1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* 22 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 23 ** P if required. 24 */ 25 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 26 27 /* 28 ** If pMem is an object with a valid string representation, this routine 29 ** ensures the internal encoding for the string representation is 30 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 31 ** 32 ** If pMem is not a string object, or the encoding of the string 33 ** representation is already stored using the requested encoding, then this 34 ** routine is a no-op. 35 ** 36 ** SQLITE_OK is returned if the conversion is successful (or not required). 37 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 38 ** between formats. 39 */ 40 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 41 int rc; 42 assert( (pMem->flags&MEM_RowSet)==0 ); 43 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 44 || desiredEnc==SQLITE_UTF16BE ); 45 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 46 return SQLITE_OK; 47 } 48 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 49 #ifdef SQLITE_OMIT_UTF16 50 return SQLITE_ERROR; 51 #else 52 53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 54 ** then the encoding of the value may not have changed. 55 */ 56 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 57 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 60 return rc; 61 #endif 62 } 63 64 /* 65 ** Make sure pMem->z points to a writable allocation of at least 66 ** n bytes. 67 ** 68 ** If the memory cell currently contains string or blob data 69 ** and the third argument passed to this function is true, the 70 ** current content of the cell is preserved. Otherwise, it may 71 ** be discarded. 72 ** 73 ** This function sets the MEM_Dyn flag and clears any xDel callback. 74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 75 ** not set, Mem.n is zeroed. 76 */ 77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ 78 assert( 1 >= 79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + 80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + 81 ((pMem->flags&MEM_Ephem) ? 1 : 0) + 82 ((pMem->flags&MEM_Static) ? 1 : 0) 83 ); 84 assert( (pMem->flags&MEM_RowSet)==0 ); 85 86 if( n<32 ) n = 32; 87 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ 88 if( preserve && pMem->z==pMem->zMalloc ){ 89 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 90 preserve = 0; 91 }else{ 92 sqlite3DbFree(pMem->db, pMem->zMalloc); 93 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 94 } 95 } 96 97 if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ 98 memcpy(pMem->zMalloc, pMem->z, pMem->n); 99 } 100 if( pMem->flags&MEM_Dyn && pMem->xDel ){ 101 pMem->xDel((void *)(pMem->z)); 102 } 103 104 pMem->z = pMem->zMalloc; 105 if( pMem->z==0 ){ 106 pMem->flags = MEM_Null; 107 }else{ 108 pMem->flags &= ~(MEM_Ephem|MEM_Static); 109 } 110 pMem->xDel = 0; 111 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); 112 } 113 114 /* 115 ** Make the given Mem object MEM_Dyn. In other words, make it so 116 ** that any TEXT or BLOB content is stored in memory obtained from 117 ** malloc(). In this way, we know that the memory is safe to be 118 ** overwritten or altered. 119 ** 120 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 121 */ 122 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 123 int f; 124 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 125 assert( (pMem->flags&MEM_RowSet)==0 ); 126 expandBlob(pMem); 127 f = pMem->flags; 128 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ 129 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ 130 return SQLITE_NOMEM; 131 } 132 pMem->z[pMem->n] = 0; 133 pMem->z[pMem->n+1] = 0; 134 pMem->flags |= MEM_Term; 135 #ifdef SQLITE_DEBUG 136 pMem->pScopyFrom = 0; 137 #endif 138 } 139 140 return SQLITE_OK; 141 } 142 143 /* 144 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 145 ** blob stored in dynamically allocated space. 146 */ 147 #ifndef SQLITE_OMIT_INCRBLOB 148 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 149 if( pMem->flags & MEM_Zero ){ 150 int nByte; 151 assert( pMem->flags&MEM_Blob ); 152 assert( (pMem->flags&MEM_RowSet)==0 ); 153 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 154 155 /* Set nByte to the number of bytes required to store the expanded blob. */ 156 nByte = pMem->n + pMem->u.nZero; 157 if( nByte<=0 ){ 158 nByte = 1; 159 } 160 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 161 return SQLITE_NOMEM; 162 } 163 164 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 165 pMem->n += pMem->u.nZero; 166 pMem->flags &= ~(MEM_Zero|MEM_Term); 167 } 168 return SQLITE_OK; 169 } 170 #endif 171 172 173 /* 174 ** Make sure the given Mem is \u0000 terminated. 