1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 21 22 /* 23 ** Trace output macros 24 */ 25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 26 int sqlite3WhereTrace = 0; 27 #endif 28 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 29 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 30 #else 31 # define WHERETRACE(X) 32 #endif 33 34 /* Forward reference 35 */ 36 typedef struct WhereClause WhereClause; 37 typedef struct WhereMaskSet WhereMaskSet; 38 typedef struct WhereOrInfo WhereOrInfo; 39 typedef struct WhereAndInfo WhereAndInfo; 40 typedef struct WhereCost WhereCost; 41 42 /* 43 ** The query generator uses an array of instances of this structure to 44 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 45 ** clause subexpression is separated from the others by AND operators, 46 ** usually, or sometimes subexpressions separated by OR. 47 ** 48 ** All WhereTerms are collected into a single WhereClause structure. 49 ** The following identity holds: 50 ** 51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 52 ** 53 ** When a term is of the form: 54 ** 55 ** X <op> <expr> 56 ** 57 ** where X is a column name and <op> is one of certain operators, 58 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the 59 ** cursor number and column number for X. WhereTerm.eOperator records 60 ** the <op> using a bitmask encoding defined by WO_xxx below. The 61 ** use of a bitmask encoding for the operator allows us to search 62 ** quickly for terms that match any of several different operators. 63 ** 64 ** A WhereTerm might also be two or more subterms connected by OR: 65 ** 66 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... 67 ** 68 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR 69 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that 70 ** is collected about the 71 ** 72 ** If a term in the WHERE clause does not match either of the two previous 73 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set 74 ** to the original subexpression content and wtFlags is set up appropriately 75 ** but no other fields in the WhereTerm object are meaningful. 76 ** 77 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, 78 ** but they do so indirectly. A single WhereMaskSet structure translates 79 ** cursor number into bits and the translated bit is stored in the prereq 80 ** fields. The translation is used in order to maximize the number of 81 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 82 ** spread out over the non-negative integers. For example, the cursor 83 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet 84 ** translates these sparse cursor numbers into consecutive integers 85 ** beginning with 0 in order to make the best possible use of the available 86 ** bits in the Bitmask. So, in the example above, the cursor numbers 87 ** would be mapped into integers 0 through 7. 88 ** 89 ** The number of terms in a join is limited by the number of bits 90 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite 91 ** is only able to process joins with 64 or fewer tables. 92 */ 93 typedef struct WhereTerm WhereTerm; 94 struct WhereTerm { 95 Expr *pExpr; /* Pointer to the subexpression that is this term */ 96 int iParent; /* Disable pWC->a[iParent] when this term disabled */ 97 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ 98 union { 99 int leftColumn; /* Column number of X in "X <op> <expr>" */ 100 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ 101 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ 102 } u; 103 u16 eOperator; /* A WO_xx value describing <op> */ 104 u8 wtFlags; /* TERM_xxx bit flags. See below */ 105 u8 nChild; /* Number of children that must disable us */ 106 WhereClause *pWC; /* The clause this term is part of */ 107 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ 108 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ 109 }; 110 111 /* 112 ** Allowed values of WhereTerm.wtFlags 113 */ 114 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 115 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 116 #define TERM_CODED 0x04 /* This term is already coded */ 117 #define TERM_COPIED 0x08 /* Has a child */ 118 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ 119 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ 120 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ 121 #ifdef SQLITE_ENABLE_STAT2 122 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ 123 #else 124 # define TERM_VNULL 0x00 /* Disabled if not using stat2 */ 125 #endif 126 127 /* 128 ** An instance of the following structure holds all information about a 129 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 130 */ 131 struct WhereClause { 132 Parse *pParse; /* The parser context */ 133 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ 134 Bitmask vmask; /* Bitmask identifying virtual table cursors */ 135 u8 op; /* Split operator. TK_AND or TK_OR */ 136 int nTerm; /* Number of terms */ 137 int nSlot; /* Number of entries in a[] */ 138 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 139 #if defined(SQLITE_SMALL_STACK) 140 WhereTerm aStatic[1]; /* Initial static space for a[] */ 141 #else 142 WhereTerm aStatic[8]; /* Initial static space for a[] */ 143 #endif 144 }; 145 146 /* 147 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to 148 ** a dynamically allocated instance of the following structure. 