Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCTargetDesc/X86BaseInfo.h"
     11 #include "MCTargetDesc/X86FixupKinds.h"
     12 #include "llvm/ADT/StringSwitch.h"
     13 #include "llvm/MC/MCAsmBackend.h"
     14 #include "llvm/MC/MCAssembler.h"
     15 #include "llvm/MC/MCELFObjectWriter.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/MC/MCFixupKindInfo.h"
     18 #include "llvm/MC/MCMachObjectWriter.h"
     19 #include "llvm/MC/MCObjectWriter.h"
     20 #include "llvm/MC/MCSectionCOFF.h"
     21 #include "llvm/MC/MCSectionELF.h"
     22 #include "llvm/MC/MCSectionMachO.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/ELF.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/MachO.h"
     27 #include "llvm/Support/TargetRegistry.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 using namespace llvm;
     30 
     31 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
     32 // is useful when running bitwise comparison experiments on Darwin. We should be
     33 // able to remove this once PR9807 is resolved.
     34 static cl::opt<bool>
     35 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
     36          cl::desc("Disable relaxation of arithmetic instruction for X86"));
     37 
     38 static unsigned getFixupKindLog2Size(unsigned Kind) {
     39   switch (Kind) {
     40   default:
     41     llvm_unreachable("invalid fixup kind!");
     42   case FK_PCRel_1:
     43   case FK_SecRel_1:
     44   case FK_Data_1:
     45     return 0;
     46   case FK_PCRel_2:
     47   case FK_SecRel_2:
     48   case FK_Data_2:
     49     return 1;
     50   case FK_PCRel_4:
     51   case X86::reloc_riprel_4byte:
     52   case X86::reloc_riprel_4byte_movq_load:
     53   case X86::reloc_signed_4byte:
     54   case X86::reloc_global_offset_table:
     55   case FK_SecRel_4:
     56   case FK_Data_4:
     57     return 2;
     58   case FK_PCRel_8:
     59   case FK_SecRel_8:
     60   case FK_Data_8:
     61   case X86::reloc_global_offset_table8:
     62     return 3;
     63   }
     64 }
     65 
     66 namespace {
     67 
     68 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
     69 public:
     70   X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
     71                      bool HasRelocationAddend, bool foobar)
     72     : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
     73 };
     74 
     75 class X86AsmBackend : public MCAsmBackend {
     76   const StringRef CPU;
     77   bool HasNopl;
     78   const uint64_t MaxNopLength;
     79 public:
     80   X86AsmBackend(const Target &T, StringRef _CPU)
     81     : MCAsmBackend(), CPU(_CPU), MaxNopLength(_CPU == "slm" ? 7 : 15) {
     82     HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
     83               CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
     84               CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
     85               CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
     86               CPU != "c3" && CPU != "c3-2";
     87   }
     88 
     89   unsigned getNumFixupKinds() const override {
     90     return X86::NumTargetFixupKinds;
     91   }
     92 
     93   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
     94     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
     95       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
     96       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
     97       { "reloc_signed_4byte", 0, 4 * 8, 0},
     98       { "reloc_global_offset_table", 0, 4 * 8, 0}
     99     };
    100 
    101     if (Kind < FirstTargetFixupKind)
    102       return MCAsmBackend::getFixupKindInfo(Kind);
    103 
    104     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
    105            "Invalid kind!");
    106     return Infos[Kind - FirstTargetFixupKind];
    107   }
    108 
    109   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
    110                   uint64_t Value, bool IsPCRel) const override {
    111     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
    112 
    113     assert(Fixup.getOffset() + Size <= DataSize &&
    114            "Invalid fixup offset!");
    115 
    116     // Check that uppper bits are either all zeros or all ones.
    117     // Specifically ignore overflow/underflow as long as the leakage is
    118     // limited to the lower bits. This is to remain compatible with
    119     // other assemblers.