175 */ 176 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 177 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 178 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ 179 return SQLITE_OK; /* Nothing to do */ 180 } 181 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 182 return SQLITE_NOMEM; 183 } 184 pMem->z[pMem->n] = 0; 185 pMem->z[pMem->n+1] = 0; 186 pMem->flags |= MEM_Term; 187 return SQLITE_OK; 188 } 189 190 /* 191 ** Add MEM_Str to the set of representations for the given Mem. Numbers 192 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 193 ** is a no-op. 194 ** 195 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. 196 ** 197 ** A MEM_Null value will never be passed to this function. This function is 198 ** used for converting values to text for returning to the user (i.e. via 199 ** sqlite3_value_text()), or for ensuring that values to be used as btree 200 ** keys are strings. In the former case a NULL pointer is returned the 201 ** user and the later is an internal programming error. 202 */ 203 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ 204 int rc = SQLITE_OK; 205 int fg = pMem->flags; 206 const int nByte = 32; 207 208 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 209 assert( !(fg&MEM_Zero) ); 210 assert( !(fg&(MEM_Str|MEM_Blob)) ); 211 assert( fg&(MEM_Int|MEM_Real) ); 212 assert( (pMem->flags&MEM_RowSet)==0 ); 213 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 214 215 216 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 217 return SQLITE_NOMEM; 218 } 219 220 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 221 ** string representation of the value. Then, if the required encoding 222 ** is UTF-16le or UTF-16be do a translation. 223 ** 224 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 225 */ 226 if( fg & MEM_Int ){ 227 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 228 }else{ 229 assert( fg & MEM_Real ); 230 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); 231 } 232 pMem->n = sqlite3Strlen30(pMem->z); 233 pMem->enc = SQLITE_UTF8; 234 pMem->flags |= MEM_Str|MEM_Term; 235 sqlite3VdbeChangeEncoding(pMem, enc); 236 return rc; 237 } 238 239 /* 240 ** Memory cell pMem contains the context of an aggregate function. 241 ** This routine calls the finalize method for that function. The 242 ** result of the aggregate is stored back into pMem. 243 ** 244 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 245 ** otherwise. 246 */ 247 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 248 int rc = SQLITE_OK; 249 if( ALWAYS(pFunc && pFunc->xFinalize) ){ 250 sqlite3_context ctx; 251 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 252 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 253 memset(&ctx, 0, sizeof(ctx)); 254 ctx.s.flags = MEM_Null; 255 ctx.s.db = pMem->db; 256 ctx.pMem = pMem; 257 ctx.pFunc = pFunc; 258 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 259 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); 260 sqlite3DbFree(pMem->db, pMem->zMalloc); 261 memcpy(pMem, &ctx.s, sizeof(ctx.s)); 262 rc = ctx.isError; 263 } 264 return rc; 265 } 266 267 /* 268 ** If the memory cell contains a string value that must be freed by 269 ** invoking an external callback, free it now. Calling this function 270 ** does not free any Mem.zMalloc buffer. 271 */ 272 void sqlite3VdbeMemReleaseExternal(Mem *p){ 273 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 274 testcase( p->flags & MEM_Agg ); 275 testcase( p->flags & MEM_Dyn ); 276 testcase( p->flags & MEM_RowSet ); 277 testcase( p->flags & MEM_Frame ); 278 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){ 279 if( p->flags&MEM_Agg ){ 280 sqlite3VdbeMemFinalize(p, p->u.pDef); 281 assert( (p->flags & MEM_Agg)==0 ); 282 sqlite3VdbeMemRelease(p); 283 }else if( p->flags&MEM_Dyn && p->xDel ){ 284 assert( (p->flags&MEM_RowSet)==0 ); 285 p->xDel((void *)p->z); 286 p->xDel = 0; 287 }else if( p->flags&MEM_RowSet ){ 288 sqlite3RowSetClear(p->u.pRowSet); 289 }else if( p->flags&MEM_Frame ){ 290 sqlite3VdbeMemSetNull(p); 291 } 292 } 293 } 294 295 /* 296 ** Release any memory held by the Mem. This may leave the Mem in an 297 ** inconsistent state, for example with (Mem.z==0) and 298 ** (Mem.type==SQLITE_TEXT). 