Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class wraps target description classes used by the various code
     11 // generation TableGen backends.  This makes it easier to access the data and
     12 // provides a single place that needs to check it for validity.  All of these
     13 // classes abort on error conditions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CodeGenTarget.h"
     18 #include "CodeGenIntrinsics.h"
     19 #include "CodeGenSchedule.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/TableGen/Error.h"
     24 #include "llvm/TableGen/Record.h"
     25 #include <algorithm>
     26 using namespace llvm;
     27 
     28 static cl::opt<unsigned>
     29 AsmParserNum("asmparsernum", cl::init(0),
     30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
     31 
     32 static cl::opt<unsigned>
     33 AsmWriterNum("asmwriternum", cl::init(0),
     34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
     35 
     36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
     37 /// record corresponds to.
     38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
     39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
     40 }
     41 
     42 std::string llvm::getName(MVT::SimpleValueType T) {
     43   switch (T) {
     44   case MVT::Other:   return "UNKNOWN";
     45   case MVT::iPTR:    return "TLI.getPointerTy()";
     46   case MVT::iPTRAny: return "TLI.getPointerTy()";
     47   default: return getEnumName(T);
     48   }
     49 }
     50 
     51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
     52   switch (T) {
     53   case MVT::Other:    return "MVT::Other";
     54   case MVT::i1:       return "MVT::i1";
     55   case MVT::i8:       return "MVT::i8";
     56   case MVT::i16:      return "MVT::i16";
     57   case MVT::i32:      return "MVT::i32";
     58   case MVT::i64:      return "MVT::i64";
     59   case MVT::i128:     return "MVT::i128";
     60   case MVT::iAny:     return "MVT::iAny";
     61   case MVT::fAny:     return "MVT::fAny";
     62   case MVT::vAny:     return "MVT::vAny";
     63   case MVT::f16:      return "MVT::f16";
     64   case MVT::f32:      return "MVT::f32";
     65   case MVT::f64:      return "MVT::f64";
     66   case MVT::f80:      return "MVT::f80";
     67   case MVT::f128:     return "MVT::f128";
     68   case MVT::ppcf128:  return "MVT::ppcf128";
     69   case MVT::x86mmx:   return "MVT::x86mmx";
     70   case MVT::Glue:     return "MVT::Glue";
     71   case MVT::isVoid:   return "MVT::isVoid";
     72   case MVT::v2i1:     return "MVT::v2i1";
     73   case MVT::v4i1:     return "MVT::v4i1";
     74   case MVT::v8i1:     return "MVT::v8i1";
     75   case MVT::v16i1:    return "MVT::v16i1";
     76   case MVT::v32i1:    return "MVT::v32i1";
     77   case MVT::v64i1:    return "MVT::v64i1";
     78   case MVT::v1i8:     return "MVT::v1i8";
     79   case MVT::v2i8:     return "MVT::v2i8";
     80   case MVT::v4i8:     return "MVT::v4i8";
     81   case MVT::v8i8:     return "MVT::v8i8";
     82   case MVT::v16i8:    return "MVT::v16i8";
     83   case MVT::v32i8:    return "MVT::v32i8";
     84   case MVT::v64i8:    return "MVT::v64i8";
     85   case MVT::v1i16:    return "MVT::v1i16";
     86   case MVT::v2i16:    return "MVT::v2i16";
     87   case MVT::v4i16:    return "MVT::v4i16";
     88   case MVT::v8i16:    return "MVT::v8i16";
     89   case MVT::v16i16:   return "MVT::v16i16";
     90   case MVT::v32i16:   return "MVT::v32i16";
     91   case MVT::v1i32:    return "MVT::v1i32";
     92   case MVT::v2i32:    return "MVT::v2i32";
     93   case MVT::v4i32:    return "MVT::v4i32";
     94   case MVT::v8i32:    return "MVT::v8i32";
     95   case MVT::v16i32:   return "MVT::v16i32";
     96   case MVT::v1i64:    return "MVT::v1i64";
     97   case MVT::v2i64:    return "MVT::v2i64";
     98   case MVT::v4i64:    return "MVT::v4i64";
     99   case MVT::v8i64:    return "MVT::v8i64";
    100   case MVT::v16i64:   return "MVT::v16i64";
    101   case MVT::v2f16:    return "MVT::v2f16";
    102   case MVT::v4f16:    return "MVT::v4f16";
    103   case MVT::v8f16:    return "MVT::v8f16";
    104   case MVT::v1f32:    return "MVT::v1f32";
    105   case MVT::v2f32:    return "MVT::v2f32";
    106   case MVT::v4f32:    return "MVT::v4f32";
    107   case MVT::v8f32:    return "MVT::v8f32";
    108   case MVT::v16f32:   return "MVT::v16f32";
    109   case MVT::v1f64:    return "MVT::v1f64";
    110   case MVT::v2f64:    return "MVT::v2f64";
    111   case MVT::v4f64:    return "MVT::v4f64";
    112   case MVT::v8f64:    return "MVT::v8f64";
    113   case MVT::Metadata: return "MVT::Metadata";
    114   case MVT::iPTR:     return "MVT::iPTR";
    115   case MVT::iPTRAny:  return "MVT::iPTRAny";
    116   case MVT::Untyped:  return "MVT::Untyped";
    117   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
    118   }
    119 }
    120 
    121 /// getQualifiedName - Return the name of the specified record, with a
    122 /// namespace qualifier if the record contains one.
