1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 12 /* 13 * This header file includes all of the fix point signal processing library (SPL) function 14 * descriptions and declarations. 15 * For specific function calls, see bottom of file. 16 */ 17 18 #ifndef WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_ 19 #define WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_ 20 21 #include <string.h> 22 #include "webrtc/typedefs.h" 23 24 // Macros specific for the fixed point implementation 25 #define WEBRTC_SPL_WORD16_MAX 32767 26 #define WEBRTC_SPL_WORD16_MIN -32768 27 #define WEBRTC_SPL_WORD32_MAX (int32_t)0x7fffffff 28 #define WEBRTC_SPL_WORD32_MIN (int32_t)0x80000000 29 #define WEBRTC_SPL_MAX_LPC_ORDER 14 30 #define WEBRTC_SPL_MIN(A, B) (A < B ? A : B) // Get min value 31 #define WEBRTC_SPL_MAX(A, B) (A > B ? A : B) // Get max value 32 // TODO(kma/bjorn): For the next two macros, investigate how to correct the code 33 // for inputs of a = WEBRTC_SPL_WORD16_MIN or WEBRTC_SPL_WORD32_MIN. 34 #define WEBRTC_SPL_ABS_W16(a) \ 35 (((int16_t)a >= 0) ? ((int16_t)a) : -((int16_t)a)) 36 #define WEBRTC_SPL_ABS_W32(a) \ 37 (((int32_t)a >= 0) ? ((int32_t)a) : -((int32_t)a)) 38 39 #define WEBRTC_SPL_MUL(a, b) \ 40 ((int32_t) ((int32_t)(a) * (int32_t)(b))) 41 #define WEBRTC_SPL_UMUL(a, b) \ 42 ((uint32_t) ((uint32_t)(a) * (uint32_t)(b))) 43 #define WEBRTC_SPL_UMUL_16_16(a, b) \ 44 ((uint32_t) (uint16_t)(a) * (uint16_t)(b)) 45 #define WEBRTC_SPL_UMUL_32_16(a, b) \ 46 ((uint32_t) ((uint32_t)(a) * (uint16_t)(b))) 47 #define WEBRTC_SPL_MUL_16_U16(a, b) \ 48 ((int32_t)(int16_t)(a) * (uint16_t)(b)) 49 50 #ifndef WEBRTC_ARCH_ARM_V7 51 // For ARMv7 platforms, these are inline functions in spl_inl_armv7.h 52 #ifndef MIPS32_LE 53 // For MIPS platforms, these are inline functions in spl_inl_mips.h 54 #define WEBRTC_SPL_MUL_16_16(a, b) \ 55 ((int32_t) (((int16_t)(a)) * ((int16_t)(b)))) 56 #define WEBRTC_SPL_MUL_16_32_RSFT16(a, b) \ 57 (WEBRTC_SPL_MUL_16_16(a, b >> 16) \ 58 + ((WEBRTC_SPL_MUL_16_16(a, (b & 0xffff) >> 1) + 0x4000) >> 15)) 59 #endif 60 #endif 61 62 #define WEBRTC_SPL_MUL_16_32_RSFT11(a, b) \ 63 ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 5) \ 64 + (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x0200) >> 10)) 65 #define WEBRTC_SPL_MUL_16_32_RSFT14(a, b) \ 66 ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 2) \ 67 + (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x1000) >> 13)) 68 #define WEBRTC_SPL_MUL_16_32_RSFT15(a, b) \ 69 ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) << 1) \ 70 + (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x2000) >> 14)) 71 72 #define WEBRTC_SPL_MUL_16_16_RSFT(a, b, c) \ 73 (WEBRTC_SPL_MUL_16_16(a, b) >> (c)) 74 75 #define WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, c) \ 76 ((WEBRTC_SPL_MUL_16_16(a, b) + ((int32_t) \ 77 (((int32_t)1) << ((c) - 1)))) >> (c)) 78 79 // C + the 32 most significant bits of A * B 80 #define WEBRTC_SPL_SCALEDIFF32(A, B, C) \ 81 (C + (B >> 16) * A + (((uint32_t)(0x0000FFFF & B) * A) >> 16)) 82 83 #define WEBRTC_SPL_SAT(a, b, c) (b > a ? a : b < c ? c : b) 84 85 // Shifting with negative numbers allowed 86 // Positive means left shift 87 #define WEBRTC_SPL_SHIFT_W32(x, c) \ 88 (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c)))) 89 90 // Shifting with negative numbers not allowed 91 // We cannot do casting here due to signed/unsigned problem 92 #define WEBRTC_SPL_RSHIFT_W16(x, c) ((x) >> (c)) 93 #define WEBRTC_SPL_LSHIFT_W16(x, c) ((x) << (c)) 94 #define WEBRTC_SPL_RSHIFT_W32(x, c) ((x) >> (c)) 95 #define WEBRTC_SPL_LSHIFT_W32(x, c) ((x) << (c)) 96 97 #define WEBRTC_SPL_RSHIFT_U32(x, c) ((uint32_t)(x) >> (c)) 98 #define WEBRTC_SPL_LSHIFT_U32(x, c) ((uint32_t)(x) << (c)) 99 100 #define WEBRTC_SPL_RAND(a) \ 101 ((int16_t)(WEBRTC_SPL_MUL_16_16_RSFT((a), 18816, 7) & 0x00007fff)) 102 103 #ifdef __cplusplus 104 extern "C" { 105 #endif 106 107 #define WEBRTC_SPL_MEMCPY_W16(v1, v2, length) \ 108 memcpy(v1, v2, (length) * sizeof(int16_t)) 109 110 // inline functions: 111 #include "webrtc/common_audio/signal_processing/include/spl_inl.h" 112 113 // Initialize SPL. Currently it contains only function pointer initialization. 114 // If the underlying platform is known to be ARM-Neon (WEBRTC_ARCH_ARM_NEON 115 // defined), the pointers will be assigned to code optimized for Neon; otherwise 116 // if run-time Neon detection (WEBRTC_DETECT_ARM_NEON) is enabled, the pointers 117 // will be assigned to either Neon code or generic C code; otherwise, generic C 118 // code will be assigned. 119 // Note that this function MUST be called in any application that uses SPL 120 // functions. 121 void WebRtcSpl_Init(); 122 123 // Get SPL Version 124 int16_t WebRtcSpl_get_version(char* version, int16_t length_in_bytes); 125 126 int16_t WebRtcSpl_GetScalingSquare(int16_t* in_vector, 127 int in_vector_length, 128 int times); 129 130 // Copy and set operations. Implementation in copy_set_operations.c. 131 // Descriptions at bottom of file. 132 void WebRtcSpl_MemSetW16(int16_t* vector, 133 int16_t set_value, 134 int vector_length); 135 void WebRtcSpl_MemSetW32(int32_t* vector, 136 int32_t set_value, 137 int vector_length); 138 void WebRtcSpl_MemCpyReversedOrder(int16_t* out_vector, 139 int16_t* in_vector, 140 int vector_length); 141 void WebRtcSpl_CopyFromEndW16(const int16_t* in_vector, 142 int in_vector_length, 143 int samples, 144 int16_t* out_vector); 145 void WebRtcSpl_ZerosArrayW16(int16_t* vector, 146 int vector_length); 147 void WebRtcSpl_ZerosArrayW32(int32_t* vector, 148 int vector_length); 149 // End: Copy and set operations. 150 151 152 // Minimum and maximum operation functions and their pointers. 153 // Implementation in min_max_operations.c. 154 155 // Returns the largest absolute value in a signed 16-bit vector. 156 // 157 // Input: 158 // - vector : 16-bit input vector. 159 // - length : Number of samples in vector. 160 // 161 // Return value : Maximum absolute value in vector; 162 // or -1, if (vector == NULL || length <= 0). 163 typedef int16_t (*MaxAbsValueW16)(const int16_t* vector, int length); 164 extern MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16; 165 int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t* vector, int length); 166 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 167 int16_t WebRtcSpl_MaxAbsValueW16Neon(const int16_t* vector, int length); 168 #endif 169 #if defined(MIPS32_LE) 170 int16_t WebRtcSpl_MaxAbsValueW16_mips(const int16_t* vector, int length); 171 #endif 172 173 // Returns the largest absolute value in a signed 32-bit vector. 174 // 175 // Input: 176 // - vector : 32-bit input vector. 177 // - length : Number of samples in vector. 178 // 179 // Return value : Maximum absolute value in vector; 180 // or -1, if (vector == NULL || length <= 0). 181 typedef int32_t (*MaxAbsValueW32)(const int32_t* vector, int length); 182 extern MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32; 183 int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t* vector, int length); 184 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 185 int32_t WebRtcSpl_MaxAbsValueW32Neon(const int32_t* vector, int length); 186 #endif 187 #if defined(MIPS_DSP_R1_LE) 188 int32_t WebRtcSpl_MaxAbsValueW32_mips(const int32_t* vector, int length); 189 #endif 190 191 // Returns the maximum value of a 16-bit vector. 