
   2385   if (IgnoreProfitability) return true;
   2386 
   2387   // AMBefore is the addressing mode before this instruction was folded into it,
   2388   // and AMAfter is the addressing mode after the instruction was folded.  Get
   2389   // the set of registers referenced by AMAfter and subtract out those
   2390   // referenced by AMBefore: this is the set of values which folding in this
   2391   // address extends the lifetime of.
   2392   //
   2393   // Note that there are only two potential values being referenced here,
   2394   // BaseReg and ScaleReg (global addresses are always available, as are any
   2395   // folded immediates).
   2396   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
   2397 
   2398   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
   2399   // lifetime wasn't extended by adding this instruction.
   2400   if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
   2401     BaseReg = nullptr;
   2402   if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
   2403     ScaledReg = nullptr;
   2404 
   2405   // If folding this instruction (and it's subexprs) didn't extend any live
   2406   // ranges, we're ok with it.
   2407   if (!BaseReg && !ScaledReg)
   2408     return true;
   2409 
   2410   // If all uses of this instruction are ultimately load/store/inlineasm's,
   2411   // check to see if their addressing modes will include this instruction.  If
   2412   // so, we can fold it into all uses, so it doesn't matter if it has multiple
   2413   // uses.
   2414   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
   2415   SmallPtrSet<Instruction*, 16> ConsideredInsts;
   2416   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
   2417     return false;  // Has a non-memory, non-foldable use!
   2418 
   2419   // Now that we know that all uses of this instruction are part of a chain of
   2420   // computation involving only operations that could theoretically be folded
   2421   // into a memory use, loop over each of these uses and see if they could
   2422   // *actually* fold the instruction.
   2423   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
   2424   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
   2425     Instruction *User = MemoryUses[i].first;
   2426     unsigned OpNo = MemoryUses[i].second;
   2427 
   2428     // Get the access type of this use.  If the use isn't a pointer, we don't
   2429     // know what it accesses.
   2430     Value *Address = User->getOperand(OpNo);
   2431     if (!Address->getType()->isPointerTy())
   2432       return false;
   2433     Type *AddressAccessTy = Address->getType()->getPointerElementType();
   2434 
   2435     // Do a match against the root of this address, ignoring profitability. This
   2436     // will tell us if the addressing mode for the memory operation will
   2437     // *actually* cover the shared instruction.
   2438     ExtAddrMode Result;
   2439     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   2440         TPT.getRestorationPoint();
   2441     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
   2442                                   MemoryInst, Result, InsertedTruncs,
   2443                                   PromotedInsts, TPT);
   2444     Matcher.IgnoreProfitability = true;
   2445     bool Success = Matcher.MatchAddr(Address, 0);
   2446     (void)Success; assert(Success && "Couldn't select *anything*?");
   2447 
   2448     // The match was to check the profitability, the changes made are not
   2449     // part of the original matcher. Therefore, they should be dropped
   2450     // otherwise the original matcher will not present the right state.
   2451     TPT.rollback(LastKnownGood);
   2452 
   2453     // If the match didn't cover I, then it won't be shared by it.
   2454     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
   2455                   I) == MatchedAddrModeInsts.end())
   2456       return false;
   2457 
   2458     MatchedAddrModeInsts.clear();
   2459   }
   2460 
   2461   return true;
   2462 }
   2463 
   2464 } // end anonymous namespace
   2465 
   2466 /// IsNonLocalValue - Return true if the specified values are defined in a
   2467 /// different basic block than BB.
   2468 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
   2469   if (Instruction *I = dyn_cast<Instruction>(V))
   2470     return I->getParent() != BB;
   2471   return false;
   2472 }
   2473 
   2474 /// OptimizeMemoryInst - Load and Store Instructions often have
   2475 /// addressing modes that can do significant amounts of computation.  As such,
   2476 /// instruction selection will try to get the load or store to do as much
   2477 /// computation as possible for the program.  The problem is that isel can only
   2478 /// see within a single block.  As such, we sink as much legal addressing mode
   2479 /// stuff into the block as possible.
   2480 ///
   2481 /// This method is used to optimize both load/store and inline asms with memory
   2482 /// operands.
   2483 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
   2484                                         Type *AccessTy) {
   2485   Value *Repl = Addr;
   2486 
   2487   // Try to collapse single-value PHI nodes.  This is necessary to undo
   2488   // unprofitable PRE transformations.
