1 // Copyright (c) 2005, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // --- 31 // Author: Sanjay Ghemawat 32 33 #include <config.h> 34 #include <errno.h> // for EAGAIN, errno 35 #include <fcntl.h> // for open, O_RDWR 36 #include <stddef.h> // for size_t, NULL, ptrdiff_t 37 #if defined HAVE_STDINT_H 38 #include <stdint.h> // for uintptr_t, intptr_t 39 #elif defined HAVE_INTTYPES_H 40 #include <inttypes.h> 41 #else 42 #include <sys/types.h> 43 #endif 44 #ifdef HAVE_MMAP 45 #include <sys/mman.h> // for munmap, mmap, MADV_DONTNEED, etc 46 #endif 47 #ifdef HAVE_UNISTD_H 48 #include <unistd.h> // for sbrk, getpagesize, off_t 49 #endif 50 #include <new> // for operator new 51 #include <gperftools/malloc_extension.h> 52 #include "base/basictypes.h" 53 #include "base/commandlineflags.h" 54 #include "base/spinlock.h" // for SpinLockHolder, SpinLock, etc 55 #include "common.h" 56 #include "internal_logging.h" 57 58 // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old 59 // form of the name instead. 60 #ifndef MAP_ANONYMOUS 61 # define MAP_ANONYMOUS MAP_ANON 62 #endif 63 64 // MADV_FREE is specifically designed for use by malloc(), but only 65 // FreeBSD supports it; in linux we fall back to the somewhat inferior 66 // MADV_DONTNEED. 67 #if !defined(MADV_FREE) && defined(MADV_DONTNEED) 68 # define MADV_FREE MADV_DONTNEED 69 #endif 70 71 // Solaris has a bug where it doesn't declare madvise() for C++. 72 // http://www.opensolaris.org/jive/thread.jspa?threadID=21035&tstart=0 73 #if defined(__sun) && defined(__SVR4) 74 # include <sys/types.h> // for caddr_t 75 extern "C" { extern int madvise(caddr_t, size_t, int); } 76 #endif 77 78 // Set kDebugMode mode so that we can have use C++ conditionals 79 // instead of preprocessor conditionals. 80 #ifdef NDEBUG 81 static const bool kDebugMode = false; 82 #else 83 static const bool kDebugMode = true; 84 #endif 85 86 // TODO(sanjay): Move the code below into the tcmalloc namespace 87 using tcmalloc::kLog; 88 using tcmalloc::Log; 89 90 // Anonymous namespace to avoid name conflicts on "CheckAddressBits". 91 namespace { 92 93 // Check that no bit is set at position ADDRESS_BITS or higher. 94 template <int ADDRESS_BITS> bool CheckAddressBits(uintptr_t ptr) { 95 return (ptr >> ADDRESS_BITS) == 0; 96 } 97 98 // Specialize for the bit width of a pointer to avoid undefined shift. 99 template <> bool CheckAddressBits<8 * sizeof(void*)>(uintptr_t ptr) { 100 return true; 101 } 102 103 #if defined(OS_LINUX) && defined(__x86_64__) 104 #define ASLR_IS_SUPPORTED 105 #endif 106 107 #if defined(ASLR_IS_SUPPORTED) 108 // From libdieharder, public domain library by Bob Jenkins (rngav.c). 109 // Described at http://burtleburtle.net/bob/rand/smallprng.html. 110 // Not cryptographically secure, but good enough for what we need. 111 typedef uint32_t u4; 112 struct ranctx { 113 u4 a; 114 u4 b; 115 u4 c; 116 u4 d; 117 }; 118 119 #define rot(x,k) (((x)<<(k))|((x)>>(32-(k)))) 120 121 u4 ranval(ranctx* x) { 122 /* xxx: the generator being tested */ 123 u4 e = x->a - rot(x->b, 27); 124 x->a = x->b ^ rot(x->c, 17); 125 x->b = x->c + x->d; 126 x->c = x->d + e; 127 x->d = e + x->a; 128 return x->d; 129 } 130 131 void raninit(ranctx* x, u4 seed) { 132 u4 i; 133 x->a = 0xf1ea5eed; 134 x->b = x->c = x->d = seed; 135 for (i = 0; i < 20; ++i) { 136 (void) ranval(x); 137 } 138 } 139 140 // If the kernel cannot honor the hint in arch_get_unmapped_area_topdown, it 141 // will simply ignore it. So we give a hint that has a good chance of 142 // working. 143 // The mmap top-down allocator will normally allocate below TASK_SIZE - gap, 144 // with a gap that depends on the max stack size. See x86/mm/mmap.c. We 145 // should make allocations that are below this area, which would be 146 // 0x7ffbf8000000. 