1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inline cost analysis. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/InlineCost.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "inline-cost" 37 38 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 39 40 namespace { 41 42 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 43 typedef InstVisitor<CallAnalyzer, bool> Base; 44 friend class InstVisitor<CallAnalyzer, bool>; 45 46 // DataLayout if available, or null. 47 const DataLayout *const DL; 48 49 /// The TargetTransformInfo available for this compilation. 50 const TargetTransformInfo &TTI; 51 52 // The called function. 53 Function &F; 54 55 int Threshold; 56 int Cost; 57 58 bool IsCallerRecursive; 59 bool IsRecursiveCall; 60 bool ExposesReturnsTwice; 61 bool HasDynamicAlloca; 62 bool ContainsNoDuplicateCall; 63 bool HasReturn; 64 bool HasIndirectBr; 65 66 /// Number of bytes allocated statically by the callee. 67 uint64_t AllocatedSize; 68 unsigned NumInstructions, NumVectorInstructions; 69 int FiftyPercentVectorBonus, TenPercentVectorBonus; 70 int VectorBonus; 71 72 // While we walk the potentially-inlined instructions, we build up and 73 // maintain a mapping of simplified values specific to this callsite. The 74 // idea is to propagate any special information we have about arguments to 75 // this call through the inlinable section of the function, and account for 76 // likely simplifications post-inlining. The most important aspect we track 77 // is CFG altering simplifications -- when we prove a basic block dead, that 78 // can cause dramatic shifts in the cost of inlining a function. 79 DenseMap<Value *, Constant *> SimplifiedValues; 80 81 // Keep track of the values which map back (through function arguments) to 82 // allocas on the caller stack which could be simplified through SROA. 83 DenseMap<Value *, Value *> SROAArgValues; 84 85 // The mapping of caller Alloca values to their accumulated cost savings. If 86 // we have to disable SROA for one of the allocas, this tells us how much 87 // cost must be added. 88 DenseMap<Value *, int> SROAArgCosts; 89 90 // Keep track of values which map to a pointer base and constant offset. 91 DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; 92 93 // Custom simplification helper routines. 94 bool isAllocaDerivedArg(Value *V); 95 bool lookupSROAArgAndCost(Value *V, Value *&Arg, 96 DenseMap<Value *, int>::iterator &CostIt); 97 void disableSROA(DenseMap<Value *, int>::iterator CostIt); 98 void disableSROA(Value *V); 99 void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, 100 int InstructionCost); 101 bool isGEPOffsetConstant(GetElementPtrInst &GEP); 102 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 103 bool simplifyCallSite(Function *F, CallSite CS); 104 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 105 106 // Custom analysis routines. 107 bool analyzeBlock(BasicBlock *BB); 108 109 // Disable several entry points to the visitor so we don't accidentally use 110 // them by declaring but not defining them here. 111 void visit(Module *); void visit(Module &); 112 void visit(Function *); void visit(Function &); 113 void visit(BasicBlock *); void visit(BasicBlock &); 114 115 // Provide base case for our instruction visit. 116 bool visitInstruction(Instruction &I); 117 118 // Our visit overrides. 119 bool visitAlloca(AllocaInst &I); 120 bool visitPHI(PHINode &I); 121 bool visitGetElementPtr(GetElementPtrInst &I); 122 bool visitBitCast(BitCastInst &I); 123 bool visitPtrToInt(PtrToIntInst &I); 124 bool visitIntToPtr(IntToPtrInst &I); 125 bool visitCastInst(CastInst &I); 126 bool visitUnaryInstruction(UnaryInstruction &I); 127 bool visitCmpInst(CmpInst &I); 128 bool visitSub(BinaryOperator &I); 129 bool visitBinaryOperator(BinaryOperator &I); 130 bool visitLoad(LoadInst &I); 131 bool visitStore(StoreInst &I); 132 bool visitExtractValue(ExtractValueInst &I); 133 bool visitInsertValue(InsertValueInst &I); 134 bool visitCallSite(CallSite CS); 135 bool visitReturnInst(ReturnInst &RI); 136 bool visitBranchInst(BranchInst &BI); 137 bool visitSwitchInst(SwitchInst &SI); 138 bool visitIndirectBrInst(IndirectBrInst &IBI); 139 bool visitResumeInst(ResumeInst &RI); 140 bool visitUnreachableInst(UnreachableInst &I); 141 142 public: 143 CallAnalyzer(const DataLayout *DL, const TargetTransformInfo &TTI, 144 Function &Callee, int Threshold) 145 : DL(DL), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0), 146 IsCallerRecursive(false), IsRecursiveCall(false), 147 ExposesReturnsTwice(false), HasDynamicAlloca(false), 148 ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), 149 AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0), 150 FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0), 151 NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), 152 NumConstantPtrCmps(0), NumConstantPtrDiffs(0), 153 NumInstructionsSimplified(0), SROACostSavings(0), 154 SROACostSavingsLost(0) {} 155 156 bool analyzeCall(CallSite CS); 157 158 int getThreshold() { return Threshold; } 159 int getCost() { return Cost; } 160 161 // Keep a bunch of stats about the cost savings found so we can print them 162 // out when debugging. 163 unsigned NumConstantArgs; 164 unsigned NumConstantOffsetPtrArgs; 165 unsigned NumAllocaArgs; 166 unsigned NumConstantPtrCmps; 167 unsigned NumConstantPtrDiffs; 168 unsigned NumInstructionsSimplified; 169 unsigned SROACostSavings; 170 unsigned SROACostSavingsLost; 171 172 void dump(); 173 }; 174 175 } // namespace 176 177 /// \brief Test whether the given value is an Alloca-derived function argument. 178 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 179 return SROAArgValues.count(V); 180 } 181 182 /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. 183 /// Returns false if V does not map to a SROA-candidate. 184 bool CallAnalyzer::lookupSROAArgAndCost( 185 Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { 186 if (SROAArgValues.empty() || SROAArgCosts.empty()) 187 return false; 188 189 DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); 190 if (ArgIt == SROAArgValues.end()) 191 return false; 192 193 Arg = ArgIt->second; 194 CostIt = SROAArgCosts.find(Arg); 195 return CostIt != SROAArgCosts.end(); 196 } 197 198 /// \brief Disable SROA for the candidate marked by this cost iterator. 