Home | History | Annotate | Download | only in include
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
     12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
     13 
     14 #include <stddef.h>  // size_t
     15 #include <stdio.h>  // FILE
     16 
     17 #include "webrtc/base/platform_file.h"
     18 #include "webrtc/common.h"
     19 #include "webrtc/typedefs.h"
     20 
     21 struct AecCore;
     22 
     23 namespace webrtc {
     24 
     25 class AudioFrame;
     26 class EchoCancellation;
     27 class EchoControlMobile;
     28 class GainControl;
     29 class HighPassFilter;
     30 class LevelEstimator;
     31 class NoiseSuppression;
     32 class VoiceDetection;
     33 
     34 // Use to enable the delay correction feature. This now engages an extended
     35 // filter mode in the AEC, along with robustness measures around the reported
     36 // system delays. It comes with a significant increase in AEC complexity, but is
     37 // much more robust to unreliable reported delays.
     38 //
     39 // Detailed changes to the algorithm:
     40 // - The filter length is changed from 48 to 128 ms. This comes with tuning of
     41 //   several parameters: i) filter adaptation stepsize and error threshold;
     42 //   ii) non-linear processing smoothing and overdrive.
     43 // - Option to ignore the reported delays on platforms which we deem
     44 //   sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c.
     45 // - Faster startup times by removing the excessive "startup phase" processing
     46 //   of reported delays.
     47 // - Much more conservative adjustments to the far-end read pointer. We smooth
     48 //   the delay difference more heavily, and back off from the difference more.
     49 //   Adjustments force a readaptation of the filter, so they should be avoided
     50 //   except when really necessary.
     51 struct DelayCorrection {
     52   DelayCorrection() : enabled(false) {}
     53   explicit DelayCorrection(bool enabled) : enabled(enabled) {}
     54   bool enabled;
     55 };
     56 
     57 // Use to disable the reported system delays. By disabling the reported system
     58 // delays the echo cancellation algorithm assumes the process and reverse
     59 // streams to be aligned. This configuration only applies to EchoCancellation
     60 // and not EchoControlMobile and is set with AudioProcessing::SetExtraOptions().
     61 // Note that by disabling reported system delays the EchoCancellation may
     62 // regress in performance.
     63 struct ReportedDelay {
     64   ReportedDelay() : enabled(true) {}
     65   explicit ReportedDelay(bool enabled) : enabled(enabled) {}
     66   bool enabled;
     67 };
     68 
     69 // Must be provided through AudioProcessing::Create(Confg&). It will have no
     70 // impact if used with AudioProcessing::SetExtraOptions().
     71 struct ExperimentalAgc {
     72   ExperimentalAgc() : enabled(true) {}
     73   explicit ExperimentalAgc(bool enabled) : enabled(enabled) {}
     74   bool enabled;
     75 };
     76 
     77 // Use to enable experimental noise suppression. It can be set in the
     78 // constructor or using AudioProcessing::SetExtraOptions().
     79 struct ExperimentalNs {
     80   ExperimentalNs() : enabled(false) {}
     81   explicit ExperimentalNs(bool enabled) : enabled(enabled) {}
     82   bool enabled;
     83 };
     84 
     85 static const int kAudioProcMaxNativeSampleRateHz = 32000;
     86 
     87 // The Audio Processing Module (APM) provides a collection of voice processing
     88 // components designed for real-time communications software.
     89 //
     90 // APM operates on two audio streams on a frame-by-frame basis. Frames of the
     91 // primary stream, on which all processing is applied, are passed to
     92 // |ProcessStream()|. Frames of the reverse direction stream, which are used for
     93 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the
     94 // client-side, this will typically be the near-end (capture) and far-end
     95 // (render) streams, respectively. APM should be placed in the signal chain as
     96 // close to the audio hardware abstraction layer (HAL) as possible.
     97 //
     98 // On the server-side, the reverse stream will normally not be used, with
     99 // processing occurring on each incoming stream.