147 // We use 0x3ffffffff000 as the mask so that we only "pollute" half of the 148 // address space. In the unlikely case where fragmentation would become an 149 // issue, the kernel will still have another half to use. 150 const uint64_t kRandomAddressMask = 0x3ffffffff000ULL; 151 152 #endif // defined(ASLR_IS_SUPPORTED) 153 154 // Give a random "hint" that is suitable for use with mmap(). This cannot make 155 // mmap fail, as the kernel will simply not follow the hint if it can't. 156 // However, this will create address space fragmentation. Currently, we only 157 // implement it on x86_64, where we have a 47 bits userland address space and 158 // fragmentation is not an issue. 159 void* GetRandomAddrHint() { 160 #if !defined(ASLR_IS_SUPPORTED) 161 return NULL; 162 #else 163 // Note: we are protected by the general TCMalloc_SystemAlloc spinlock. Given 164 // the nature of what we're doing, it wouldn't be critical if we weren't for 165 // ctx, but it is for the "initialized" variable. 166 // It's nice to share the state between threads, because scheduling will add 167 // some randomness to the succession of ranval() calls. 168 static ranctx ctx; 169 static bool initialized = false; 170 if (!initialized) { 171 initialized = true; 172 // We really want this to be a stack variable and don't want any compiler 173 // optimization. We're using its address as a poor-man source of 174 // randomness. 175 volatile char c; 176 // Pre-initialize our seed with a "random" address in case /dev/urandom is 177 // not available. 178 uint32_t seed = (reinterpret_cast<uint64_t>(&c) >> 32) ^ 179 reinterpret_cast<uint64_t>(&c); 180 int urandom_fd = open("/dev/urandom", O_RDONLY); 181 if (urandom_fd >= 0) { 182 ssize_t len; 183 len = read(urandom_fd, &seed, sizeof(seed)); 184 ASSERT(len == sizeof(seed)); 185 int ret = close(urandom_fd); 186 ASSERT(ret == 0); 187 } 188 raninit(&ctx, seed); 189 } 190 uint64_t random_address = (static_cast<uint64_t>(ranval(&ctx)) << 32) | 191 ranval(&ctx); 192 // A a bit-wise "and" won't bias our random distribution. 193 random_address &= kRandomAddressMask; 194 return reinterpret_cast<void*>(random_address); 195 #endif // ASLR_IS_SUPPORTED 196 } 197 198 // Allocate |length| bytes of memory using mmap(). The memory will be 199 // readable and writeable, but not executable. 200 // Like mmap(), we will return MAP_FAILED on failure. 201 // |is_aslr_enabled| controls address space layout randomization. When true, we 202 // will put the first mapping at a random address and will then try to grow it. 203 // If it's not possible to grow an existing mapping, a new one will be created. 204 void* AllocWithMmap(size_t length, bool is_aslr_enabled) { 205 // Note: we are protected by the general TCMalloc_SystemAlloc spinlock. 206 static void* address_hint = NULL; 207 #if defined(ASLR_IS_SUPPORTED) 208 if (is_aslr_enabled && 209 (!address_hint || 210 reinterpret_cast<uint64_t>(address_hint) & ~kRandomAddressMask)) { 211 address_hint = GetRandomAddrHint(); 212 } 213 #endif // ASLR_IS_SUPPORTED 214 215 // address_hint is likely to make us grow an existing mapping. 216 void* result = mmap(address_hint, length, PROT_READ|PROT_WRITE, 217 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 218 #if defined(ASLR_IS_SUPPORTED) 219 if (result == address_hint) { 220 // If mmap() succeeded at a address_hint, our next mmap() will try to grow 221 // the current mapping as long as it's compatible with our ASLR mask. 222 // This has been done for performance reasons, see crbug.com/173371. 223 // It should be possible to strike a better balance between performance 224 // and security but will be done at a later date. 225 // If this overflows, it could only set address_hint to NULL, which is 226 // what we want (and can't happen on the currently supported architecture). 