192 // 193 // Input: 194 // - vector : 16-bit input vector. 195 // - length : Number of samples in vector. 196 // 197 // Return value : Maximum sample value in |vector|. 198 // If (vector == NULL || length <= 0) WEBRTC_SPL_WORD16_MIN 199 // is returned. Note that WEBRTC_SPL_WORD16_MIN is a feasible 200 // value and we can't catch errors purely based on it. 201 typedef int16_t (*MaxValueW16)(const int16_t* vector, int length); 202 extern MaxValueW16 WebRtcSpl_MaxValueW16; 203 int16_t WebRtcSpl_MaxValueW16C(const int16_t* vector, int length); 204 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 205 int16_t WebRtcSpl_MaxValueW16Neon(const int16_t* vector, int length); 206 #endif 207 #if defined(MIPS32_LE) 208 int16_t WebRtcSpl_MaxValueW16_mips(const int16_t* vector, int length); 209 #endif 210 211 // Returns the maximum value of a 32-bit vector. 212 // 213 // Input: 214 // - vector : 32-bit input vector. 215 // - length : Number of samples in vector. 216 // 217 // Return value : Maximum sample value in |vector|. 218 // If (vector == NULL || length <= 0) WEBRTC_SPL_WORD32_MIN 219 // is returned. Note that WEBRTC_SPL_WORD32_MIN is a feasible 220 // value and we can't catch errors purely based on it. 221 typedef int32_t (*MaxValueW32)(const int32_t* vector, int length); 222 extern MaxValueW32 WebRtcSpl_MaxValueW32; 223 int32_t WebRtcSpl_MaxValueW32C(const int32_t* vector, int length); 224 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 225 int32_t WebRtcSpl_MaxValueW32Neon(const int32_t* vector, int length); 226 #endif 227 #if defined(MIPS32_LE) 228 int32_t WebRtcSpl_MaxValueW32_mips(const int32_t* vector, int length); 229 #endif 230 231 // Returns the minimum value of a 16-bit vector. 232 // 233 // Input: 234 // - vector : 16-bit input vector. 235 // - length : Number of samples in vector. 236 // 237 // Return value : Minimum sample value in |vector|. 238 // If (vector == NULL || length <= 0) WEBRTC_SPL_WORD16_MAX 239 // is returned. Note that WEBRTC_SPL_WORD16_MAX is a feasible 240 // value and we can't catch errors purely based on it. 241 typedef int16_t (*MinValueW16)(const int16_t* vector, int length); 242 extern MinValueW16 WebRtcSpl_MinValueW16; 243 int16_t WebRtcSpl_MinValueW16C(const int16_t* vector, int length); 244 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 245 int16_t WebRtcSpl_MinValueW16Neon(const int16_t* vector, int length); 246 #endif 247 #if defined(MIPS32_LE) 248 int16_t WebRtcSpl_MinValueW16_mips(const int16_t* vector, int length); 249 #endif 250 251 // Returns the minimum value of a 32-bit vector. 252 // 253 // Input: 254 // - vector : 32-bit input vector. 255 // - length : Number of samples in vector. 256 // 257 // Return value : Minimum sample value in |vector|. 258 // If (vector == NULL || length <= 0) WEBRTC_SPL_WORD32_MAX 259 // is returned. Note that WEBRTC_SPL_WORD32_MAX is a feasible 260 // value and we can't catch errors purely based on it. 261 typedef int32_t (*MinValueW32)(const int32_t* vector, int length); 262 extern MinValueW32 WebRtcSpl_MinValueW32; 263 int32_t WebRtcSpl_MinValueW32C(const int32_t* vector, int length); 264 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 265 int32_t WebRtcSpl_MinValueW32Neon(const int32_t* vector, int length); 266 #endif 267 #if defined(MIPS32_LE) 268 int32_t WebRtcSpl_MinValueW32_mips(const int32_t* vector, int length); 269 #endif 270 271 // Returns the vector index to the largest absolute value of a 16-bit vector. 272 // 273 // Input: 274 // - vector : 16-bit input vector. 275 // - length : Number of samples in vector. 276 // 277 // Return value : Index to the maximum absolute value in vector, or -1, 278 // if (vector == NULL || length <= 0). 279 // If there are multiple equal maxima, return the index of the 280 // first. -32768 will always have precedence over 32767 (despite 281 // -32768 presenting an int16 absolute value of 32767); 282 int WebRtcSpl_MaxAbsIndexW16(const int16_t* vector, int length); 283 284 // Returns the vector index to the maximum sample value of a 16-bit vector. 285 // 286 // Input: 287 // - vector : 16-bit input vector. 288 // - length : Number of samples in vector. 289 // 290 // Return value : Index to the maximum value in vector (if multiple 291 // indexes have the maximum, return the first); 292 // or -1, if (vector == NULL || length <= 0). 293 int WebRtcSpl_MaxIndexW16(const int16_t* vector, int length); 294 295 // Returns the vector index to the maximum sample value of a 32-bit vector. 296 // 297 // Input: 298 // - vector : 32-bit input vector. 299 // - length : Number of samples in vector. 300 // 301 // Return value : Index to the maximum value in vector (if multiple 302 // indexes have the maximum, return the first); 303 // or -1, if (vector == NULL || length <= 0). 304 int WebRtcSpl_MaxIndexW32(const int32_t* vector, int length); 305 306 // Returns the vector index to the minimum sample value of a 16-bit vector. 307 // 308 // Input: 309 // - vector : 16-bit input vector. 310 // - length : Number of samples in vector. 311 // 312 // Return value : Index to the mimimum value in vector (if multiple 313 // indexes have the minimum, return the first); 314 // or -1, if (vector == NULL || length <= 0). 315 int WebRtcSpl_MinIndexW16(const int16_t* vector, int length); 316 317 // Returns the vector index to the minimum sample value of a 32-bit vector. 318 // 319 // Input: 320 // - vector : 32-bit input vector. 321 // - length : Number of samples in vector. 322 // 323 // Return value : Index to the mimimum value in vector (if multiple 324 // indexes have the minimum, return the first); 325 // or -1, if (vector == NULL || length <= 0). 326 int WebRtcSpl_MinIndexW32(const int32_t* vector, int length); 327 328 // End: Minimum and maximum operations. 329 330 331 // Vector scaling operations. Implementation in vector_scaling_operations.c. 332 // Description at bottom of file. 333 void WebRtcSpl_VectorBitShiftW16(int16_t* out_vector, 334 int16_t vector_length, 335 const int16_t* in_vector, 336 int16_t right_shifts); 337 void WebRtcSpl_VectorBitShiftW32(int32_t* out_vector, 338 int16_t vector_length, 339 const int32_t* in_vector, 340 int16_t right_shifts); 341 void WebRtcSpl_VectorBitShiftW32ToW16(int16_t* out_vector, 342 int vector_length, 343 const int32_t* in_vector, 344 int right_shifts); 345 void WebRtcSpl_ScaleVector(const int16_t* in_vector, 346 int16_t* out_vector, 347 int16_t gain, 348 int16_t vector_length, 349 int16_t right_shifts); 350 void WebRtcSpl_ScaleVectorWithSat(const int16_t* in_vector, 351 int16_t* out_vector, 352 int16_t gain, 353 int16_t vector_length, 354 int16_t right_shifts); 355 void WebRtcSpl_ScaleAndAddVectors(const int16_t* in_vector1, 356 int16_t gain1, int right_shifts1, 357 const int16_t* in_vector2, 358 int16_t gain2, int right_shifts2, 359 int16_t* out_vector, 360 int vector_length); 361 362 // The functions (with related pointer) perform the vector operation: 363 // out_vector[k] = ((scale1 * in_vector1[k]) + (scale2 * in_vector2[k]) 364 // + round_value) >> right_shifts, 365 // where round_value = (1 << right_shifts) >> 1. 