    100 //
    101 // Component interfaces follow a similar pattern and are accessed through
    102 // corresponding getters in APM. All components are disabled at create-time,
    103 // with default settings that are recommended for most situations. New settings
    104 // can be applied without enabling a component. Enabling a component triggers
    105 // memory allocation and initialization to allow it to start processing the
    106 // streams.
    107 //
    108 // Thread safety is provided with the following assumptions to reduce locking
    109 // overhead:
    110 //   1. The stream getters and setters are called from the same thread as
    111 //      ProcessStream(). More precisely, stream functions are never called
    112 //      concurrently with ProcessStream().
    113 //   2. Parameter getters are never called concurrently with the corresponding
    114 //      setter.
    115 //
    116 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16
    117 // interfaces use interleaved data, while the float interfaces use deinterleaved
    118 // data.
    119 //
    120 // Usage example, omitting error checking:
    121 // AudioProcessing* apm = AudioProcessing::Create(0);
    122 //
    123 // apm->high_pass_filter()->Enable(true);
    124 //
    125 // apm->echo_cancellation()->enable_drift_compensation(false);
    126 // apm->echo_cancellation()->Enable(true);
    127 //
    128 // apm->noise_reduction()->set_level(kHighSuppression);
    129 // apm->noise_reduction()->Enable(true);
    130 //
    131 // apm->gain_control()->set_analog_level_limits(0, 255);
    132 // apm->gain_control()->set_mode(kAdaptiveAnalog);
    133 // apm->gain_control()->Enable(true);
    134 //
    135 // apm->voice_detection()->Enable(true);
    136 //
    137 // // Start a voice call...
    138 //
    139 // // ... Render frame arrives bound for the audio HAL ...
    140 // apm->AnalyzeReverseStream(render_frame);
    141 //
    142 // // ... Capture frame arrives from the audio HAL ...
    143 // // Call required set_stream_ functions.
    144 // apm->set_stream_delay_ms(delay_ms);
    145 // apm->gain_control()->set_stream_analog_level(analog_level);
    146 //
    147 // apm->ProcessStream(capture_frame);
    148 //
    149 // // Call required stream_ functions.
    150 // analog_level = apm->gain_control()->stream_analog_level();
    151 // has_voice = apm->stream_has_voice();
    152 //
    153 // // Repeate render and capture processing for the duration of the call...
    154 // // Start a new call...
    155 // apm->Initialize();
    156 //
    157 // // Close the application...
    158 // delete apm;
    159 //
    160 class AudioProcessing {
    161  public:
    162   enum ChannelLayout {
    163     kMono,
    164     // Left, right.
    165     kStereo,
    166     // Mono, keyboard mic.
    167     kMonoAndKeyboard,
    168     // Left, right, keyboard mic.
    169     kStereoAndKeyboard
    170   };
    171 
    172   // Creates an APM instance. Use one instance for every primary audio stream
    173   // requiring processing. On the client-side, this would typically be one
    174   // instance for the near-end stream, and additional instances for each far-end
    175   // stream which requires processing. On the server-side, this would typically
    176   // be one instance for every incoming stream.
    177   static AudioProcessing* Create();
    178   // Allows passing in an optional configuration at create-time.
    179   static AudioProcessing* Create(const Config& config);
    180   // TODO(ajm): Deprecated; remove all calls to it.
    181   static AudioProcessing* Create(int id);
    182   virtual ~AudioProcessing() {}
    183 
    184   // Initializes internal states, while retaining all user settings. This
    185   // should be called before beginning to process a new audio stream. However,
    186   // it is not necessary to call before processing the first stream after
    187   // creation.
    188   //
    189   // It is also not necessary to call if the audio parameters (sample
    190   // rate and number of channels) have changed. Passing updated parameters
    191   // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible.
    192   // If the parameters are known at init-time though, they may be provided.