227 address_hint = static_cast<char*>(result) + length; 228 } else { 229 // mmap failed or a collision prevented the kernel from honoring the hint, 230 // reset the hint. 231 address_hint = NULL; 232 } 233 #endif // ASLR_IS_SUPPORTED 234 return result; 235 } 236 237 } // Anonymous namespace to avoid name conflicts on "CheckAddressBits". 238 239 COMPILE_ASSERT(kAddressBits <= 8 * sizeof(void*), 240 address_bits_larger_than_pointer_size); 241 242 // Structure for discovering alignment 243 union MemoryAligner { 244 void* p; 245 double d; 246 size_t s; 247 } CACHELINE_ALIGNED; 248 249 static SpinLock spinlock(SpinLock::LINKER_INITIALIZED); 250 251 #if defined(HAVE_MMAP) || defined(MADV_FREE) 252 #ifdef HAVE_GETPAGESIZE 253 static size_t pagesize = 0; 254 #endif 255 #endif 256 257 // The current system allocator 258 SysAllocator* sys_alloc = NULL; 259 260 // Configuration parameters. 261 DEFINE_int32(malloc_devmem_start, 262 EnvToInt("TCMALLOC_DEVMEM_START", 0), 263 "Physical memory starting location in MB for /dev/mem allocation." 264 " Setting this to 0 disables /dev/mem allocation"); 265 DEFINE_int32(malloc_devmem_limit, 266 EnvToInt("TCMALLOC_DEVMEM_LIMIT", 0), 267 "Physical memory limit location in MB for /dev/mem allocation." 268 " Setting this to 0 means no limit."); 269 DEFINE_bool(malloc_skip_sbrk, 270 EnvToBool("TCMALLOC_SKIP_SBRK", false), 271 "Whether sbrk can be used to obtain memory."); 272 DEFINE_bool(malloc_skip_mmap, 273 EnvToBool("TCMALLOC_SKIP_MMAP", false), 274 "Whether mmap can be used to obtain memory."); 275 276 DEFINE_bool(malloc_random_allocator, 277 #if defined(ASLR_IS_SUPPORTED) 278 EnvToBool("TCMALLOC_ASLR", true), 279 #else 280 EnvToBool("TCMALLOC_ASLR", false), 281 #endif 282 "Whether to randomize the address space via mmap()."); 283 284 // static allocators 285 class SbrkSysAllocator : public SysAllocator { 286 public: 287 SbrkSysAllocator() : SysAllocator() { 288 } 289 void* Alloc(size_t size, size_t *actual_size, size_t alignment); 290 }; 291 static char sbrk_space[sizeof(SbrkSysAllocator)]; 292 293 class MmapSysAllocator : public SysAllocator { 294 public: 295 MmapSysAllocator() : SysAllocator() { 296 } 297 void* Alloc(size_t size, size_t *actual_size, size_t alignment); 298 }; 299 static char mmap_space[sizeof(MmapSysAllocator)]; 300 301 class DevMemSysAllocator : public SysAllocator { 302 public: 303 DevMemSysAllocator() : SysAllocator() { 304 } 305 void* Alloc(size_t size, size_t *actual_size, size_t alignment); 306 }; 307 308 class DefaultSysAllocator : public SysAllocator { 309 public: 310 DefaultSysAllocator() : SysAllocator() { 311 for (int i = 0; i < kMaxAllocators; i++) { 312 failed_[i] = true; 313 allocs_[i] = NULL; 314 names_[i] = NULL; 315 } 316 } 317 void SetChildAllocator(SysAllocator* alloc, unsigned int index, 318 const char* name) { 319 if (index < kMaxAllocators && alloc != NULL) { 320 allocs_[index] = alloc; 321 failed_[index] = false; 322 names_[index] = name; 323 } 324 } 325 void* Alloc(size_t size, size_t *actual_size, size_t alignment); 326 327 private: 328 static const int kMaxAllocators = 2; 329 bool failed_[kMaxAllocators]; 330 SysAllocator* allocs_[kMaxAllocators]; 331 const char* names_[kMaxAllocators]; 332 }; 333 static char default_space[sizeof(DefaultSysAllocator)]; 334 static const char sbrk_name[] = "SbrkSysAllocator"; 335 static const char mmap_name[] = "MmapSysAllocator"; 336 337 338 void* SbrkSysAllocator::Alloc(size_t size, size_t *actual_size, 339 size_t alignment) { 340 #ifndef HAVE_SBRK 341 return NULL; 342 #else 343 // Check if we should use sbrk allocation. 344 // FLAGS_malloc_skip_sbrk starts out as false (its uninitialized 345 // state) and eventually gets initialized to the specified value. Note 346 // that this code runs for a while before the flags are initialized. 347 // That means that even if this flag is set to true, some (initial) 348 // memory will be allocated with sbrk before the flag takes effect. 