199 /// 200 /// This marks the candidate as no longer viable for SROA, and adds the cost 201 /// savings associated with it back into the inline cost measurement. 202 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { 203 // If we're no longer able to perform SROA we need to undo its cost savings 204 // and prevent subsequent analysis. 205 Cost += CostIt->second; 206 SROACostSavings -= CostIt->second; 207 SROACostSavingsLost += CostIt->second; 208 SROAArgCosts.erase(CostIt); 209 } 210 211 /// \brief If 'V' maps to a SROA candidate, disable SROA for it. 212 void CallAnalyzer::disableSROA(Value *V) { 213 Value *SROAArg; 214 DenseMap<Value *, int>::iterator CostIt; 215 if (lookupSROAArgAndCost(V, SROAArg, CostIt)) 216 disableSROA(CostIt); 217 } 218 219 /// \brief Accumulate the given cost for a particular SROA candidate. 220 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, 221 int InstructionCost) { 222 CostIt->second += InstructionCost; 223 SROACostSavings += InstructionCost; 224 } 225 226 /// \brief Check whether a GEP's indices are all constant. 227 /// 228 /// Respects any simplified values known during the analysis of this callsite. 229 bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { 230 for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) 231 if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) 232 return false; 233 234 return true; 235 } 236 237 /// \brief Accumulate a constant GEP offset into an APInt if possible. 238 /// 239 /// Returns false if unable to compute the offset for any reason. Respects any 240 /// simplified values known during the analysis of this callsite. 241 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 242 if (!DL) 243 return false; 244 245 unsigned IntPtrWidth = DL->getPointerSizeInBits(); 246 assert(IntPtrWidth == Offset.getBitWidth()); 247 248 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 249 GTI != GTE; ++GTI) { 250 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 251 if (!OpC) 252 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 253 OpC = dyn_cast<ConstantInt>(SimpleOp); 254 if (!OpC) 255 return false; 256 if (OpC->isZero()) continue; 257 258 // Handle a struct index, which adds its field offset to the pointer. 259 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 260 unsigned ElementIdx = OpC->getZExtValue(); 261 const StructLayout *SL = DL->getStructLayout(STy); 262 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 263 continue; 264 } 265 266 APInt TypeSize(IntPtrWidth, DL->getTypeAllocSize(GTI.getIndexedType())); 267 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 268 } 269 return true; 270 } 271 272 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 273 // Check whether inlining will turn a dynamic alloca into a static 274 // alloca, and handle that case. 275 if (I.isArrayAllocation()) { 276 if (Constant *Size = SimplifiedValues.lookup(I.getArraySize())) { 277 ConstantInt *AllocSize = dyn_cast<ConstantInt>(Size); 278 assert(AllocSize && "Allocation size not a constant int?"); 279 Type *Ty = I.getAllocatedType(); 280 AllocatedSize += Ty->getPrimitiveSizeInBits() * AllocSize->getZExtValue(); 281 return Base::visitAlloca(I); 282 } 283 } 284 285 // Accumulate the allocated size. 286 if (I.isStaticAlloca()) { 287 Type *Ty = I.getAllocatedType(); 288 AllocatedSize += (DL ? DL->getTypeAllocSize(Ty) : 289 Ty->getPrimitiveSizeInBits()); 290 } 291 292 // We will happily inline static alloca instructions. 293 if (I.isStaticAlloca()) 294 return Base::visitAlloca(I); 295 296 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 297 // a variety of reasons, and so we would like to not inline them into 298 // functions which don't currently have a dynamic alloca. This simply 299 // disables inlining altogether in the presence of a dynamic alloca. 300 HasDynamicAlloca = true; 301 return false; 302 } 303 304 bool CallAnalyzer::visitPHI(PHINode &I) { 305 // FIXME: We should potentially be tracking values through phi nodes, 306 // especially when they collapse to a single value due to deleted CFG edges 307 // during inlining. 308 309 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 310 // though we don't want to propagate it's bonuses. The idea is to disable 311 // SROA if it *might* be used in an inappropriate manner. 312 313 // Phi nodes are always zero-cost. 314 return true; 315 } 316 317 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 318 Value *SROAArg; 319 DenseMap<Value *, int>::iterator CostIt; 320 bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), 321 SROAArg, CostIt); 322 323 // Try to fold GEPs of constant-offset call site argument pointers. This 324 // requires target data and inbounds GEPs. 325 if (DL && I.isInBounds()) { 326 // Check if we have a base + offset for the pointer. 327 Value *Ptr = I.getPointerOperand(); 328 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); 329 if (BaseAndOffset.first) { 330 // Check if the offset of this GEP is constant, and if so accumulate it 331 // into Offset. 332 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { 333 // Non-constant GEPs aren't folded, and disable SROA. 334 if (SROACandidate) 335 disableSROA(CostIt); 336 return false; 337 } 338 339 // Add the result as a new mapping to Base + Offset. 340 ConstantOffsetPtrs[&I] = BaseAndOffset; 341 342 // Also handle SROA candidates here, we already know that the GEP is 343 // all-constant indexed. 344 if (SROACandidate) 345 SROAArgValues[&I] = SROAArg; 346 347 return true; 348 } 349 } 350 351 if (isGEPOffsetConstant(I)) { 352 if (SROACandidate) 353 SROAArgValues[&I] = SROAArg; 354 355 // Constant GEPs are modeled as free. 356 return true; 357 } 358 359 // Variable GEPs will require math and will disable SROA. 360 if (SROACandidate) 361 disableSROA(CostIt); 362 return false; 363 } 364 365 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 366 // Propagate constants through bitcasts. 