366 // 367 // Input: 368 // - in_vector1 : Input vector 1 369 // - in_vector1_scale : Gain to be used for vector 1 370 // - in_vector2 : Input vector 2 371 // - in_vector2_scale : Gain to be used for vector 2 372 // - right_shifts : Number of right bit shifts to be applied 373 // - length : Number of elements in the input vectors 374 // 375 // Output: 376 // - out_vector : Output vector 377 // Return value : 0 if OK, -1 if (in_vector1 == NULL 378 // || in_vector2 == NULL || out_vector == NULL 379 // || length <= 0 || right_shift < 0). 380 typedef int (*ScaleAndAddVectorsWithRound)(const int16_t* in_vector1, 381 int16_t in_vector1_scale, 382 const int16_t* in_vector2, 383 int16_t in_vector2_scale, 384 int right_shifts, 385 int16_t* out_vector, 386 int length); 387 extern ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound; 388 int WebRtcSpl_ScaleAndAddVectorsWithRoundC(const int16_t* in_vector1, 389 int16_t in_vector1_scale, 390 const int16_t* in_vector2, 391 int16_t in_vector2_scale, 392 int right_shifts, 393 int16_t* out_vector, 394 int length); 395 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 396 int WebRtcSpl_ScaleAndAddVectorsWithRoundNeon(const int16_t* in_vector1, 397 int16_t in_vector1_scale, 398 const int16_t* in_vector2, 399 int16_t in_vector2_scale, 400 int right_shifts, 401 int16_t* out_vector, 402 int length); 403 #endif 404 #if defined(MIPS_DSP_R1_LE) 405 int WebRtcSpl_ScaleAndAddVectorsWithRound_mips(const int16_t* in_vector1, 406 int16_t in_vector1_scale, 407 const int16_t* in_vector2, 408 int16_t in_vector2_scale, 409 int right_shifts, 410 int16_t* out_vector, 411 int length); 412 #endif 413 // End: Vector scaling operations. 414 415 // iLBC specific functions. Implementations in ilbc_specific_functions.c. 416 // Description at bottom of file. 417 void WebRtcSpl_ReverseOrderMultArrayElements(int16_t* out_vector, 418 const int16_t* in_vector, 419 const int16_t* window, 420 int16_t vector_length, 421 int16_t right_shifts); 422 void WebRtcSpl_ElementwiseVectorMult(int16_t* out_vector, 423 const int16_t* in_vector, 424 const int16_t* window, 425 int16_t vector_length, 426 int16_t right_shifts); 427 void WebRtcSpl_AddVectorsAndShift(int16_t* out_vector, 428 const int16_t* in_vector1, 429 const int16_t* in_vector2, 430 int16_t vector_length, 431 int16_t right_shifts); 432 void WebRtcSpl_AddAffineVectorToVector(int16_t* out_vector, 433 int16_t* in_vector, 434 int16_t gain, 435 int32_t add_constant, 436 int16_t right_shifts, 437 int vector_length); 438 void WebRtcSpl_AffineTransformVector(int16_t* out_vector, 439 int16_t* in_vector, 440 int16_t gain, 441 int32_t add_constant, 442 int16_t right_shifts, 443 int vector_length); 444 // End: iLBC specific functions. 445 446 // Signal processing operations. 447 448 // A 32-bit fix-point implementation of auto-correlation computation 449 // 450 // Input: 451 // - in_vector : Vector to calculate autocorrelation upon 452 // - in_vector_length : Length (in samples) of |vector| 453 // - order : The order up to which the autocorrelation should be 454 // calculated 455 // 456 // Output: 457 // - result : auto-correlation values (values should be seen 458 // relative to each other since the absolute values 459 // might have been down shifted to avoid overflow) 460 // 461 // - scale : The number of left shifts required to obtain the 462 // auto-correlation in Q0 463 // 464 // Return value : 465 // - -1, if |order| > |in_vector_length|; 466 // - Number of samples in |result|, i.e. (order+1), otherwise. 467 int WebRtcSpl_AutoCorrelation(const int16_t* in_vector, 468 int in_vector_length, 469 int order, 470 int32_t* result, 471 int* scale); 472 473 // A 32-bit fix-point implementation of the Levinson-Durbin algorithm that 474 // does NOT use the 64 bit class 475 // 476 // Input: 477 // - auto_corr : Vector with autocorrelation values of length >= 478 // |use_order|+1 479 // - use_order : The LPC filter order (support up to order 20) 480 // 481 // Output: 482 // - lpc_coef : lpc_coef[0..use_order] LPC coefficients in Q12 483 // - refl_coef : refl_coef[0...use_order-1]| Reflection coefficients in 484 // Q15 485 // 486 // Return value : 1 for stable 0 for unstable 487 int16_t WebRtcSpl_LevinsonDurbin(int32_t* auto_corr, 488 int16_t* lpc_coef, 489 int16_t* refl_coef, 490 int16_t order); 491 492 // Converts reflection coefficients |refl_coef| to LPC coefficients |lpc_coef|. 493 // This version is a 16 bit operation. 494 // 495 // NOTE: The 16 bit refl_coef -> lpc_coef conversion might result in a 496 // "slightly unstable" filter (i.e., a pole just outside the unit circle) in 497 // "rare" cases even if the reflection coefficients are stable. 498 // 499 // Input: 500 // - refl_coef : Reflection coefficients in Q15 that should be converted 501 // to LPC coefficients 502 // - use_order : Number of coefficients in |refl_coef| 503 // 504 // Output: 505 // - lpc_coef : LPC coefficients in Q12 506 void WebRtcSpl_ReflCoefToLpc(const int16_t* refl_coef, 507 int use_order, 508 int16_t* lpc_coef); 509 510 // Converts LPC coefficients |lpc_coef| to reflection coefficients |refl_coef|. 511 // This version is a 16 bit operation. 512 // The conversion is implemented by the step-down algorithm. 513 // 514 // Input: 515 // - lpc_coef : LPC coefficients in Q12, that should be converted to 516 // reflection coefficients 517 // - use_order : Number of coefficients in |lpc_coef| 518 // 519 // Output: 520 // - refl_coef : Reflection coefficients in Q15. 521 void WebRtcSpl_LpcToReflCoef(int16_t* lpc_coef, 522 int use_order, 523 int16_t* refl_coef); 524 525 // Calculates reflection coefficients (16 bit) from auto-correlation values 526 // 527 // Input: 528 // - auto_corr : Auto-correlation values 529 // - use_order : Number of coefficients wanted be calculated 530 // 531 // Output: 532 // - refl_coef : Reflection coefficients in Q15. 533 void WebRtcSpl_AutoCorrToReflCoef(const int32_t* auto_corr, 534 int use_order, 535 int16_t* refl_coef); 536 537 // The functions (with related pointer) calculate the cross-correlation between 538 // two sequences |seq1| and |seq2|. 539 // |seq1| is fixed and |seq2| slides as the pointer is increased with the 540 // amount |step_seq2|. Note the arguments should obey the relationship: 541 // |dim_seq| - 1 + |step_seq2| * (|dim_cross_correlation| - 1) < 542 // buffer size of |seq2| 543 // 544 // Input: 545 // - seq1 : First sequence (fixed throughout the correlation) 546 // - seq2 : Second sequence (slides |step_vector2| for each 547 // new correlation) 548 // - dim_seq : Number of samples to use in the cross-correlation 549 // - dim_cross_correlation : Number of cross-correlations to calculate (the 550 // start position for |vector2| is updated for each 551 // new one) 552 // - right_shifts : Number of right bit shifts to use. This will 553 // become the output Q-domain. 554 // - step_seq2 : How many (positive or negative) steps the 555 // |vector2| pointer should be updated for each new 556 // cross-correlation value. 