299 */ 300 void sqlite3VdbeMemRelease(Mem *p){ 301 sqlite3VdbeMemReleaseExternal(p); 302 sqlite3DbFree(p->db, p->zMalloc); 303 p->z = 0; 304 p->zMalloc = 0; 305 p->xDel = 0; 306 } 307 308 /* 309 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 310 ** If the double is too large, return 0x8000000000000000. 311 ** 312 ** Most systems appear to do this simply by assigning 313 ** variables and without the extra range tests. But 314 ** there are reports that windows throws an expection 315 ** if the floating point value is out of range. (See ticket #2880.) 316 ** Because we do not completely understand the problem, we will 317 ** take the conservative approach and always do range tests 318 ** before attempting the conversion. 319 */ 320 static i64 doubleToInt64(double r){ 321 #ifdef SQLITE_OMIT_FLOATING_POINT 322 /* When floating-point is omitted, double and int64 are the same thing */ 323 return r; 324 #else 325 /* 326 ** Many compilers we encounter do not define constants for the 327 ** minimum and maximum 64-bit integers, or they define them 328 ** inconsistently. And many do not understand the "LL" notation. 329 ** So we define our own static constants here using nothing 330 ** larger than a 32-bit integer constant. 331 */ 332 static const i64 maxInt = LARGEST_INT64; 333 static const i64 minInt = SMALLEST_INT64; 334 335 if( r<(double)minInt ){ 336 return minInt; 337 }else if( r>(double)maxInt ){ 338 /* minInt is correct here - not maxInt. It turns out that assigning 339 ** a very large positive number to an integer results in a very large 340 ** negative integer. This makes no sense, but it is what x86 hardware 341 ** does so for compatibility we will do the same in software. */ 342 return minInt; 343 }else{ 344 return (i64)r; 345 } 346 #endif 347 } 348 349 /* 350 ** Return some kind of integer value which is the best we can do 351 ** at representing the value that *pMem describes as an integer. 352 ** If pMem is an integer, then the value is exact. If pMem is 353 ** a floating-point then the value returned is the integer part. 354 ** If pMem is a string or blob, then we make an attempt to convert 355 ** it into a integer and return that. If pMem represents an 356 ** an SQL-NULL value, return 0. 357 ** 358 ** If pMem represents a string value, its encoding might be changed. 359 */ 360 i64 sqlite3VdbeIntValue(Mem *pMem){ 361 int flags; 362 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 363 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 364 flags = pMem->flags; 365 if( flags & MEM_Int ){ 366 return pMem->u.i; 367 }else if( flags & MEM_Real ){ 368 return doubleToInt64(pMem->r); 369 }else if( flags & (MEM_Str|MEM_Blob) ){ 370 i64 value = 0; 371 assert( pMem->z || pMem->n==0 ); 372 testcase( pMem->z==0 ); 373 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 374 return value; 375 }else{ 376 return 0; 377 } 378 } 379 380 /* 381 ** Return the best representation of pMem that we can get into a 382 ** double. If pMem is already a double or an integer, return its 383 ** value. If it is a string or blob, try to convert it to a double. 384 ** If it is a NULL, return 0.0. 385 */ 386 double sqlite3VdbeRealValue(Mem *pMem){ 387 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 388 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 389 if( pMem->flags & MEM_Real ){ 390 return pMem->r; 391 }else if( pMem->flags & MEM_Int ){ 392 return (double)pMem->u.i; 393 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 394 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 395 double val = (double)0; 396 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 397 return val; 398 }else{ 399 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 400 return (double)0; 401 } 402 } 403 404 /* 405 ** The MEM structure is already a MEM_Real. Try to also make it a 406 ** MEM_Int if we can. 407 */ 408 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 409 assert( pMem->flags & MEM_Real ); 410 assert( (pMem->flags & MEM_RowSet)==0 ); 411 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 412 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 413 414 pMem->u.i = doubleToInt64(pMem->r); 415 416 /* Only mark the value as an integer if 417 ** 418 ** (1) the round-trip conversion real->int->real is a no-op, and 419 ** (2) The integer is neither the largest nor the smallest 420 ** possible integer (ticket #3922) 421 ** 422 ** The second and third terms in the following conditional enforces 423 ** the second condition under the assumption that addition overflow causes 424 ** values to wrap around. On x86 hardware, the third term is always 425 ** true and could be omitted. But we leave it in because other 426 ** architectures might behave differently. 