1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 13 14 #include <stddef.h> // size_t 15 #include <stdio.h> // FILE 16 17 #include "webrtc/base/platform_file.h" 18 #include "webrtc/common.h" 19 #include "webrtc/typedefs.h" 20 21 struct AecCore; 22 23 namespace webrtc { 24 25 class AudioFrame; 26 class EchoCancellation; 27 class EchoControlMobile; 28 class GainControl; 29 class HighPassFilter; 30 class LevelEstimator; 31 class NoiseSuppression; 32 class VoiceDetection; 33 34 // Use to enable the delay correction feature. This now engages an extended 35 // filter mode in the AEC, along with robustness measures around the reported 36 // system delays. It comes with a significant increase in AEC complexity, but is 37 // much more robust to unreliable reported delays. 38 // 39 // Detailed changes to the algorithm: 40 // - The filter length is changed from 48 to 128 ms. This comes with tuning of 41 // several parameters: i) filter adaptation stepsize and error threshold; 42 // ii) non-linear processing smoothing and overdrive. 43 // - Option to ignore the reported delays on platforms which we deem 44 // sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c. 45 // - Faster startup times by removing the excessive "startup phase" processing 46 // of reported delays. 47 // - Much more conservative adjustments to the far-end read pointer. We smooth 48 // the delay difference more heavily, and back off from the difference more. 49 // Adjustments force a readaptation of the filter, so they should be avoided 50 // except when really necessary. 51 struct DelayCorrection { 52 DelayCorrection() : enabled(false) {} 53 explicit DelayCorrection(bool enabled) : enabled(enabled) {} 54 bool enabled; 55 }; 56 57 // Use to disable the reported system delays. By disabling the reported system 58 // delays the echo cancellation algorithm assumes the process and reverse 59 // streams to be aligned. This configuration only applies to EchoCancellation 60 // and not EchoControlMobile and is set with AudioProcessing::SetExtraOptions(). 61 // Note that by disabling reported system delays the EchoCancellation may 62 // regress in performance. 63 struct ReportedDelay { 64 ReportedDelay() : enabled(true) {} 65 explicit ReportedDelay(bool enabled) : enabled(enabled) {} 66 bool enabled; 67 }; 68 69 // Must be provided through AudioProcessing::Create(Confg&). It will have no 70 // impact if used with AudioProcessing::SetExtraOptions(). 71 struct ExperimentalAgc { 72 ExperimentalAgc() : enabled(true) {} 73 explicit ExperimentalAgc(bool enabled) : enabled(enabled) {} 74 bool enabled; 75 }; 76 77 // Use to enable experimental noise suppression. It can be set in the 78 // constructor or using AudioProcessing::SetExtraOptions(). 79 struct ExperimentalNs { 80 ExperimentalNs() : enabled(false) {} 81 explicit ExperimentalNs(bool enabled) : enabled(enabled) {} 82 bool enabled; 83 }; 84 85 static const int kAudioProcMaxNativeSampleRateHz = 32000; 86 87 // The Audio Processing Module (APM) provides a collection of voice processing 88 // components designed for real-time communications software. 89 // 90 // APM operates on two audio streams on a frame-by-frame basis. Frames of the 91 // primary stream, on which all processing is applied, are passed to 92 // |ProcessStream()|. Frames of the reverse direction stream, which are used for 93 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the 94 // client-side, this will typically be the near-end (capture) and far-end 95 // (render) streams, respectively. APM should be placed in the signal chain as 96 // close to the audio hardware abstraction layer (HAL) as possible. 97 // 98 // On the server-side, the reverse stream will normally not be used, with 99 // processing occurring on each incoming stream. 100 // 101 // Component interfaces follow a similar pattern and are accessed through 102 // corresponding getters in APM. All components are disabled at create-time, 103 // with default settings that are recommended for most situations. New settings 104 // can be applied without enabling a component. Enabling a component triggers 105 // memory allocation and initialization to allow it to start processing the 106 // streams. 107 // 108 // Thread safety is provided with the following assumptions to reduce locking 109 // overhead: 110 // 1. The stream getters and setters are called from the same thread as 111 // ProcessStream(). More precisely, stream functions are never called 112 // concurrently with ProcessStream(). 