    120     assert(isIntN(Size * 8 + 1, Value) &&
    121            "Value does not fit in the Fixup field");
    122 
    123     for (unsigned i = 0; i != Size; ++i)
    124       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
    125   }
    126 
    127   bool mayNeedRelaxation(const MCInst &Inst) const override;
    128 
    129   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
    130                             const MCRelaxableFragment *DF,
    131                             const MCAsmLayout &Layout) const override;
    132 
    133   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
    134 
    135   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
    136 };
    137 } // end anonymous namespace
    138 
    139 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
    140   switch (Op) {
    141   default:
    142     return Op;
    143 
    144   case X86::JAE_1: return X86::JAE_4;
    145   case X86::JA_1:  return X86::JA_4;
    146   case X86::JBE_1: return X86::JBE_4;
    147   case X86::JB_1:  return X86::JB_4;
    148   case X86::JE_1:  return X86::JE_4;
    149   case X86::JGE_1: return X86::JGE_4;
    150   case X86::JG_1:  return X86::JG_4;
    151   case X86::JLE_1: return X86::JLE_4;
    152   case X86::JL_1:  return X86::JL_4;
    153   case X86::JMP_1: return X86::JMP_4;
    154   case X86::JNE_1: return X86::JNE_4;
    155   case X86::JNO_1: return X86::JNO_4;
    156   case X86::JNP_1: return X86::JNP_4;
    157   case X86::JNS_1: return X86::JNS_4;
    158   case X86::JO_1:  return X86::JO_4;
    159   case X86::JP_1:  return X86::JP_4;
    160   case X86::JS_1:  return X86::JS_4;
    161   }
    162 }
    163 
    164 static unsigned getRelaxedOpcodeArith(unsigned Op) {
    165   switch (Op) {
    166   default:
    167     return Op;
    168 
    169     // IMUL
    170   case X86::IMUL16rri8: return X86::IMUL16rri;
    171   case X86::IMUL16rmi8: return X86::IMUL16rmi;
    172   case X86::IMUL32rri8: return X86::IMUL32rri;
    173   case X86::IMUL32rmi8: return X86::IMUL32rmi;
    174   case X86::IMUL64rri8: return X86::IMUL64rri32;
    175   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
    176 
    177     // AND
    178   case X86::AND16ri8: return X86::AND16ri;
    179   case X86::AND16mi8: return X86::AND16mi;
    180   case X86::AND32ri8: return X86::AND32ri;
    181   case X86::AND32mi8: return X86::AND32mi;
    182   case X86::AND64ri8: return X86::AND64ri32;
    183   case X86::AND64mi8: return X86::AND64mi32;
    184 
    185     // OR
    186   case X86::OR16ri8: return X86::OR16ri;
    187   case X86::OR16mi8: return X86::OR16mi;
    188   case X86::OR32ri8: return X86::OR32ri;
    189   case X86::OR32mi8: return X86::OR32mi;
    190   case X86::OR64ri8: return X86::OR64ri32;
    191   case X86::OR64mi8: return X86::OR64mi32;
    192 
    193     // XOR
    194   case X86::XOR16ri8: return X86::XOR16ri;
    195   case X86::XOR16mi8: return X86::XOR16mi;
    196   case X86::XOR32ri8: return X86::XOR32ri;
    197   case X86::XOR32mi8: return X86::XOR32mi;
    198   case X86::XOR64ri8: return X86::XOR64ri32;
    199   case X86::XOR64mi8: return X86::XOR64mi32;
    200 
    201     // ADD
    202   case X86::ADD16ri8: return X86::ADD16ri;
    203   case X86::ADD16mi8: return X86::ADD16mi;
    204   case X86::ADD32ri8: return X86::ADD32ri;
    205   case X86::ADD32mi8: return X86::ADD32mi;
    206   case X86::ADD64ri8: return X86::ADD64ri32;
    207   case X86::ADD64mi8: return X86::ADD64mi32;
    208 
    209     // SUB
    210   case X86::SUB16ri8: return X86::SUB16ri;
    211   case X86::SUB16mi8: return X86::SUB16mi;
    212   case X86::SUB32ri8: return X86::SUB32ri;
    213   case X86::SUB32mi8: return X86::SUB32mi;
    214   case X86::SUB64ri8: return X86::SUB64ri32;
    215   case X86::SUB64mi8: return X86::SUB64mi32;
    216 
    217     // CMP
    218   case X86::CMP16ri8: return X86::CMP16ri;
    219   case X86::CMP16mi8: return X86::CMP16mi;
    220   case X86::CMP32ri8: return X86::CMP32ri;
    221   case X86::CMP32mi8: return X86::CMP32mi;
    222   case X86::CMP64ri8: return X86::CMP64ri32;
    223   case X86::CMP64mi8: return X86::CMP64mi32;
    224 
    225     // PUSH
    226   case X86::PUSH32i8:  return X86::PUSHi32;
    227   case X86::PUSH16i8:  return X86::PUSHi16;
    228   case X86::PUSH64i8:  return X86::PUSH64i32;
    229   case X86::PUSH64i16: return X86::PUSH64i32;
    230   }
    231 }
    232 
    233 static unsigned getRelaxedOpcode(unsigned Op) {
    234   unsigned R = getRelaxedOpcodeArith(Op);
    235   if (R != Op)
    236     return R;
    237   return getRelaxedOpcodeBranch(Op);
    238 }
    239 
    240 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
    241   // Branches can always be relaxed.