    123 ///
    124 std::string llvm::getQualifiedName(const Record *R) {
    125   std::string Namespace;
    126   if (R->getValue("Namespace"))
    127      Namespace = R->getValueAsString("Namespace");
    128   if (Namespace.empty()) return R->getName();
    129   return Namespace + "::" + R->getName();
    130 }
    131 
    132 
    133 /// getTarget - Return the current instance of the Target class.
    134 ///
    135 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
    136   : Records(records), RegBank(nullptr), SchedModels(nullptr) {
    137   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
    138   if (Targets.size() == 0)
    139     PrintFatalError("ERROR: No 'Target' subclasses defined!");
    140   if (Targets.size() != 1)
    141     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
    142   TargetRec = Targets[0];
    143 }
    144 
    145 CodeGenTarget::~CodeGenTarget() {
    146   DeleteContainerSeconds(Instructions);
    147   delete RegBank;
    148   delete SchedModels;
    149 }
    150 
    151 const std::string &CodeGenTarget::getName() const {
    152   return TargetRec->getName();
    153 }
    154 
    155 std::string CodeGenTarget::getInstNamespace() const {
    156   for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
    157     // Make sure not to pick up "TargetOpcode" by accidentally getting
    158     // the namespace off the PHI instruction or something.
    159     if ((*i)->Namespace != "TargetOpcode")
    160       return (*i)->Namespace;
    161   }
    162 
    163   return "";
    164 }
    165 
    166 Record *CodeGenTarget::getInstructionSet() const {
    167   return TargetRec->getValueAsDef("InstructionSet");
    168 }
    169 
    170 
    171 /// getAsmParser - Return the AssemblyParser definition for this target.
    172 ///
    173 Record *CodeGenTarget::getAsmParser() const {
    174   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
    175   if (AsmParserNum >= LI.size())
    176     PrintFatalError("Target does not have an AsmParser #" +
    177                     Twine(AsmParserNum) + "!");
    178   return LI[AsmParserNum];
    179 }
    180 
    181 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
    182 /// this target.
    183 ///
    184 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
    185   std::vector<Record*> LI =
    186     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    187   if (i >= LI.size())
    188     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
    189                     "!");
    190   return LI[i];
    191 }
    192 
    193 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
    194 /// available for this target.
    195 ///
    196 unsigned CodeGenTarget::getAsmParserVariantCount() const {
    197   std::vector<Record*> LI =
    198     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    199   return LI.size();
    200 }
    201 
    202 /// getAsmWriter - Return the AssemblyWriter definition for this target.
    203 ///
    204 Record *CodeGenTarget::getAsmWriter() const {
    205   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
    206   if (AsmWriterNum >= LI.size())
    207     PrintFatalError("Target does not have an AsmWriter #" +
    208                     Twine(AsmWriterNum) + "!");
    209   return LI[AsmWriterNum];
    210 }
    211 
    212 CodeGenRegBank &CodeGenTarget::getRegBank() const {
    213   if (!RegBank)
    214     RegBank = new CodeGenRegBank(Records);
    215   return *RegBank;
    216 }
    217 
    218 void CodeGenTarget::ReadRegAltNameIndices() const {
    219   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
    220   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
    221 }
    222 
    223 /// getRegisterByName - If there is a register with the specific AsmName,
    224 /// return it.