    193   virtual int Initialize() = 0;
    194 
    195   // The int16 interfaces require:
    196   //   - only |NativeRate|s be used
    197   //   - that the input, output and reverse rates must match
    198   //   - that |output_layout| matches |input_layout|
    199   //
    200   // The float interfaces accept arbitrary rates and support differing input
    201   // and output layouts, but the output may only remove channels, not add.
    202   virtual int Initialize(int input_sample_rate_hz,
    203                          int output_sample_rate_hz,
    204                          int reverse_sample_rate_hz,
    205                          ChannelLayout input_layout,
    206                          ChannelLayout output_layout,
    207                          ChannelLayout reverse_layout) = 0;
    208 
    209   // Pass down additional options which don't have explicit setters. This
    210   // ensures the options are applied immediately.
    211   virtual void SetExtraOptions(const Config& config) = 0;
    212 
    213   // DEPRECATED.
    214   // TODO(ajm): Remove after Chromium has upgraded to using Initialize().
    215   virtual int set_sample_rate_hz(int rate) = 0;
    216   // TODO(ajm): Remove after voice engine no longer requires it to resample
    217   // the reverse stream to the forward rate.
    218   virtual int input_sample_rate_hz() const = 0;
    219   // TODO(ajm): Remove after Chromium no longer depends on it.
    220   virtual int sample_rate_hz() const = 0;
    221 
    222   // TODO(ajm): Only intended for internal use. Make private and friend the
    223   // necessary classes?
    224   virtual int proc_sample_rate_hz() const = 0;
    225   virtual int proc_split_sample_rate_hz() const = 0;
    226   virtual int num_input_channels() const = 0;
    227   virtual int num_output_channels() const = 0;
    228   virtual int num_reverse_channels() const = 0;
    229 
    230   // Set to true when the output of AudioProcessing will be muted or in some
    231   // other way not used. Ideally, the captured audio would still be processed,
    232   // but some components may change behavior based on this information.
    233   // Default false.
    234   virtual void set_output_will_be_muted(bool muted) = 0;
    235   virtual bool output_will_be_muted() const = 0;
    236 
    237   // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
    238   // this is the near-end (or captured) audio.
    239   //
    240   // If needed for enabled functionality, any function with the set_stream_ tag
    241   // must be called prior to processing the current frame. Any getter function
    242   // with the stream_ tag which is needed should be called after processing.
    243   //
    244   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
    245   // members of |frame| must be valid. If changed from the previous call to this
    246   // method, it will trigger an initialization.
    247   virtual int ProcessStream(AudioFrame* frame) = 0;
    248 
    249   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
    250   // of |src| points to a channel buffer, arranged according to
    251   // |input_layout|. At output, the channels will be arranged according to
    252   // |output_layout| at |output_sample_rate_hz| in |dest|.
    253   //
    254   // The output layout may only remove channels, not add. |src| and |dest|
    255   // may use the same memory, if desired.
    256   virtual int ProcessStream(const float* const* src,
    257                             int samples_per_channel,
    258                             int input_sample_rate_hz,
    259                             ChannelLayout input_layout,
    260                             int output_sample_rate_hz,
    261                             ChannelLayout output_layout,
    262                             float* const* dest) = 0;
    263 
    264   // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
    265   // will not be modified. On the client-side, this is the far-end (or to be
    266   // rendered) audio.
    267   //
    268   // It is only necessary to provide this if echo processing is enabled, as the
    269   // reverse stream forms the echo reference signal. It is recommended, but not
    270   // necessary, to provide if gain control is enabled. On the server-side this
    271   // typically will not be used. If you're not sure what to pass in here,
    272   // chances are you don't need to use it.
    273   //
    274   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
    275   // members of |frame| must be valid. |sample_rate_hz_| must correspond to
    276   // |input_sample_rate_hz()|
    277   //
    278   // TODO(ajm): add const to input; requires an implementation fix.
    279   virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
    280 
    281   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
    282   // of |data| points to a channel buffer, arranged according to |layout|.