367 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); 368 if (!COp) 369 COp = SimplifiedValues.lookup(I.getOperand(0)); 370 if (COp) 371 if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { 372 SimplifiedValues[&I] = C; 373 return true; 374 } 375 376 // Track base/offsets through casts 377 std::pair<Value *, APInt> BaseAndOffset 378 = ConstantOffsetPtrs.lookup(I.getOperand(0)); 379 // Casts don't change the offset, just wrap it up. 380 if (BaseAndOffset.first) 381 ConstantOffsetPtrs[&I] = BaseAndOffset; 382 383 // Also look for SROA candidates here. 384 Value *SROAArg; 385 DenseMap<Value *, int>::iterator CostIt; 386 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) 387 SROAArgValues[&I] = SROAArg; 388 389 // Bitcasts are always zero cost. 390 return true; 391 } 392 393 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 394 const DataLayout *DL = I.getDataLayout(); 395 // Propagate constants through ptrtoint. 396 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); 397 if (!COp) 398 COp = SimplifiedValues.lookup(I.getOperand(0)); 399 if (COp) 400 if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { 401 SimplifiedValues[&I] = C; 402 return true; 403 } 404 405 // Track base/offset pairs when converted to a plain integer provided the 406 // integer is large enough to represent the pointer. 407 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 408 if (DL && IntegerSize >= DL->getPointerSizeInBits()) { 409 std::pair<Value *, APInt> BaseAndOffset 410 = ConstantOffsetPtrs.lookup(I.getOperand(0)); 411 if (BaseAndOffset.first) 412 ConstantOffsetPtrs[&I] = BaseAndOffset; 413 } 414 415 // This is really weird. Technically, ptrtoint will disable SROA. However, 416 // unless that ptrtoint is *used* somewhere in the live basic blocks after 417 // inlining, it will be nuked, and SROA should proceed. All of the uses which 418 // would block SROA would also block SROA if applied directly to a pointer, 419 // and so we can just add the integer in here. The only places where SROA is 420 // preserved either cannot fire on an integer, or won't in-and-of themselves 421 // disable SROA (ext) w/o some later use that we would see and disable. 422 Value *SROAArg; 423 DenseMap<Value *, int>::iterator CostIt; 424 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) 425 SROAArgValues[&I] = SROAArg; 426 427 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 428 } 429 430 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 431 const DataLayout *DL = I.getDataLayout(); 432 // Propagate constants through ptrtoint. 433 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); 434 if (!COp) 435 COp = SimplifiedValues.lookup(I.getOperand(0)); 436 if (COp) 437 if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { 438 SimplifiedValues[&I] = C; 439 return true; 440 } 441 442 // Track base/offset pairs when round-tripped through a pointer without 443 // modifications provided the integer is not too large. 444 Value *Op = I.getOperand(0); 445 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 446 if (DL && IntegerSize <= DL->getPointerSizeInBits()) { 447 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 448 if (BaseAndOffset.first) 449 ConstantOffsetPtrs[&I] = BaseAndOffset; 450 } 451 452 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 453 Value *SROAArg; 454 DenseMap<Value *, int>::iterator CostIt; 455 if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) 456 SROAArgValues[&I] = SROAArg; 457 458 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 459 } 460 461 bool CallAnalyzer::visitCastInst(CastInst &I) { 462 // Propagate constants through ptrtoint. 463 Constant *COp = dyn_cast<Constant>(I.getOperand(0)); 464 if (!COp) 465 COp = SimplifiedValues.lookup(I.getOperand(0)); 466 if (COp) 467 if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { 468 SimplifiedValues[&I] = C; 469 return true; 470 } 471 472 // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. 473 disableSROA(I.getOperand(0)); 474 475 return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); 476 } 477 478 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { 479 Value *Operand = I.getOperand(0); 480 Constant *COp = dyn_cast<Constant>(Operand); 481 if (!COp) 482 COp = SimplifiedValues.lookup(Operand); 483 if (COp) 484 if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), 485 COp, DL)) { 486 SimplifiedValues[&I] = C; 487 return true; 488 } 489 490 // Disable any SROA on the argument to arbitrary unary operators. 491 disableSROA(Operand); 492 493 return false; 494 } 495 496 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 497 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 498 // First try to handle simplified comparisons. 499 if (!isa<Constant>(LHS)) 500 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 501 LHS = SimpleLHS; 502 if (!isa<Constant>(RHS)) 503 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 504 RHS = SimpleRHS; 505 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 506 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 507 if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { 508 SimplifiedValues[&I] = C; 509 return true; 510 } 511 } 512 513 if (I.getOpcode() == Instruction::FCmp) 514 return false; 515 516 // Otherwise look for a comparison between constant offset pointers with 517 // a common base. 518 Value *LHSBase, *RHSBase; 519 APInt LHSOffset, RHSOffset; 520 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 521 if (LHSBase) { 522 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 523 if (RHSBase && LHSBase == RHSBase) { 524 // We have common bases, fold the icmp to a constant based on the 525 // offsets. 526 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 527 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 528 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 529 SimplifiedValues[&I] = C; 530 ++NumConstantPtrCmps; 531 return true; 532 } 533 } 534 } 535 536 // If the comparison is an equality comparison with null, we can simplify it 537 // for any alloca-derived argument. 