113 // 2. Parameter getters are never called concurrently with the corresponding 114 // setter. 115 // 116 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16 117 // interfaces use interleaved data, while the float interfaces use deinterleaved 118 // data. 119 // 120 // Usage example, omitting error checking: 121 // AudioProcessing* apm = AudioProcessing::Create(0); 122 // 123 // apm->high_pass_filter()->Enable(true); 124 // 125 // apm->echo_cancellation()->enable_drift_compensation(false); 126 // apm->echo_cancellation()->Enable(true); 127 // 128 // apm->noise_reduction()->set_level(kHighSuppression); 129 // apm->noise_reduction()->Enable(true); 130 // 131 // apm->gain_control()->set_analog_level_limits(0, 255); 132 // apm->gain_control()->set_mode(kAdaptiveAnalog); 133 // apm->gain_control()->Enable(true); 134 // 135 // apm->voice_detection()->Enable(true); 136 // 137 // // Start a voice call... 138 // 139 // // ... Render frame arrives bound for the audio HAL ... 140 // apm->AnalyzeReverseStream(render_frame); 141 // 142 // // ... Capture frame arrives from the audio HAL ... 143 // // Call required set_stream_ functions. 144 // apm->set_stream_delay_ms(delay_ms); 145 // apm->gain_control()->set_stream_analog_level(analog_level); 146 // 147 // apm->ProcessStream(capture_frame); 148 // 149 // // Call required stream_ functions. 150 // analog_level = apm->gain_control()->stream_analog_level(); 151 // has_voice = apm->stream_has_voice(); 152 // 153 // // Repeate render and capture processing for the duration of the call... 154 // // Start a new call... 155 // apm->Initialize(); 156 // 157 // // Close the application... 158 // delete apm; 159 // 160 class AudioProcessing { 161 public: 162 enum ChannelLayout { 163 kMono, 164 // Left, right. 165 kStereo, 166 // Mono, keyboard mic. 167 kMonoAndKeyboard, 168 // Left, right, keyboard mic. 169 kStereoAndKeyboard 170 }; 171 172 // Creates an APM instance. Use one instance for every primary audio stream 173 // requiring processing. On the client-side, this would typically be one 174 // instance for the near-end stream, and additional instances for each far-end 175 // stream which requires processing. On the server-side, this would typically 176 // be one instance for every incoming stream. 177 static AudioProcessing* Create(); 178 // Allows passing in an optional configuration at create-time. 179 static AudioProcessing* Create(const Config& config); 180 // TODO(ajm): Deprecated; remove all calls to it. 181 static AudioProcessing* Create(int id); 182 virtual ~AudioProcessing() {} 183 184 // Initializes internal states, while retaining all user settings. This 185 // should be called before beginning to process a new audio stream. However, 186 // it is not necessary to call before processing the first stream after 187 // creation. 188 // 189 // It is also not necessary to call if the audio parameters (sample 190 // rate and number of channels) have changed. Passing updated parameters 191 // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible. 192 // If the parameters are known at init-time though, they may be provided. 193 virtual int Initialize() = 0; 194 195 // The int16 interfaces require: 196 // - only |NativeRate|s be used 197 // - that the input, output and reverse rates must match 198 // - that |output_layout| matches |input_layout| 199 // 200 // The float interfaces accept arbitrary rates and support differing input 201 // and output layouts, but the output may only remove channels, not add. 202 virtual int Initialize(int input_sample_rate_hz, 203 int output_sample_rate_hz, 204 int reverse_sample_rate_hz, 205 ChannelLayout input_layout, 206 ChannelLayout output_layout, 207 ChannelLayout reverse_layout) = 0; 208 209 // Pass down additional options which don't have explicit setters. This 210 // ensures the options are applied immediately. 211 virtual void SetExtraOptions(const Config& config) = 0; 212 213 // DEPRECATED. 214 // TODO(ajm): Remove after Chromium has upgraded to using Initialize(). 215 virtual int set_sample_rate_hz(int rate) = 0; 216 // TODO(ajm): Remove after voice engine no longer requires it to resample 217 // the reverse stream to the forward rate. 218 virtual int input_sample_rate_hz() const = 0; 219 // TODO(ajm): Remove after Chromium no longer depends on it. 220 virtual int sample_rate_hz() const = 0; 221 222 // TODO(ajm): Only intended for internal use. Make private and friend the 223 // necessary classes? 