    242   if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
    243     return true;
    244 
    245   if (MCDisableArithRelaxation)
    246     return false;
    247 
    248   // Check if this instruction is ever relaxable.
    249   if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
    250     return false;
    251 
    252 
    253   // Check if it has an expression and is not RIP relative.
    254   bool hasExp = false;
    255   bool hasRIP = false;
    256   for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
    257     const MCOperand &Op = Inst.getOperand(i);
    258     if (Op.isExpr())
    259       hasExp = true;
    260 
    261     if (Op.isReg() && Op.getReg() == X86::RIP)
    262       hasRIP = true;
    263   }
    264 
    265   // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
    266   // how we do relaxations?
    267   return hasExp && !hasRIP;
    268 }
    269 
    270 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
    271                                          uint64_t Value,
    272                                          const MCRelaxableFragment *DF,
    273                                          const MCAsmLayout &Layout) const {
    274   // Relax if the value is too big for a (signed) i8.
    275   return int64_t(Value) != int64_t(int8_t(Value));
    276 }
    277 
    278 // FIXME: Can tblgen help at all here to verify there aren't other instructions
    279 // we can relax?
    280 void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
    281   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
    282   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
    283 
    284   if (RelaxedOp == Inst.getOpcode()) {
    285     SmallString<256> Tmp;
    286     raw_svector_ostream OS(Tmp);
    287     Inst.dump_pretty(OS);
    288     OS << "\n";
    289     report_fatal_error("unexpected instruction to relax: " + OS.str());
    290   }
    291 
    292   Res = Inst;
    293   Res.setOpcode(RelaxedOp);
    294 }
    295 
    296 /// \brief Write a sequence of optimal nops to the output, covering \p Count
    297 /// bytes.
    298 /// \return - true on success, false on failure
    299 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
    300   static const uint8_t Nops[10][10] = {
    301     // nop
    302     {0x90},
    303     // xchg %ax,%ax
    304     {0x66, 0x90},
    305     // nopl (%[re]ax)
    306     {0x0f, 0x1f, 0x00},
    307     // nopl 0(%[re]ax)
    308     {0x0f, 0x1f, 0x40, 0x00},
    309     // nopl 0(%[re]ax,%[re]ax,1)
    310     {0x0f, 0x1f, 0x44, 0x00, 0x00},
    311     // nopw 0(%[re]ax,%[re]ax,1)
    312     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    313     // nopl 0L(%[re]ax)
    314     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
    315     // nopl 0L(%[re]ax,%[re]ax,1)
    316     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    317     // nopw 0L(%[re]ax,%[re]ax,1)
    318     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    319     // nopw %cs:0L(%[re]ax,%[re]ax,1)
    320     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    321   };
    322 
    323   // This CPU doesn't support long nops. If needed add more.
    324   // FIXME: Can we get this from the subtarget somehow?
    325   // FIXME: We could generated something better than plain 0x90.
    326   if (!HasNopl) {
    327     for (uint64_t i = 0; i < Count; ++i)
    328       OW->Write8(0x90);
    329     return true;
    330   }
    331 
    332   // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
    333   // needed, then emit a nop of the remaining length.