538 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) 539 if (isAllocaDerivedArg(I.getOperand(0))) { 540 // We can actually predict the result of comparisons between an 541 // alloca-derived value and null. Note that this fires regardless of 542 // SROA firing. 543 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 544 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 545 : ConstantInt::getFalse(I.getType()); 546 return true; 547 } 548 549 // Finally check for SROA candidates in comparisons. 550 Value *SROAArg; 551 DenseMap<Value *, int>::iterator CostIt; 552 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { 553 if (isa<ConstantPointerNull>(I.getOperand(1))) { 554 accumulateSROACost(CostIt, InlineConstants::InstrCost); 555 return true; 556 } 557 558 disableSROA(CostIt); 559 } 560 561 return false; 562 } 563 564 bool CallAnalyzer::visitSub(BinaryOperator &I) { 565 // Try to handle a special case: we can fold computing the difference of two 566 // constant-related pointers. 567 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 568 Value *LHSBase, *RHSBase; 569 APInt LHSOffset, RHSOffset; 570 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 571 if (LHSBase) { 572 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 573 if (RHSBase && LHSBase == RHSBase) { 574 // We have common bases, fold the subtract to a constant based on the 575 // offsets. 576 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 577 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 578 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 579 SimplifiedValues[&I] = C; 580 ++NumConstantPtrDiffs; 581 return true; 582 } 583 } 584 } 585 586 // Otherwise, fall back to the generic logic for simplifying and handling 587 // instructions. 588 return Base::visitSub(I); 589 } 590 591 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 592 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 593 if (!isa<Constant>(LHS)) 594 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 595 LHS = SimpleLHS; 596 if (!isa<Constant>(RHS)) 597 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 598 RHS = SimpleRHS; 599 Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); 600 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { 601 SimplifiedValues[&I] = C; 602 return true; 603 } 604 605 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 606 disableSROA(LHS); 607 disableSROA(RHS); 608 609 return false; 610 } 611 612 bool CallAnalyzer::visitLoad(LoadInst &I) { 613 Value *SROAArg; 614 DenseMap<Value *, int>::iterator CostIt; 615 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { 616 if (I.isSimple()) { 617 accumulateSROACost(CostIt, InlineConstants::InstrCost); 618 return true; 619 } 620 621 disableSROA(CostIt); 622 } 623 624 return false; 625 } 626 627 bool CallAnalyzer::visitStore(StoreInst &I) { 628 Value *SROAArg; 629 DenseMap<Value *, int>::iterator CostIt; 630 if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { 631 if (I.isSimple()) { 632 accumulateSROACost(CostIt, InlineConstants::InstrCost); 633 return true; 634 } 635 636 disableSROA(CostIt); 637 } 638 639 return false; 640 } 641 642 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 643 // Constant folding for extract value is trivial. 644 Constant *C = dyn_cast<Constant>(I.getAggregateOperand()); 645 if (!C) 646 C = SimplifiedValues.lookup(I.getAggregateOperand()); 647 if (C) { 648 SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices()); 649 return true; 650 } 651 652 // SROA can look through these but give them a cost. 653 return false; 654 } 655 656 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 657 // Constant folding for insert value is trivial. 658 Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand()); 659 if (!AggC) 660 AggC = SimplifiedValues.lookup(I.getAggregateOperand()); 661 Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand()); 662 if (!InsertedC) 663 InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand()); 664 if (AggC && InsertedC) { 665 SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC, 666 I.getIndices()); 667 return true; 668 } 669 670 // SROA can look through these but give them a cost. 671 return false; 672 } 673 674 /// \brief Try to simplify a call site. 675 /// 676 /// Takes a concrete function and callsite and tries to actually simplify it by 677 /// analyzing the arguments and call itself with instsimplify. Returns true if 678 /// it has simplified the callsite to some other entity (a constant), making it 679 /// free. 680 bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { 681 // FIXME: Using the instsimplify logic directly for this is inefficient 682 // because we have to continually rebuild the argument list even when no 683 // simplifications can be performed. Until that is fixed with remapping 684 // inside of instsimplify, directly constant fold calls here. 685 if (!canConstantFoldCallTo(F)) 686 return false; 687 688 // Try to re-map the arguments to constants. 689 SmallVector<Constant *, 4> ConstantArgs; 690 ConstantArgs.reserve(CS.arg_size()); 691 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 692 I != E; ++I) { 693 Constant *C = dyn_cast<Constant>(*I); 694 if (!C) 695 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); 696 if (!C) 697 return false; // This argument doesn't map to a constant. 698 699 ConstantArgs.push_back(C); 700 } 701 if (Constant *C = ConstantFoldCall(F, ConstantArgs)) { 702 SimplifiedValues[CS.getInstruction()] = C; 703 return true; 704 } 705 706 return false; 707 } 708 709 bool CallAnalyzer::visitCallSite(CallSite CS) { 710 if (CS.hasFnAttr(Attribute::ReturnsTwice) && 711 !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 712 Attribute::ReturnsTwice)) { 713 // This aborts the entire analysis. 714 ExposesReturnsTwice = true; 715 return false; 716 } 717 if (CS.isCall() && 718 cast<CallInst>(CS.getInstruction())->cannotDuplicate()) 719 ContainsNoDuplicateCall = true; 720 721 if (Function *F = CS.getCalledFunction()) { 722 // When we have a concrete function, first try to simplify it directly. 723 if (simplifyCallSite(F, CS)) 724 return true; 725 726 // Next check if it is an intrinsic we know about. 