224 virtual int proc_sample_rate_hz() const = 0; 225 virtual int proc_split_sample_rate_hz() const = 0; 226 virtual int num_input_channels() const = 0; 227 virtual int num_output_channels() const = 0; 228 virtual int num_reverse_channels() const = 0; 229 230 // Set to true when the output of AudioProcessing will be muted or in some 231 // other way not used. Ideally, the captured audio would still be processed, 232 // but some components may change behavior based on this information. 233 // Default false. 234 virtual void set_output_will_be_muted(bool muted) = 0; 235 virtual bool output_will_be_muted() const = 0; 236 237 // Processes a 10 ms |frame| of the primary audio stream. On the client-side, 238 // this is the near-end (or captured) audio. 239 // 240 // If needed for enabled functionality, any function with the set_stream_ tag 241 // must be called prior to processing the current frame. Any getter function 242 // with the stream_ tag which is needed should be called after processing. 243 // 244 // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| 245 // members of |frame| must be valid. If changed from the previous call to this 246 // method, it will trigger an initialization. 247 virtual int ProcessStream(AudioFrame* frame) = 0; 248 249 // Accepts deinterleaved float audio with the range [-1, 1]. Each element 250 // of |src| points to a channel buffer, arranged according to 251 // |input_layout|. At output, the channels will be arranged according to 252 // |output_layout| at |output_sample_rate_hz| in |dest|. 253 // 254 // The output layout may only remove channels, not add. |src| and |dest| 255 // may use the same memory, if desired. 256 virtual int ProcessStream(const float* const* src, 257 int samples_per_channel, 258 int input_sample_rate_hz, 259 ChannelLayout input_layout, 260 int output_sample_rate_hz, 261 ChannelLayout output_layout, 262 float* const* dest) = 0; 263 264 // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame 265 // will not be modified. On the client-side, this is the far-end (or to be 266 // rendered) audio. 267 // 268 // It is only necessary to provide this if echo processing is enabled, as the 269 // reverse stream forms the echo reference signal. It is recommended, but not 270 // necessary, to provide if gain control is enabled. On the server-side this 271 // typically will not be used. If you're not sure what to pass in here, 272 // chances are you don't need to use it. 273 // 274 // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| 275 // members of |frame| must be valid. |sample_rate_hz_| must correspond to 276 // |input_sample_rate_hz()| 277 // 278 // TODO(ajm): add const to input; requires an implementation fix. 279 virtual int AnalyzeReverseStream(AudioFrame* frame) = 0; 280 281 // Accepts deinterleaved float audio with the range [-1, 1]. Each element 282 // of |data| points to a channel buffer, arranged according to |layout|. 283 virtual int AnalyzeReverseStream(const float* const* data, 284 int samples_per_channel, 285 int sample_rate_hz, 286 ChannelLayout layout) = 0; 287 288 // This must be called if and only if echo processing is enabled. 289 // 290 // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end 291 // frame and ProcessStream() receiving a near-end frame containing the 292 // corresponding echo. On the client-side this can be expressed as 293 // delay = (t_render - t_analyze) + (t_process - t_capture) 294 // where, 295 // - t_analyze is the time a frame is passed to AnalyzeReverseStream() and 296 // t_render is the time the first sample of the same frame is rendered by 297 // the audio hardware. 298 // - t_capture is the time the first sample of a frame is captured by the 299 // audio hardware and t_pull is the time the same frame is passed to 300 // ProcessStream(). 301 virtual int set_stream_delay_ms(int delay) = 0; 302 virtual int stream_delay_ms() const = 0; 303 virtual bool was_stream_delay_set() const = 0; 304 305 // Call to signal that a key press occurred (true) or did not occur (false) 306 // with this chunk of audio. 307 virtual void set_stream_key_pressed(bool key_pressed) = 0; 308 virtual bool stream_key_pressed() const = 0; 309 310 // Sets a delay |offset| in ms to add to the values passed in through 311 // set_stream_delay_ms(). May be positive or negative. 