349 if (FLAGS_malloc_skip_sbrk) { 350 return NULL; 351 } 352 353 // sbrk will release memory if passed a negative number, so we do 354 // a strict check here 355 if (static_cast<ptrdiff_t>(size + alignment) < 0) return NULL; 356 357 // This doesn't overflow because TCMalloc_SystemAlloc has already 358 // tested for overflow at the alignment boundary. 359 size = ((size + alignment - 1) / alignment) * alignment; 360 361 // "actual_size" indicates that the bytes from the returned pointer 362 // p up to and including (p + actual_size - 1) have been allocated. 363 if (actual_size) { 364 *actual_size = size; 365 } 366 367 // Check that we we're not asking for so much more memory that we'd 368 // wrap around the end of the virtual address space. (This seems 369 // like something sbrk() should check for us, and indeed opensolaris 370 // does, but glibc does not: 371 // http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/libc/port/sys/sbrk.c?a=true 372 // http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/libc/misc/sbrk.c?rev=1.1.2.1&content-type=text/plain&cvsroot=glibc 373 // Without this check, sbrk may succeed when it ought to fail.) 374 if (reinterpret_cast<intptr_t>(sbrk(0)) + size < size) { 375 return NULL; 376 } 377 378 void* result = sbrk(size); 379 if (result == reinterpret_cast<void*>(-1)) { 380 return NULL; 381 } 382 383 // Is it aligned? 384 uintptr_t ptr = reinterpret_cast<uintptr_t>(result); 385 if ((ptr & (alignment-1)) == 0) return result; 386 387 // Try to get more memory for alignment 388 size_t extra = alignment - (ptr & (alignment-1)); 389 void* r2 = sbrk(extra); 390 if (reinterpret_cast<uintptr_t>(r2) == (ptr + size)) { 391 // Contiguous with previous result 392 return reinterpret_cast<void*>(ptr + extra); 393 } 394 395 // Give up and ask for "size + alignment - 1" bytes so 396 // that we can find an aligned region within it. 397 result = sbrk(size + alignment - 1); 398 if (result == reinterpret_cast<void*>(-1)) { 399 return NULL; 400 } 401 ptr = reinterpret_cast<uintptr_t>(result); 402 if ((ptr & (alignment-1)) != 0) { 403 ptr += alignment - (ptr & (alignment-1)); 404 } 405 return reinterpret_cast<void*>(ptr); 406 #endif // HAVE_SBRK 407 } 408 409 void* MmapSysAllocator::Alloc(size_t size, size_t *actual_size, 410 size_t alignment) { 411 #ifndef HAVE_MMAP 412 return NULL; 413 #else 414 // Check if we should use mmap allocation. 415 // FLAGS_malloc_skip_mmap starts out as false (its uninitialized 416 // state) and eventually gets initialized to the specified value. Note 417 // that this code runs for a while before the flags are initialized. 418 // Chances are we never get here before the flags are initialized since 419 // sbrk is used until the heap is exhausted (before mmap is used). 420 if (FLAGS_malloc_skip_mmap) { 421 return NULL; 422 } 423 424 // Enforce page alignment 425 if (pagesize == 0) pagesize = getpagesize(); 426 if (alignment < pagesize) alignment = pagesize; 427 size_t aligned_size = ((size + alignment - 1) / alignment) * alignment; 428 if (aligned_size < size) { 429 return NULL; 430 } 431 size = aligned_size; 432 433 // "actual_size" indicates that the bytes from the returned pointer 434 // p up to and including (p + actual_size - 1) have been allocated. 435 if (actual_size) { 436 *actual_size = size; 437 } 438 439 // Ask for extra memory if alignment > pagesize 440 size_t extra = 0; 441 if (alignment > pagesize) { 442 extra = alignment - pagesize; 443 } 444 445 // Note: size + extra does not overflow since: 446 // size + alignment < (1<<NBITS). 