427 */ 428 if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 429 && ALWAYS(pMem->u.i<LARGEST_INT64) ){ 430 pMem->flags |= MEM_Int; 431 } 432 } 433 434 /* 435 ** Convert pMem to type integer. Invalidate any prior representations. 436 */ 437 int sqlite3VdbeMemIntegerify(Mem *pMem){ 438 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 439 assert( (pMem->flags & MEM_RowSet)==0 ); 440 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 441 442 pMem->u.i = sqlite3VdbeIntValue(pMem); 443 MemSetTypeFlag(pMem, MEM_Int); 444 return SQLITE_OK; 445 } 446 447 /* 448 ** Convert pMem so that it is of type MEM_Real. 449 ** Invalidate any prior representations. 450 */ 451 int sqlite3VdbeMemRealify(Mem *pMem){ 452 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 453 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 454 455 pMem->r = sqlite3VdbeRealValue(pMem); 456 MemSetTypeFlag(pMem, MEM_Real); 457 return SQLITE_OK; 458 } 459 460 /* 461 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 462 ** Invalidate any prior representations. 463 ** 464 ** Every effort is made to force the conversion, even if the input 465 ** is a string that does not look completely like a number. Convert 466 ** as much of the string as we can and ignore the rest. 467 */ 468 int sqlite3VdbeMemNumerify(Mem *pMem){ 469 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 470 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 471 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 472 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ 473 MemSetTypeFlag(pMem, MEM_Int); 474 }else{ 475 pMem->r = sqlite3VdbeRealValue(pMem); 476 MemSetTypeFlag(pMem, MEM_Real); 477 sqlite3VdbeIntegerAffinity(pMem); 478 } 479 } 480 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 481 pMem->flags &= ~(MEM_Str|MEM_Blob); 482 return SQLITE_OK; 483 } 484 485 /* 486 ** Delete any previous value and set the value stored in *pMem to NULL. 487 */ 488 void sqlite3VdbeMemSetNull(Mem *pMem){ 489 if( pMem->flags & MEM_Frame ){ 490 VdbeFrame *pFrame = pMem->u.pFrame; 491 pFrame->pParent = pFrame->v->pDelFrame; 492 pFrame->v->pDelFrame = pFrame; 493 } 494 if( pMem->flags & MEM_RowSet ){ 495 sqlite3RowSetClear(pMem->u.pRowSet); 496 } 497 MemSetTypeFlag(pMem, MEM_Null); 498 pMem->type = SQLITE_NULL; 499 } 500 501 /* 502 ** Delete any previous value and set the value to be a BLOB of length 503 ** n containing all zeros. 504 */ 505 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 506 sqlite3VdbeMemRelease(pMem); 507 pMem->flags = MEM_Blob|MEM_Zero; 508 pMem->type = SQLITE_BLOB; 509 pMem->n = 0; 510 if( n<0 ) n = 0; 511 pMem->u.nZero = n; 512 pMem->enc = SQLITE_UTF8; 513 514 #ifdef SQLITE_OMIT_INCRBLOB 515 sqlite3VdbeMemGrow(pMem, n, 0); 516 if( pMem->z ){ 517 pMem->n = n; 518 memset(pMem->z, 0, n); 519 } 520 #endif 521 } 522 523 /* 524 ** Delete any previous value and set the value stored in *pMem to val, 525 ** manifest type INTEGER. 526 */ 527 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 528 sqlite3VdbeMemRelease(pMem); 529 pMem->u.i = val; 530 pMem->flags = MEM_Int; 531 pMem->type = SQLITE_INTEGER; 532 } 533 534 #ifndef SQLITE_OMIT_FLOATING_POINT 535 /* 536 ** Delete any previous value and set the value stored in *pMem to val, 537 ** manifest type REAL. 538 */ 539 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 540 if( sqlite3IsNaN(val) ){ 541 sqlite3VdbeMemSetNull(pMem); 542 }else{ 543 sqlite3VdbeMemRelease(pMem); 544 pMem->r = val; 545 pMem->flags = MEM_Real; 546 pMem->type = SQLITE_FLOAT; 547 } 548 } 549 #endif 550 551 /* 552 ** Delete any previous value and set the value of pMem to be an 553 ** empty boolean index. 554 */ 555 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 556 sqlite3 *db = pMem->db; 557 assert( db!=0 ); 558 assert( (pMem->flags & MEM_RowSet)==0 ); 559 sqlite3VdbeMemRelease(pMem); 560 pMem->zMalloc = sqlite3DbMallocRaw(db, 64); 561 if( db->mallocFailed ){ 562 pMem->flags = MEM_Null; 563 }else{ 564 assert( pMem->zMalloc ); 565 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, 566 sqlite3DbMallocSize(db, pMem->zMalloc)); 567 assert( pMem->u.pRowSet!=0 ); 568 pMem->flags = MEM_RowSet; 569 } 570 } 571 572 /* 573 ** Return true if the Mem object contains a TEXT or BLOB that is 574 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 575 */ 576 int sqlite3VdbeMemTooBig(Mem *p){ 577 assert( p->db!