   2489   SmallVector<Value*, 8> worklist;
   2490   SmallPtrSet<Value*, 16> Visited;
   2491   worklist.push_back(Addr);
   2492 
   2493   // Use a worklist to iteratively look through PHI nodes, and ensure that
   2494   // the addressing mode obtained from the non-PHI roots of the graph
   2495   // are equivalent.
   2496   Value *Consensus = nullptr;
   2497   unsigned NumUsesConsensus = 0;
   2498   bool IsNumUsesConsensusValid = false;
   2499   SmallVector<Instruction*, 16> AddrModeInsts;
   2500   ExtAddrMode AddrMode;
   2501   TypePromotionTransaction TPT;
   2502   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   2503       TPT.getRestorationPoint();
   2504   while (!worklist.empty()) {
   2505     Value *V = worklist.back();
   2506     worklist.pop_back();
   2507 
   2508     // Break use-def graph loops.
   2509     if (!Visited.insert(V)) {
   2510       Consensus = nullptr;
   2511       break;
   2512     }
   2513 
   2514     // For a PHI node, push all of its incoming values.
   2515     if (PHINode *P = dyn_cast<PHINode>(V)) {
   2516       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
   2517         worklist.push_back(P->getIncomingValue(i));
   2518       continue;
   2519     }
   2520 
   2521     // For non-PHIs, determine the addressing mode being computed.
   2522     SmallVector<Instruction*, 16> NewAddrModeInsts;
   2523     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
   2524         V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
   2525         PromotedInsts, TPT);
   2526 
   2527     // This check is broken into two cases with very similar code to avoid using
   2528     // getNumUses() as much as possible. Some values have a lot of uses, so
   2529     // calling getNumUses() unconditionally caused a significant compile-time
   2530     // regression.
   2531     if (!Consensus) {
   2532       Consensus = V;
   2533       AddrMode = NewAddrMode;
   2534       AddrModeInsts = NewAddrModeInsts;
   2535       continue;
   2536     } else if (NewAddrMode == AddrMode) {
   2537       if (!IsNumUsesConsensusValid) {
   2538         NumUsesConsensus = Consensus->getNumUses();
   2539         IsNumUsesConsensusValid = true;
   2540       }
   2541 
   2542       // Ensure that the obtained addressing mode is equivalent to that obtained
   2543       // for all other roots of the PHI traversal.  Also, when choosing one
   2544       // such root as representative, select the one with the most uses in order
   2545       // to keep the cost modeling heuristics in AddressingModeMatcher
   2546       // applicable.
   2547       unsigned NumUses = V->getNumUses();
   2548       if (NumUses > NumUsesConsensus) {
   2549         Consensus = V;
   2550         NumUsesConsensus = NumUses;
   2551         AddrModeInsts = NewAddrModeInsts;
   2552       }
   2553       continue;
   2554     }
   2555 
   2556     Consensus = nullptr;
   2557     break;
   2558   }
   2559 
   2560   // If the addressing mode couldn't be determined, or if multiple different
   2561   // ones were determined, bail out now.
   2562   if (!Consensus) {
   2563     TPT.rollback(LastKnownGood);
   2564     return false;
   2565   }
   2566   TPT.commit();
   2567 
   2568   // Check to see if any of the instructions supersumed by this addr mode are
   2569   // non-local to I's BB.
   2570   bool AnyNonLocal = false;
   2571   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
   2572     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
   2573       AnyNonLocal = true;
   2574       break;
   2575     }
   2576   }
   2577 
   2578   // If all the instructions matched are already in this BB, don't do anything.
   2579   if (!AnyNonLocal) {
   2580     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
   2581     return false;
   2582   }
   2583 
   2584   // Insert this computation right after this user.  Since our caller is
   2585   // scanning from the top of the BB to the bottom, reuse of the expr are
   2586   // guaranteed to happen later.
   2587   IRBuilder<> Builder(MemoryInst);
   2588 
   2589   // Now that we determined the addressing expression we want to use and know
   2590   // that we have to sink it into this block.  Check to see if we have already
   2591   // done this for some other load/store instr in this block.  If so, reuse the
   2592   // computation.
