1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <algorithm> 6 7 #include "src/v8.h" 8 9 #include "src/base/atomicops.h" 10 #include "src/counters.h" 11 #include "src/heap/store-buffer-inl.h" 12 13 namespace v8 { 14 namespace internal { 15 16 StoreBuffer::StoreBuffer(Heap* heap) 17 : heap_(heap), 18 start_(NULL), 19 limit_(NULL), 20 old_start_(NULL), 21 old_limit_(NULL), 22 old_top_(NULL), 23 old_reserved_limit_(NULL), 24 old_buffer_is_sorted_(false), 25 old_buffer_is_filtered_(false), 26 during_gc_(false), 27 store_buffer_rebuilding_enabled_(false), 28 callback_(NULL), 29 may_move_store_buffer_entries_(true), 30 virtual_memory_(NULL), 31 hash_set_1_(NULL), 32 hash_set_2_(NULL), 33 hash_sets_are_empty_(true) {} 34 35 36 void StoreBuffer::SetUp() { 37 virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3); 38 uintptr_t start_as_int = 39 reinterpret_cast<uintptr_t>(virtual_memory_->address()); 40 start_ = 41 reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2)); 42 limit_ = start_ + (kStoreBufferSize / kPointerSize); 43 44 old_virtual_memory_ = 45 new base::VirtualMemory(kOldStoreBufferLength * kPointerSize); 46 old_top_ = old_start_ = 47 reinterpret_cast<Address*>(old_virtual_memory_->address()); 48 // Don't know the alignment requirements of the OS, but it is certainly not 49 // less than 0xfff. 50 DCHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0); 51 int initial_length = 52 static_cast<int>(base::OS::CommitPageSize() / kPointerSize); 53 DCHECK(initial_length > 0); 54 DCHECK(initial_length <= kOldStoreBufferLength); 55 old_limit_ = old_start_ + initial_length; 56 old_reserved_limit_ = old_start_ + kOldStoreBufferLength; 57 58 CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_), 59 (old_limit_ - old_start_) * kPointerSize, 60 false)); 61 62 DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address()); 63 DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address()); 64 Address* vm_limit = reinterpret_cast<Address*>( 65 reinterpret_cast<char*>(virtual_memory_->address()) + 66 virtual_memory_->size()); 67 DCHECK(start_ <= vm_limit); 68 DCHECK(limit_ <= vm_limit); 69 USE(vm_limit); 70 DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0); 71 DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) == 72 0); 73 74 CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_), 75 kStoreBufferSize, 76 false)); // Not executable. 77 heap_->public_set_store_buffer_top(start_); 78 79 hash_set_1_ = new uintptr_t[kHashSetLength]; 80 hash_set_2_ = new uintptr_t[kHashSetLength]; 81 hash_sets_are_empty_ = false; 82 83 ClearFilteringHashSets(); 84 } 85 86 87 void StoreBuffer::TearDown() { 88 delete virtual_memory_; 89 delete old_virtual_memory_; 90 delete[] hash_set_1_; 91 delete[] hash_set_2_; 92 old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL; 93 start_ = limit_ = NULL; 94 heap_->public_set_store_buffer_top(start_); 95 } 96 97 98 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { 99 isolate->heap()->store_buffer()->Compact(); 100 isolate->counters()->store_buffer_overflows()->Increment(); 101 } 102 103 104 void StoreBuffer::Uniq() { 105 // Remove adjacent duplicates and cells that do not point at new space. 106 Address previous = NULL; 107 Address* write = old_start_; 108 DCHECK(may_move_store_buffer_entries_); 109 for (Address* read = old_start_; read < old_top_; read++) { 110 Address current = *read; 111 if (current != previous) { 112 if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) { 113 *write++ = current; 114 } 115 } 116 previous = current; 117 } 118 old_top_ = write; 119 } 120 121 122 bool StoreBuffer::SpaceAvailable(intptr_t space_needed) { 123 return old_limit_ - old_top_ >= space_needed; 124 } 125 126 127 void StoreBuffer::EnsureSpace(intptr_t space_needed) { 128 while (old_limit_ - old_top_ < space_needed && 129 old_limit_ < old_reserved_limit_) { 130 size_t grow = old_limit_ - old_start_; // Double size. 131 CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_), 132 grow * kPointerSize, false)); 133 old_limit_ += grow; 134 } 135 136 if (SpaceAvailable(space_needed)) return; 137 138 if (old_buffer_is_filtered_) return; 139 DCHECK(may_move_store_buffer_entries_); 140 Compact(); 141 142 old_buffer_is_filtered_ = true; 143 bool page_has_scan_on_scavenge_flag = false; 144 145 PointerChunkIterator it(heap_); 146 MemoryChunk* chunk; 147 while ((chunk = it.next()) != NULL) { 148 if (chunk->scan_on_scavenge()) { 149 page_has_scan_on_scavenge_flag = true; 150 break; 151 } 152 } 153 154 if (page_has_scan_on_scavenge_flag) { 155 Filter(MemoryChunk::SCAN_ON_SCAVENGE); 156 } 157 158 if (SpaceAvailable(space_needed)) return; 159 160 // Sample 1 entry in 97 and filter out the pages where we estimate that more 161 // than 1 in 8 pointers are to new space. 162 static const int kSampleFinenesses = 5; 163 static const struct Samples { 164 int prime_sample_step; 165 int threshold; 166 } samples[kSampleFinenesses] = { 167 {97, ((Page::kPageSize / kPointerSize) / 97) / 8}, 168 {23, ((Page::kPageSize / kPointerSize) / 23) / 16}, 169 {7, ((Page::kPageSize / kPointerSize) / 7) / 32}, 170 {3, ((Page::kPageSize / kPointerSize) / 3) / 256}, 171 {1, 0}}; 172 for (int i = 0; i < kSampleFinenesses; i++) { 173 ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold); 174 // As a last resort we mark all pages as being exempt from the store buffer. 175 DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_); 176 if (SpaceAvailable(space_needed)) return; 177 } 178 UNREACHABLE(); 179 } 180 181 182 // Sample the store buffer to see if some pages are taking up a lot of space 183 // in the store buffer. 184 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) { 185 PointerChunkIterator it(heap_); 186 MemoryChunk* chunk; 187 while ((chunk = it.next()) != NULL) { 188 chunk->set_store_buffer_counter(0); 189 } 190 bool created_new_scan_on_scavenge_pages = false; 191 MemoryChunk* previous_chunk = NULL; 192 for (Address* p = old_start_; p < old_top_; p += prime_sample_step) { 193 Address addr = *p; 194 MemoryChunk* containing_chunk = NULL; 195 if (previous_chunk != NULL && previous_chunk->Contains(addr)) { 196 containing_chunk = previous_chunk; 197 } else { 198 containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); 199 } 200 int old_counter = containing_chunk->store_buffer_counter(); 201 if (old_counter >= threshold) { 202 containing_chunk->set_scan_on_scavenge(true); 203 created_new_scan_on_scavenge_pages = true; 204 } 205 containing_chunk->set_store_buffer_counter(old_counter + 1); 206 previous_chunk = containing_chunk; 207 } 208 if (created_new_scan_on_scavenge_pages) { 209 Filter(MemoryChunk::SCAN_ON_SCAVENGE); 210 } 211 old_buffer_is_filtered_ = true; 212 } 213 214 215 void StoreBuffer::Filter(int flag) { 216 Address* new_top = old_start_; 217 MemoryChunk* previous_chunk = NULL; 218 for (Address* p = old_start_; p < old_top_; p++) { 219 Address addr = *p; 220 MemoryChunk* containing_chunk = NULL; 221 if (previous_chunk != NULL && previous_chunk->Contains(addr)) { 222 containing_chunk = previous_chunk; 223 } else { 224 containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); 225 previous_chunk = containing_chunk; 226 } 227 if (!containing_chunk->IsFlagSet(flag)) { 228 *new_top++ = addr; 229 } 230 } 231 old_top_ = new_top; 232 233 // Filtering hash sets are inconsistent with the store buffer after this 234 // operation. 235 ClearFilteringHashSets(); 236 } 237 238 239 void StoreBuffer::SortUniq() { 240 Compact(); 241 if (old_buffer_is_sorted_) return; 242 std::sort(old_start_, old_top_); 243 Uniq(); 244 245 old_buffer_is_sorted_ = true; 246 247 // Filtering hash sets are inconsistent with the store buffer after this 248 // operation. 