=0 ); 578 if( p->flags & (MEM_Str|MEM_Blob) ){ 579 int n = p->n; 580 if( p->flags & MEM_Zero ){ 581 n += p->u.nZero; 582 } 583 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 584 } 585 return 0; 586 } 587 588 #ifdef SQLITE_DEBUG 589 /* 590 ** This routine prepares a memory cell for modication by breaking 591 ** its link to a shallow copy and by marking any current shallow 592 ** copies of this cell as invalid. 593 ** 594 ** This is used for testing and debugging only - to make sure shallow 595 ** copies are not misused. 596 */ 597 void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){ 598 int i; 599 Mem *pX; 600 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ 601 if( pX->pScopyFrom==pMem ){ 602 pX->flags |= MEM_Invalid; 603 pX->pScopyFrom = 0; 604 } 605 } 606 pMem->pScopyFrom = 0; 607 } 608 #endif /* SQLITE_DEBUG */ 609 610 /* 611 ** Size of struct Mem not including the Mem.zMalloc member. 612 */ 613 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) 614 615 /* 616 ** Make an shallow copy of pFrom into pTo. Prior contents of 617 ** pTo are freed. The pFrom->z field is not duplicated. If 618 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 619 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 620 */ 621 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 622 assert( (pFrom->flags & MEM_RowSet)==0 ); 623 sqlite3VdbeMemReleaseExternal(pTo); 624 memcpy(pTo, pFrom, MEMCELLSIZE); 625 pTo->xDel = 0; 626 if( (pFrom->flags&MEM_Static)==0 ){ 627 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 628 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 629 pTo->flags |= srcType; 630 } 631 } 632 633 /* 634 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 635 ** freed before the copy is made. 636 */ 637 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 638 int rc = SQLITE_OK; 639 640 assert( (pFrom->flags & MEM_RowSet)==0 ); 641 sqlite3VdbeMemReleaseExternal(pTo); 642 memcpy(pTo, pFrom, MEMCELLSIZE); 643 pTo->flags &= ~MEM_Dyn; 644 645 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 646 if( 0==(pFrom->flags&MEM_Static) ){ 647 pTo->flags |= MEM_Ephem; 648 rc = sqlite3VdbeMemMakeWriteable(pTo); 649 } 650 } 651 652 return rc; 653 } 654 655 /* 656 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 657 ** freed. If pFrom contains ephemeral data, a copy is made. 658 ** 659 ** pFrom contains an SQL NULL when this routine returns. 660 */ 661 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 662 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 663 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 664 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 665 666 sqlite3VdbeMemRelease(pTo); 667 memcpy(pTo, pFrom, sizeof(Mem)); 668 pFrom->flags = MEM_Null; 669 pFrom->xDel = 0; 670 pFrom->zMalloc = 0; 671 } 672 673 /* 674 ** Change the value of a Mem to be a string or a BLOB. 675 ** 676 ** The memory management strategy depends on the value of the xDel 677 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 678 ** string is copied into a (possibly existing) buffer managed by the 679 ** Mem structure. Otherwise, any existing buffer is freed and the 680 ** pointer copied. 681 ** 682 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 683 ** size limit) then no memory allocation occurs. If the string can be 684 ** stored without allocating memory, then it is. If a memory allocation 685 ** is required to store the string, then value of pMem is unchanged. In 686 ** either case, SQLITE_TOOBIG is returned. 687 */ 688 int sqlite3VdbeMemSetStr( 689 Mem *pMem, /* Memory cell to set to string value */ 690 const char *z, /* String pointer */ 691 int n, /* Bytes in string, or negative */ 692 u8 enc, /* Encoding of z. 0 for BLOBs */ 693 void (*xDel)(void*) /* Destructor function */ 694 ){ 695 int nByte = n; /* New value for pMem->n */ 696 int iLimit; /* Maximum allowed string or blob size */ 697 u16 flags = 0; /* New value for pMem->flags */ 698 699 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 700 assert( (pMem->flags & MEM_RowSet)==0 ); 701 702 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 703 if( !z ){ 704 sqlite3VdbeMemSetNull(pMem); 705 return SQLITE_OK; 706 } 707 708 if( pMem->db ){ 709 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 710 }else{ 711 iLimit = SQLITE_MAX_LENGTH; 712 } 713 flags = (enc==0?MEM_Blob:MEM_Str); 714 if( nByte<0 ){ 715 assert( enc!