    334   do {
    335     const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
    336     const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
    337     for (uint8_t i = 0; i < Prefixes; i++)
    338       OW->Write8(0x66);
    339     const uint8_t Rest = ThisNopLength - Prefixes;
    340     for (uint8_t i = 0; i < Rest; i++)
    341       OW->Write8(Nops[Rest - 1][i]);
    342     Count -= ThisNopLength;
    343   } while (Count != 0);
    344 
    345   return true;
    346 }
    347 
    348 /* *** */
    349 
    350 namespace {
    351 
    352 class ELFX86AsmBackend : public X86AsmBackend {
    353 public:
    354   uint8_t OSABI;
    355   ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
    356       : X86AsmBackend(T, CPU), OSABI(_OSABI) {}
    357 };
    358 
    359 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
    360 public:
    361   ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    362     : ELFX86AsmBackend(T, OSABI, CPU) {}
    363 
    364   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    365     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
    366   }
    367 };
    368 
    369 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
    370 public:
    371   ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    372       : ELFX86AsmBackend(T, OSABI, CPU) {}
    373 
    374   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    375     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
    376                                     ELF::EM_X86_64);
    377   }
    378 };
    379 
    380 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
    381 public:
    382   ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    383     : ELFX86AsmBackend(T, OSABI, CPU) {}
    384 
    385   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    386     return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
    387   }
    388 };
    389 
    390 class WindowsX86AsmBackend : public X86AsmBackend {
    391   bool Is64Bit;
    392 
    393 public:
    394   WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
    395     : X86AsmBackend(T, CPU)
    396     , Is64Bit(is64Bit) {
    397   }
    398 
    399   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    400     return createX86WinCOFFObjectWriter(OS, Is64Bit);
    401   }
    402 };
    403 
    404 namespace CU {
    405 
    406   /// Compact unwind encoding values.
    407   enum CompactUnwindEncodings {
    408     /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
    409     /// the return address, then [RE]SP is moved to [RE]BP.
    410     UNWIND_MODE_BP_FRAME                   = 0x01000000,
    411 
    412     /// A frameless function with a small constant stack size.
    413     UNWIND_MODE_STACK_IMMD                 = 0x02000000,
    414 
    415     /// A frameless function with a large constant stack size.
    416     UNWIND_MODE_STACK_IND                  = 0x03000000,
    417 
    418     /// No compact unwind encoding is available.
    419     UNWIND_MODE_DWARF                      = 0x04000000,
    420 
    421     /// Mask for encoding the frame registers.
    422     UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
    423 
    424     /// Mask for encoding the frameless registers.
    425     UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
    426   };
    427 
    428 } // end CU namespace
    429 
    430 class DarwinX86AsmBackend : public X86AsmBackend {
    431   const MCRegisterInfo &MRI;
    432 
    433   /// \brief Number of registers that can be saved in a compact unwind encoding.
    434   enum { CU_NUM_SAVED_REGS = 6 };
    435 
    436   mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
    437   bool Is64Bit;
    438 
    439   unsigned OffsetSize;                   ///< Offset of a "push" instruction.
    440   unsigned PushInstrSize;                ///< Size of a "push" instruction.
    441   unsigned MoveInstrSize;                ///< Size of a "move" instruction.
    442   unsigned StackDivide;                  ///< Amount to adjust stack stize by.
    443 protected:
    444   /// \brief Implementation of algorithm to generate the compact unwind encoding
    445   /// for the CFI instructions.
    446   uint32_t
    447   generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
    448     if (Instrs.empty()) return 0;
    449 
    450     // Reset the saved registers.
    451     unsigned SavedRegIdx = 0;
    452     memset(SavedRegs, 0, sizeof(SavedRegs));
    453 
    454     bool HasFP = false;
    455 
    456     // Encode that we are using EBP/RBP as the frame pointer.
    457     uint32_t CompactUnwindEncoding = 0;
    458 
    459     unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
    460     unsigned InstrOffset = 0;
    461     unsigned StackAdjust = 0;
    462     unsigned StackSize = 0;
    463     unsigned PrevStackSize = 0;
    464     unsigned NumDefCFAOffsets = 0;
    465 
    466     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
    467       const MCCFIInstruction &Inst = Instrs[i];
    468 
    469       switch (Inst.getOperation()) {
    470       default:
    471         // Any other CFI directives indicate a frame that we aren't prepared
    472         // to represent via compact unwind, so just bail out.
