1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_STORE_BUFFER_H_ 6 #define V8_STORE_BUFFER_H_ 7 8 #include "src/allocation.h" 9 #include "src/base/logging.h" 10 #include "src/base/platform/platform.h" 11 #include "src/globals.h" 12 13 namespace v8 { 14 namespace internal { 15 16 class Page; 17 class PagedSpace; 18 class StoreBuffer; 19 20 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); 21 22 typedef void (StoreBuffer::*RegionCallback)(Address start, Address end, 23 ObjectSlotCallback slot_callback, 24 bool clear_maps); 25 26 // Used to implement the write barrier by collecting addresses of pointers 27 // between spaces. 28 class StoreBuffer { 29 public: 30 explicit StoreBuffer(Heap* heap); 31 32 static void StoreBufferOverflow(Isolate* isolate); 33 34 inline Address TopAddress(); 35 36 void SetUp(); 37 void TearDown(); 38 39 // This is used by the mutator to enter addresses into the store buffer. 40 inline void Mark(Address addr); 41 42 // This is used by the heap traversal to enter the addresses into the store 43 // buffer that should still be in the store buffer after GC. It enters 44 // addresses directly into the old buffer because the GC starts by wiping the 45 // old buffer and thereafter only visits each cell once so there is no need 46 // to attempt to remove any dupes. During the first part of a GC we 47 // are using the store buffer to access the old spaces and at the same time 48 // we are rebuilding the store buffer using this function. There is, however 49 // no issue of overwriting the buffer we are iterating over, because this 50 // stage of the scavenge can only reduce the number of addresses in the store 51 // buffer (some objects are promoted so pointers to them do not need to be in 52 // the store buffer). The later parts of the GC scan the pages that are 53 // exempt from the store buffer and process the promotion queue. These steps 54 // can overflow this buffer. We check for this and on overflow we call the 55 // callback set up with the StoreBufferRebuildScope object. 56 inline void EnterDirectlyIntoStoreBuffer(Address addr); 57 58 // Iterates over all pointers that go from old space to new space. It will 59 // delete the store buffer as it starts so the callback should reenter 60 // surviving old-to-new pointers into the store buffer to rebuild it. 61 void IteratePointersToNewSpace(ObjectSlotCallback callback); 62 63 // Same as IteratePointersToNewSpace but additonally clears maps in objects 64 // referenced from the store buffer that do not contain a forwarding pointer. 65 void IteratePointersToNewSpaceAndClearMaps(ObjectSlotCallback callback); 66 67 static const int kStoreBufferOverflowBit = 1 << (14 + kPointerSizeLog2); 68 static const int kStoreBufferSize = kStoreBufferOverflowBit; 69 static const int kStoreBufferLength = kStoreBufferSize / sizeof(Address); 70 static const int kOldStoreBufferLength = kStoreBufferLength * 16; 71 static const int kHashSetLengthLog2 = 12; 72 static const int kHashSetLength = 1 << kHashSetLengthLog2; 73 74 void Compact(); 75 76 void GCPrologue(); 77 void GCEpilogue(); 78 79 Object*** Limit() { return reinterpret_cast<Object***>(old_limit_); } 80 Object*** Start() { return reinterpret_cast<Object***>(old_start_); } 81 Object*** Top() { return reinterpret_cast<Object***>(old_top_); } 82 void SetTop(Object*** top) { 83 DCHECK(top >= Start()); 84 DCHECK(top <= Limit()); 85 old_top_ = reinterpret_cast<Address*>(top); 86 } 87 88 bool old_buffer_is_sorted() { return old_buffer_is_sorted_; } 89 bool old_buffer_is_filtered() { return old_buffer_is_filtered_; } 90 91 // Goes through the store buffer removing pointers to things that have 92 // been promoted. Rebuilds the store buffer completely if it overflowed. 