   2593   Value *&SunkAddr = SunkAddrs[Addr];
   2594   if (SunkAddr) {
   2595     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
   2596                  << *MemoryInst << "\n");
   2597     if (SunkAddr->getType() != Addr->getType())
   2598       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
   2599   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
   2600                TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) {
   2601     // By default, we use the GEP-based method when AA is used later. This
   2602     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
   2603     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
   2604                  << *MemoryInst << "\n");
   2605     Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
   2606     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
   2607 
   2608     // First, find the pointer.
   2609     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
   2610       ResultPtr = AddrMode.BaseReg;
   2611       AddrMode.BaseReg = nullptr;
   2612     }
   2613 
   2614     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
   2615       // We can't add more than one pointer together, nor can we scale a
   2616       // pointer (both of which seem meaningless).
   2617       if (ResultPtr || AddrMode.Scale != 1)
   2618         return false;
   2619 
   2620       ResultPtr = AddrMode.ScaledReg;
   2621       AddrMode.Scale = 0;
   2622     }
   2623 
   2624     if (AddrMode.BaseGV) {
   2625       if (ResultPtr)
   2626         return false;
   2627 
   2628       ResultPtr = AddrMode.BaseGV;
   2629     }
   2630 
   2631     // If the real base value actually came from an inttoptr, then the matcher
   2632     // will look through it and provide only the integer value. In that case,
   2633     // use it here.
   2634     if (!ResultPtr && AddrMode.BaseReg) {
   2635       ResultPtr =
   2636         Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
   2637       AddrMode.BaseReg = nullptr;
   2638     } else if (!ResultPtr && AddrMode.Scale == 1) {
   2639       ResultPtr =
   2640         Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
   2641       AddrMode.Scale = 0;
   2642     }
   2643 
   2644     if (!ResultPtr &&
   2645         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
   2646       SunkAddr = Constant::getNullValue(Addr->getType());
   2647     } else if (!ResultPtr) {
   2648       return false;
   2649     } else {
   2650       Type *I8PtrTy =
   2651         Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
   2652 
   2653       // Start with the base register. Do this first so that subsequent address
   2654       // matching finds it last, which will prevent it from trying to match it
   2655       // as the scaled value in case it happens to be a mul. That would be
   2656       // problematic if we've sunk a different mul for the scale, because then
   2657       // we'd end up sinking both muls.
   2658       if (AddrMode.BaseReg) {
   2659         Value *V = AddrMode.BaseReg;
   2660         if (V->getType() != IntPtrTy)
   2661           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
   2662 
   2663         ResultIndex = V;
   2664       }
   2665 
   2666       // Add the scale value.
   2667       if (AddrMode.Scale) {
   2668         Value *V = AddrMode.ScaledReg;
   2669         if (V->getType() == IntPtrTy) {
   2670           // done.
   2671         } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
   2672                    cast<IntegerType>(V->getType())->getBitWidth()) {
   2673           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
   2674         } else {
   2675           // It is only safe to sign extend the BaseReg if we know that the math
   2676           // required to create it did not overflow before we extend it. Since
   2677           // the original IR value was tossed in favor of a constant back when
   2678           // the AddrMode was created we need to bail out gracefully if widths
   2679           // do not match instead of extending it.
   2680           Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
   2681           if (I && (ResultIndex != AddrMode.BaseReg))
   2682             I->eraseFromParent();
   2683           return false;
   2684         }
   2685 
   2686         if (AddrMode.Scale != 1)
   2687           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
   2688                                 "sunkaddr");
   2689         if (ResultIndex)
   2690           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
   2691         else
   2692           ResultIndex = V;
   2693       }
   2694 
   2695       // Add in the Base Offset if present.
   2696       if (AddrMode.BaseOffs) {
   2697         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
   2698         if (ResultIndex) {
   2699 	  // We need to add this separately from the scale above to help with
   2700 	  // SDAG consecutive load/store merging.
   2701           if (ResultPtr->getType() != I8PtrTy)
   2702             ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
   2703           ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
   2704         }
   2705 
   2706         ResultIndex = V;
   2707       }
   2708 
   2709       if (!ResultIndex) {
   2710         SunkAddr = ResultPtr;
   2711       } else {
   2712         if (ResultPtr->getType() != I8PtrTy)
   2713           ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
   2714         SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
   2715       }
   2716 
   2717       if (SunkAddr->getType() != Addr->getType())
   2718         SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
   2719     }
   2720   } else {
   2721     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
   2722                  << *MemoryInst << "\n");
   2723     Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
   2724     Value *Result = nullptr;
   2725 
   2726     // Start with the base register. Do this first so that subsequent address
   2727     // matching finds it last, which will prevent it from trying to match it
   2728     // as the scaled value in case it happens to be a mul. That would be
   2729     // problematic if we've sunk a different mul for the scale, because then
   2730     // we'd end up sinking both muls.