=0 ); 716 if( enc==SQLITE_UTF8 ){ 717 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} 718 }else{ 719 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 720 } 721 flags |= MEM_Term; 722 } 723 724 /* The following block sets the new values of Mem.z and Mem.xDel. It 725 ** also sets a flag in local variable "flags" to indicate the memory 726 ** management (one of MEM_Dyn or MEM_Static). 727 */ 728 if( xDel==SQLITE_TRANSIENT ){ 729 int nAlloc = nByte; 730 if( flags&MEM_Term ){ 731 nAlloc += (enc==SQLITE_UTF8?1:2); 732 } 733 if( nByte>iLimit ){ 734 return SQLITE_TOOBIG; 735 } 736 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ 737 return SQLITE_NOMEM; 738 } 739 memcpy(pMem->z, z, nAlloc); 740 }else if( xDel==SQLITE_DYNAMIC ){ 741 sqlite3VdbeMemRelease(pMem); 742 pMem->zMalloc = pMem->z = (char *)z; 743 pMem->xDel = 0; 744 }else{ 745 sqlite3VdbeMemRelease(pMem); 746 pMem->z = (char *)z; 747 pMem->xDel = xDel; 748 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 749 } 750 751 pMem->n = nByte; 752 pMem->flags = flags; 753 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 754 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); 755 756 #ifndef SQLITE_OMIT_UTF16 757 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 758 return SQLITE_NOMEM; 759 } 760 #endif 761 762 if( nByte>iLimit ){ 763 return SQLITE_TOOBIG; 764 } 765 766 return SQLITE_OK; 767 } 768 769 /* 770 ** Compare the values contained by the two memory cells, returning 771 ** negative, zero or positive if pMem1 is less than, equal to, or greater 772 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 773 ** and reals) sorted numerically, followed by text ordered by the collating 774 ** sequence pColl and finally blob's ordered by memcmp(). 775 ** 776 ** Two NULL values are considered equal by this function. 777 */ 778 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 779 int rc; 780 int f1, f2; 781 int combined_flags; 782 783 f1 = pMem1->flags; 784 f2 = pMem2->flags; 785 combined_flags = f1|f2; 786 assert( (combined_flags & MEM_RowSet)==0 ); 787 788 /* If one value is NULL, it is less than the other. If both values 789 ** are NULL, return 0. 790 */ 791 if( combined_flags&MEM_Null ){ 792 return (f2&MEM_Null) - (f1&MEM_Null); 793 } 794 795 /* If one value is a number and the other is not, the number is less. 796 ** If both are numbers, compare as reals if one is a real, or as integers 797 ** if both values are integers. 798 */ 799 if( combined_flags&(MEM_Int|MEM_Real) ){ 800 if( !(f1&(MEM_Int|MEM_Real)) ){ 801 return 1; 802 } 803 if( !(f2&(MEM_Int|MEM_Real)) ){ 804 return -1; 805 } 806 if( (f1 & f2 & MEM_Int)==0 ){ 807 double r1, r2; 808 if( (f1&MEM_Real)==0 ){ 809 r1 = (double)pMem1->u.i; 810 }else{ 811 r1 = pMem1->r; 812 } 813 if( (f2&MEM_Real)==0 ){ 814 r2 = (double)pMem2->u.i; 815 }else{ 816 r2 = pMem2->r; 817 } 818 if( r1<r2 ) return -1; 819 if( r1>r2 ) return 1; 820 return 0; 821 }else{ 822 assert( f1&MEM_Int ); 823 assert( f2&MEM_Int ); 824 if( pMem1->u.i < pMem2->u.i ) return -1; 825 if( pMem1->u.i > pMem2->u.i ) return 1; 826 return 0; 827 } 828 } 829 830 /* If one value is a string and the other is a blob, the string is less. 831 ** If both are strings, compare using the collating functions. 832 */ 833 if( combined_flags&MEM_Str ){ 834 if( (f1 & MEM_Str)==0 ){ 835 return 1; 836 } 837 if( (f2 & MEM_Str)==0 ){ 838 return -1; 839 } 840 841 assert( pMem1->enc==pMem2->enc ); 842 assert( pMem1->enc==SQLITE_UTF8 || 843 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 844 845 /* The collation sequence must be defined at this point, even if 846 ** the user deletes the collation sequence after the vdbe program is 847 ** compiled (this was not always the case). 848 */ 849 assert( !pColl || pColl->xCmp ); 850 851 if( pColl ){ 852 if( pMem1->enc==pColl->enc ){ 853 /* The strings are already in the correct encoding. Call the 854 ** comparison function directly */ 855 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 856 }else{ 857 const void *v1, *v2; 858 int n1, n2; 859 Mem c1; 860 Mem c2; 861 memset(&c1, 0, sizeof(c1)); 862 memset(&c2, 0, sizeof(c2)); 863 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 864 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 865 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 866 n1 = v1==0 ? 0 : c1.n; 867 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 868 n2 = v2==0 ? 0 : c2.n; 869 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 870 sqlite3VdbeMemRelease(&c1); 871 sqlite3VdbeMemRelease(&c2); 872 return rc; 873 } 874 } 875 /* If a NULL pointer was passed as the collate function, fall through 876 ** to the blob case and use memcmp(). */ 877 } 878 879 /* Both values must be blobs. Compare using memcmp(). */ 880 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); 881 if( rc==0 ){ 882 rc = pMem1->n - pMem2->n; 883 } 884 return rc; 885 } 886 887 /* 888 ** Move data out of a btree key or data field and into a Mem structure. 