    225 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
    226   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
    227   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
    228   if (I == Regs.end())
    229     return nullptr;
    230   return I->second;
    231 }
    232 
    233 std::vector<MVT::SimpleValueType> CodeGenTarget::
    234 getRegisterVTs(Record *R) const {
    235   const CodeGenRegister *Reg = getRegBank().getReg(R);
    236   std::vector<MVT::SimpleValueType> Result;
    237   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
    238   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
    239     const CodeGenRegisterClass &RC = *RCs[i];
    240     if (RC.contains(Reg)) {
    241       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
    242       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
    243     }
    244   }
    245 
    246   // Remove duplicates.
    247   array_pod_sort(Result.begin(), Result.end());
    248   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
    249   return Result;
    250 }
    251 
    252 
    253 void CodeGenTarget::ReadLegalValueTypes() const {
    254   ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
    255   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
    256     for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
    257       LegalValueTypes.push_back(RCs[i]->VTs[ri]);
    258 
    259   // Remove duplicates.
    260   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
    261   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
    262                                     LegalValueTypes.end()),
    263                         LegalValueTypes.end());
    264 }
    265 
    266 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
    267   if (!SchedModels)
    268     SchedModels = new CodeGenSchedModels(Records, *this);
    269   return *SchedModels;
    270 }
    271 
    272 void CodeGenTarget::ReadInstructions() const {
    273   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    274   if (Insts.size() <= 2)
    275     PrintFatalError("No 'Instruction' subclasses defined!");
    276 
    277   // Parse the instructions defined in the .td file.
    278   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
    279     Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
    280 }
    281 
    282 static const CodeGenInstruction *
    283 GetInstByName(const char *Name,
    284               const DenseMap<const Record*, CodeGenInstruction*> &Insts,
    285               RecordKeeper &Records) {
    286   const Record *Rec = Records.getDef(Name);
    287 
    288   DenseMap<const Record*, CodeGenInstruction*>::const_iterator
    289     I = Insts.find(Rec);
    290   if (!Rec || I == Insts.end())
    291     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
    292   return I->second;
    293 }
    294 
    295 /// \brief Return all of the instructions defined by the target, ordered by
    296 /// their enum value.
    297 void CodeGenTarget::ComputeInstrsByEnum() const {
    298   // The ordering here must match the ordering in TargetOpcodes.h.
    299   static const char *const FixedInstrs[] = {
    300       "PHI",          "INLINEASM",     "CFI_INSTRUCTION",  "EH_LABEL",
    301       "GC_LABEL",     "KILL",          "EXTRACT_SUBREG",   "INSERT_SUBREG",
    302       "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
    303       "REG_SEQUENCE", "COPY",          "BUNDLE",           "LIFETIME_START",
    304       "LIFETIME_END", "STACKMAP",      "PATCHPOINT",       nullptr};
    305   const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
    306   for (const char *const *p = FixedInstrs; *p; ++p) {
    307     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
    308     assert(Instr && "Missing target independent instruction");
    309     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
    310     InstrsByEnum.push_back(Instr);
    311   }
    312   unsigned EndOfPredefines = InstrsByEnum.size();
    313 
    314   for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
    315        I = Insts.begin(), E = Insts.end(); I != E; ++I) {
    316     const CodeGenInstruction *CGI = I->second;
    317     if (CGI->Namespace != "TargetOpcode")
    318       InstrsByEnum.push_back(CGI);
    319   }
    320 
    321   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
    322 
    323   // All of the instructions are now in random order based on the map iteration.
    324   // Sort them by name.
    325   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
    326             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
    327     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
    328   });
    329 }
    330 
    331 
    332 /// isLittleEndianEncoding - Return whether this target encodes its instruction
    333 /// in little-endian format, i.e. bits laid out in the order [0..n]
    334 ///
    335 bool CodeGenTarget::isLittleEndianEncoding() const {
    336   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
    337 }
    338 
    339 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
    340 /// encodings, reverse the bit order of all instructions.
    341 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
    342   if (!isLittleEndianEncoding())
    343     return;
    344 
    345   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    346   for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end();
    347        I != E; ++I) {
    348     Record *R = *I;
    349     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
    350         R->getValueAsBit("isPseudo"))
    351       continue;
    352 
    353     BitsInit *BI = R->getValueAsBitsInit("Inst");
    354 
    355     unsigned numBits = BI->getNumBits();
    356 
    357     SmallVector<Init *, 16> NewBits(numBits);
    358 
    359     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
    360       unsigned bitSwapIdx = numBits - bit - 1;
    361       Init *OrigBit = BI->getBit(bit);
    362       Init *BitSwap = BI->getBit(bitSwapIdx);
    363       NewBits[bit]        = BitSwap;
    364       NewBits[bitSwapIdx] = OrigBit;
    365     }
    366     if (numBits % 2) {
    367       unsigned middle = (numBits + 1) / 2;
    368       NewBits[middle] = BI->getBit(middle);
    369     }
    370 
    371     BitsInit *NewBI = BitsInit::get(NewBits);
    372 
    373     // Update the bits in reversed order so that emitInstrOpBits will get the
    374     // correct endianness.