727 // FIXME: Lift this into part of the InstVisitor. 728 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 729 switch (II->getIntrinsicID()) { 730 default: 731 return Base::visitCallSite(CS); 732 733 case Intrinsic::memset: 734 case Intrinsic::memcpy: 735 case Intrinsic::memmove: 736 // SROA can usually chew through these intrinsics, but they aren't free. 737 return false; 738 } 739 } 740 741 if (F == CS.getInstruction()->getParent()->getParent()) { 742 // This flag will fully abort the analysis, so don't bother with anything 743 // else. 744 IsRecursiveCall = true; 745 return false; 746 } 747 748 if (TTI.isLoweredToCall(F)) { 749 // We account for the average 1 instruction per call argument setup 750 // here. 751 Cost += CS.arg_size() * InlineConstants::InstrCost; 752 753 // Everything other than inline ASM will also have a significant cost 754 // merely from making the call. 755 if (!isa<InlineAsm>(CS.getCalledValue())) 756 Cost += InlineConstants::CallPenalty; 757 } 758 759 return Base::visitCallSite(CS); 760 } 761 762 // Otherwise we're in a very special case -- an indirect function call. See 763 // if we can be particularly clever about this. 764 Value *Callee = CS.getCalledValue(); 765 766 // First, pay the price of the argument setup. We account for the average 767 // 1 instruction per call argument setup here. 768 Cost += CS.arg_size() * InlineConstants::InstrCost; 769 770 // Next, check if this happens to be an indirect function call to a known 771 // function in this inline context. If not, we've done all we can. 772 Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 773 if (!F) 774 return Base::visitCallSite(CS); 775 776 // If we have a constant that we are calling as a function, we can peer 777 // through it and see the function target. This happens not infrequently 778 // during devirtualization and so we want to give it a hefty bonus for 779 // inlining, but cap that bonus in the event that inlining wouldn't pan 780 // out. Pretend to inline the function, with a custom threshold. 781 CallAnalyzer CA(DL, TTI, *F, InlineConstants::IndirectCallThreshold); 782 if (CA.analyzeCall(CS)) { 783 // We were able to inline the indirect call! Subtract the cost from the 784 // bonus we want to apply, but don't go below zero. 785 Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); 786 } 787 788 return Base::visitCallSite(CS); 789 } 790 791 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 792 // At least one return instruction will be free after inlining. 793 bool Free = !HasReturn; 794 HasReturn = true; 795 return Free; 796 } 797 798 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 799 // We model unconditional branches as essentially free -- they really 800 // shouldn't exist at all, but handling them makes the behavior of the 801 // inliner more regular and predictable. Interestingly, conditional branches 802 // which will fold away are also free. 803 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 804 dyn_cast_or_null<ConstantInt>( 805 SimplifiedValues.lookup(BI.getCondition())); 806 } 807 808 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 809 // We model unconditional switches as free, see the comments on handling 810 // branches. 811 if (isa<ConstantInt>(SI.getCondition())) 812 return true; 813 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 814 if (isa<ConstantInt>(V)) 815 return true; 816 817 // Otherwise, we need to accumulate a cost proportional to the number of 818 // distinct successor blocks. This fan-out in the CFG cannot be represented 819 // for free even if we can represent the core switch as a jumptable that 820 // takes a single instruction. 821 // 822 // NB: We convert large switches which are just used to initialize large phi 823 // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent 824 // inlining those. It will prevent inlining in cases where the optimization 825 // does not (yet) fire. 826 SmallPtrSet<BasicBlock *, 8> SuccessorBlocks; 827 SuccessorBlocks.insert(SI.getDefaultDest()); 828 for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I) 829 SuccessorBlocks.insert(I.getCaseSuccessor()); 830 // Add cost corresponding to the number of distinct destinations. The first 831 // we model as free because of fallthrough. 832 Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost; 833 return false; 834 } 835 836 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 837 // We never want to inline functions that contain an indirectbr. This is 838 // incorrect because all the blockaddress's (in static global initializers 839 // for example) would be referring to the original function, and this 840 // indirect jump would jump from the inlined copy of the function into the 841 // original function which is extremely undefined behavior. 842 // FIXME: This logic isn't really right; we can safely inline functions with 843 // indirectbr's as long as no other function or global references the 844 // blockaddress of a block within the current function. 845 HasIndirectBr = true; 846 return false; 847 } 848 849 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 850 // FIXME: It's not clear that a single instruction is an accurate model for 851 // the inline cost of a resume instruction. 852 return false; 853 } 854 855 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 856 // FIXME: It might be reasonably to discount the cost of instructions leading 857 // to unreachable as they have the lowest possible impact on both runtime and 858 // code size. 859 return true; // No actual code is needed for unreachable. 860 } 861 862 bool CallAnalyzer::visitInstruction(Instruction &I) { 863 // Some instructions are free. All of the free intrinsics can also be 864 // handled by SROA, etc. 865 if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) 866 return true; 867 868 // We found something we don't understand or can't handle. Mark any SROA-able 869 // values in the operand list as no longer viable. 