557 // 558 // Output: 559 // - cross_correlation : The cross-correlation in Q(-right_shifts) 560 typedef void (*CrossCorrelation)(int32_t* cross_correlation, 561 const int16_t* seq1, 562 const int16_t* seq2, 563 int16_t dim_seq, 564 int16_t dim_cross_correlation, 565 int16_t right_shifts, 566 int16_t step_seq2); 567 extern CrossCorrelation WebRtcSpl_CrossCorrelation; 568 void WebRtcSpl_CrossCorrelationC(int32_t* cross_correlation, 569 const int16_t* seq1, 570 const int16_t* seq2, 571 int16_t dim_seq, 572 int16_t dim_cross_correlation, 573 int16_t right_shifts, 574 int16_t step_seq2); 575 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 576 void WebRtcSpl_CrossCorrelationNeon(int32_t* cross_correlation, 577 const int16_t* seq1, 578 const int16_t* seq2, 579 int16_t dim_seq, 580 int16_t dim_cross_correlation, 581 int16_t right_shifts, 582 int16_t step_seq2); 583 #endif 584 #if defined(MIPS32_LE) 585 void WebRtcSpl_CrossCorrelation_mips(int32_t* cross_correlation, 586 const int16_t* seq1, 587 const int16_t* seq2, 588 int16_t dim_seq, 589 int16_t dim_cross_correlation, 590 int16_t right_shifts, 591 int16_t step_seq2); 592 #endif 593 594 // Creates (the first half of) a Hanning window. Size must be at least 1 and 595 // at most 512. 596 // 597 // Input: 598 // - size : Length of the requested Hanning window (1 to 512) 599 // 600 // Output: 601 // - window : Hanning vector in Q14. 602 void WebRtcSpl_GetHanningWindow(int16_t* window, int16_t size); 603 604 // Calculates y[k] = sqrt(1 - x[k]^2) for each element of the input vector 605 // |in_vector|. Input and output values are in Q15. 606 // 607 // Inputs: 608 // - in_vector : Values to calculate sqrt(1 - x^2) of 609 // - vector_length : Length of vector |in_vector| 610 // 611 // Output: 612 // - out_vector : Output values in Q15 613 void WebRtcSpl_SqrtOfOneMinusXSquared(int16_t* in_vector, 614 int vector_length, 615 int16_t* out_vector); 616 // End: Signal processing operations. 617 618 // Randomization functions. Implementations collected in 619 // randomization_functions.c and descriptions at bottom of this file. 620 int16_t WebRtcSpl_RandU(uint32_t* seed); 621 int16_t WebRtcSpl_RandN(uint32_t* seed); 622 int16_t WebRtcSpl_RandUArray(int16_t* vector, 623 int16_t vector_length, 624 uint32_t* seed); 625 // End: Randomization functions. 626 627 // Math functions 628 int32_t WebRtcSpl_Sqrt(int32_t value); 629 int32_t WebRtcSpl_SqrtFloor(int32_t value); 630 631 // Divisions. Implementations collected in division_operations.c and 632 // descriptions at bottom of this file. 633 uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den); 634 int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den); 635 int16_t WebRtcSpl_DivW32W16ResW16(int32_t num, int16_t den); 636 int32_t WebRtcSpl_DivResultInQ31(int32_t num, int32_t den); 637 int32_t WebRtcSpl_DivW32HiLow(int32_t num, int16_t den_hi, int16_t den_low); 638 // End: Divisions. 639 640 int32_t WebRtcSpl_Energy(int16_t* vector, int vector_length, int* scale_factor); 641 642 // Calculates the dot product between two (int16_t) vectors. 643 // 644 // Input: 645 // - vector1 : Vector 1 646 // - vector2 : Vector 2 647 // - vector_length : Number of samples used in the dot product 648 // - scaling : The number of right bit shifts to apply on each term 649 // during calculation to avoid overflow, i.e., the 650 // output will be in Q(-|scaling|) 651 // 652 // Return value : The dot product in Q(-scaling) 653 int32_t WebRtcSpl_DotProductWithScale(const int16_t* vector1, 654 const int16_t* vector2, 655 int length, 656 int scaling); 657 658 // Filter operations. 659 int WebRtcSpl_FilterAR(const int16_t* ar_coef, 660 int ar_coef_length, 661 const int16_t* in_vector, 662 int in_vector_length, 663 int16_t* filter_state, 664 int filter_state_length, 665 int16_t* filter_state_low, 666 int filter_state_low_length, 667 int16_t* out_vector, 668 int16_t* out_vector_low, 669 int out_vector_low_length); 670 671 void WebRtcSpl_FilterMAFastQ12(int16_t* in_vector, 672 int16_t* out_vector, 673 int16_t* ma_coef, 674 int16_t ma_coef_length, 675 int16_t vector_length); 676 677 // Performs a AR filtering on a vector in Q12 678 // Input: 679 // - data_in : Input samples 680 // - data_out : State information in positions 681 // data_out[-order] .. data_out[-1] 682 // - coefficients : Filter coefficients (in Q12) 683 // - coefficients_length: Number of coefficients (order+1) 684 // - data_length : Number of samples to be filtered 685 // Output: 686 // - data_out : Filtered samples 687 void WebRtcSpl_FilterARFastQ12(const int16_t* data_in, 688 int16_t* data_out, 689 const int16_t* __restrict coefficients, 690 int coefficients_length, 691 int data_length); 692 693 // The functions (with related pointer) perform a MA down sampling filter 694 // on a vector. 695 // Input: 696 // - data_in : Input samples (state in positions 697 // data_in[-order] .. data_in[-1]) 698 // - data_in_length : Number of samples in |data_in| to be filtered. 699 // This must be at least 700 // |delay| + |factor|*(|out_vector_length|-1) + 1) 701 // - data_out_length : Number of down sampled samples desired 702 // - coefficients : Filter coefficients (in Q12) 703 // - coefficients_length: Number of coefficients (order+1) 704 // - factor : Decimation factor 705 // - delay : Delay of filter (compensated for in out_vector) 706 // Output: 707 // - data_out : Filtered samples 708 // Return value : 0 if OK, -1 if |in_vector| is too short 709 typedef int (*DownsampleFast)(const int16_t* data_in, 710 int data_in_length, 711 int16_t* data_out, 712 int data_out_length, 713 const int16_t* __restrict coefficients, 714 int coefficients_length, 715 int factor, 716 int delay); 717 extern DownsampleFast WebRtcSpl_DownsampleFast; 718 int WebRtcSpl_DownsampleFastC(const int16_t* data_in, 719 int data_in_length, 720 int16_t* data_out, 721 int data_out_length, 722 const int16_t* __restrict coefficients, 723 int coefficients_length, 724 int factor, 725 int delay); 726 #if (defined WEBRTC_DETECT_ARM_NEON) || (defined WEBRTC_ARCH_ARM_NEON) 727 int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in, 728 int data_in_length, 729 int16_t* data_out, 730 int data_out_length, 731 const int16_t* __restrict coefficients, 732 int coefficients_length, 733 int factor, 734 int delay); 735 #endif 736 #if defined(MIPS32_LE) 737 int WebRtcSpl_DownsampleFast_mips(const int16_t* data_in, 738 int data_in_length, 739 int16_t* data_out, 740 int data_out_length, 741 const int16_t* __restrict coefficients, 742 int coefficients_length, 743 int factor, 744 int delay); 745 #endif 746 747 // End: Filter operations. 748 749 // FFT operations 750 751 int WebRtcSpl_ComplexFFT(int16_t vector[], int stages, int mode); 752 int WebRtcSpl_ComplexIFFT(int16_t vector[], int stages, int mode); 753 754 // Treat a 16-bit complex data buffer |complex_data| as an array of 32-bit 755 // values, and swap elements whose indexes are bit-reverses of each other. 756 // 757 // Input: 758 // - complex_data : Complex data buffer containing 2^|stages| real 759 // elements interleaved with 2^|stages| imaginary 760 // elements: [Re Im Re Im Re Im....] 761 // - stages : Number of FFT stages. Must be at least 3 and at most 762 // 10, since the table WebRtcSpl_kSinTable1024[] is 1024 763 // elements long. 764 // 765 // Output: 766 // - complex_data : The complex data buffer. 