889 ** The data or key is taken from the entry that pCur is currently pointing 890 ** to. offset and amt determine what portion of the data or key to retrieve. 891 ** key is true to get the key or false to get data. The result is written 892 ** into the pMem element. 893 ** 894 ** The pMem structure is assumed to be uninitialized. Any prior content 895 ** is overwritten without being freed. 896 ** 897 ** If this routine fails for any reason (malloc returns NULL or unable 898 ** to read from the disk) then the pMem is left in an inconsistent state. 899 */ 900 int sqlite3VdbeMemFromBtree( 901 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 902 int offset, /* Offset from the start of data to return bytes from. */ 903 int amt, /* Number of bytes to return. */ 904 int key, /* If true, retrieve from the btree key, not data. */ 905 Mem *pMem /* OUT: Return data in this Mem structure. */ 906 ){ 907 char *zData; /* Data from the btree layer */ 908 int available = 0; /* Number of bytes available on the local btree page */ 909 int rc = SQLITE_OK; /* Return code */ 910 911 assert( sqlite3BtreeCursorIsValid(pCur) ); 912 913 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 914 ** that both the BtShared and database handle mutexes are held. */ 915 assert( (pMem->flags & MEM_RowSet)==0 ); 916 if( key ){ 917 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 918 }else{ 919 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 920 } 921 assert( zData!=0 ); 922 923 if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){ 924 sqlite3VdbeMemRelease(pMem); 925 pMem->z = &zData[offset]; 926 pMem->flags = MEM_Blob|MEM_Ephem; 927 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ 928 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; 929 pMem->enc = 0; 930 pMem->type = SQLITE_BLOB; 931 if( key ){ 932 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); 933 }else{ 934 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); 935 } 936 pMem->z[amt] = 0; 937 pMem->z[amt+1] = 0; 938 if( rc!=SQLITE_OK ){ 939 sqlite3VdbeMemRelease(pMem); 940 } 941 } 942 pMem->n = amt; 943 944 return rc; 945 } 946 947 /* This function is only available internally, it is not part of the 948 ** external API. It works in a similar way to sqlite3_value_text(), 949 ** except the data returned is in the encoding specified by the second 950 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 951 ** SQLITE_UTF8. 952 ** 953 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 954 ** If that is the case, then the result must be aligned on an even byte 955 ** boundary. 956 */ 957 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 958 if( !pVal ) return 0; 959 960 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 961 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 962 assert( (pVal->flags & MEM_RowSet)==0 ); 963 964 if( pVal->flags&MEM_Null ){ 965 return 0; 966 } 967 assert( (MEM_Blob>>3) == MEM_Str ); 968 pVal->flags |= (pVal->flags & MEM_Blob)>>3; 969 expandBlob(pVal); 970 if( pVal->flags&MEM_Str ){ 971 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 972 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 973 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 974 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 975 return 0; 976 } 977 } 978 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */ 979 }else{ 980 assert( (pVal->flags&MEM_Blob)==0 ); 981 sqlite3VdbeMemStringify(pVal, enc); 982 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 983 } 984 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 985 || pVal->db->mallocFailed ); 986 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 987 return pVal->z; 988 }else{ 989 return 0; 990 } 991 } 992 993 /* 994 ** Create a new sqlite3_value object. 995 */ 996 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 997 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 998 if( p ){ 999 p->flags = MEM_Null; 1000 p->type = SQLITE_NULL; 1001 p->db = db; 1002 } 1003 return p; 1004 } 1005 1006 /* 1007 ** Create a new sqlite3_value object, containing the value of pExpr. 