870 for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) 871 disableSROA(*OI); 872 873 return false; 874 } 875 876 877 /// \brief Analyze a basic block for its contribution to the inline cost. 878 /// 879 /// This method walks the analyzer over every instruction in the given basic 880 /// block and accounts for their cost during inlining at this callsite. It 881 /// aborts early if the threshold has been exceeded or an impossible to inline 882 /// construct has been detected. It returns false if inlining is no longer 883 /// viable, and true if inlining remains viable. 884 bool CallAnalyzer::analyzeBlock(BasicBlock *BB) { 885 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 886 // FIXME: Currently, the number of instructions in a function regardless of 887 // our ability to simplify them during inline to constants or dead code, 888 // are actually used by the vector bonus heuristic. As long as that's true, 889 // we have to special case debug intrinsics here to prevent differences in 890 // inlining due to debug symbols. Eventually, the number of unsimplified 891 // instructions shouldn't factor into the cost computation, but until then, 892 // hack around it here. 893 if (isa<DbgInfoIntrinsic>(I)) 894 continue; 895 896 ++NumInstructions; 897 if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) 898 ++NumVectorInstructions; 899 900 // If the instruction simplified to a constant, there is no cost to this 901 // instruction. Visit the instructions using our InstVisitor to account for 902 // all of the per-instruction logic. The visit tree returns true if we 903 // consumed the instruction in any way, and false if the instruction's base 904 // cost should count against inlining. 905 if (Base::visit(I)) 906 ++NumInstructionsSimplified; 907 else 908 Cost += InlineConstants::InstrCost; 909 910 // If the visit this instruction detected an uninlinable pattern, abort. 911 if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || 912 HasIndirectBr) 913 return false; 914 915 // If the caller is a recursive function then we don't want to inline 916 // functions which allocate a lot of stack space because it would increase 917 // the caller stack usage dramatically. 918 if (IsCallerRecursive && 919 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) 920 return false; 921 922 if (NumVectorInstructions > NumInstructions/2) 923 VectorBonus = FiftyPercentVectorBonus; 924 else if (NumVectorInstructions > NumInstructions/10) 925 VectorBonus = TenPercentVectorBonus; 926 else 927 VectorBonus = 0; 928 929 // Check if we've past the threshold so we don't spin in huge basic 930 // blocks that will never inline. 931 if (Cost > (Threshold + VectorBonus)) 932 return false; 933 } 934 935 return true; 936 } 937 938 /// \brief Compute the base pointer and cumulative constant offsets for V. 939 /// 940 /// This strips all constant offsets off of V, leaving it the base pointer, and 941 /// accumulates the total constant offset applied in the returned constant. It 942 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 943 /// no constant offsets applied. 944 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 945 if (!DL || !V->getType()->isPointerTy()) 946 return nullptr; 947 948 unsigned IntPtrWidth = DL->getPointerSizeInBits(); 949 APInt Offset = APInt::getNullValue(IntPtrWidth); 950 951 // Even though we don't look through PHI nodes, we could be called on an 952 // instruction in an unreachable block, which may be on a cycle. 953 SmallPtrSet<Value *, 4> Visited; 954 Visited.insert(V); 955 do { 956 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 957 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 958 return nullptr; 959 V = GEP->getPointerOperand(); 960 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 961 V = cast<Operator>(V)->getOperand(0); 962 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 963 if (GA->mayBeOverridden()) 964 break; 965 V = GA->getAliasee(); 966 } else { 967 break; 968 } 969 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 970 } while (Visited.insert(V)); 971 972 Type *IntPtrTy = DL->getIntPtrType(V->getContext()); 973 return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); 974 } 975 976 /// \brief Analyze a call site for potential inlining. 977 /// 978 /// Returns true if inlining this call is viable, and false if it is not 979 /// viable. It computes the cost and adjusts the threshold based on numerous 980 /// factors and heuristics. If this method returns false but the computed cost 981 /// is below the computed threshold, then inlining was forcibly disabled by 982 /// some artifact of the routine. 983 bool CallAnalyzer::analyzeCall(CallSite CS) { 984 ++NumCallsAnalyzed; 985 986 // Track whether the post-inlining function would have more than one basic 987 // block. A single basic block is often intended for inlining. Balloon the 988 // threshold by 50% until we pass the single-BB phase. 989 bool SingleBB = true; 990 int SingleBBBonus = Threshold / 2; 991 Threshold += SingleBBBonus; 992 993 // Perform some tweaks to the cost and threshold based on the direct 994 // callsite information. 995 996 // We want to more aggressively inline vector-dense kernels, so up the 997 // threshold, and we'll lower it if the % of vector instructions gets too 998 // low. 999 assert(NumInstructions == 0); 1000 assert(NumVectorInstructions == 0); 1001 FiftyPercentVectorBonus = Threshold; 1002 TenPercentVectorBonus = Threshold / 2; 1003 1004 // Give out bonuses per argument, as the instructions setting them up will 1005 // be gone after inlining. 1006 for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { 1007 if (DL && CS.isByValArgument(I)) { 1008 // We approximate the number of loads and stores needed by dividing the 1009 // size of the byval type by the target's pointer size. 1010 PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); 1011 unsigned TypeSize = DL->getTypeSizeInBits(PTy->getElementType()); 1012 unsigned PointerSize = DL->getPointerSizeInBits(); 1013 // Ceiling division. 1014 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 1015 1016 // If it generates more than 8 stores it is likely to be expanded as an 1017 // inline memcpy so we take that as an upper bound. Otherwise we assume 1018 // one load and one store per word copied. 