    283   virtual int AnalyzeReverseStream(const float* const* data,
    284                                    int samples_per_channel,
    285                                    int sample_rate_hz,
    286                                    ChannelLayout layout) = 0;
    287 
    288   // This must be called if and only if echo processing is enabled.
    289   //
    290   // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
    291   // frame and ProcessStream() receiving a near-end frame containing the
    292   // corresponding echo. On the client-side this can be expressed as
    293   //   delay = (t_render - t_analyze) + (t_process - t_capture)
    294   // where,
    295   //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
    296   //     t_render is the time the first sample of the same frame is rendered by
    297   //     the audio hardware.
    298   //   - t_capture is the time the first sample of a frame is captured by the
    299   //     audio hardware and t_pull is the time the same frame is passed to
    300   //     ProcessStream().
    301   virtual int set_stream_delay_ms(int delay) = 0;
    302   virtual int stream_delay_ms() const = 0;
    303   virtual bool was_stream_delay_set() const = 0;
    304 
    305   // Call to signal that a key press occurred (true) or did not occur (false)
    306   // with this chunk of audio.
    307   virtual void set_stream_key_pressed(bool key_pressed) = 0;
    308   virtual bool stream_key_pressed() const = 0;
    309 
    310   // Sets a delay |offset| in ms to add to the values passed in through
    311   // set_stream_delay_ms(). May be positive or negative.
    312   //
    313   // Note that this could cause an otherwise valid value passed to
    314   // set_stream_delay_ms() to return an error.
    315   virtual void set_delay_offset_ms(int offset) = 0;
    316   virtual int delay_offset_ms() const = 0;
    317 
    318   // Starts recording debugging information to a file specified by |filename|,
    319   // a NULL-terminated string. If there is an ongoing recording, the old file
    320   // will be closed, and recording will continue in the newly specified file.
    321   // An already existing file will be overwritten without warning.
    322   static const size_t kMaxFilenameSize = 1024;
    323   virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
    324 
    325   // Same as above but uses an existing file handle. Takes ownership
    326   // of |handle| and closes it at StopDebugRecording().
    327   virtual int StartDebugRecording(FILE* handle) = 0;
    328 
    329   // Same as above but uses an existing PlatformFile handle. Takes ownership
    330   // of |handle| and closes it at StopDebugRecording().
    331   // TODO(xians): Make this interface pure virtual.
    332   virtual int StartDebugRecordingForPlatformFile(rtc::PlatformFile handle) {
    333       return -1;
    334   }
    335 
    336   // Stops recording debugging information, and closes the file. Recording
    337   // cannot be resumed in the same file (without overwriting it).
    338   virtual int StopDebugRecording() = 0;
    339 
    340   // These provide access to the component interfaces and should never return
    341   // NULL. The pointers will be valid for the lifetime of the APM instance.
    342   // The memory for these objects is entirely managed internally.
    343   virtual EchoCancellation* echo_cancellation() const = 0;
    344   virtual EchoControlMobile* echo_control_mobile() const = 0;
    345   virtual GainControl* gain_control() const = 0;
    346   virtual HighPassFilter* high_pass_filter() const = 0;
    347   virtual LevelEstimator* level_estimator() const = 0;
    348   virtual NoiseSuppression* noise_suppression() const = 0;
    349   virtual VoiceDetection* voice_detection() const = 0;
    350 
    351   struct Statistic {
    352     int instant;  // Instantaneous value.
    353     int average;  // Long-term average.
    354     int maximum;  // Long-term maximum.
    355     int minimum;  // Long-term minimum.
    356   };
    357 
    358   enum Error {
    359     // Fatal errors.