    473         return 0;
    474       case MCCFIInstruction::OpDefCfaRegister: {
    475         // Defines a frame pointer. E.g.
    476         //
    477         //     movq %rsp, %rbp
    478         //  L0:
    479         //     .cfi_def_cfa_register %rbp
    480         //
    481         HasFP = true;
    482         assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
    483                (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
    484 
    485         // Reset the counts.
    486         memset(SavedRegs, 0, sizeof(SavedRegs));
    487         StackAdjust = 0;
    488         SavedRegIdx = 0;
    489         InstrOffset += MoveInstrSize;
    490         break;
    491       }
    492       case MCCFIInstruction::OpDefCfaOffset: {
    493         // Defines a new offset for the CFA. E.g.
    494         //
    495         //  With frame:
    496         //
    497         //     pushq %rbp
    498         //  L0:
    499         //     .cfi_def_cfa_offset 16
    500         //
    501         //  Without frame:
    502         //
    503         //     subq $72, %rsp
    504         //  L0:
    505         //     .cfi_def_cfa_offset 80
    506         //
    507         PrevStackSize = StackSize;
    508         StackSize = std::abs(Inst.getOffset()) / StackDivide;
    509         ++NumDefCFAOffsets;
    510         break;
    511       }
    512       case MCCFIInstruction::OpOffset: {
    513         // Defines a "push" of a callee-saved register. E.g.
    514         //
    515         //     pushq %r15
    516         //     pushq %r14
    517         //     pushq %rbx
    518         //  L0:
    519         //     subq $120, %rsp
    520         //  L1:
    521         //     .cfi_offset %rbx, -40
    522         //     .cfi_offset %r14, -32
    523         //     .cfi_offset %r15, -24
    524         //
    525         if (SavedRegIdx == CU_NUM_SAVED_REGS)
    526           // If there are too many saved registers, we cannot use a compact
    527           // unwind encoding.
    528           return CU::UNWIND_MODE_DWARF;
    529 
    530         unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
    531         SavedRegs[SavedRegIdx++] = Reg;
    532         StackAdjust += OffsetSize;
    533         InstrOffset += PushInstrSize;
    534         break;
    535       }
    536       }
    537     }
    538 
    539     StackAdjust /= StackDivide;
    540 
    541     if (HasFP) {
    542       if ((StackAdjust & 0xFF) != StackAdjust)
    543         // Offset was too big for a compact unwind encoding.
    544         return CU::UNWIND_MODE_DWARF;
    545 
    546       // Get the encoding of the saved registers when we have a frame pointer.
    547       uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
    548       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    549 
    550       CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
    551       CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
    552       CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
    553     } else {
    554       // If the amount of the stack allocation is the size of a register, then
    555       // we "push" the RAX/EAX register onto the stack instead of adjusting the
    556       // stack pointer with a SUB instruction. We don't support the push of the
    557       // RAX/EAX register with compact unwind. So we check for that situation
    558       // here.
    559       if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
    560            StackSize - PrevStackSize == 1) ||
    561           (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
    562         return CU::UNWIND_MODE_DWARF;
    563 
    564       SubtractInstrIdx += InstrOffset;
    565       ++StackAdjust;
    566 
    567       if ((StackSize & 0xFF) == StackSize) {
    568         // Frameless stack with a small stack size.
    569         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
    570 
    571         // Encode the stack size.
    572         CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
    573       } else {
    574         if ((StackAdjust & 0x7) != StackAdjust)
    575           // The extra stack adjustments are too big for us to handle.
    576           return CU::UNWIND_MODE_DWARF;
    577 
    578         // Frameless stack with an offset too large for us to encode compactly.
    579         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
    580 
    581         // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    582         // instruction.
    583         CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    584 
    585         // Encode any extra stack stack adjustments (done via push
    586         // instructions).
    587         CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
    588       }
    589 
    590       // Encode the number of registers saved. (Reverse the list first.)