767 768 void WebRtcSpl_ComplexBitReverse(int16_t* __restrict complex_data, int stages); 769 770 // End: FFT operations 771 772 /************************************************************ 773 * 774 * RESAMPLING FUNCTIONS AND THEIR STRUCTS ARE DEFINED BELOW 775 * 776 ************************************************************/ 777 778 /******************************************************************* 779 * resample.c 780 * 781 * Includes the following resampling combinations 782 * 22 kHz -> 16 kHz 783 * 16 kHz -> 22 kHz 784 * 22 kHz -> 8 kHz 785 * 8 kHz -> 22 kHz 786 * 787 ******************************************************************/ 788 789 // state structure for 22 -> 16 resampler 790 typedef struct { 791 int32_t S_22_44[8]; 792 int32_t S_44_32[8]; 793 int32_t S_32_16[8]; 794 } WebRtcSpl_State22khzTo16khz; 795 796 void WebRtcSpl_Resample22khzTo16khz(const int16_t* in, 797 int16_t* out, 798 WebRtcSpl_State22khzTo16khz* state, 799 int32_t* tmpmem); 800 801 void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state); 802 803 // state structure for 16 -> 22 resampler 804 typedef struct { 805 int32_t S_16_32[8]; 806 int32_t S_32_22[8]; 807 } WebRtcSpl_State16khzTo22khz; 808 809 void WebRtcSpl_Resample16khzTo22khz(const int16_t* in, 810 int16_t* out, 811 WebRtcSpl_State16khzTo22khz* state, 812 int32_t* tmpmem); 813 814 void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state); 815 816 // state structure for 22 -> 8 resampler 817 typedef struct { 818 int32_t S_22_22[16]; 819 int32_t S_22_16[8]; 820 int32_t S_16_8[8]; 821 } WebRtcSpl_State22khzTo8khz; 822 823 void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, int16_t* out, 824 WebRtcSpl_State22khzTo8khz* state, 825 int32_t* tmpmem); 826 827 void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state); 828 829 // state structure for 8 -> 22 resampler 830 typedef struct { 831 int32_t S_8_16[8]; 832 int32_t S_16_11[8]; 833 int32_t S_11_22[8]; 834 } WebRtcSpl_State8khzTo22khz; 835 836 void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, int16_t* out, 837 WebRtcSpl_State8khzTo22khz* state, 838 int32_t* tmpmem); 839 840 void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state); 841 842 /******************************************************************* 843 * resample_fractional.c 844 * Functions for internal use in the other resample functions 845 * 846 * Includes the following resampling combinations 847 * 48 kHz -> 32 kHz 848 * 32 kHz -> 24 kHz 849 * 44 kHz -> 32 kHz 850 * 851 ******************************************************************/ 852 853 void WebRtcSpl_Resample48khzTo32khz(const int32_t* In, int32_t* Out, 854 int32_t K); 855 856 void WebRtcSpl_Resample32khzTo24khz(const int32_t* In, int32_t* Out, 857 int32_t K); 858 859 void WebRtcSpl_Resample44khzTo32khz(const int32_t* In, int32_t* Out, 860 int32_t K); 861 862 /******************************************************************* 863 * resample_48khz.c 864 * 865 * Includes the following resampling combinations 866 * 48 kHz -> 16 kHz 867 * 16 kHz -> 48 kHz 868 * 48 kHz -> 8 kHz 869 * 8 kHz -> 48 kHz 870 * 871 ******************************************************************/ 872 873 typedef struct { 874 int32_t S_48_48[16]; 875 int32_t S_48_32[8]; 876 int32_t S_32_16[8]; 877 } WebRtcSpl_State48khzTo16khz; 878 879 void WebRtcSpl_Resample48khzTo16khz(const int16_t* in, int16_t* out, 880 WebRtcSpl_State48khzTo16khz* state, 881 int32_t* tmpmem); 882 883 void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state); 884 885 typedef struct { 886 int32_t S_16_32[8]; 887 int32_t S_32_24[8]; 888 int32_t S_24_48[8]; 889 } WebRtcSpl_State16khzTo48khz; 890 891 void WebRtcSpl_Resample16khzTo48khz(const int16_t* in, int16_t* out, 892 WebRtcSpl_State16khzTo48khz* state, 893 int32_t* tmpmem); 894 895 void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state); 896 897 typedef struct { 898 int32_t S_48_24[8]; 899 int32_t S_24_24[16]; 900 int32_t S_24_16[8]; 901 int32_t S_16_8[8]; 902 } WebRtcSpl_State48khzTo8khz; 903 904 void WebRtcSpl_Resample48khzTo8khz(const int16_t* in, int16_t* out, 905 WebRtcSpl_State48khzTo8khz* state, 906 int32_t* tmpmem); 907 908 void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state); 909 910 typedef struct { 911 int32_t S_8_16[8]; 912 int32_t S_16_12[8]; 913 int32_t S_12_24[8]; 914 int32_t S_24_48[8]; 915 } WebRtcSpl_State8khzTo48khz; 916 917 void WebRtcSpl_Resample8khzTo48khz(const int16_t* in, int16_t* out, 918 WebRtcSpl_State8khzTo48khz* state, 919 int32_t* tmpmem); 920 921 void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state); 922 923 /******************************************************************* 924 * resample_by_2.c 925 * 926 * Includes down and up sampling by a factor of two. 927 * 928 ******************************************************************/ 929 930 void WebRtcSpl_DownsampleBy2(const int16_t* in, int len, 931 int16_t* out, int32_t* filtState); 932 933 void WebRtcSpl_UpsampleBy2(const int16_t* in, int len, 934 int16_t* out, int32_t* filtState); 935 936 /************************************************************ 937 * END OF RESAMPLING FUNCTIONS 938 ************************************************************/ 939 void WebRtcSpl_AnalysisQMF(const int16_t* in_data, 940 int in_data_length, 941 int16_t* low_band, 942 int16_t* high_band, 943 int32_t* filter_state1, 944 int32_t* filter_state2); 945 void WebRtcSpl_SynthesisQMF(const int16_t* low_band, 946 const int16_t* high_band, 947 int band_length, 948 int16_t* out_data, 949 int32_t* filter_state1, 950 int32_t* filter_state2); 951 952 #ifdef __cplusplus 953 } 954 #endif // __cplusplus 955 #endif // WEBRTC_SPL_SIGNAL_PROCESSING_LIBRARY_H_ 956 957 // 958 // WebRtcSpl_AddSatW16(...) 959 // WebRtcSpl_AddSatW32(...) 960 // 961 // Returns the result of a saturated 16-bit, respectively 32-bit, addition of 962 // the numbers specified by the |var1| and |var2| parameters. 963 // 964 // Input: 965 // - var1 : Input variable 1 966 // - var2 : Input variable 2 967 // 968 // Return value : Added and saturated value 969 // 970 971 // 972 // WebRtcSpl_SubSatW16(...) 973 // WebRtcSpl_SubSatW32(...) 974 // 975 // Returns the result of a saturated 16-bit, respectively 32-bit, subtraction 976 // of the numbers specified by the |var1| and |var2| parameters. 977 // 978 // Input: 979 // - var1 : Input variable 1 980 // - var2 : Input variable 2 981 // 982 // Returned value : Subtracted and saturated value 983 // 984 985 // 986 // WebRtcSpl_GetSizeInBits(...) 987 // 988 // Returns the # of bits that are needed at the most to represent the number 989 // specified by the |value| parameter. 990 // 991 // Input: 992 // - value : Input value 993 // 994 // Return value : Number of bits needed to represent |value| 995 // 996 997 // 998 // WebRtcSpl_NormW32(...) 999 // 1000 // Norm returns the # of left shifts required to 32-bit normalize the 32-bit 1001 // signed number specified by the |value| parameter. 1002 // 1003 // Input: 1004 // - value : Input value 1005 // 1006 // Return value : Number of bit shifts needed to 32-bit normalize |value| 1007 // 1008 1009 // 1010 // WebRtcSpl_NormW16(...) 1011 // 1012 // Norm returns the # of left shifts required to 16-bit normalize the 16-bit 1013 // signed number specified by the |value| parameter. 1014 // 1015 // Input: 1016 // - value : Input value 1017 // 1018 // Return value : Number of bit shifts needed to 32-bit normalize |value| 1019 // 1020 1021 // 1022 // WebRtcSpl_NormU32(...) 1023 // 1024 // Norm returns the # of left shifts required to 32-bit normalize the unsigned 1025 // 32-bit number specified by the |value| parameter. 1026 // 1027 // Input: 1028 // - value : Input value 1029 // 1030 // Return value : Number of bit shifts needed to 32-bit normalize |value| 1031 // 1032 1033 // 1034 // WebRtcSpl_GetScalingSquare(...) 