   2731     if (AddrMode.BaseReg) {
   2732       Value *V = AddrMode.BaseReg;
   2733       if (V->getType()->isPointerTy())
   2734         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
   2735       if (V->getType() != IntPtrTy)
   2736         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
   2737       Result = V;
   2738     }
   2739 
   2740     // Add the scale value.
   2741     if (AddrMode.Scale) {
   2742       Value *V = AddrMode.ScaledReg;
   2743       if (V->getType() == IntPtrTy) {
   2744         // done.
   2745       } else if (V->getType()->isPointerTy()) {
   2746         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
   2747       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
   2748                  cast<IntegerType>(V->getType())->getBitWidth()) {
   2749         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
   2750       } else {
   2751         // It is only safe to sign extend the BaseReg if we know that the math
   2752         // required to create it did not overflow before we extend it. Since
   2753         // the original IR value was tossed in favor of a constant back when
   2754         // the AddrMode was created we need to bail out gracefully if widths
   2755         // do not match instead of extending it.
   2756         Instruction *I = dyn_cast_or_null<Instruction>(Result);
   2757         if (I && (Result != AddrMode.BaseReg))
   2758           I->eraseFromParent();
   2759         return false;
   2760       }
   2761       if (AddrMode.Scale != 1)
   2762         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
   2763                               "sunkaddr");
   2764       if (Result)
   2765         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   2766       else
   2767         Result = V;
   2768     }
   2769 
   2770     // Add in the BaseGV if present.
   2771     if (AddrMode.BaseGV) {
   2772       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
   2773       if (Result)
   2774         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   2775       else
   2776         Result = V;
   2777     }
   2778 
   2779     // Add in the Base Offset if present.
   2780     if (AddrMode.BaseOffs) {
   2781       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
   2782       if (Result)
   2783         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   2784       else
   2785         Result = V;
   2786     }
   2787 
   2788     if (!Result)
   2789       SunkAddr = Constant::getNullValue(Addr->getType());
   2790     else
   2791       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
   2792   }
   2793 
   2794   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
   2795 
   2796   // If we have no uses, recursively delete the value and all dead instructions
   2797   // using it.
   2798   if (Repl->use_empty()) {
   2799     // This can cause recursive deletion, which can invalidate our iterator.
   2800     // Use a WeakVH to hold onto it in case this happens.
   2801     WeakVH IterHandle(CurInstIterator);
   2802     BasicBlock *BB = CurInstIterator->getParent();
   2803 
   2804     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
   2805 
   2806     if (IterHandle != CurInstIterator) {
   2807       // If the iterator instruction was recursively deleted, start over at the
   2808       // start of the block.
   2809       CurInstIterator = BB->begin();
   2810       SunkAddrs.clear();
   2811     }
   2812   }
   2813   ++NumMemoryInsts;
   2814   return true;
   2815 }
   2816 
   2817 /// OptimizeInlineAsmInst - If there are any memory operands, use
   2818 /// OptimizeMemoryInst to sink their address computing into the block when
   2819 /// possible / profitable.
   2820 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
   2821   bool MadeChange = false;
   2822 
   2823   TargetLowering::AsmOperandInfoVector
   2824     TargetConstraints = TLI->ParseConstraints(CS);
   2825   unsigned ArgNo = 0;
   2826   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   2827     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   2828 
   2829     // Compute the constraint code and ConstraintType to use.
   2830     TLI->ComputeConstraintToUse(OpInfo, SDValue());
   2831 
   2832     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   2833         OpInfo.isIndirect) {
   2834       Value *OpVal = CS->getArgOperand(ArgNo++);
   2835       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
   2836     } else if (OpInfo.Type == InlineAsm::isInput)
   2837       ArgNo++;
   2838   }
   2839 
   2840   return MadeChange;
   2841 }
   2842 
   2843 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
   2844 /// basic block as the load, unless conditions are unfavorable. This allows
   2845 /// SelectionDAG to fold the extend into the load.