    591       std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
    592       CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
    593 
    594       // Get the encoding of the saved registers when we don't have a frame
    595       // pointer.
    596       uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
    597       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    598 
    599       // Encode the register encoding.
    600       CompactUnwindEncoding |=
    601         RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
    602     }
    603 
    604     return CompactUnwindEncoding;
    605   }
    606 
    607 private:
    608   /// \brief Get the compact unwind number for a given register. The number
    609   /// corresponds to the enum lists in compact_unwind_encoding.h.
    610   int getCompactUnwindRegNum(unsigned Reg) const {
    611     static const uint16_t CU32BitRegs[7] = {
    612       X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    613     };
    614     static const uint16_t CU64BitRegs[] = {
    615       X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    616     };
    617     const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
    618     for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
    619       if (*CURegs == Reg)
    620         return Idx;
    621 
    622     return -1;
    623   }
    624 
    625   /// \brief Return the registers encoded for a compact encoding with a frame
    626   /// pointer.
    627   uint32_t encodeCompactUnwindRegistersWithFrame() const {
    628     // Encode the registers in the order they were saved --- 3-bits per
    629     // register. The list of saved registers is assumed to be in reverse
    630     // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
    631     uint32_t RegEnc = 0;
    632     for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
    633       unsigned Reg = SavedRegs[i];
    634       if (Reg == 0) break;
    635 
    636       int CURegNum = getCompactUnwindRegNum(Reg);
    637       if (CURegNum == -1) return ~0U;
    638 
    639       // Encode the 3-bit register number in order, skipping over 3-bits for
    640       // each register.
    641       RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    642     }
    643 
    644     assert((RegEnc & 0x3FFFF) == RegEnc &&
    645            "Invalid compact register encoding!");
    646     return RegEnc;
    647   }
    648 
    649   /// \brief Create the permutation encoding used with frameless stacks. It is
    650   /// passed the number of registers to be saved and an array of the registers
    651   /// saved.
    652   uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
    653     // The saved registers are numbered from 1 to 6. In order to encode the
    654     // order in which they were saved, we re-number them according to their
    655     // place in the register order. The re-numbering is relative to the last
    656     // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
    657     // that order:
    658     //
    659     //    Orig  Re-Num
    660     //    ----  ------
    661     //     6       6
    662     //     2       2
    663     //     4       3
    664     //     5       3
    665     //
    666     for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
    667       int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
    668       if (CUReg == -1) return ~0U;
    669       SavedRegs[i] = CUReg;
    670     }
    671 
    672     // Reverse the list.
    673     std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
    674 
    675     uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    676     for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
    677       unsigned Countless = 0;
    678       for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
    679         if (SavedRegs[j] < SavedRegs[i])
    680           ++Countless;
    681 
    682       RenumRegs[i] = SavedRegs[i] - Countless - 1;
    683     }
    684 
    685     // Take the renumbered values and encode them into a 10-bit number.
    686     uint32_t permutationEncoding = 0;
    687     switch (RegCount) {
    688     case 6:
    689       permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    690                              + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    691                              +     RenumRegs[4];
    692       break;
    693     case 5:
    694       permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    695                              + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    696                              +     RenumRegs[5];
    697       break;
    698     case 4:
    699       permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    700                              + 3 * RenumRegs[4] +      RenumRegs[5];
    701       break;
    702     case 3:
    703       permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    704                              +     RenumRegs[5];
    705       break;
    706     case 2:
    707       permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    708       break;
    709     case 1:
    710       permutationEncoding |=       RenumRegs[5];
    711       break;
    712     }
    713 
    714     assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    715            "Invalid compact register encoding!");
    716     return permutationEncoding;
    717   }
    718 
    719 public:
    720   DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
    721                       bool Is64Bit)
    722     : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
    723     memset(SavedRegs, 0, sizeof(SavedRegs));
    724     OffsetSize = Is64Bit ? 8 : 4;
    725     MoveInstrSize = Is64Bit ? 3 : 2;
    726     StackDivide = Is64Bit ? 8 : 4;
    727     PushInstrSize = 1;
    728   }
    729 };
    730 
    731 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
    732 public:
    733   DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
    734                          StringRef CPU)
    735       : DarwinX86AsmBackend(T, MRI, CPU, false) {}
    736 
    737   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    738     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
    739                                      MachO::CPU_TYPE_I386,
    740                                      MachO::CPU_SUBTYPE_I386_ALL);
    741   }
    742 
    743   /// \brief Generate the compact unwind encoding for the CFI instructions.