249 ClearFilteringHashSets(); 250 } 251 252 253 bool StoreBuffer::PrepareForIteration() { 254 Compact(); 255 PointerChunkIterator it(heap_); 256 MemoryChunk* chunk; 257 bool page_has_scan_on_scavenge_flag = false; 258 while ((chunk = it.next()) != NULL) { 259 if (chunk->scan_on_scavenge()) { 260 page_has_scan_on_scavenge_flag = true; 261 break; 262 } 263 } 264 265 if (page_has_scan_on_scavenge_flag) { 266 Filter(MemoryChunk::SCAN_ON_SCAVENGE); 267 } 268 269 // Filtering hash sets are inconsistent with the store buffer after 270 // iteration. 271 ClearFilteringHashSets(); 272 273 return page_has_scan_on_scavenge_flag; 274 } 275 276 277 #ifdef DEBUG 278 void StoreBuffer::Clean() { 279 ClearFilteringHashSets(); 280 Uniq(); // Also removes things that no longer point to new space. 281 EnsureSpace(kStoreBufferSize / 2); 282 } 283 284 285 static Address* in_store_buffer_1_element_cache = NULL; 286 287 288 bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) { 289 if (!FLAG_enable_slow_asserts) return true; 290 if (in_store_buffer_1_element_cache != NULL && 291 *in_store_buffer_1_element_cache == cell_address) { 292 return true; 293 } 294 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); 295 for (Address* current = top - 1; current >= start_; current--) { 296 if (*current == cell_address) { 297 in_store_buffer_1_element_cache = current; 298 return true; 299 } 300 } 301 for (Address* current = old_top_ - 1; current >= old_start_; current--) { 302 if (*current == cell_address) { 303 in_store_buffer_1_element_cache = current; 304 return true; 305 } 306 } 307 return false; 308 } 309 #endif 310 311 312 void StoreBuffer::ClearFilteringHashSets() { 313 if (!hash_sets_are_empty_) { 314 memset(reinterpret_cast<void*>(hash_set_1_), 0, 315 sizeof(uintptr_t) * kHashSetLength); 316 memset(reinterpret_cast<void*>(hash_set_2_), 0, 317 sizeof(uintptr_t) * kHashSetLength); 318 hash_sets_are_empty_ = true; 319 } 320 } 321 322 323 void StoreBuffer::GCPrologue() { 324 ClearFilteringHashSets(); 325 during_gc_ = true; 326 } 327 328 329 #ifdef VERIFY_HEAP 330 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { 331 LargeObjectIterator it(space); 332 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { 333 if (object->IsFixedArray()) { 334 Address slot_address = object->address(); 335 Address end = object->address() + object->Size(); 336 337 while (slot_address < end) { 338 HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); 339 // When we are not in GC the Heap::InNewSpace() predicate 340 // checks that pointers which satisfy predicate point into 341 // the active semispace. 342 Object* object = reinterpret_cast<Object*>( 343 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); 344 heap_->InNewSpace(object); 345 slot_address += kPointerSize; 346 } 347 } 348 } 349 } 350 #endif 351 352 353 void StoreBuffer::Verify() { 354 #ifdef VERIFY_HEAP 355 VerifyPointers(heap_->lo_space()); 356 #endif 357 } 358 359 360 void StoreBuffer::GCEpilogue() { 361 during_gc_ = false; 362 #ifdef VERIFY_HEAP 363 if (FLAG_verify_heap) { 364 Verify(); 365 } 366 #endif 367 } 368 369 370 void StoreBuffer::FindPointersToNewSpaceInRegion( 371 Address start, Address end, ObjectSlotCallback slot_callback, 372 bool clear_maps) { 373 for (Address slot_address = start; slot_address < end; 374 slot_address += kPointerSize) { 375 Object** slot = reinterpret_cast<Object**>(slot_address); 376 Object* object = reinterpret_cast<Object*>( 377 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); 378 if (heap_->InNewSpace(object)) { 379 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); 380 DCHECK(heap_object->IsHeapObject()); 381 // The new space object was not promoted if it still contains a map 382 // pointer. Clear the map field now lazily. 