   2846 ///
   2847 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
   2848   // Look for a load being extended.
   2849   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
   2850   if (!LI) return false;
   2851 
   2852   // If they're already in the same block, there's nothing to do.
   2853   if (LI->getParent() == I->getParent())
   2854     return false;
   2855 
   2856   // If the load has other users and the truncate is not free, this probably
   2857   // isn't worthwhile.
   2858   if (!LI->hasOneUse() &&
   2859       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
   2860               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
   2861       !TLI->isTruncateFree(I->getType(), LI->getType()))
   2862     return false;
   2863 
   2864   // Check whether the target supports casts folded into loads.
   2865   unsigned LType;
   2866   if (isa<ZExtInst>(I))
   2867     LType = ISD::ZEXTLOAD;
   2868   else {
   2869     assert(isa<SExtInst>(I) && "Unexpected ext type!");
   2870     LType = ISD::SEXTLOAD;
   2871   }
   2872   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
   2873     return false;
   2874 
   2875   // Move the extend into the same block as the load, so that SelectionDAG
   2876   // can fold it.
   2877   I->removeFromParent();
   2878   I->insertAfter(LI);
   2879   ++NumExtsMoved;
   2880   return true;
   2881 }
   2882 
   2883 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
   2884   BasicBlock *DefBB = I->getParent();
   2885 
   2886   // If the result of a {s|z}ext and its source are both live out, rewrite all
   2887   // other uses of the source with result of extension.
   2888   Value *Src = I->getOperand(0);
   2889   if (Src->hasOneUse())
   2890     return false;
   2891 
   2892   // Only do this xform if truncating is free.
   2893   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
   2894     return false;
   2895 
   2896   // Only safe to perform the optimization if the source is also defined in
   2897   // this block.
   2898   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
   2899     return false;
   2900 
   2901   bool DefIsLiveOut = false;
   2902   for (User *U : I->users()) {
   2903     Instruction *UI = cast<Instruction>(U);
   2904 
   2905     // Figure out which BB this ext is used in.
   2906     BasicBlock *UserBB = UI->getParent();
   2907     if (UserBB == DefBB) continue;
   2908     DefIsLiveOut = true;
   2909     break;
   2910   }
   2911   if (!DefIsLiveOut)
   2912     return false;
   2913 
   2914   // Make sure none of the uses are PHI nodes.
   2915   for (User *U : Src->users()) {
   2916     Instruction *UI = cast<Instruction>(U);
   2917     BasicBlock *UserBB = UI->getParent();
   2918     if (UserBB == DefBB) continue;
   2919     // Be conservative. We don't want this xform to end up introducing
   2920     // reloads just before load / store instructions.
   2921     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
   2922       return false;
   2923   }
   2924 
   2925   // InsertedTruncs - Only insert one trunc in each block once.
   2926   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
   2927 
   2928   bool MadeChange = false;
   2929   for (Use &U : Src->uses()) {
   2930     Instruction *User = cast<Instruction>(U.getUser());
   2931 
   2932     // Figure out which BB this ext is used in.
   2933     BasicBlock *UserBB = User->getParent();
   2934     if (UserBB == DefBB) continue;
   2935 
   2936     // Both src and def are live in this block. Rewrite the use.
   2937     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
   2938 
   2939     if (!InsertedTrunc) {
   2940       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   2941       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
   2942       InsertedTruncsSet.insert(InsertedTrunc);
   2943     }
   2944 
   2945     // Replace a use of the {s|z}ext source with a use of the result.
   2946     U = InsertedTrunc;
   2947     ++NumExtUses;
   2948     MadeChange = true;
   2949   }
   2950 
   2951   return MadeChange;
   2952 }
   2953 
   2954 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
   2955 /// turned into an explicit branch.
   2956 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
   2957   // FIXME: This should use the same heuristics as IfConversion to determine
   2958   // whether a select is better represented as a branch.  This requires that
   2959   // branch probability metadata is preserved for the select, which is not the
   2960   // case currently.
   2961 
   2962   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   2963 
   2964   // If the branch is predicted right, an out of order CPU can avoid blocking on
   2965   // the compare.  Emit cmovs on compares with a memory operand as branches to
   2966   // avoid stalls on the load from memory.  If the compare has more than one use
   2967   // there's probably another cmov or setcc around so it's not worth emitting a
   2968   // branch.