    360     kNoError = 0,
    361     kUnspecifiedError = -1,
    362     kCreationFailedError = -2,
    363     kUnsupportedComponentError = -3,
    364     kUnsupportedFunctionError = -4,
    365     kNullPointerError = -5,
    366     kBadParameterError = -6,
    367     kBadSampleRateError = -7,
    368     kBadDataLengthError = -8,
    369     kBadNumberChannelsError = -9,
    370     kFileError = -10,
    371     kStreamParameterNotSetError = -11,
    372     kNotEnabledError = -12,
    373 
    374     // Warnings are non-fatal.
    375     // This results when a set_stream_ parameter is out of range. Processing
    376     // will continue, but the parameter may have been truncated.
    377     kBadStreamParameterWarning = -13
    378   };
    379 
    380   enum NativeRate {
    381     kSampleRate8kHz = 8000,
    382     kSampleRate16kHz = 16000,
    383     kSampleRate32kHz = 32000
    384   };
    385 
    386   static const int kChunkSizeMs = 10;
    387 };
    388 
    389 // The acoustic echo cancellation (AEC) component provides better performance
    390 // than AECM but also requires more processing power and is dependent on delay
    391 // stability and reporting accuracy. As such it is well-suited and recommended
    392 // for PC and IP phone applications.
    393 //
    394 // Not recommended to be enabled on the server-side.
    395 class EchoCancellation {
    396  public:
    397   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
    398   // Enabling one will disable the other.
    399   virtual int Enable(bool enable) = 0;
    400   virtual bool is_enabled() const = 0;
    401 
    402   // Differences in clock speed on the primary and reverse streams can impact
    403   // the AEC performance. On the client-side, this could be seen when different
    404   // render and capture devices are used, particularly with webcams.
    405   //
    406   // This enables a compensation mechanism, and requires that
    407   // set_stream_drift_samples() be called.
    408   virtual int enable_drift_compensation(bool enable) = 0;
    409   virtual bool is_drift_compensation_enabled() const = 0;
    410 
    411   // Sets the difference between the number of samples rendered and captured by
    412   // the audio devices since the last call to |ProcessStream()|. Must be called
    413   // if drift compensation is enabled, prior to |ProcessStream()|.
    414   virtual void set_stream_drift_samples(int drift) = 0;
    415   virtual int stream_drift_samples() const = 0;
    416 
    417   enum SuppressionLevel {
    418     kLowSuppression,
    419     kModerateSuppression,
    420     kHighSuppression
    421   };
    422 
    423   // Sets the aggressiveness of the suppressor. A higher level trades off
    424   // double-talk performance for increased echo suppression.
    425   virtual int set_suppression_level(SuppressionLevel level) = 0;
    426   virtual SuppressionLevel suppression_level() const = 0;
    427 
    428   // Returns false if the current frame almost certainly contains no echo
    429   // and true if it _might_ contain echo.
    430   virtual bool stream_has_echo() const = 0;
    431 
    432   // Enables the computation of various echo metrics. These are obtained
    433   // through |GetMetrics()|.
    434   virtual int enable_metrics(bool enable) = 0;
    435   virtual bool are_metrics_enabled() const = 0;
    436 
    437   // Each statistic is reported in dB.
    438   // P_far:  Far-end (render) signal power.
    439   // P_echo: Near-end (capture) echo signal power.
    440   // P_out:  Signal power at the output of the AEC.
    441   // P_a:    Internal signal power at the point before the AEC's non-linear
    442   //         processor.
    443   struct Metrics {
    444     // RERL = ERL + ERLE
    445     AudioProcessing::Statistic residual_echo_return_loss;
    446 
    447     // ERL = 10log_10(P_far / P_echo)
    448     AudioProcessing::Statistic echo_return_loss;
    449 
    450     // ERLE = 10log_10(P_echo / P_out)
    451     AudioProcessing::Statistic echo_return_loss_enhancement;
    452 
    453     // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
    454     AudioProcessing::Statistic a_nlp;
    455   };
    456 
    457   // TODO(ajm): discuss the metrics update period.