383 if (clear_maps) ClearDeadObject(heap_object); 384 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); 385 object = reinterpret_cast<Object*>( 386 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); 387 if (heap_->InNewSpace(object)) { 388 EnterDirectlyIntoStoreBuffer(slot_address); 389 } 390 } 391 } 392 } 393 394 395 void StoreBuffer::IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback, 396 bool clear_maps) { 397 Address* limit = old_top_; 398 old_top_ = old_start_; 399 { 400 DontMoveStoreBufferEntriesScope scope(this); 401 for (Address* current = old_start_; current < limit; current++) { 402 #ifdef DEBUG 403 Address* saved_top = old_top_; 404 #endif 405 Object** slot = reinterpret_cast<Object**>(*current); 406 Object* object = reinterpret_cast<Object*>( 407 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); 408 if (heap_->InFromSpace(object)) { 409 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); 410 // The new space object was not promoted if it still contains a map 411 // pointer. Clear the map field now lazily. 412 if (clear_maps) ClearDeadObject(heap_object); 413 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); 414 object = reinterpret_cast<Object*>( 415 base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); 416 if (heap_->InNewSpace(object)) { 417 EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); 418 } 419 } 420 DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); 421 } 422 } 423 } 424 425 426 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { 427 IteratePointersToNewSpace(slot_callback, false); 428 } 429 430 431 void StoreBuffer::IteratePointersToNewSpaceAndClearMaps( 432 ObjectSlotCallback slot_callback) { 433 IteratePointersToNewSpace(slot_callback, true); 434 } 435 436 437 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback, 438 bool clear_maps) { 439 // We do not sort or remove duplicated entries from the store buffer because 440 // we expect that callback will rebuild the store buffer thus removing 441 // all duplicates and pointers to old space. 442 bool some_pages_to_scan = PrepareForIteration(); 443 444 // TODO(gc): we want to skip slots on evacuation candidates 445 // but we can't simply figure that out from slot address 446 // because slot can belong to a large object. 447 IteratePointersInStoreBuffer(slot_callback, clear_maps); 448 449 // We are done scanning all the pointers that were in the store buffer, but 450 // there may be some pages marked scan_on_scavenge that have pointers to new 451 // space that are not in the store buffer. We must scan them now. As we 452 // scan, the surviving pointers to new space will be added to the store 453 // buffer. If there are still a lot of pointers to new space then we will 454 // keep the scan_on_scavenge flag on the page and discard the pointers that 455 // were added to the store buffer. If there are not many pointers to new 456 // space left on the page we will keep the pointers in the store buffer and 457 // remove the flag from the page. 458 if (some_pages_to_scan) { 459 if (callback_ != NULL) { 460 (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); 461 } 462 PointerChunkIterator it(heap_); 463 MemoryChunk* chunk; 464 while ((chunk = it.next()) != NULL) { 465 if (chunk->scan_on_scavenge()) { 466 chunk->set_scan_on_scavenge(false); 467 if (callback_ != NULL) { 468 (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); 469 } 470 if (chunk->owner() == heap_->lo_space()) { 471 LargePage* large_page = reinterpret_cast<LargePage*>(chunk); 472 HeapObject* array = large_page->GetObject(); 473 DCHECK(array->IsFixedArray()); 474 Address start = array->address(); 475 Address end = start + array->Size(); 476 FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps); 477 } else { 478 Page* page = reinterpret_cast<Page*>(chunk); 479 PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); 480 if (owner == heap_->map_space()) { 481 DCHECK(page->WasSwept()); 482 HeapObjectIterator iterator(page, NULL); 483 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; 484 heap_object = iterator.Next()) { 485 // We skip free space objects. 