1008 ** 1009 ** This only works for very simple expressions that consist of one constant 1010 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1011 ** be converted directly into a value, then the value is allocated and 1012 ** a pointer written to *ppVal. The caller is responsible for deallocating 1013 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1014 ** cannot be converted to a value, then *ppVal is set to NULL. 1015 */ 1016 int sqlite3ValueFromExpr( 1017 sqlite3 *db, /* The database connection */ 1018 Expr *pExpr, /* The expression to evaluate */ 1019 u8 enc, /* Encoding to use */ 1020 u8 affinity, /* Affinity to use */ 1021 sqlite3_value **ppVal /* Write the new value here */ 1022 ){ 1023 int op; 1024 char *zVal = 0; 1025 sqlite3_value *pVal = 0; 1026 int negInt = 1; 1027 const char *zNeg = ""; 1028 1029 if( !pExpr ){ 1030 *ppVal = 0; 1031 return SQLITE_OK; 1032 } 1033 op = pExpr->op; 1034 1035 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2. 1036 ** The ifdef here is to enable us to achieve 100% branch test coverage even 1037 ** when SQLITE_ENABLE_STAT2 is omitted. 1038 */ 1039 #ifdef SQLITE_ENABLE_STAT2 1040 if( op==TK_REGISTER ) op = pExpr->op2; 1041 #else 1042 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1043 #endif 1044 1045 /* Handle negative integers in a single step. This is needed in the 1046 ** case when the value is -9223372036854775808. 1047 */ 1048 if( op==TK_UMINUS 1049 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1050 pExpr = pExpr->pLeft; 1051 op = pExpr->op; 1052 negInt = -1; 1053 zNeg = "-"; 1054 } 1055 1056 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1057 pVal = sqlite3ValueNew(db); 1058 if( pVal==0 ) goto no_mem; 1059 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1060 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1061 }else{ 1062 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1063 if( zVal==0 ) goto no_mem; 1064 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1065 if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; 1066 } 1067 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ 1068 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1069 }else{ 1070 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1071 } 1072 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1073 if( enc!=SQLITE_UTF8 ){ 1074 sqlite3VdbeChangeEncoding(pVal, enc); 1075 } 1076 }else if( op==TK_UMINUS ) { 1077 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1078 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ 1079 sqlite3VdbeMemNumerify(pVal); 1080 if( pVal->u.i==SMALLEST_INT64 ){ 1081 pVal->flags &= MEM_Int; 1082 pVal->flags |= MEM_Real; 1083 pVal->r = (double)LARGEST_INT64; 1084 }else{ 1085 pVal->u.i = -pVal->u.i; 1086 } 1087 pVal->r = -pVal->r; 1088 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1089 } 1090 }else if( op==TK_NULL ){ 1091 pVal = sqlite3ValueNew(db); 1092 if( pVal==0 ) goto no_mem; 1093 } 1094 #ifndef SQLITE_OMIT_BLOB_LITERAL 1095 else if( op==TK_BLOB ){ 1096 int nVal; 1097 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1098 assert( pExpr->u.zToken[1]=='\'' ); 1099 pVal = sqlite3ValueNew(db); 1100 if( !pVal ) goto no_mem; 1101 zVal = &pExpr->u.zToken[2]; 1102 nVal = sqlite3Strlen30(zVal)-1; 1103 assert( zVal[nVal]=='\'' ); 1104 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1105 0, SQLITE_DYNAMIC); 1106 } 1107 #endif 1108 1109 if( pVal ){ 1110 sqlite3VdbeMemStoreType(pVal); 1111 } 1112 *ppVal = pVal; 1113 return SQLITE_OK; 1114 1115 no_mem: 1116 db->mallocFailed = 1; 1117 sqlite3DbFree(db, zVal); 1118 sqlite3ValueFree(pVal); 1119 *ppVal = 0; 1120 return SQLITE_NOMEM; 1121 } 1122 1123 /* 1124 ** Change the string value of an sqlite3_value object 1125 */ 1126 void sqlite3ValueSetStr( 1127 sqlite3_value *v, /* Value to be set */ 1128 int n, /* Length of string z */ 1129 const void *z, /* Text of the new string */ 1130 u8 enc, /* Encoding to use */ 1131 void (*xDel)(void*) /* Destructor for the string */ 1132 ){ 1133 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1134 } 1135 1136 /* 1137 ** Free an sqlite3_value object 1138 */ 1139 void sqlite3ValueFree(sqlite3_value *v){ 1140 if( !v ) return; 1141 sqlite3VdbeMemRelease((Mem *)v); 1142 sqlite3DbFree(((Mem*)v)->db, v); 1143 } 1144 1145 /* 1146 ** Return the number of bytes in the sqlite3_value object assuming 1147 ** that it uses the encoding "enc" 1148 */ 1149 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1150 Mem *p = (Mem*)pVal; 1151 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ 1152 if( p->flags & MEM_Zero ){ 1153 return p->n + p->u.nZero; 1154 }else{ 1155 return p->n; 1156 } 1157 } 1158 return 0; 1159 } 1160