    458   virtual int GetMetrics(Metrics* metrics) = 0;
    459 
    460   // Enables computation and logging of delay values. Statistics are obtained
    461   // through |GetDelayMetrics()|.
    462   virtual int enable_delay_logging(bool enable) = 0;
    463   virtual bool is_delay_logging_enabled() const = 0;
    464 
    465   // The delay metrics consists of the delay |median| and the delay standard
    466   // deviation |std|. The values are averaged over the time period since the
    467   // last call to |GetDelayMetrics()|.
    468   virtual int GetDelayMetrics(int* median, int* std) = 0;
    469 
    470   // Returns a pointer to the low level AEC component.  In case of multiple
    471   // channels, the pointer to the first one is returned.  A NULL pointer is
    472   // returned when the AEC component is disabled or has not been initialized
    473   // successfully.
    474   virtual struct AecCore* aec_core() const = 0;
    475 
    476  protected:
    477   virtual ~EchoCancellation() {}
    478 };
    479 
    480 // The acoustic echo control for mobile (AECM) component is a low complexity
    481 // robust option intended for use on mobile devices.
    482 //
    483 // Not recommended to be enabled on the server-side.
    484 class EchoControlMobile {
    485  public:
    486   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
    487   // Enabling one will disable the other.
    488   virtual int Enable(bool enable) = 0;
    489   virtual bool is_enabled() const = 0;
    490 
    491   // Recommended settings for particular audio routes. In general, the louder
    492   // the echo is expected to be, the higher this value should be set. The
    493   // preferred setting may vary from device to device.
    494   enum RoutingMode {
    495     kQuietEarpieceOrHeadset,
    496     kEarpiece,
    497     kLoudEarpiece,
    498     kSpeakerphone,
    499     kLoudSpeakerphone
    500   };
    501 
    502   // Sets echo control appropriate for the audio routing |mode| on the device.
    503   // It can and should be updated during a call if the audio routing changes.
    504   virtual int set_routing_mode(RoutingMode mode) = 0;
    505   virtual RoutingMode routing_mode() const = 0;
    506 
    507   // Comfort noise replaces suppressed background noise to maintain a
    508   // consistent signal level.
    509   virtual int enable_comfort_noise(bool enable) = 0;
    510   virtual bool is_comfort_noise_enabled() const = 0;
    511 
    512   // A typical use case is to initialize the component with an echo path from a
    513   // previous call. The echo path is retrieved using |GetEchoPath()|, typically
    514   // at the end of a call. The data can then be stored for later use as an
    515   // initializer before the next call, using |SetEchoPath()|.
    516   //
    517   // Controlling the echo path this way requires the data |size_bytes| to match
    518   // the internal echo path size. This size can be acquired using
    519   // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
    520   // noting if it is to be called during an ongoing call.
    521   //
    522   // It is possible that version incompatibilities may result in a stored echo
    523   // path of the incorrect size. In this case, the stored path should be
    524   // discarded.
    525   virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
    526   virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
    527 
    528   // The returned path size is guaranteed not to change for the lifetime of
    529   // the application.
    530   static size_t echo_path_size_bytes();
    531 
    532  protected:
    533   virtual ~EchoControlMobile() {}
    534 };
    535 
    536 // The automatic gain control (AGC) component brings the signal to an
    537 // appropriate range. This is done by applying a digital gain directly and, in
    538 // the analog mode, prescribing an analog gain to be applied at the audio HAL.
    539 //
    540 // Recommended to be enabled on the client-side.
    541 class GainControl {
    542  public:
    543   virtual int Enable(bool enable) = 0;
    544   virtual bool is_enabled() const = 0;
    545 
    546   // When an analog mode is set, this must be called prior to |ProcessStream()|
    547   // to pass the current analog level from the audio HAL. Must be within the
    548   // range provided to |set_analog_level_limits()|.
    549   virtual int set_stream_analog_level(int level) = 0;
    550 
    551   // When an analog mode is set, this should be called after |ProcessStream()|
    552   // to obtain the recommended new analog level for the audio HAL. It is the
    553   // users responsibility to apply this level.