1019 // FIXME: The maxStoresPerMemcpy setting from the target should be used 1020 // here instead of a magic number of 8, but it's not available via 1021 // DataLayout. 1022 NumStores = std::min(NumStores, 8U); 1023 1024 Cost -= 2 * NumStores * InlineConstants::InstrCost; 1025 } else { 1026 // For non-byval arguments subtract off one instruction per call 1027 // argument. 1028 Cost -= InlineConstants::InstrCost; 1029 } 1030 } 1031 1032 // If there is only one call of the function, and it has internal linkage, 1033 // the cost of inlining it drops dramatically. 1034 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && 1035 &F == CS.getCalledFunction(); 1036 if (OnlyOneCallAndLocalLinkage) 1037 Cost += InlineConstants::LastCallToStaticBonus; 1038 1039 // If the instruction after the call, or if the normal destination of the 1040 // invoke is an unreachable instruction, the function is noreturn. As such, 1041 // there is little point in inlining this unless there is literally zero 1042 // cost. 1043 Instruction *Instr = CS.getInstruction(); 1044 if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { 1045 if (isa<UnreachableInst>(II->getNormalDest()->begin())) 1046 Threshold = 1; 1047 } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr))) 1048 Threshold = 1; 1049 1050 // If this function uses the coldcc calling convention, prefer not to inline 1051 // it. 1052 if (F.getCallingConv() == CallingConv::Cold) 1053 Cost += InlineConstants::ColdccPenalty; 1054 1055 // Check if we're done. This can happen due to bonuses and penalties. 1056 if (Cost > Threshold) 1057 return false; 1058 1059 if (F.empty()) 1060 return true; 1061 1062 Function *Caller = CS.getInstruction()->getParent()->getParent(); 1063 // Check if the caller function is recursive itself. 1064 for (User *U : Caller->users()) { 1065 CallSite Site(U); 1066 if (!Site) 1067 continue; 1068 Instruction *I = Site.getInstruction(); 1069 if (I->getParent()->getParent() == Caller) { 1070 IsCallerRecursive = true; 1071 break; 1072 } 1073 } 1074 1075 // Populate our simplified values by mapping from function arguments to call 1076 // arguments with known important simplifications. 1077 CallSite::arg_iterator CAI = CS.arg_begin(); 1078 for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); 1079 FAI != FAE; ++FAI, ++CAI) { 1080 assert(CAI != CS.arg_end()); 1081 if (Constant *C = dyn_cast<Constant>(CAI)) 1082 SimplifiedValues[FAI] = C; 1083 1084 Value *PtrArg = *CAI; 1085 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 1086 ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue()); 1087 1088 // We can SROA any pointer arguments derived from alloca instructions. 1089 if (isa<AllocaInst>(PtrArg)) { 1090 SROAArgValues[FAI] = PtrArg; 1091 SROAArgCosts[PtrArg] = 0; 1092 } 1093 } 1094 } 1095 NumConstantArgs = SimplifiedValues.size(); 1096 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 1097 NumAllocaArgs = SROAArgValues.size(); 1098 1099 // The worklist of live basic blocks in the callee *after* inlining. We avoid 1100 // adding basic blocks of the callee which can be proven to be dead for this 1101 // particular call site in order to get more accurate cost estimates. This 1102 // requires a somewhat heavyweight iteration pattern: we need to walk the 1103 // basic blocks in a breadth-first order as we insert live successors. To 1104 // accomplish this, prioritizing for small iterations because we exit after 1105 // crossing our threshold, we use a small-size optimized SetVector. 1106 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 1107 SmallPtrSet<BasicBlock *, 16> > BBSetVector; 1108 BBSetVector BBWorklist; 1109 BBWorklist.insert(&F.getEntryBlock()); 1110 // Note that we *must not* cache the size, this loop grows the worklist. 1111 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 1112 // Bail out the moment we cross the threshold. This means we'll under-count 1113 // the cost, but only when undercounting doesn't matter. 1114 if (Cost > (Threshold + VectorBonus)) 1115 break; 1116 1117 BasicBlock *BB = BBWorklist[Idx]; 1118 if (BB->empty()) 1119 continue; 1120 1121 // Disallow inlining a blockaddress. A blockaddress only has defined 1122 // behavior for an indirect branch in the same function, and we do not 1123 // currently support inlining indirect branches. But, the inliner may not 1124 // see an indirect branch that ends up being dead code at a particular call 1125 // site. If the blockaddress escapes the function, e.g., via a global 1126 // variable, inlining may lead to an invalid cross-function reference. 1127 if (BB->hasAddressTaken()) 1128 return false; 1129 1130 // Analyze the cost of this block. If we blow through the threshold, this 1131 // returns false, and we can bail on out. 1132 if (!analyzeBlock(BB)) { 1133 if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || 1134 HasIndirectBr) 1135 return false; 1136 1137 // If the caller is a recursive function then we don't want to inline 1138 // functions which allocate a lot of stack space because it would increase 1139 // the caller stack usage dramatically. 1140 if (IsCallerRecursive && 1141 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) 1142 return false; 1143 1144 break; 1145 } 1146 1147 TerminatorInst *TI = BB->getTerminator(); 1148 1149 // Add in the live successors by first checking whether we have terminator 1150 // that may be simplified based on the values simplified by this call. 1151 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1152 if (BI->isConditional()) { 1153 Value *Cond = BI->getCondition(); 1154 if (ConstantInt *SimpleCond 1155 = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 1156 BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); 1157 continue; 1158 } 1159 } 1160 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1161 Value *Cond = SI->getCondition(); 1162 if (ConstantInt *SimpleCond 1163 = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 1164 BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); 1165 continue; 1166 } 1167 } 1168 1169 // If we're unable to select a particular successor, just count all of 1170 // them. 1171 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 1172 ++TIdx) 1173 BBWorklist.insert(TI->getSuccessor(TIdx)); 1174 1175 // If we had any successors at this point, than post-inlining is likely to 1176 // have them as well. Note that we assume any basic blocks which existed 1177 // due to branches or switches which folded above will also fold after 1178 // inlining. 