    375     R->getValue("Inst")->setValue(NewBI);
    376   }
    377 }
    378 
    379 /// guessInstructionProperties - Return true if it's OK to guess instruction
    380 /// properties instead of raising an error.
    381 ///
    382 /// This is configurable as a temporary migration aid. It will eventually be
    383 /// permanently false.
    384 bool CodeGenTarget::guessInstructionProperties() const {
    385   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
    386 }
    387 
    388 //===----------------------------------------------------------------------===//
    389 // ComplexPattern implementation
    390 //
    391 ComplexPattern::ComplexPattern(Record *R) {
    392   Ty          = ::getValueType(R->getValueAsDef("Ty"));
    393   NumOperands = R->getValueAsInt("NumOperands");
    394   SelectFunc  = R->getValueAsString("SelectFunc");
    395   RootNodes   = R->getValueAsListOfDefs("RootNodes");
    396 
    397   // Parse the properties.
    398   Properties = 0;
    399   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    400   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
    401     if (PropList[i]->getName() == "SDNPHasChain") {
    402       Properties |= 1 << SDNPHasChain;
    403     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    404       Properties |= 1 << SDNPOptInGlue;
    405     } else if (PropList[i]->getName() == "SDNPMayStore") {
    406       Properties |= 1 << SDNPMayStore;
    407     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    408       Properties |= 1 << SDNPMayLoad;
    409     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    410       Properties |= 1 << SDNPSideEffect;
    411     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    412       Properties |= 1 << SDNPMemOperand;
    413     } else if (PropList[i]->getName() == "SDNPVariadic") {
    414       Properties |= 1 << SDNPVariadic;
    415     } else if (PropList[i]->getName() == "SDNPWantRoot") {
    416       Properties |= 1 << SDNPWantRoot;
    417     } else if (PropList[i]->getName() == "SDNPWantParent") {
    418       Properties |= 1 << SDNPWantParent;
    419     } else {
    420       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
    421              << "' on ComplexPattern '" << R->getName() << "'!\n";
    422       exit(1);
    423     }
    424 }
    425 
    426 //===----------------------------------------------------------------------===//
    427 // CodeGenIntrinsic Implementation
    428 //===----------------------------------------------------------------------===//
    429 
    430 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
    431                                                    bool TargetOnly) {
    432   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
    433 
    434   std::vector<CodeGenIntrinsic> Result;
    435 
    436   for (unsigned i = 0, e = I.size(); i != e; ++i) {
    437     bool isTarget = I[i]->getValueAsBit("isTarget");
    438     if (isTarget == TargetOnly)
    439       Result.push_back(CodeGenIntrinsic(I[i]));
    440   }
    441   return Result;
    442 }
    443 
    444 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
    445   TheDef = R;
    446   std::string DefName = R->getName();
    447   ModRef = ReadWriteMem;
    448   isOverloaded = false;
    449   isCommutative = false;
    450   canThrow = false;
    451   isNoReturn = false;
    452   isNoDuplicate = false;
    453 
    454   if (DefName.size() <= 4 ||
    455       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
    456     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
    457 
    458   EnumName = std::string(DefName.begin()+4, DefName.end());
    459 
    460   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
    461     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
    462   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
    463     MSBuiltinName = R->getValueAsString("MSBuiltinName");
    464 
    465   TargetPrefix = R->getValueAsString("TargetPrefix");
    466   Name = R->getValueAsString("LLVMName");
    467 
    468   if (Name == "") {
    469     // If an explicit name isn't specified, derive one from the DefName.
    470     Name = "llvm.";
    471 
    472     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
    473       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
    474   } else {
    475     // Verify it starts with "llvm.".
    476     if (Name.size() <= 5 ||
    477         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
    478       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
    479   }
    480 
    481   // If TargetPrefix is specified, make sure that Name starts with
    482   // "llvm.<targetprefix>.".