    554   virtual int stream_analog_level() = 0;
    555 
    556   enum Mode {
    557     // Adaptive mode intended for use if an analog volume control is available
    558     // on the capture device. It will require the user to provide coupling
    559     // between the OS mixer controls and AGC through the |stream_analog_level()|
    560     // functions.
    561     //
    562     // It consists of an analog gain prescription for the audio device and a
    563     // digital compression stage.
    564     kAdaptiveAnalog,
    565 
    566     // Adaptive mode intended for situations in which an analog volume control
    567     // is unavailable. It operates in a similar fashion to the adaptive analog
    568     // mode, but with scaling instead applied in the digital domain. As with
    569     // the analog mode, it additionally uses a digital compression stage.
    570     kAdaptiveDigital,
    571 
    572     // Fixed mode which enables only the digital compression stage also used by
    573     // the two adaptive modes.
    574     //
    575     // It is distinguished from the adaptive modes by considering only a
    576     // short time-window of the input signal. It applies a fixed gain through
    577     // most of the input level range, and compresses (gradually reduces gain
    578     // with increasing level) the input signal at higher levels. This mode is
    579     // preferred on embedded devices where the capture signal level is
    580     // predictable, so that a known gain can be applied.
    581     kFixedDigital
    582   };
    583 
    584   virtual int set_mode(Mode mode) = 0;
    585   virtual Mode mode() const = 0;
    586 
    587   // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
    588   // from digital full-scale). The convention is to use positive values. For
    589   // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
    590   // level 3 dB below full-scale. Limited to [0, 31].
    591   //
    592   // TODO(ajm): use a negative value here instead, if/when VoE will similarly
    593   //            update its interface.
    594   virtual int set_target_level_dbfs(int level) = 0;
    595   virtual int target_level_dbfs() const = 0;
    596 
    597   // Sets the maximum |gain| the digital compression stage may apply, in dB. A
    598   // higher number corresponds to greater compression, while a value of 0 will
    599   // leave the signal uncompressed. Limited to [0, 90].
    600   virtual int set_compression_gain_db(int gain) = 0;
    601   virtual int compression_gain_db() const = 0;
    602 
    603   // When enabled, the compression stage will hard limit the signal to the
    604   // target level. Otherwise, the signal will be compressed but not limited
    605   // above the target level.
    606   virtual int enable_limiter(bool enable) = 0;
    607   virtual bool is_limiter_enabled() const = 0;
    608 
    609   // Sets the |minimum| and |maximum| analog levels of the audio capture device.
    610   // Must be set if and only if an analog mode is used. Limited to [0, 65535].
    611   virtual int set_analog_level_limits(int minimum,
    612                                       int maximum) = 0;
    613   virtual int analog_level_minimum() const = 0;
    614   virtual int analog_level_maximum() const = 0;
    615 
    616   // Returns true if the AGC has detected a saturation event (period where the
    617   // signal reaches digital full-scale) in the current frame and the analog
    618   // level cannot be reduced.
    619   //
    620   // This could be used as an indicator to reduce or disable analog mic gain at
    621   // the audio HAL.
    622   virtual bool stream_is_saturated() const = 0;
    623 
    624  protected:
    625   virtual ~GainControl() {}
    626 };
    627 
    628 // A filtering component which removes DC offset and low-frequency noise.
    629 // Recommended to be enabled on the client-side.
    630 class HighPassFilter {
    631  public:
    632   virtual int Enable(bool enable) = 0;
    633   virtual bool is_enabled() const = 0;
    634 
    635  protected:
    636   virtual ~HighPassFilter() {}
    637 };
    638 
    639 // An estimation component used to retrieve level metrics.