1179 if (SingleBB && TI->getNumSuccessors() > 1) { 1180 // Take off the bonus we applied to the threshold. 1181 Threshold -= SingleBBBonus; 1182 SingleBB = false; 1183 } 1184 } 1185 1186 // If this is a noduplicate call, we can still inline as long as 1187 // inlining this would cause the removal of the caller (so the instruction 1188 // is not actually duplicated, just moved). 1189 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 1190 return false; 1191 1192 Threshold += VectorBonus; 1193 1194 return Cost < Threshold; 1195 } 1196 1197 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1198 /// \brief Dump stats about this call's analysis. 1199 void CallAnalyzer::dump() { 1200 #define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n" 1201 DEBUG_PRINT_STAT(NumConstantArgs); 1202 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 1203 DEBUG_PRINT_STAT(NumAllocaArgs); 1204 DEBUG_PRINT_STAT(NumConstantPtrCmps); 1205 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 1206 DEBUG_PRINT_STAT(NumInstructionsSimplified); 1207 DEBUG_PRINT_STAT(SROACostSavings); 1208 DEBUG_PRINT_STAT(SROACostSavingsLost); 1209 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 1210 DEBUG_PRINT_STAT(Cost); 1211 DEBUG_PRINT_STAT(Threshold); 1212 DEBUG_PRINT_STAT(VectorBonus); 1213 #undef DEBUG_PRINT_STAT 1214 } 1215 #endif 1216 1217 INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", 1218 true, true) 1219 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 1220 INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", 1221 true, true) 1222 1223 char InlineCostAnalysis::ID = 0; 1224 1225 InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID) {} 1226 1227 InlineCostAnalysis::~InlineCostAnalysis() {} 1228 1229 void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1230 AU.setPreservesAll(); 1231 AU.addRequired<TargetTransformInfo>(); 1232 CallGraphSCCPass::getAnalysisUsage(AU); 1233 } 1234 1235 bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) { 1236 TTI = &getAnalysis<TargetTransformInfo>(); 1237 return false; 1238 } 1239 1240 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) { 1241 return getInlineCost(CS, CS.getCalledFunction(), Threshold); 1242 } 1243 1244 /// \brief Test that two functions either have or have not the given attribute 1245 /// at the same time. 1246 static bool attributeMatches(Function *F1, Function *F2, 1247 Attribute::AttrKind Attr) { 1248 return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr); 1249 } 1250 1251 /// \brief Test that there are no attribute conflicts between Caller and Callee 1252 /// that prevent inlining. 1253 static bool functionsHaveCompatibleAttributes(Function *Caller, 1254 Function *Callee) { 1255 return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) && 1256 attributeMatches(Caller, Callee, Attribute::SanitizeMemory) && 1257 attributeMatches(Caller, Callee, Attribute::SanitizeThread); 1258 } 1259 1260 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee, 1261 int Threshold) { 1262 // Cannot inline indirect calls. 1263 if (!Callee) 1264 return llvm::InlineCost::getNever(); 1265 1266 // Calls to functions with always-inline attributes should be inlined 1267 // whenever possible. 1268 if (CS.hasFnAttr(Attribute::AlwaysInline)) { 1269 if (isInlineViable(*Callee)) 1270 return llvm::InlineCost::getAlways(); 1271 return llvm::InlineCost::getNever(); 1272 } 1273 1274 // Never inline functions with conflicting attributes (unless callee has 1275 // always-inline attribute). 1276 if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee)) 1277 return llvm::InlineCost::getNever(); 1278 1279 // Don't inline this call if the caller has the optnone attribute. 1280 if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone)) 1281 return llvm::InlineCost::getNever(); 1282 1283 // Don't inline functions which can be redefined at link-time to mean 1284 // something else. Don't inline functions marked noinline or call sites 1285 // marked noinline. 1286 if (Callee->mayBeOverridden() || 1287 Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline()) 1288 return llvm::InlineCost::getNever(); 1289 1290 DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 1291 << "...\n"); 1292 1293 CallAnalyzer CA(Callee->getDataLayout(), *TTI, *Callee, Threshold); 1294 bool ShouldInline = CA.analyzeCall(CS); 1295 1296 DEBUG(CA.dump()); 1297 1298 // Check if there was a reason to force inlining or no inlining. 1299 if (!ShouldInline && CA.getCost() < CA.getThreshold()) 1300 return InlineCost::getNever(); 1301 if (ShouldInline && CA.getCost() >= CA.getThreshold()) 1302 return InlineCost::getAlways(); 1303 1304 return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); 1305 } 1306 1307 bool InlineCostAnalysis::isInlineViable(Function &F) { 1308 bool ReturnsTwice = 1309 F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 1310 Attribute::ReturnsTwice); 1311 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 1312 // Disallow inlining of functions which contain indirect branches or 1313 // blockaddresses. 1314 if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken()) 1315 return false; 1316 1317 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; 1318 ++II) { 1319 CallSite CS(II); 1320 if (!CS) 1321 continue; 1322 1323 // Disallow recursive calls. 1324 if (&F == CS.getCalledFunction()) 1325 return false; 1326 1327 // Disallow calls which expose returns-twice to a function not previously 1328 // attributed as such. 1329 if (!ReturnsTwice && CS.isCall() && 1330 cast<CallInst>(CS.getInstruction())->canReturnTwice()) 1331 return false; 1332 } 1333 } 1334 1335 return true; 1336 } 1337