149 */ 150 struct WhereOrInfo { 151 WhereClause wc; /* Decomposition into subterms */ 152 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ 153 }; 154 155 /* 156 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to 157 ** a dynamically allocated instance of the following structure. 158 */ 159 struct WhereAndInfo { 160 WhereClause wc; /* The subexpression broken out */ 161 }; 162 163 /* 164 ** An instance of the following structure keeps track of a mapping 165 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 166 ** 167 ** The VDBE cursor numbers are small integers contained in 168 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 169 ** clause, the cursor numbers might not begin with 0 and they might 170 ** contain gaps in the numbering sequence. But we want to make maximum 171 ** use of the bits in our bitmasks. This structure provides a mapping 172 ** from the sparse cursor numbers into consecutive integers beginning 173 ** with 0. 174 ** 175 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 176 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 177 ** 178 ** For example, if the WHERE clause expression used these VDBE 179 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure 180 ** would map those cursor numbers into bits 0 through 5. 181 ** 182 ** Note that the mapping is not necessarily ordered. In the example 183 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 184 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 185 ** does not really matter. What is important is that sparse cursor 186 ** numbers all get mapped into bit numbers that begin with 0 and contain 187 ** no gaps. 188 */ 189 struct WhereMaskSet { 190 int n; /* Number of assigned cursor values */ 191 int ix[BMS]; /* Cursor assigned to each bit */ 192 }; 193 194 /* 195 ** A WhereCost object records a lookup strategy and the estimated 196 ** cost of pursuing that strategy. 197 */ 198 struct WhereCost { 199 WherePlan plan; /* The lookup strategy */ 200 double rCost; /* Overall cost of pursuing this search strategy */ 201 Bitmask used; /* Bitmask of cursors used by this plan */ 202 }; 203 204 /* 205 ** Bitmasks for the operators that indices are able to exploit. An 206 ** OR-ed combination of these values can be used when searching for 207 ** terms in the where clause. 208 */ 209 #define WO_IN 0x001 210 #define WO_EQ 0x002 211 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 212 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 213 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 214 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 215 #define WO_MATCH 0x040 216 #define WO_ISNULL 0x080 217 #define WO_OR 0x100 /* Two or more OR-connected terms */ 218 #define WO_AND 0x200 /* Two or more AND-connected terms */ 219 #define WO_NOOP 0x800 /* This term does not restrict search space */ 220 221 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ 222 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ 223 224 /* 225 ** Value for wsFlags returned by bestIndex() and stored in 226 ** WhereLevel.wsFlags. These flags determine which search 227 ** strategies are appropriate. 228 ** 229 ** The least significant 12 bits is reserved as a mask for WO_ values above. 230 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 231 ** But if the table is the right table of a left join, WhereLevel.wsFlags 232 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as 233 ** the "op" parameter to findTerm when we are resolving equality constraints. 234 ** ISNULL constraints will then not be used on the right table of a left 235 ** join. Tickets #2177 and #2189. 236 */ 237 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ 238 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ 239 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ 240 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ 241 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ 242 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ 243 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ 244 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */ 245 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ 246 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ 247 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ 248 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */ 249 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ 250 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ 251 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ 252 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ 253 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ 254 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ 255 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ 256 257 /* 258 ** Initialize a preallocated WhereClause structure. 