93 void SortUniq(); 94 95 void EnsureSpace(intptr_t space_needed); 96 void Verify(); 97 98 bool PrepareForIteration(); 99 100 #ifdef DEBUG 101 void Clean(); 102 // Slow, for asserts only. 103 bool CellIsInStoreBuffer(Address cell); 104 #endif 105 106 void Filter(int flag); 107 108 private: 109 Heap* heap_; 110 111 // The store buffer is divided up into a new buffer that is constantly being 112 // filled by mutator activity and an old buffer that is filled with the data 113 // from the new buffer after compression. 114 Address* start_; 115 Address* limit_; 116 117 Address* old_start_; 118 Address* old_limit_; 119 Address* old_top_; 120 Address* old_reserved_limit_; 121 base::VirtualMemory* old_virtual_memory_; 122 123 bool old_buffer_is_sorted_; 124 bool old_buffer_is_filtered_; 125 bool during_gc_; 126 // The garbage collector iterates over many pointers to new space that are not 127 // handled by the store buffer. This flag indicates whether the pointers 128 // found by the callbacks should be added to the store buffer or not. 129 bool store_buffer_rebuilding_enabled_; 130 StoreBufferCallback callback_; 131 bool may_move_store_buffer_entries_; 132 133 base::VirtualMemory* virtual_memory_; 134 135 // Two hash sets used for filtering. 136 // If address is in the hash set then it is guaranteed to be in the 137 // old part of the store buffer. 138 uintptr_t* hash_set_1_; 139 uintptr_t* hash_set_2_; 140 bool hash_sets_are_empty_; 141 142 void ClearFilteringHashSets(); 143 144 bool SpaceAvailable(intptr_t space_needed); 145 void Uniq(); 146 void ExemptPopularPages(int prime_sample_step, int threshold); 147 148 // Set the map field of the object to NULL if contains a map. 149 inline void ClearDeadObject(HeapObject* object); 150 151 void IteratePointersToNewSpace(ObjectSlotCallback callback, bool clear_maps); 152 153 void FindPointersToNewSpaceInRegion(Address start, Address end, 154 ObjectSlotCallback slot_callback, 155 bool clear_maps); 156 157 // For each region of pointers on a page in use from an old space call 158 // visit_pointer_region callback. 159 // If either visit_pointer_region or callback can cause an allocation 160 // in old space and changes in allocation watermark then 161 // can_preallocate_during_iteration should be set to true. 162 void IteratePointersOnPage(PagedSpace* space, Page* page, 163 RegionCallback region_callback, 164 ObjectSlotCallback slot_callback); 165 166 void IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback, 167 bool clear_maps); 168 169 #ifdef VERIFY_HEAP 170 void VerifyPointers(LargeObjectSpace* space); 171 #endif 172 173 friend class StoreBufferRebuildScope; 174 friend class DontMoveStoreBufferEntriesScope; 175 }; 176 177 178 class StoreBufferRebuildScope { 179 public: 180 explicit StoreBufferRebuildScope(Heap* heap, StoreBuffer* store_buffer, 181 StoreBufferCallback callback) 182 : store_buffer_(store_buffer), 183 stored_state_(store_buffer->store_buffer_rebuilding_enabled_), 184 stored_callback_(store_buffer->callback_) { 185 store_buffer_->store_buffer_rebuilding_enabled_ = true; 186 store_buffer_->callback_ = callback; 187 (*callback)(heap, NULL, kStoreBufferStartScanningPagesEvent); 188 } 189 190 ~StoreBufferRebuildScope() { 191 store_buffer_->callback_ = stored_callback_; 192 store_buffer_->store_buffer_rebuilding_enabled_ = stored_state_; 193 } 194 195 private: 196 StoreBuffer* store_buffer_; 197 bool stored_state_; 198 StoreBufferCallback stored_callback_; 199 }; 200 201 202 class DontMoveStoreBufferEntriesScope { 203 public: 204 explicit DontMoveStoreBufferEntriesScope(StoreBuffer* store_buffer) 205 : store_buffer_(store_buffer), 206 stored_state_(store_buffer->may_move_store_buffer_entries_) { 207 store_buffer_->may_move_store_buffer_entries_ = false; 208 } 209 210 ~DontMoveStoreBufferEntriesScope() { 211 store_buffer_->may_move_store_buffer_entries_ = stored_state_; 212 } 213 214 private: 215 StoreBuffer* store_buffer_; 216 bool stored_state_; 217 }; 218 } 219 } // namespace v8::internal 220 221 #endif // V8_STORE_BUFFER_H_ 222