1035 // 1036 // Returns the # of bits required to scale the samples specified in the 1037 // |in_vector| parameter so that, if the squares of the samples are added the 1038 // # of times specified by the |times| parameter, the 32-bit addition will not 1039 // overflow (result in int32_t). 1040 // 1041 // Input: 1042 // - in_vector : Input vector to check scaling on 1043 // - in_vector_length : Samples in |in_vector| 1044 // - times : Number of additions to be performed 1045 // 1046 // Return value : Number of right bit shifts needed to avoid 1047 // overflow in the addition calculation 1048 // 1049 1050 // 1051 // WebRtcSpl_MemSetW16(...) 1052 // 1053 // Sets all the values in the int16_t vector |vector| of length 1054 // |vector_length| to the specified value |set_value| 1055 // 1056 // Input: 1057 // - vector : Pointer to the int16_t vector 1058 // - set_value : Value specified 1059 // - vector_length : Length of vector 1060 // 1061 1062 // 1063 // WebRtcSpl_MemSetW32(...) 1064 // 1065 // Sets all the values in the int32_t vector |vector| of length 1066 // |vector_length| to the specified value |set_value| 1067 // 1068 // Input: 1069 // - vector : Pointer to the int16_t vector 1070 // - set_value : Value specified 1071 // - vector_length : Length of vector 1072 // 1073 1074 // 1075 // WebRtcSpl_MemCpyReversedOrder(...) 1076 // 1077 // Copies all the values from the source int16_t vector |in_vector| to a 1078 // destination int16_t vector |out_vector|. It is done in reversed order, 1079 // meaning that the first sample of |in_vector| is copied to the last sample of 1080 // the |out_vector|. The procedure continues until the last sample of 1081 // |in_vector| has been copied to the first sample of |out_vector|. This 1082 // creates a reversed vector. Used in e.g. prediction in iLBC. 1083 // 1084 // Input: 1085 // - in_vector : Pointer to the first sample in a int16_t vector 1086 // of length |length| 1087 // - vector_length : Number of elements to copy 1088 // 1089 // Output: 1090 // - out_vector : Pointer to the last sample in a int16_t vector 1091 // of length |length| 1092 // 1093 1094 // 1095 // WebRtcSpl_CopyFromEndW16(...) 1096 // 1097 // Copies the rightmost |samples| of |in_vector| (of length |in_vector_length|) 1098 // to the vector |out_vector|. 1099 // 1100 // Input: 1101 // - in_vector : Input vector 1102 // - in_vector_length : Number of samples in |in_vector| 1103 // - samples : Number of samples to extract (from right side) 1104 // from |in_vector| 1105 // 1106 // Output: 1107 // - out_vector : Vector with the requested samples 1108 // 1109 1110 // 1111 // WebRtcSpl_ZerosArrayW16(...) 1112 // WebRtcSpl_ZerosArrayW32(...) 1113 // 1114 // Inserts the value "zero" in all positions of a w16 and a w32 vector 1115 // respectively. 1116 // 1117 // Input: 1118 // - vector_length : Number of samples in vector 1119 // 1120 // Output: 1121 // - vector : Vector containing all zeros 1122 // 1123 1124 // 1125 // WebRtcSpl_VectorBitShiftW16(...) 1126 // WebRtcSpl_VectorBitShiftW32(...) 1127 // 1128 // Bit shifts all the values in a vector up or downwards. Different calls for 1129 // int16_t and int32_t vectors respectively. 1130 // 1131 // Input: 1132 // - vector_length : Length of vector 1133 // - in_vector : Pointer to the vector that should be bit shifted 1134 // - right_shifts : Number of right bit shifts (negative value gives left 1135 // shifts) 1136 // 1137 // Output: 1138 // - out_vector : Pointer to the result vector (can be the same as 1139 // |in_vector|) 1140 // 1141 1142 // 1143 // WebRtcSpl_VectorBitShiftW32ToW16(...) 1144 // 1145 // Bit shifts all the values in a int32_t vector up or downwards and 1146 // stores the result as an int16_t vector. The function will saturate the 1147 // signal if needed, before storing in the output vector. 1148 // 1149 // Input: 1150 // - vector_length : Length of vector 1151 // - in_vector : Pointer to the vector that should be bit shifted 1152 // - right_shifts : Number of right bit shifts (negative value gives left 1153 // shifts) 1154 // 1155 // Output: 1156 // - out_vector : Pointer to the result vector (can be the same as 1157 // |in_vector|) 1158 // 1159 1160 // 1161 // WebRtcSpl_ScaleVector(...) 1162 // 1163 // Performs the vector operation: 1164 // out_vector[k] = (gain*in_vector[k])>>right_shifts 1165 // 1166 // Input: 1167 // - in_vector : Input vector 1168 // - gain : Scaling gain 1169 // - vector_length : Elements in the |in_vector| 1170 // - right_shifts : Number of right bit shifts applied 1171 // 1172 // Output: 1173 // - out_vector : Output vector (can be the same as |in_vector|) 1174 // 1175 1176 // 1177 // WebRtcSpl_ScaleVectorWithSat(...) 1178 // 1179 // Performs the vector operation: 1180 // out_vector[k] = SATURATE( (gain*in_vector[k])>>right_shifts ) 1181 // 1182 // Input: 1183 // - in_vector : Input vector 1184 // - gain : Scaling gain 1185 // - vector_length : Elements in the |in_vector| 1186 // - right_shifts : Number of right bit shifts applied 1187 // 1188 // Output: 1189 // - out_vector : Output vector (can be the same as |in_vector|) 1190 // 1191 1192 // 1193 // WebRtcSpl_ScaleAndAddVectors(...) 1194 // 1195 // Performs the vector operation: 1196 // out_vector[k] = (gain1*in_vector1[k])>>right_shifts1 1197 // + (gain2*in_vector2[k])>>right_shifts2 1198 // 1199 // Input: 1200 // - in_vector1 : Input vector 1 1201 // - gain1 : Gain to be used for vector 1 1202 // - right_shifts1 : Right bit shift to be used for vector 1 1203 // - in_vector2 : Input vector 2 1204 // - gain2 : Gain to be used for vector 2 1205 // - right_shifts2 : Right bit shift to be used for vector 2 1206 // - vector_length : Elements in the input vectors 1207 // 1208 // Output: 1209 // - out_vector : Output vector 1210 // 1211 1212 // 1213 // WebRtcSpl_ReverseOrderMultArrayElements(...) 1214 // 1215 // Performs the vector operation: 1216 // out_vector[n] = (in_vector[n]*window[-n])>>right_shifts 1217 // 1218 // Input: 1219 // - in_vector : Input vector 1220 // - window : Window vector (should be reversed). The pointer 1221 // should be set to the last value in the vector 1222 // - right_shifts : Number of right bit shift to be applied after the 1223 // multiplication 1224 // - vector_length : Number of elements in |in_vector| 1225 // 1226 // Output: 1227 // - out_vector : Output vector (can be same as |in_vector|) 1228 // 1229 1230 // 1231 // WebRtcSpl_ElementwiseVectorMult(...) 1232 // 1233 // Performs the vector operation: 1234 // out_vector[n] = (in_vector[n]*window[n])>>right_shifts 1235 // 1236 // Input: 1237 // - in_vector : Input vector 1238 // - window : Window vector. 1239 // - right_shifts : Number of right bit shift to be applied after the 1240 // multiplication 1241 // - vector_length : Number of elements in |in_vector| 1242 // 1243 // Output: 1244 // - out_vector : Output vector (can be same as |in_vector|) 1245 // 1246 1247 // 1248 // WebRtcSpl_AddVectorsAndShift(...) 1249 // 1250 // Performs the vector operation: 1251 // out_vector[k] = (in_vector1[k] + in_vector2[k])>>right_shifts 1252 // 1253 // Input: 1254 // - in_vector1 : Input vector 1 1255 // - in_vector2 : Input vector 2 1256 // - right_shifts : Number of right bit shift to be applied after the 1257 // multiplication 1258 // - vector_length : Number of elements in |in_vector1| and |in_vector2| 1259 // 1260 // Output: 1261 // - out_vector : Output vector (can be same as |in_vector1|) 1262 // 1263 1264 // 1265 // WebRtcSpl_AddAffineVectorToVector(...) 