    744   uint32_t generateCompactUnwindEncoding(
    745                              ArrayRef<MCCFIInstruction> Instrs) const override {
    746     return generateCompactUnwindEncodingImpl(Instrs);
    747   }
    748 };
    749 
    750 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
    751   const MachO::CPUSubTypeX86 Subtype;
    752 public:
    753   DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
    754                          StringRef CPU, MachO::CPUSubTypeX86 st)
    755       : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
    756 
    757   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    758     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
    759                                      MachO::CPU_TYPE_X86_64, Subtype);
    760   }
    761 
    762   bool doesSectionRequireSymbols(const MCSection &Section) const override {
    763     // Temporary labels in the string literals sections require symbols. The
    764     // issue is that the x86_64 relocation format does not allow symbol +
    765     // offset, and so the linker does not have enough information to resolve the
    766     // access to the appropriate atom unless an external relocation is used. For
    767     // non-cstring sections, we expect the compiler to use a non-temporary label
    768     // for anything that could have an addend pointing outside the symbol.
    769     //
    770     // See <rdar://problem/4765733>.
    771     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
    772     return SMO.getType() == MachO::S_CSTRING_LITERALS;
    773   }
    774 
    775   bool isSectionAtomizable(const MCSection &Section) const override {
    776     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
    777     // Fixed sized data sections are uniqued, they cannot be diced into atoms.
    778     switch (SMO.getType()) {
    779     default:
    780       return true;
    781 
    782     case MachO::S_4BYTE_LITERALS:
    783     case MachO::S_8BYTE_LITERALS:
    784     case MachO::S_16BYTE_LITERALS:
    785     case MachO::S_LITERAL_POINTERS:
    786     case MachO::S_NON_LAZY_SYMBOL_POINTERS:
    787     case MachO::S_LAZY_SYMBOL_POINTERS:
    788     case MachO::S_MOD_INIT_FUNC_POINTERS:
    789     case MachO::S_MOD_TERM_FUNC_POINTERS:
    790     case MachO::S_INTERPOSING:
    791       return false;
    792     }
    793   }
    794 
    795   /// \brief Generate the compact unwind encoding for the CFI instructions.
    796   uint32_t generateCompactUnwindEncoding(
    797                              ArrayRef<MCCFIInstruction> Instrs) const override {
    798     return generateCompactUnwindEncodingImpl(Instrs);
    799   }
    800 };
    801 
    802 } // end anonymous namespace
    803 
    804 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
    805                                            const MCRegisterInfo &MRI,
    806                                            StringRef TT,
    807                                            StringRef CPU) {
    808   Triple TheTriple(TT);
    809 
    810   if (TheTriple.isOSBinFormatMachO())
    811     return new DarwinX86_32AsmBackend(T, MRI, CPU);
    812 
    813   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
    814     return new WindowsX86AsmBackend(T, false, CPU);
    815 
    816   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    817   return new ELFX86_32AsmBackend(T, OSABI, CPU);
    818 }
    819 
    820 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
    821                                            const MCRegisterInfo &MRI,
    822                                            StringRef TT,
    823                                            StringRef CPU) {
    824   Triple TheTriple(TT);
    825 
    826   if (TheTriple.isOSBinFormatMachO()) {
    827     MachO::CPUSubTypeX86 CS =
    828         StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
    829             .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
    830             .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
    831     return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
    832   }
    833 
    834   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
    835     return new WindowsX86AsmBackend(T, true, CPU);
    836 
    837   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    838 
    839   if (TheTriple.getEnvironment() == Triple::GNUX32)
    840     return new ELFX86_X32AsmBackend(T, OSABI, CPU);
    841   return new ELFX86_64AsmBackend(T, OSABI, CPU);
    842 }
    843