259 */ 260 static void whereClauseInit( 261 WhereClause *pWC, /* The WhereClause to be initialized */ 262 Parse *pParse, /* The parsing context */ 263 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ 264 ){ 265 pWC->pParse = pParse; 266 pWC->pMaskSet = pMaskSet; 267 pWC->nTerm = 0; 268 pWC->nSlot = ArraySize(pWC->aStatic); 269 pWC->a = pWC->aStatic; 270 pWC->vmask = 0; 271 } 272 273 /* Forward reference */ 274 static void whereClauseClear(WhereClause*); 275 276 /* 277 ** Deallocate all memory associated with a WhereOrInfo object. 278 */ 279 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 280 whereClauseClear(&p->wc); 281 sqlite3DbFree(db, p); 282 } 283 284 /* 285 ** Deallocate all memory associated with a WhereAndInfo object. 286 */ 287 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 288 whereClauseClear(&p->wc); 289 sqlite3DbFree(db, p); 290 } 291 292 /* 293 ** Deallocate a WhereClause structure. The WhereClause structure 294 ** itself is not freed. This routine is the inverse of whereClauseInit(). 295 */ 296 static void whereClauseClear(WhereClause *pWC){ 297 int i; 298 WhereTerm *a; 299 sqlite3 *db = pWC->pParse->db; 300 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 301 if( a->wtFlags & TERM_DYNAMIC ){ 302 sqlite3ExprDelete(db, a->pExpr); 303 } 304 if( a->wtFlags & TERM_ORINFO ){ 305 whereOrInfoDelete(db, a->u.pOrInfo); 306 }else if( a->wtFlags & TERM_ANDINFO ){ 307 whereAndInfoDelete(db, a->u.pAndInfo); 308 } 309 } 310 if( pWC->a!=pWC->aStatic ){ 311 sqlite3DbFree(db, pWC->a); 312 } 313 } 314 315 /* 316 ** Add a single new WhereTerm entry to the WhereClause object pWC. 317 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 318 ** The index in pWC->a[] of the new WhereTerm is returned on success. 319 ** 0 is returned if the new WhereTerm could not be added due to a memory 320 ** allocation error. The memory allocation failure will be recorded in 321 ** the db->mallocFailed flag so that higher-level functions can detect it. 322 ** 323 ** This routine will increase the size of the pWC->a[] array as necessary. 324 ** 325 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 326 ** for freeing the expression p is assumed by the WhereClause object pWC. 327 ** This is true even if this routine fails to allocate a new WhereTerm. 328 ** 329 ** WARNING: This routine might reallocate the space used to store 330 ** WhereTerms. All pointers to WhereTerms should be invalidated after 331 ** calling this routine. Such pointers may be reinitialized by referencing 332 ** the pWC->a[] array. 333 */ 334 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ 335 WhereTerm *pTerm; 336 int idx; 337 testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ 338 if( pWC->nTerm>=pWC->nSlot ){ 339 WhereTerm *pOld = pWC->a; 340 sqlite3 *db = pWC->pParse->db; 341 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 342 if( pWC->a==0 ){ 343 if( wtFlags & TERM_DYNAMIC ){ 344 sqlite3ExprDelete(db, p); 345 } 346 pWC->a = pOld; 347 return 0; 348 } 349 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 350 if( pOld!=pWC->aStatic ){ 351 sqlite3DbFree(db, pOld); 352 } 353 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 354 } 355 pTerm = &pWC->a[idx = pWC->nTerm++]; 356 pTerm->pExpr = p; 357 pTerm->wtFlags = wtFlags; 358 pTerm->pWC = pWC; 359 pTerm->iParent = -1; 360 return idx; 361 } 362 363 /* 364 ** This routine identifies subexpressions in the WHERE clause where 365 ** each subexpression is separated by the AND operator or some other 366 ** operator specified in the op parameter. The WhereClause structure 367 ** is filled with pointers to subexpressions. For example: 368 ** 369 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 370 ** \________/ \_______________/ \________________/ 371 ** slot[0] slot[1] slot[2] 372 ** 373 ** The original WHERE clause in pExpr is unaltered. All this routine 374 ** does is make slot[] entries point to substructure within pExpr. 375 ** 376 ** In the previous sentence and in the diagram, "slot[]" refers to 377 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 378 ** all terms of the WHERE clause. 379 */ 380 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 381 pWC->op = (u8)op; 382 if( pExpr==0 ) return; 383 if( pExpr->op!=op ){ 384 whereClauseInsert(pWC, pExpr, 0); 385 }else{ 386 whereSplit(pWC, pExpr->pLeft, op); 387 whereSplit(pWC, pExpr->pRight, op); 388 } 389 } 390 391 /* 392 ** Initialize an expression mask set (a WhereMaskSet object) 393 */ 394 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 395 396 /* 397 ** Return the bitmask for the given cursor number. Return 0 if 398 ** iCursor is not in the set. 399 */ 400 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 401 int i; 402 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 403 for(i=0; i<pMaskSet->n; i++){ 404 if( pMaskSet->ix[i]==iCursor ){ 405 return ((Bitmask)1)<<i; 406 } 407 } 408 return 0; 409 } 410 411 /* 412 ** Create a new mask for cursor iCursor. 413 ** 414 ** There is one cursor per table in the FROM clause. The number of 415 ** tables in the FROM clause is limited by a test early in the 416 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 417 ** array will never overflow. 