    483   if (!TargetPrefix.empty()) {
    484     if (Name.size() < 6+TargetPrefix.size() ||
    485         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
    486         != (TargetPrefix + "."))
    487       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
    488         TargetPrefix + ".'!");
    489   }
    490 
    491   // Parse the list of return types.
    492   std::vector<MVT::SimpleValueType> OverloadedVTs;
    493   ListInit *TypeList = R->getValueAsListInit("RetTypes");
    494   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    495     Record *TyEl = TypeList->getElementAsRecord(i);
    496     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    497     MVT::SimpleValueType VT;
    498     if (TyEl->isSubClassOf("LLVMMatchType")) {
    499       unsigned MatchTy = TyEl->getValueAsInt("Number");
    500       assert(MatchTy < OverloadedVTs.size() &&
    501              "Invalid matching number!");
    502       VT = OverloadedVTs[MatchTy];
    503       // It only makes sense to use the extended and truncated vector element
    504       // variants with iAny types; otherwise, if the intrinsic is not
    505       // overloaded, all the types can be specified directly.
    506       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
    507                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
    508               VT == MVT::iAny || VT == MVT::vAny) &&
    509              "Expected iAny or vAny type");
    510     } else {
    511       VT = getValueType(TyEl->getValueAsDef("VT"));
    512     }
    513     if (MVT(VT).isOverloaded()) {
    514       OverloadedVTs.push_back(VT);
    515       isOverloaded = true;
    516     }
    517 
    518     // Reject invalid types.
    519     if (VT == MVT::isVoid)
    520       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    521 
    522     IS.RetVTs.push_back(VT);
    523     IS.RetTypeDefs.push_back(TyEl);
    524   }
    525 
    526   // Parse the list of parameter types.
    527   TypeList = R->getValueAsListInit("ParamTypes");
    528   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    529     Record *TyEl = TypeList->getElementAsRecord(i);
    530     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    531     MVT::SimpleValueType VT;
    532     if (TyEl->isSubClassOf("LLVMMatchType")) {
    533       unsigned MatchTy = TyEl->getValueAsInt("Number");
    534       assert(MatchTy < OverloadedVTs.size() &&
    535              "Invalid matching number!");
    536       VT = OverloadedVTs[MatchTy];
    537       // It only makes sense to use the extended and truncated vector element
    538       // variants with iAny types; otherwise, if the intrinsic is not
    539       // overloaded, all the types can be specified directly.
    540       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
    541                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
    542               VT == MVT::iAny || VT == MVT::vAny) &&
    543              "Expected iAny or vAny type");
    544     } else
    545       VT = getValueType(TyEl->getValueAsDef("VT"));
    546 
    547     if (MVT(VT).isOverloaded()) {
    548       OverloadedVTs.push_back(VT);
    549       isOverloaded = true;
    550     }
    551 
    552     // Reject invalid types.
    553     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
    554       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    555 
    556     IS.ParamVTs.push_back(VT);
    557     IS.ParamTypeDefs.push_back(TyEl);
    558   }
    559 
    560   // Parse the intrinsic properties.
    561   ListInit *PropList = R->getValueAsListInit("Properties");
    562   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
    563     Record *Property = PropList->getElementAsRecord(i);
    564     assert(Property->isSubClassOf("IntrinsicProperty") &&
    565            "Expected a property!");
    566 
    567     if (Property->getName() == "IntrNoMem")
    568       ModRef = NoMem;
    569     else if (Property->getName() == "IntrReadArgMem")
    570       ModRef = ReadArgMem;
    571     else if (Property->getName() == "IntrReadMem")
    572       ModRef = ReadMem;
    573     else if (Property->getName() == "IntrReadWriteArgMem")
    574       ModRef = ReadWriteArgMem;
    575     else if (Property->getName() == "Commutative")
    576       isCommutative = true;
    577     else if (Property->getName() == "Throws")
    578       canThrow = true;
    579     else if (Property->getName() == "IntrNoDuplicate")
    580       isNoDuplicate = true;
    581     else if (Property->getName() == "IntrNoReturn")
    582       isNoReturn = true;
    583     else if (Property->isSubClassOf("NoCapture")) {
    584       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    585       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
    586     } else if (Property->isSubClassOf("ReadOnly")) {
    587       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    588       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
    589     } else if (Property->isSubClassOf("ReadNone")) {
    590       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    591       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
    592     } else
    593       llvm_unreachable("Unknown property!");
    594   }
    595 
    596   // Sort the argument attributes for later benefit.
    597   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
    598 }
    599