312 // 313 // Note that this could cause an otherwise valid value passed to 314 // set_stream_delay_ms() to return an error. 315 virtual void set_delay_offset_ms(int offset) = 0; 316 virtual int delay_offset_ms() const = 0; 317 318 // Starts recording debugging information to a file specified by |filename|, 319 // a NULL-terminated string. If there is an ongoing recording, the old file 320 // will be closed, and recording will continue in the newly specified file. 321 // An already existing file will be overwritten without warning. 322 static const size_t kMaxFilenameSize = 1024; 323 virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0; 324 325 // Same as above but uses an existing file handle. Takes ownership 326 // of |handle| and closes it at StopDebugRecording(). 327 virtual int StartDebugRecording(FILE* handle) = 0; 328 329 // Same as above but uses an existing PlatformFile handle. Takes ownership 330 // of |handle| and closes it at StopDebugRecording(). 331 // TODO(xians): Make this interface pure virtual. 332 virtual int StartDebugRecordingForPlatformFile(rtc::PlatformFile handle) { 333 return -1; 334 } 335 336 // Stops recording debugging information, and closes the file. Recording 337 // cannot be resumed in the same file (without overwriting it). 338 virtual int StopDebugRecording() = 0; 339 340 // These provide access to the component interfaces and should never return 341 // NULL. The pointers will be valid for the lifetime of the APM instance. 342 // The memory for these objects is entirely managed internally. 343 virtual EchoCancellation* echo_cancellation() const = 0; 344 virtual EchoControlMobile* echo_control_mobile() const = 0; 345 virtual GainControl* gain_control() const = 0; 346 virtual HighPassFilter* high_pass_filter() const = 0; 347 virtual LevelEstimator* level_estimator() const = 0; 348 virtual NoiseSuppression* noise_suppression() const = 0; 349 virtual VoiceDetection* voice_detection() const = 0; 350 351 struct Statistic { 352 int instant; // Instantaneous value. 353 int average; // Long-term average. 354 int maximum; // Long-term maximum. 355 int minimum; // Long-term minimum. 356 }; 357 358 enum Error { 359 // Fatal errors. 360 kNoError = 0, 361 kUnspecifiedError = -1, 362 kCreationFailedError = -2, 363 kUnsupportedComponentError = -3, 364 kUnsupportedFunctionError = -4, 365 kNullPointerError = -5, 366 kBadParameterError = -6, 367 kBadSampleRateError = -7, 368 kBadDataLengthError = -8, 369 kBadNumberChannelsError = -9, 370 kFileError = -10, 371 kStreamParameterNotSetError = -11, 372 kNotEnabledError = -12, 373 374 // Warnings are non-fatal. 375 // This results when a set_stream_ parameter is out of range. Processing 376 // will continue, but the parameter may have been truncated. 377 kBadStreamParameterWarning = -13 378 }; 379 380 enum NativeRate { 381 kSampleRate8kHz = 8000, 382 kSampleRate16kHz = 16000, 383 kSampleRate32kHz = 32000 384 }; 385 386 static const int kChunkSizeMs = 10; 387 }; 388 389 // The acoustic echo cancellation (AEC) component provides better performance 390 // than AECM but also requires more processing power and is dependent on delay 391 // stability and reporting accuracy. As such it is well-suited and recommended 392 // for PC and IP phone applications. 393 // 394 // Not recommended to be enabled on the server-side. 395 class EchoCancellation { 396 public: 397 // EchoCancellation and EchoControlMobile may not be enabled simultaneously. 398 // Enabling one will disable the other. 399 virtual int Enable(bool enable) = 0; 400 virtual bool is_enabled() const = 0; 401 402 // Differences in clock speed on the primary and reverse streams can impact 403 // the AEC performance. On the client-side, this could be seen when different 404 // render and capture devices are used, particularly with webcams. 405 // 406 // This enables a compensation mechanism, and requires that 407 // set_stream_drift_samples() be called. 408 virtual int enable_drift_compensation(bool enable) = 0; 409 virtual bool is_drift_compensation_enabled() const = 0; 410 411 // Sets the difference between the number of samples rendered and captured by 412 // the audio devices since the last call to |ProcessStream()|. Must be called 413 // if drift compensation is enabled, prior to |ProcessStream()|. 