1266 // 1267 // Adds an affine transformed vector to another vector |out_vector|, i.e, 1268 // performs 1269 // out_vector[k] += (in_vector[k]*gain+add_constant)>>right_shifts 1270 // 1271 // Input: 1272 // - in_vector : Input vector 1273 // - gain : Gain value, used to multiply the in vector with 1274 // - add_constant : Constant value to add (usually 1<<(right_shifts-1), 1275 // but others can be used as well 1276 // - right_shifts : Number of right bit shifts (0-16) 1277 // - vector_length : Number of samples in |in_vector| and |out_vector| 1278 // 1279 // Output: 1280 // - out_vector : Vector with the output 1281 // 1282 1283 // 1284 // WebRtcSpl_AffineTransformVector(...) 1285 // 1286 // Affine transforms a vector, i.e, performs 1287 // out_vector[k] = (in_vector[k]*gain+add_constant)>>right_shifts 1288 // 1289 // Input: 1290 // - in_vector : Input vector 1291 // - gain : Gain value, used to multiply the in vector with 1292 // - add_constant : Constant value to add (usually 1<<(right_shifts-1), 1293 // but others can be used as well 1294 // - right_shifts : Number of right bit shifts (0-16) 1295 // - vector_length : Number of samples in |in_vector| and |out_vector| 1296 // 1297 // Output: 1298 // - out_vector : Vector with the output 1299 // 1300 1301 // 1302 // WebRtcSpl_IncreaseSeed(...) 1303 // 1304 // Increases the seed (and returns the new value) 1305 // 1306 // Input: 1307 // - seed : Seed for random calculation 1308 // 1309 // Output: 1310 // - seed : Updated seed value 1311 // 1312 // Return value : The new seed value 1313 // 1314 1315 // 1316 // WebRtcSpl_RandU(...) 1317 // 1318 // Produces a uniformly distributed value in the int16_t range 1319 // 1320 // Input: 1321 // - seed : Seed for random calculation 1322 // 1323 // Output: 1324 // - seed : Updated seed value 1325 // 1326 // Return value : Uniformly distributed value in the range 1327 // [Word16_MIN...Word16_MAX] 1328 // 1329 1330 // 1331 // WebRtcSpl_RandN(...) 1332 // 1333 // Produces a normal distributed value in the int16_t range 1334 // 1335 // Input: 1336 // - seed : Seed for random calculation 1337 // 1338 // Output: 1339 // - seed : Updated seed value 1340 // 1341 // Return value : N(0,1) value in the Q13 domain 1342 // 1343 1344 // 1345 // WebRtcSpl_RandUArray(...) 1346 // 1347 // Produces a uniformly distributed vector with elements in the int16_t 1348 // range 1349 // 1350 // Input: 1351 // - vector_length : Samples wanted in the vector 1352 // - seed : Seed for random calculation 1353 // 1354 // Output: 1355 // - vector : Vector with the uniform values 1356 // - seed : Updated seed value 1357 // 1358 // Return value : Number of samples in vector, i.e., |vector_length| 1359 // 1360 1361 // 1362 // WebRtcSpl_Sqrt(...) 1363 // 1364 // Returns the square root of the input value |value|. The precision of this 1365 // function is integer precision, i.e., sqrt(8) gives 2 as answer. 1366 // If |value| is a negative number then 0 is returned. 1367 // 1368 // Algorithm: 1369 // 1370 // A sixth order Taylor Series expansion is used here to compute the square 1371 // root of a number y^0.5 = (1+x)^0.5 1372 // where 1373 // x = y-1 1374 // = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5) 1375 // 0.5 <= x < 1 1376 // 1377 // Input: 1378 // - value : Value to calculate sqrt of 1379 // 1380 // Return value : Result of the sqrt calculation 1381 // 1382 1383 // 1384 // WebRtcSpl_SqrtFloor(...) 1385 // 1386 // Returns the square root of the input value |value|. The precision of this 1387 // function is rounding down integer precision, i.e., sqrt(8) gives 2 as answer. 1388 // If |value| is a negative number then 0 is returned. 1389 // 1390 // Algorithm: 1391 // 1392 // An iterative 4 cylce/bit routine 1393 // 1394 // Input: 1395 // - value : Value to calculate sqrt of 1396 // 1397 // Return value : Result of the sqrt calculation 1398 // 1399 1400 // 1401 // WebRtcSpl_DivU32U16(...) 1402 // 1403 // Divides a uint32_t |num| by a uint16_t |den|. 1404 // 1405 // If |den|==0, (uint32_t)0xFFFFFFFF is returned. 1406 // 1407 // Input: 1408 // - num : Numerator 1409 // - den : Denominator 1410 // 1411 // Return value : Result of the division (as a uint32_t), i.e., the 1412 // integer part of num/den. 1413 // 1414 1415 // 1416 // WebRtcSpl_DivW32W16(...) 1417 // 1418 // Divides a int32_t |num| by a int16_t |den|. 1419 // 1420 // If |den|==0, (int32_t)0x7FFFFFFF is returned. 1421 // 1422 // Input: 1423 // - num : Numerator 1424 // - den : Denominator 1425 // 1426 // Return value : Result of the division (as a int32_t), i.e., the 1427 // integer part of num/den. 1428 // 1429 1430 // 1431 // WebRtcSpl_DivW32W16ResW16(...) 1432 // 1433 // Divides a int32_t |num| by a int16_t |den|, assuming that the 1434 // result is less than 32768, otherwise an unpredictable result will occur. 1435 // 1436 // If |den|==0, (int16_t)0x7FFF is returned. 1437 // 1438 // Input: 1439 // - num : Numerator 1440 // - den : Denominator 1441 // 1442 // Return value : Result of the division (as a int16_t), i.e., the 1443 // integer part of num/den. 1444 // 1445 1446 // 1447 // WebRtcSpl_DivResultInQ31(...) 1448 // 1449 // Divides a int32_t |num| by a int16_t |den|, assuming that the 1450 // absolute value of the denominator is larger than the numerator, otherwise 1451 // an unpredictable result will occur. 1452 // 1453 // Input: 1454 // - num : Numerator 1455 // - den : Denominator 1456 // 1457 // Return value : Result of the division in Q31. 1458 // 1459 1460 // 1461 // WebRtcSpl_DivW32HiLow(...) 1462 // 1463 // Divides a int32_t |num| by a denominator in hi, low format. The 1464 // absolute value of the denominator has to be larger (or equal to) the 1465 // numerator. 1466 // 1467 // Input: 1468 // - num : Numerator 1469 // - den_hi : High part of denominator 1470 // - den_low : Low part of denominator 1471 // 1472 // Return value : Divided value in Q31 1473 // 1474 1475 // 1476 // WebRtcSpl_Energy(...) 1477 // 1478 // Calculates the energy of a vector 1479 // 1480 // Input: 1481 // - vector : Vector which the energy should be calculated on 1482 // - vector_length : Number of samples in vector 1483 // 1484 // Output: 1485 // - scale_factor : Number of left bit shifts needed to get the physical 1486 // energy value, i.e, to get the Q0 value 1487 // 1488 // Return value : Energy value in Q(-|scale_factor|) 1489 // 1490 1491 // 1492 // WebRtcSpl_FilterAR(...) 1493 // 1494 // Performs a 32-bit AR filtering on a vector in Q12 1495 // 1496 // Input: 1497 // - ar_coef : AR-coefficient vector (values in Q12), 1498 // ar_coef[0] must be 4096. 1499 // - ar_coef_length : Number of coefficients in |ar_coef|. 1500 // - in_vector : Vector to be filtered. 1501 // - in_vector_length : Number of samples in |in_vector|. 1502 // - filter_state : Current state (higher part) of the filter. 1503 // - filter_state_length : Length (in samples) of |filter_state|. 1504 // - filter_state_low : Current state (lower part) of the filter. 1505 // - filter_state_low_length : Length (in samples) of |filter_state_low|. 