486 if (!heap_object->IsFiller()) { 487 DCHECK(heap_object->IsMap()); 488 FindPointersToNewSpaceInRegion( 489 heap_object->address() + Map::kPointerFieldsBeginOffset, 490 heap_object->address() + Map::kPointerFieldsEndOffset, 491 slot_callback, clear_maps); 492 } 493 } 494 } else { 495 if (!page->SweepingCompleted()) { 496 heap_->mark_compact_collector()->SweepInParallel(page, owner); 497 if (!page->SweepingCompleted()) { 498 // We were not able to sweep that page, i.e., a concurrent 499 // sweeper thread currently owns this page. 500 // TODO(hpayer): This may introduce a huge pause here. We 501 // just care about finish sweeping of the scan on scavenge page. 502 heap_->mark_compact_collector()->EnsureSweepingCompleted(); 503 } 504 } 505 CHECK(page->owner() == heap_->old_pointer_space()); 506 HeapObjectIterator iterator(page, NULL); 507 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; 508 heap_object = iterator.Next()) { 509 // We iterate over objects that contain new space pointers only. 510 if (!heap_object->MayContainRawValues()) { 511 FindPointersToNewSpaceInRegion( 512 heap_object->address() + HeapObject::kHeaderSize, 513 heap_object->address() + heap_object->Size(), slot_callback, 514 clear_maps); 515 } 516 } 517 } 518 } 519 } 520 } 521 if (callback_ != NULL) { 522 (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent); 523 } 524 } 525 } 526 527 528 void StoreBuffer::Compact() { 529 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); 530 531 if (top == start_) return; 532 533 // There's no check of the limit in the loop below so we check here for 534 // the worst case (compaction doesn't eliminate any pointers). 535 DCHECK(top <= limit_); 536 heap_->public_set_store_buffer_top(start_); 537 EnsureSpace(top - start_); 538 DCHECK(may_move_store_buffer_entries_); 539 // Goes through the addresses in the store buffer attempting to remove 540 // duplicates. In the interest of speed this is a lossy operation. Some 541 // duplicates will remain. We have two hash sets with different hash 542 // functions to reduce the number of unnecessary clashes. 543 hash_sets_are_empty_ = false; // Hash sets are in use. 544 for (Address* current = start_; current < top; current++) { 545 DCHECK(!heap_->cell_space()->Contains(*current)); 546 DCHECK(!heap_->code_space()->Contains(*current)); 547 DCHECK(!heap_->old_data_space()->Contains(*current)); 548 uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current); 549 // Shift out the last bits including any tags. 550 int_addr >>= kPointerSizeLog2; 551 // The upper part of an address is basically random because of ASLR and OS 552 // non-determinism, so we use only the bits within a page for hashing to 553 // make v8's behavior (more) deterministic. 554 uintptr_t hash_addr = 555 int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2); 556 int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) & 557 (kHashSetLength - 1)); 558 if (hash_set_1_[hash1] == int_addr) continue; 559 uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2)); 560 hash2 ^= hash2 >> (kHashSetLengthLog2 * 2); 561 hash2 &= (kHashSetLength - 1); 562 if (hash_set_2_[hash2] == int_addr) continue; 563 if (hash_set_1_[hash1] == 0) { 564 hash_set_1_[hash1] = int_addr; 565 } else if (hash_set_2_[hash2] == 0) { 566 hash_set_2_[hash2] = int_addr; 567 } else { 568 // Rather than slowing down we just throw away some entries. This will 569 // cause some duplicates to remain undetected. 570 hash_set_1_[hash1] = int_addr; 571 hash_set_2_[hash2] = 0; 572 } 573 old_buffer_is_sorted_ = false; 574 old_buffer_is_filtered_ = false; 575 *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); 576 DCHECK(old_top_ <= old_limit_); 577 } 578 heap_->isolate()->counters()->store_buffer_compactions()->Increment(); 579 } 580 } 581 } // namespace v8::internal 582