447 // and extra <= alignment 448 // therefore size + extra < (1<<NBITS) 449 void* result = AllocWithMmap(size + extra, FLAGS_malloc_random_allocator); 450 if (result == reinterpret_cast<void*>(MAP_FAILED)) { 451 return NULL; 452 } 453 454 // Adjust the return memory so it is aligned 455 uintptr_t ptr = reinterpret_cast<uintptr_t>(result); 456 size_t adjust = 0; 457 if ((ptr & (alignment - 1)) != 0) { 458 adjust = alignment - (ptr & (alignment - 1)); 459 } 460 461 // Return the unused memory to the system 462 if (adjust > 0) { 463 munmap(reinterpret_cast<void*>(ptr), adjust); 464 } 465 if (adjust < extra) { 466 munmap(reinterpret_cast<void*>(ptr + adjust + size), extra - adjust); 467 } 468 469 ptr += adjust; 470 return reinterpret_cast<void*>(ptr); 471 #endif // HAVE_MMAP 472 } 473 474 void* DevMemSysAllocator::Alloc(size_t size, size_t *actual_size, 475 size_t alignment) { 476 #ifndef HAVE_MMAP 477 return NULL; 478 #else 479 static bool initialized = false; 480 static off_t physmem_base; // next physical memory address to allocate 481 static off_t physmem_limit; // maximum physical address allowed 482 static int physmem_fd; // file descriptor for /dev/mem 483 484 // Check if we should use /dev/mem allocation. Note that it may take 485 // a while to get this flag initialized, so meanwhile we fall back to 486 // the next allocator. (It looks like 7MB gets allocated before 487 // this flag gets initialized -khr.) 488 if (FLAGS_malloc_devmem_start == 0) { 489 // NOTE: not a devmem_failure - we'd like TCMalloc_SystemAlloc to 490 // try us again next time. 491 return NULL; 492 } 493 494 if (!initialized) { 495 physmem_fd = open("/dev/mem", O_RDWR); 496 if (physmem_fd < 0) { 497 return NULL; 498 } 499 physmem_base = FLAGS_malloc_devmem_start*1024LL*1024LL; 500 physmem_limit = FLAGS_malloc_devmem_limit*1024LL*1024LL; 501 initialized = true; 502 } 503 504 // Enforce page alignment 505 if (pagesize == 0) pagesize = getpagesize(); 506 if (alignment < pagesize) alignment = pagesize; 507 size_t aligned_size = ((size + alignment - 1) / alignment) * alignment; 508 if (aligned_size < size) { 509 return NULL; 510 } 511 size = aligned_size; 512 513 // "actual_size" indicates that the bytes from the returned pointer 514 // p up to and including (p + actual_size - 1) have been allocated. 515 if (actual_size) { 516 *actual_size = size; 517 } 518 519 // Ask for extra memory if alignment > pagesize 520 size_t extra = 0; 521 if (alignment > pagesize) { 522 extra = alignment - pagesize; 523 } 524 525 // check to see if we have any memory left 526 if (physmem_limit != 0 && 527 ((size + extra) > (physmem_limit - physmem_base))) { 528 return NULL; 529 } 530 531 // Note: size + extra does not overflow since: 532 // size + alignment < (1<<NBITS). 533 // and extra <= alignment 534 // therefore size + extra < (1<<NBITS) 535 void *result = mmap(0, size + extra, PROT_WRITE|PROT_READ, 536 MAP_SHARED, physmem_fd, physmem_base); 537 if (result == reinterpret_cast<void*>(MAP_FAILED)) { 538 return NULL; 539 } 540 uintptr_t ptr = reinterpret_cast<uintptr_t>(result); 541 542 // Adjust the return memory so it is aligned 543 size_t adjust = 0; 544 if ((ptr & (alignment - 1)) != 0) { 545 adjust = alignment - (ptr & (alignment - 1)); 546 } 547 548 // Return the unused virtual memory to the system 549 if (adjust > 0) { 550 munmap(reinterpret_cast<void*>(ptr), adjust); 551 } 552 if (adjust < extra) { 553 munmap(reinterpret_cast<void*>(ptr + adjust + size), extra - adjust); 554 } 555 556 ptr += adjust; 557 physmem_base += adjust + size; 558 559 return reinterpret_cast<void*>(ptr); 560 #endif // HAVE_MMAP 561 } 562 563 void* DefaultSysAllocator::Alloc(size_t size, size_t *actual_size, 564 size_t alignment) { 565 for (int i = 0; i < kMaxAllocators; i++) { 566 if (!failed_[i] && allocs_[i] != NULL) { 567 void* result = allocs_[i]->Alloc(size, actual_size, alignment); 568 if (result != NULL) { 569 return result; 570 } 571 failed_[i] = true; 572 } 573 } 574 // After both failed, reset "failed_" to false so that a single failed 575 // allocation won't make the allocator never work again. 