1506 // - out_vector_low_length : Maximum length (in samples) of 1507 // |out_vector_low|. 1508 // 1509 // Output: 1510 // - filter_state : Updated state (upper part) vector. 1511 // - filter_state_low : Updated state (lower part) vector. 1512 // - out_vector : Vector containing the upper part of the 1513 // filtered values. 1514 // - out_vector_low : Vector containing the lower part of the 1515 // filtered values. 1516 // 1517 // Return value : Number of samples in the |out_vector|. 1518 // 1519 1520 // 1521 // WebRtcSpl_FilterMAFastQ12(...) 1522 // 1523 // Performs a MA filtering on a vector in Q12 1524 // 1525 // Input: 1526 // - in_vector : Input samples (state in positions 1527 // in_vector[-order] .. in_vector[-1]) 1528 // - ma_coef : Filter coefficients (in Q12) 1529 // - ma_coef_length : Number of B coefficients (order+1) 1530 // - vector_length : Number of samples to be filtered 1531 // 1532 // Output: 1533 // - out_vector : Filtered samples 1534 // 1535 1536 // 1537 // WebRtcSpl_ComplexIFFT(...) 1538 // 1539 // Complex Inverse FFT 1540 // 1541 // Computes an inverse complex 2^|stages|-point FFT on the input vector, which 1542 // is in bit-reversed order. The original content of the vector is destroyed in 1543 // the process, since the input is overwritten by the output, normal-ordered, 1544 // FFT vector. With X as the input complex vector, y as the output complex 1545 // vector and with M = 2^|stages|, the following is computed: 1546 // 1547 // M-1 1548 // y(k) = sum[X(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] 1549 // i=0 1550 // 1551 // The implementations are optimized for speed, not for code size. It uses the 1552 // decimation-in-time algorithm with radix-2 butterfly technique. 1553 // 1554 // Input: 1555 // - vector : In pointer to complex vector containing 2^|stages| 1556 // real elements interleaved with 2^|stages| imaginary 1557 // elements. 1558 // [ReImReImReIm....] 1559 // The elements are in Q(-scale) domain, see more on Return 1560 // Value below. 1561 // 1562 // - stages : Number of FFT stages. Must be at least 3 and at most 10, 1563 // since the table WebRtcSpl_kSinTable1024[] is 1024 1564 // elements long. 1565 // 1566 // - mode : This parameter gives the user to choose how the FFT 1567 // should work. 1568 // mode==0: Low-complexity and Low-accuracy mode 1569 // mode==1: High-complexity and High-accuracy mode 1570 // 1571 // Output: 1572 // - vector : Out pointer to the FFT vector (the same as input). 1573 // 1574 // Return Value : The scale value that tells the number of left bit shifts 1575 // that the elements in the |vector| should be shifted with 1576 // in order to get Q0 values, i.e. the physically correct 1577 // values. The scale parameter is always 0 or positive, 1578 // except if N>1024 (|stages|>10), which returns a scale 1579 // value of -1, indicating error. 1580 // 1581 1582 // 1583 // WebRtcSpl_ComplexFFT(...) 1584 // 1585 // Complex FFT 1586 // 1587 // Computes a complex 2^|stages|-point FFT on the input vector, which is in 1588 // bit-reversed order. The original content of the vector is destroyed in 1589 // the process, since the input is overwritten by the output, normal-ordered, 1590 // FFT vector. With x as the input complex vector, Y as the output complex 1591 // vector and with M = 2^|stages|, the following is computed: 1592 // 1593 // M-1 1594 // Y(k) = 1/M * sum[x(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] 1595 // i=0 1596 // 1597 // The implementations are optimized for speed, not for code size. It uses the 1598 // decimation-in-time algorithm with radix-2 butterfly technique. 1599 // 1600 // This routine prevents overflow by scaling by 2 before each FFT stage. This is 1601 // a fixed scaling, for proper normalization - there will be log2(n) passes, so 1602 // this results in an overall factor of 1/n, distributed to maximize arithmetic 1603 // accuracy. 1604 // 1605 // Input: 1606 // - vector : In pointer to complex vector containing 2^|stages| real 1607 // elements interleaved with 2^|stages| imaginary elements. 1608 // [ReImReImReIm....] 1609 // The output is in the Q0 domain. 1610 // 1611 // - stages : Number of FFT stages. Must be at least 3 and at most 10, 1612 // since the table WebRtcSpl_kSinTable1024[] is 1024 1613 // elements long. 1614 // 1615 // - mode : This parameter gives the user to choose how the FFT 1616 // should work. 1617 // mode==0: Low-complexity and Low-accuracy mode 1618 // mode==1: High-complexity and High-accuracy mode 1619 // 1620 // Output: 1621 // - vector : The output FFT vector is in the Q0 domain. 1622 // 1623 // Return value : The scale parameter is always 0, except if N>1024, 1624 // which returns a scale value of -1, indicating error. 1625 // 1626 1627 // 1628 // WebRtcSpl_AnalysisQMF(...) 1629 // 1630 // Splits a 0-2*F Hz signal into two sub bands: 0-F Hz and F-2*F Hz. The 1631 // current version has F = 8000, therefore, a super-wideband audio signal is 1632 // split to lower-band 0-8 kHz and upper-band 8-16 kHz. 1633 // 1634 // Input: 1635 // - in_data : Wide band speech signal, 320 samples (10 ms) 1636 // 1637 // Input & Output: 1638 // - filter_state1 : Filter state for first All-pass filter 1639 // - filter_state2 : Filter state for second All-pass filter 1640 // 1641 // Output: 1642 // - low_band : Lower-band signal 0-8 kHz band, 160 samples (10 ms) 1643 // - high_band : Upper-band signal 8-16 kHz band (flipped in frequency 1644 // domain), 160 samples (10 ms) 1645 // 1646 1647 // 1648 // WebRtcSpl_SynthesisQMF(...) 1649 // 1650 // Combines the two sub bands (0-F and F-2*F Hz) into a signal of 0-2*F 1651 // Hz, (current version has F = 8000 Hz). So the filter combines lower-band 1652 // (0-8 kHz) and upper-band (8-16 kHz) channels to obtain super-wideband 0-16 1653 // kHz audio. 1654 // 1655 // Input: 1656 // - low_band : The signal with the 0-8 kHz band, 160 samples (10 ms) 1657 // - high_band : The signal with the 8-16 kHz band, 160 samples (10 ms) 1658 // 1659 // Input & Output: 1660 // - filter_state1 : Filter state for first All-pass filter 1661 // - filter_state2 : Filter state for second All-pass filter 1662 // 1663 // Output: 1664 // - out_data : Super-wideband speech signal, 0-16 kHz 1665 // 1666 1667 // int16_t WebRtcSpl_SatW32ToW16(...) 1668 // 1669 // This function saturates a 32-bit word into a 16-bit word. 1670 // 1671 // Input: 1672 // - value32 : The value of a 32-bit word. 1673 // 1674 // Output: 1675 // - out16 : the saturated 16-bit word. 1676 // 1677 1678 // int32_t WebRtc_MulAccumW16(...) 1679 // 1680 // This function multiply a 16-bit word by a 16-bit word, and accumulate this 1681 // value to a 32-bit integer. 1682 // 1683 // Input: 1684 // - a : The value of the first 16-bit word. 1685 // - b : The value of the second 16-bit word. 1686 // - c : The value of an 32-bit integer. 1687 // 1688 // Return Value: The value of a * b + c. 1689 // 1690 1691 // int16_t WebRtcSpl_get_version(...) 1692 // 1693 // This function gives the version string of the Signal Processing Library. 1694 // 1695 // Input: 1696 // - length_in_bytes : The size of Allocated space (in Bytes) where 1697 // the version number is written to (in string format). 1698 // 1699 // Output: 1700 // - version : Pointer to a buffer where the version number is 1701 // written to. 1702 // 1703