   2969   if (!Cmp)
   2970     return false;
   2971 
   2972   Value *CmpOp0 = Cmp->getOperand(0);
   2973   Value *CmpOp1 = Cmp->getOperand(1);
   2974 
   2975   // We check that the memory operand has one use to avoid uses of the loaded
   2976   // value directly after the compare, making branches unprofitable.
   2977   return Cmp->hasOneUse() &&
   2978          ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
   2979           (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
   2980 }
   2981 
   2982 
   2983 /// If we have a SelectInst that will likely profit from branch prediction,
   2984 /// turn it into a branch.
   2985 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
   2986   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
   2987 
   2988   // Can we convert the 'select' to CF ?
   2989   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
   2990     return false;
   2991 
   2992   TargetLowering::SelectSupportKind SelectKind;
   2993   if (VectorCond)
   2994     SelectKind = TargetLowering::VectorMaskSelect;
   2995   else if (SI->getType()->isVectorTy())
   2996     SelectKind = TargetLowering::ScalarCondVectorVal;
   2997   else
   2998     SelectKind = TargetLowering::ScalarValSelect;
   2999 
   3000   // Do we have efficient codegen support for this kind of 'selects' ?
   3001   if (TLI->isSelectSupported(SelectKind)) {
   3002     // We have efficient codegen support for the select instruction.
   3003     // Check if it is profitable to keep this 'select'.
   3004     if (!TLI->isPredictableSelectExpensive() ||
   3005         !isFormingBranchFromSelectProfitable(SI))
   3006       return false;
   3007   }
   3008 
   3009   ModifiedDT = true;
   3010 
   3011   // First, we split the block containing the select into 2 blocks.
   3012   BasicBlock *StartBlock = SI->getParent();
   3013   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
   3014   BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
   3015 
   3016   // Create a new block serving as the landing pad for the branch.
   3017   BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
   3018                                              NextBlock->getParent(), NextBlock);
   3019 
   3020   // Move the unconditional branch from the block with the select in it into our
   3021   // landing pad block.
   3022   StartBlock->getTerminator()->eraseFromParent();
   3023   BranchInst::Create(NextBlock, SmallBlock);
   3024 
   3025   // Insert the real conditional branch based on the original condition.
   3026   BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
   3027 
   3028   // The select itself is replaced with a PHI Node.
   3029   PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
   3030   PN->takeName(SI);
   3031   PN->addIncoming(SI->getTrueValue(), StartBlock);
   3032   PN->addIncoming(SI->getFalseValue(), SmallBlock);
   3033   SI->replaceAllUsesWith(PN);
   3034   SI->eraseFromParent();
   3035 
   3036   // Instruct OptimizeBlock to skip to the next block.
   3037   CurInstIterator = StartBlock->end();
   3038   ++NumSelectsExpanded;
   3039   return true;
   3040 }
   3041 
   3042 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
   3043   SmallVector<int, 16> Mask(SVI->getShuffleMask());
   3044   int SplatElem = -1;
   3045   for (unsigned i = 0; i < Mask.size(); ++i) {
   3046     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
   3047       return false;
   3048     SplatElem = Mask[i];
   3049   }
   3050 
   3051   return true;
   3052 }
   3053 
   3054 /// Some targets have expensive vector shifts if the lanes aren't all the same
   3055 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
   3056 /// it's often worth sinking a shufflevector splat down to its use so that
   3057 /// codegen can spot all lanes are identical.
   3058 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
   3059   BasicBlock *DefBB = SVI->getParent();
   3060 
   3061   // Only do this xform if variable vector shifts are particularly expensive.
   3062   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
   3063     return false;
   3064 
   3065   // We only expect better codegen by sinking a shuffle if we can recognise a
   3066   // constant splat.
   3067   if (!isBroadcastShuffle(SVI))
   3068     return false;
   3069 
   3070   // InsertedShuffles - Only insert a shuffle in each block once.
   3071   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
   3072 
   3073   bool MadeChange = false;
   3074   for (User *U : SVI->users()) {
   3075     Instruction *UI = cast<Instruction>(U);
   3076 
   3077     // Figure out which BB this ext is used in.