576 for (int i = 0; i < kMaxAllocators; i++) { 577 failed_[i] = false; 578 } 579 return NULL; 580 } 581 582 static bool system_alloc_inited = false; 583 void InitSystemAllocators(void) { 584 MmapSysAllocator *mmap = new (mmap_space) MmapSysAllocator(); 585 SbrkSysAllocator *sbrk = new (sbrk_space) SbrkSysAllocator(); 586 587 // In 64-bit debug mode, place the mmap allocator first since it 588 // allocates pointers that do not fit in 32 bits and therefore gives 589 // us better testing of code's 64-bit correctness. It also leads to 590 // less false negatives in heap-checking code. (Numbers are less 591 // likely to look like pointers and therefore the conservative gc in 592 // the heap-checker is less likely to misinterpret a number as a 593 // pointer). 594 DefaultSysAllocator *sdef = new (default_space) DefaultSysAllocator(); 595 // Unfortunately, this code runs before flags are initialized. So 596 // we can't use FLAGS_malloc_random_allocator. 597 #if defined(ASLR_IS_SUPPORTED) 598 // Our only random allocator is mmap. 599 sdef->SetChildAllocator(mmap, 0, mmap_name); 600 #else 601 if (kDebugMode && sizeof(void*) > 4) { 602 sdef->SetChildAllocator(mmap, 0, mmap_name); 603 sdef->SetChildAllocator(sbrk, 1, sbrk_name); 604 } else { 605 sdef->SetChildAllocator(sbrk, 0, sbrk_name); 606 sdef->SetChildAllocator(mmap, 1, mmap_name); 607 } 608 #endif // ASLR_IS_SUPPORTED 609 sys_alloc = sdef; 610 } 611 612 void* TCMalloc_SystemAlloc(size_t size, size_t *actual_size, 613 size_t alignment) { 614 // Discard requests that overflow 615 if (size + alignment < size) return NULL; 616 617 SpinLockHolder lock_holder(&spinlock); 618 619 if (!system_alloc_inited) { 620 InitSystemAllocators(); 621 system_alloc_inited = true; 622 } 623 624 // Enforce minimum alignment 625 if (alignment < sizeof(MemoryAligner)) alignment = sizeof(MemoryAligner); 626 627 void* result = sys_alloc->Alloc(size, actual_size, alignment); 628 if (result != NULL) { 629 if (actual_size) { 630 CheckAddressBits<kAddressBits>( 631 reinterpret_cast<uintptr_t>(result) + *actual_size - 1); 632 } else { 633 CheckAddressBits<kAddressBits>( 634 reinterpret_cast<uintptr_t>(result) + size - 1); 635 } 636 } 637 return result; 638 } 639 640 size_t TCMalloc_SystemAddGuard(void* start, size_t size) { 641 #ifdef HAVE_GETPAGESIZE 642 if (pagesize == 0) 643 pagesize = getpagesize(); 644 645 if (size < pagesize || (reinterpret_cast<size_t>(start) % pagesize) != 0) 646 return 0; 647 648 if (!mprotect(start, pagesize, PROT_NONE)) 649 return pagesize; 650 #endif 651 652 return 0; 653 } 654 655 void TCMalloc_SystemRelease(void* start, size_t length) { 656 #ifdef MADV_FREE 657 if (FLAGS_malloc_devmem_start) { 658 // It's not safe to use MADV_FREE/MADV_DONTNEED if we've been 659 // mapping /dev/mem for heap memory. 660 return; 661 } 662 if (pagesize == 0) pagesize = getpagesize(); 663 const size_t pagemask = pagesize - 1; 664 665 size_t new_start = reinterpret_cast<size_t>(start); 666 size_t end = new_start + length; 667 size_t new_end = end; 668 669 // Round up the starting address and round down the ending address 670 // to be page aligned: 671 new_start = (new_start + pagesize - 1) & ~pagemask; 672 new_end = new_end & ~pagemask; 673 674 ASSERT((new_start & pagemask) == 0); 675 ASSERT((new_end & pagemask) == 0); 676 ASSERT(new_start >= reinterpret_cast<size_t>(start)); 677 ASSERT(new_end <= end); 678 679 if (new_end > new_start) { 680 // Note -- ignoring most return codes, because if this fails it 681 // doesn't matter... 682 while (madvise(reinterpret_cast<char*>(new_start), new_end - new_start, 683 MADV_FREE) == -1 && 684 errno == EAGAIN) { 685 // NOP 686 } 687 } 688 #endif 689 } 690 691 void TCMalloc_SystemCommit(void* start, size_t length) { 692 // Nothing to do here. TCMalloc_SystemRelease does not alter pages 693 // such that they need to be re-committed before they can be used by the 694 // application. 695 } 696