    640 class LevelEstimator {
    641  public:
    642   virtual int Enable(bool enable) = 0;
    643   virtual bool is_enabled() const = 0;
    644 
    645   // Returns the root mean square (RMS) level in dBFs (decibels from digital
    646   // full-scale), or alternately dBov. It is computed over all primary stream
    647   // frames since the last call to RMS(). The returned value is positive but
    648   // should be interpreted as negative. It is constrained to [0, 127].
    649   //
    650   // The computation follows: https://tools.ietf.org/html/rfc6465
    651   // with the intent that it can provide the RTP audio level indication.
    652   //
    653   // Frames passed to ProcessStream() with an |_energy| of zero are considered
    654   // to have been muted. The RMS of the frame will be interpreted as -127.
    655   virtual int RMS() = 0;
    656 
    657  protected:
    658   virtual ~LevelEstimator() {}
    659 };
    660 
    661 // The noise suppression (NS) component attempts to remove noise while
    662 // retaining speech. Recommended to be enabled on the client-side.
    663 //
    664 // Recommended to be enabled on the client-side.
    665 class NoiseSuppression {
    666  public:
    667   virtual int Enable(bool enable) = 0;
    668   virtual bool is_enabled() const = 0;
    669 
    670   // Determines the aggressiveness of the suppression. Increasing the level
    671   // will reduce the noise level at the expense of a higher speech distortion.
    672   enum Level {
    673     kLow,
    674     kModerate,
    675     kHigh,
    676     kVeryHigh
    677   };
    678 
    679   virtual int set_level(Level level) = 0;
    680   virtual Level level() const = 0;
    681 
    682   // Returns the internally computed prior speech probability of current frame
    683   // averaged over output channels. This is not supported in fixed point, for
    684   // which |kUnsupportedFunctionError| is returned.
    685   virtual float speech_probability() const = 0;
    686 
    687  protected:
    688   virtual ~NoiseSuppression() {}
    689 };
    690 
    691 // The voice activity detection (VAD) component analyzes the stream to
    692 // determine if voice is present. A facility is also provided to pass in an
    693 // external VAD decision.
    694 //
    695 // In addition to |stream_has_voice()| the VAD decision is provided through the
    696 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be
    697 // modified to reflect the current decision.
    698 class VoiceDetection {
    699  public:
    700   virtual int Enable(bool enable) = 0;
    701   virtual bool is_enabled() const = 0;
    702 
    703   // Returns true if voice is detected in the current frame. Should be called
    704   // after |ProcessStream()|.
    705   virtual bool stream_has_voice() const = 0;
    706 
    707   // Some of the APM functionality requires a VAD decision. In the case that
    708   // a decision is externally available for the current frame, it can be passed
    709   // in here, before |ProcessStream()| is called.
    710   //
    711   // VoiceDetection does _not_ need to be enabled to use this. If it happens to
    712   // be enabled, detection will be skipped for any frame in which an external
    713   // VAD decision is provided.
    714   virtual int set_stream_has_voice(bool has_voice) = 0;
    715 
    716   // Specifies the likelihood that a frame will be declared to contain voice.
    717   // A higher value makes it more likely that speech will not be clipped, at
    718   // the expense of more noise being detected as voice.
    719   enum Likelihood {
    720     kVeryLowLikelihood,
    721     kLowLikelihood,
    722     kModerateLikelihood,
    723     kHighLikelihood
    724   };
    725 
    726   virtual int set_likelihood(Likelihood likelihood) = 0;
    727   virtual Likelihood likelihood() const = 0;
    728 
    729   // Sets the |size| of the frames in ms on which the VAD will operate. Larger
    730   // frames will improve detection accuracy, but reduce the frequency of
    731   // updates.
    732   //
    733   // This does not impact the size of frames passed to |ProcessStream()|.
    734   virtual int set_frame_size_ms(int size) = 0;
    735   virtual int frame_size_ms() const = 0;
    736 
    737  protected:
    738   virtual ~VoiceDetection() {}
    739 };
    740 }  // namespace webrtc
    741 
    742 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
    743