   3078     BasicBlock *UserBB = UI->getParent();
   3079     if (UserBB == DefBB) continue;
   3080 
   3081     // For now only apply this when the splat is used by a shift instruction.
   3082     if (!UI->isShift()) continue;
   3083 
   3084     // Everything checks out, sink the shuffle if the user's block doesn't
   3085     // already have a copy.
   3086     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
   3087 
   3088     if (!InsertedShuffle) {
   3089       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   3090       InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
   3091                                               SVI->getOperand(1),
   3092                                               SVI->getOperand(2), "", InsertPt);
   3093     }
   3094 
   3095     UI->replaceUsesOfWith(SVI, InsertedShuffle);
   3096     MadeChange = true;
   3097   }
   3098 
   3099   // If we removed all uses, nuke the shuffle.
   3100   if (SVI->use_empty()) {
   3101     SVI->eraseFromParent();
   3102     MadeChange = true;
   3103   }
   3104 
   3105   return MadeChange;
   3106 }
   3107 
   3108 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
   3109   if (PHINode *P = dyn_cast<PHINode>(I)) {
   3110     // It is possible for very late stage optimizations (such as SimplifyCFG)
   3111     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
   3112     // trivial PHI, go ahead and zap it here.
   3113     if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr,
   3114                                        TLInfo, DT)) {
   3115       P->replaceAllUsesWith(V);
   3116       P->eraseFromParent();
   3117       ++NumPHIsElim;
   3118       return true;
   3119     }
   3120     return false;
   3121   }
   3122 
   3123   if (CastInst *CI = dyn_cast<CastInst>(I)) {
   3124     // If the source of the cast is a constant, then this should have
   3125     // already been constant folded.  The only reason NOT to constant fold
   3126     // it is if something (e.g. LSR) was careful to place the constant
   3127     // evaluation in a block other than then one that uses it (e.g. to hoist
   3128     // the address of globals out of a loop).  If this is the case, we don't
   3129     // want to forward-subst the cast.
   3130     if (isa<Constant>(CI->getOperand(0)))
   3131       return false;
   3132 
   3133     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
   3134       return true;
   3135 
   3136     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
   3137       /// Sink a zext or sext into its user blocks if the target type doesn't
   3138       /// fit in one register
   3139       if (TLI && TLI->getTypeAction(CI->getContext(),
   3140                                     TLI->getValueType(CI->getType())) ==
   3141                      TargetLowering::TypeExpandInteger) {
   3142         return SinkCast(CI);
   3143       } else {
   3144         bool MadeChange = MoveExtToFormExtLoad(I);
   3145         return MadeChange | OptimizeExtUses(I);
   3146       }
   3147     }
   3148     return false;
   3149   }
   3150 
   3151   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   3152     if (!TLI || !TLI->hasMultipleConditionRegisters())
   3153       return OptimizeCmpExpression(CI);
   3154 
   3155   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   3156     if (TLI)
   3157       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
   3158     return false;
   3159   }
   3160 
   3161   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   3162     if (TLI)
   3163       return OptimizeMemoryInst(I, SI->getOperand(1),
   3164                                 SI->getOperand(0)->getType());
   3165     return false;
   3166   }
   3167 
   3168   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
   3169 
   3170   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
   3171                 BinOp->getOpcode() == Instruction::LShr)) {
   3172     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
   3173     if (TLI && CI && TLI->hasExtractBitsInsn())
   3174       return OptimizeExtractBits(BinOp, CI, *TLI);
   3175 
   3176     return false;
   3177   }
   3178 
   3179   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
   3180     if (GEPI->hasAllZeroIndices()) {
   3181       /// The GEP operand must be a pointer, so must its result -> BitCast
   3182       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
   3183                                         GEPI->getName(), GEPI);
   3184       GEPI->replaceAllUsesWith(NC);
   3185       GEPI->eraseFromParent();
   3186       ++NumGEPsElim;
   3187       OptimizeInst(NC);
   3188       return true;
   3189     }
   3190     return false;
   3191   }
   3192 
   3193   if (CallInst *CI = dyn_cast<CallInst>(I))
   3194     return OptimizeCallInst(CI);
   3195 
   3196   if (SelectInst *SI = dyn_cast<SelectInst>(I))
   3197     return OptimizeSelectInst(SI);
   3198 
   3199   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
   3200     return OptimizeShuffleVectorInst(SVI);
   3201 
   3202   return false;
   3203 }
   3204 
   3205 // In this pass we look for GEP and cast instructions that are used
   3206 // across basic blocks and rewrite them to improve basic-block-at-a-time
   3207 // selection.