414 virtual void set_stream_drift_samples(int drift) = 0; 415 virtual int stream_drift_samples() const = 0; 416 417 enum SuppressionLevel { 418 kLowSuppression, 419 kModerateSuppression, 420 kHighSuppression 421 }; 422 423 // Sets the aggressiveness of the suppressor. A higher level trades off 424 // double-talk performance for increased echo suppression. 425 virtual int set_suppression_level(SuppressionLevel level) = 0; 426 virtual SuppressionLevel suppression_level() const = 0; 427 428 // Returns false if the current frame almost certainly contains no echo 429 // and true if it _might_ contain echo. 430 virtual bool stream_has_echo() const = 0; 431 432 // Enables the computation of various echo metrics. These are obtained 433 // through |GetMetrics()|. 434 virtual int enable_metrics(bool enable) = 0; 435 virtual bool are_metrics_enabled() const = 0; 436 437 // Each statistic is reported in dB. 438 // P_far: Far-end (render) signal power. 439 // P_echo: Near-end (capture) echo signal power. 440 // P_out: Signal power at the output of the AEC. 441 // P_a: Internal signal power at the point before the AEC's non-linear 442 // processor. 443 struct Metrics { 444 // RERL = ERL + ERLE 445 AudioProcessing::Statistic residual_echo_return_loss; 446 447 // ERL = 10log_10(P_far / P_echo) 448 AudioProcessing::Statistic echo_return_loss; 449 450 // ERLE = 10log_10(P_echo / P_out) 451 AudioProcessing::Statistic echo_return_loss_enhancement; 452 453 // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a) 454 AudioProcessing::Statistic a_nlp; 455 }; 456 457 // TODO(ajm): discuss the metrics update period. 458 virtual int GetMetrics(Metrics* metrics) = 0; 459 460 // Enables computation and logging of delay values. Statistics are obtained 461 // through |GetDelayMetrics()|. 462 virtual int enable_delay_logging(bool enable) = 0; 463 virtual bool is_delay_logging_enabled() const = 0; 464 465 // The delay metrics consists of the delay |median| and the delay standard 466 // deviation |std|. The values are averaged over the time period since the 467 // last call to |GetDelayMetrics()|. 468 virtual int GetDelayMetrics(int* median, int* std) = 0; 469 470 // Returns a pointer to the low level AEC component. In case of multiple 471 // channels, the pointer to the first one is returned. A NULL pointer is 472 // returned when the AEC component is disabled or has not been initialized 473 // successfully. 474 virtual struct AecCore* aec_core() const = 0; 475 476 protected: 477 virtual ~EchoCancellation() {} 478 }; 479 480 // The acoustic echo control for mobile (AECM) component is a low complexity 481 // robust option intended for use on mobile devices. 482 // 483 // Not recommended to be enabled on the server-side. 484 class EchoControlMobile { 485 public: 486 // EchoCancellation and EchoControlMobile may not be enabled simultaneously. 487 // Enabling one will disable the other. 488 virtual int Enable(bool enable) = 0; 489 virtual bool is_enabled() const = 0; 490 491 // Recommended settings for particular audio routes. In general, the louder 492 // the echo is expected to be, the higher this value should be set. The 493 // preferred setting may vary from device to device. 494 enum RoutingMode { 495 kQuietEarpieceOrHeadset, 496 kEarpiece, 497 kLoudEarpiece, 498 kSpeakerphone, 499 kLoudSpeakerphone 500 }; 501 502 // Sets echo control appropriate for the audio routing |mode| on the device. 503 // It can and should be updated during a call if the audio routing changes. 504 virtual int set_routing_mode(RoutingMode mode) = 0; 505 virtual RoutingMode routing_mode() const = 0; 506 507 // Comfort noise replaces suppressed background noise to maintain a 508 // consistent signal level. 509 virtual int enable_comfort_noise(bool enable) = 0; 510 virtual bool is_comfort_noise_enabled() const = 0; 511 512 // A typical use case is to initialize the component with an echo path from a 513 // previous call. The echo path is retrieved using |GetEchoPath()|, typically 514 // at the end of a call. The data can then be stored for later use as an 515 // initializer before the next call, using |SetEchoPath()|. 516 // 517 // Controlling the echo path this way requires the data |size_bytes| to match 518 // the internal echo path size. This size can be acquired using 519 // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth 520 // noting if it is to be called during an ongoing call. 521 // 522 // It is possible that version incompatibilities may result in a stored echo 523 // path of the incorrect size. In this case, the stored path should be 524 // discarded. 