   3208 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
   3209   SunkAddrs.clear();
   3210   bool MadeChange = false;
   3211 
   3212   CurInstIterator = BB.begin();
   3213   while (CurInstIterator != BB.end())
   3214     MadeChange |= OptimizeInst(CurInstIterator++);
   3215 
   3216   MadeChange |= DupRetToEnableTailCallOpts(&BB);
   3217 
   3218   return MadeChange;
   3219 }
   3220 
   3221 // llvm.dbg.value is far away from the value then iSel may not be able
   3222 // handle it properly. iSel will drop llvm.dbg.value if it can not
   3223 // find a node corresponding to the value.
   3224 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
   3225   bool MadeChange = false;
   3226   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   3227     Instruction *PrevNonDbgInst = nullptr;
   3228     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
   3229       Instruction *Insn = BI; ++BI;
   3230       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
   3231       // Leave dbg.values that refer to an alloca alone. These
   3232       // instrinsics describe the address of a variable (= the alloca)
   3233       // being taken.  They should not be moved next to the alloca
   3234       // (and to the beginning of the scope), but rather stay close to
   3235       // where said address is used.
   3236       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
   3237         PrevNonDbgInst = Insn;
   3238         continue;
   3239       }
   3240 
   3241       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
   3242       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
   3243         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
   3244         DVI->removeFromParent();
   3245         if (isa<PHINode>(VI))
   3246           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
   3247         else
   3248           DVI->insertAfter(VI);
   3249         MadeChange = true;
   3250         ++NumDbgValueMoved;
   3251       }
   3252     }
   3253   }
   3254   return MadeChange;
   3255 }
   3256 
   3257 // If there is a sequence that branches based on comparing a single bit
   3258 // against zero that can be combined into a single instruction, and the
   3259 // target supports folding these into a single instruction, sink the
   3260 // mask and compare into the branch uses. Do this before OptimizeBlock ->
   3261 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
   3262 // searched for.
   3263 bool CodeGenPrepare::sinkAndCmp(Function &F) {
   3264   if (!EnableAndCmpSinking)
   3265     return false;
   3266   if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
   3267     return false;
   3268   bool MadeChange = false;
   3269   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
   3270     BasicBlock *BB = I++;
   3271 
   3272     // Does this BB end with the following?
   3273     //   %andVal = and %val, #single-bit-set
   3274     //   %icmpVal = icmp %andResult, 0
   3275     //   br i1 %cmpVal label %dest1, label %dest2"
   3276     BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
   3277     if (!Brcc || !Brcc->isConditional())
   3278       continue;
   3279     ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
   3280     if (!Cmp || Cmp->getParent() != BB)
   3281       continue;
   3282     ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
   3283     if (!Zero || !Zero->isZero())
   3284       continue;
   3285     Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
   3286     if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
   3287       continue;
   3288     ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
   3289     if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
   3290       continue;
   3291     DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
   3292 
   3293     // Push the "and; icmp" for any users that are conditional branches.
   3294     // Since there can only be one branch use per BB, we don't need to keep
   3295     // track of which BBs we insert into.
   3296     for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
   3297          UI != E; ) {
   3298       Use &TheUse = *UI;
   3299       // Find brcc use.
   3300       BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
   3301       ++UI;
   3302       if (!BrccUser || !BrccUser->isConditional())
   3303         continue;
   3304       BasicBlock *UserBB = BrccUser->getParent();
   3305       if (UserBB == BB) continue;
   3306       DEBUG(dbgs() << "found Brcc use\n");
   3307 
   3308       // Sink the "and; icmp" to use.
   3309       MadeChange = true;
   3310       BinaryOperator *NewAnd =
   3311         BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
   3312                                   BrccUser);
   3313       CmpInst *NewCmp =
   3314         CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
   3315                         "", BrccUser);
   3316       TheUse = NewCmp;
   3317       ++NumAndCmpsMoved;
   3318       DEBUG(BrccUser->getParent()->dump());
   3319     }
   3320   }
   3321   return MadeChange;
   3322 }
   3323