525 virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0; 526 virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0; 527 528 // The returned path size is guaranteed not to change for the lifetime of 529 // the application. 530 static size_t echo_path_size_bytes(); 531 532 protected: 533 virtual ~EchoControlMobile() {} 534 }; 535 536 // The automatic gain control (AGC) component brings the signal to an 537 // appropriate range. This is done by applying a digital gain directly and, in 538 // the analog mode, prescribing an analog gain to be applied at the audio HAL. 539 // 540 // Recommended to be enabled on the client-side. 541 class GainControl { 542 public: 543 virtual int Enable(bool enable) = 0; 544 virtual bool is_enabled() const = 0; 545 546 // When an analog mode is set, this must be called prior to |ProcessStream()| 547 // to pass the current analog level from the audio HAL. Must be within the 548 // range provided to |set_analog_level_limits()|. 549 virtual int set_stream_analog_level(int level) = 0; 550 551 // When an analog mode is set, this should be called after |ProcessStream()| 552 // to obtain the recommended new analog level for the audio HAL. It is the 553 // users responsibility to apply this level. 554 virtual int stream_analog_level() = 0; 555 556 enum Mode { 557 // Adaptive mode intended for use if an analog volume control is available 558 // on the capture device. It will require the user to provide coupling 559 // between the OS mixer controls and AGC through the |stream_analog_level()| 560 // functions. 561 // 562 // It consists of an analog gain prescription for the audio device and a 563 // digital compression stage. 564 kAdaptiveAnalog, 565 566 // Adaptive mode intended for situations in which an analog volume control 567 // is unavailable. It operates in a similar fashion to the adaptive analog 568 // mode, but with scaling instead applied in the digital domain. As with 569 // the analog mode, it additionally uses a digital compression stage. 570 kAdaptiveDigital, 571 572 // Fixed mode which enables only the digital compression stage also used by 573 // the two adaptive modes. 574 // 575 // It is distinguished from the adaptive modes by considering only a 576 // short time-window of the input signal. It applies a fixed gain through 577 // most of the input level range, and compresses (gradually reduces gain 578 // with increasing level) the input signal at higher levels. This mode is 579 // preferred on embedded devices where the capture signal level is 580 // predictable, so that a known gain can be applied. 581 kFixedDigital 582 }; 583 584 virtual int set_mode(Mode mode) = 0; 585 virtual Mode mode() const = 0; 586 587 // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels 588 // from digital full-scale). The convention is to use positive values. For 589 // instance, passing in a value of 3 corresponds to -3 dBFs, or a target 590 // level 3 dB below full-scale. Limited to [0, 31]. 591 // 592 // TODO(ajm): use a negative value here instead, if/when VoE will similarly 593 // update its interface. 594 virtual int set_target_level_dbfs(int level) = 0; 595 virtual int target_level_dbfs() const = 0; 596 597 // Sets the maximum |gain| the digital compression stage may apply, in dB. A 598 // higher number corresponds to greater compression, while a value of 0 will 599 // leave the signal uncompressed. Limited to [0, 90]. 600 virtual int set_compression_gain_db(int gain) = 0; 601 virtual int compression_gain_db() const = 0; 602 603 // When enabled, the compression stage will hard limit the signal to the 604 // target level. Otherwise, the signal will be compressed but not limited 605 // above the target level. 606 virtual int enable_limiter(bool enable) = 0; 607 virtual bool is_limiter_enabled() const = 0; 608 609 // Sets the |minimum| and |maximum| analog levels of the audio capture device. 610 // Must be set if and only if an analog mode is used. Limited to [0, 65535]. 611 virtual int set_analog_level_limits(int minimum, 612 int maximum) = 0; 613 virtual int analog_level_minimum() const = 0; 614 virtual int analog_level_maximum() const = 0; 615 616 // Returns true if the AGC has detected a saturation event (period where the 617 // signal reaches digital full-scale) in the current frame and the analog 618 // level cannot be reduced. 619 // 620 // This could be used as an indicator to reduce or disable analog mic gain at 621 // the audio HAL. 622 virtual bool stream_is_saturated() const = 0; 623 624 protected: 625 virtual ~GainControl() {} 626 }; 627 628 // A filtering component which removes DC offset and low-frequency noise. 629 // Recommended to be enabled on the client-side. 630 class HighPassFilter { 631 public: 632 virtual int Enable(bool enable) = 0; 633 virtual bool is_enabled() const = 0; 634 635 protected: 636 virtual ~HighPassFilter() {} 637 }; 638 639 // An estimation component used to retrieve level metrics. 640 class LevelEstimator { 641 public: 642 virtual int Enable(bool enable) = 0; 643 virtual bool is_enabled() const = 0; 644 645 // Returns the root mean square (RMS) level in dBFs (decibels from digital 646 // full-scale), or alternately dBov. It is computed over all primary stream 647 // frames since the last call to RMS(). The returned value is positive but 648 // should be interpreted as negative. It is constrained to [0, 127]. 649 // 650 // The computation follows: https://tools.ietf.org/html/rfc6465 651 // with the intent that it can provide the RTP audio level indication. 652 // 653 // Frames passed to ProcessStream() with an |_energy| of zero are considered 654 // to have been muted. The RMS of the frame will be interpreted as -127. 655 virtual int RMS() = 0; 656 657 protected: 658 virtual ~LevelEstimator() {} 659 }; 660 661 // The noise suppression (NS) component attempts to remove noise while 662 // retaining speech. Recommended to be enabled on the client-side. 663 // 664 // Recommended to be enabled on the client-side. 665 class NoiseSuppression { 666 public: 667 virtual int Enable(bool enable) = 0; 668 virtual bool is_enabled() const = 0; 669 670 // Determines the aggressiveness of the suppression. Increasing the level 671 // will reduce the noise level at the expense of a higher speech distortion. 672 enum Level { 673 kLow, 674 kModerate, 675 kHigh, 676 kVeryHigh 677 }; 678 679 virtual int set_level(Level level) = 0; 680 virtual Level level() const = 0; 681 682 // Returns the internally computed prior speech probability of current frame 683 // averaged over output channels. This is not supported in fixed point, for 684 // which |kUnsupportedFunctionError| is returned. 685 virtual float speech_probability() const = 0; 686 687 protected: 688 virtual ~NoiseSuppression() {} 689 }; 690 691 // The voice activity detection (VAD) component analyzes the stream to 692 // determine if voice is present. A facility is also provided to pass in an 693 // external VAD decision. 694 // 695 // In addition to |stream_has_voice()| the VAD decision is provided through the 696 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be 697 // modified to reflect the current decision. 698 class VoiceDetection { 699 public: 700 virtual int Enable(bool enable) = 0; 701 virtual bool is_enabled() const = 0; 702 703 // Returns true if voice is detected in the current frame. Should be called 704 // after |ProcessStream()|. 705 virtual bool stream_has_voice() const = 0; 706 707 // Some of the APM functionality requires a VAD decision. In the case that 708 // a decision is externally available for the current frame, it can be passed 709 // in here, before |ProcessStream()| is called. 710 // 711 // VoiceDetection does _not_ need to be enabled to use this. If it happens to 712 // be enabled, detection will be skipped for any frame in which an external 713 // VAD decision is provided. 714 virtual int set_stream_has_voice(bool has_voice) = 0; 715 716 // Specifies the likelihood that a frame will be declared to contain voice. 717 // A higher value makes it more likely that speech will not be clipped, at 718 // the expense of more noise being detected as voice. 719 enum Likelihood { 720 kVeryLowLikelihood, 721 kLowLikelihood, 722 kModerateLikelihood, 723 kHighLikelihood 724 }; 725 726 virtual int set_likelihood(Likelihood likelihood) = 0; 727 virtual Likelihood likelihood() const = 0; 728 729 // Sets the |size| of the frames in ms on which the VAD will operate. Larger 730 // frames will improve detection accuracy, but reduce the frequency of 731 // updates. 732 // 733 // This does not impact the size of frames passed to |ProcessStream()|. 734 virtual int set_frame_size_ms(int size) = 0; 735 virtual int frame_size_ms() const = 0; 736 737 protected: 738 virtual ~VoiceDetection() {} 739 }; 740 } // namespace webrtc 741 742 #endif // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 743