418 */ 419 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 420 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 421 pMaskSet->ix[pMaskSet->n++] = iCursor; 422 } 423 424 /* 425 ** This routine walks (recursively) an expression tree and generates 426 ** a bitmask indicating which tables are used in that expression 427 ** tree. 428 ** 429 ** In order for this routine to work, the calling function must have 430 ** previously invoked sqlite3ResolveExprNames() on the expression. See 431 ** the header comment on that routine for additional information. 432 ** The sqlite3ResolveExprNames() routines looks for column names and 433 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 434 ** the VDBE cursor number of the table. This routine just has to 435 ** translate the cursor numbers into bitmask values and OR all 436 ** the bitmasks together. 437 */ 438 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 439 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 440 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 441 Bitmask mask = 0; 442 if( p==0 ) return 0; 443 if( p->op==TK_COLUMN ){ 444 mask = getMask(pMaskSet, p->iTable); 445 return mask; 446 } 447 mask = exprTableUsage(pMaskSet, p->pRight); 448 mask |= exprTableUsage(pMaskSet, p->pLeft); 449 if( ExprHasProperty(p, EP_xIsSelect) ){ 450 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); 451 }else{ 452 mask |= exprListTableUsage(pMaskSet, p->x.pList); 453 } 454 return mask; 455 } 456 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 457 int i; 458 Bitmask mask = 0; 459 if( pList ){ 460 for(i=0; i<pList->nExpr; i++){ 461 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 462 } 463 } 464 return mask; 465 } 466 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 467 Bitmask mask = 0; 468 while( pS ){ 469 mask |= exprListTableUsage(pMaskSet, pS->pEList); 470 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 471 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 472 mask |= exprTableUsage(pMaskSet, pS->pWhere); 473 mask |= exprTableUsage(pMaskSet, pS->pHaving); 474 pS = pS->pPrior; 475 } 476 return mask; 477 } 478 479 /* 480 ** Return TRUE if the given operator is one of the operators that is 481 ** allowed for an indexable WHERE clause term. The allowed operators are 482 ** "=", "<", ">", "<=", ">=", and "IN". 483 ** 484 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be 485 ** of one of the following forms: column = expression column > expression 486 ** column >= expression column < expression column <= expression 487 ** expression = column expression > column expression >= column 488 ** expression < column expression <= column column IN 489 ** (expression-list) column IN (subquery) column IS NULL 490 */ 491 static int allowedOp(int op){ 492 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 493 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 494 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 495 assert( TK_GE==TK_EQ+4 ); 496 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 497 } 498 499 /* 500 ** Swap two objects of type TYPE. 501 */ 502 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 503 504 /* 505 ** Commute a comparison operator. Expressions of the form "X op Y" 506 ** are converted into "Y op X". 507 ** 508 ** If a collation sequence is associated with either the left or right 509 ** side of the comparison, it remains associated with the same side after 510 ** the commutation. So "Y collate NOCASE op X" becomes 511 ** "X collate NOCASE op Y". This is because any collation sequence on 512 ** the left hand side of a comparison overrides any collation sequence 513 ** attached to the right. For the same reason the EP_ExpCollate flag 514 ** is not commuted. 515 */ 516 static void exprCommute(Parse *pParse, Expr *pExpr){ 517 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 518 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 519 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 520 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 521 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 522 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 523 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 524 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 525 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 526 if( pExpr->op>=TK_GT ){ 527 assert( TK_LT==TK_GT+2 ); 528 assert( TK_GE==TK_LE+2 ); 529 assert( TK_GT>TK_EQ ); 530 assert( TK_GT<TK_LE ); 531 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 532 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 533 } 534 } 535 536 /* 537 ** Translate from TK_xx operator to WO_xx bitmask. 538 */ 539 static u16 operatorMask(int op){ 540 u16 c; 541 assert( allowedOp(op) ); 542 if( op==TK_IN ){ 543 c = WO_IN; 544 }else if( op==TK_ISNULL ){ 545 c = WO_ISNULL; 546 }else{ 547 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 548 c = (u16)(WO_EQ<<(op-TK_EQ)); 549 } 550 assert( op!=TK_ISNULL || c==WO_ISNULL ); 551 assert( op!=TK_IN || c==WO_IN ); 552 assert( op!=TK_EQ || c==WO_EQ ); 553 assert( op!=TK_LT || c==WO_LT ); 554 assert( op!=TK_LE || c==WO_LE ); 555 assert( op!=TK_GT || c==WO_GT ); 556 assert( op!=TK_GE || c==WO_GE ); 557 return c; 558 } 559 560 /* 561 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 562 ** where X is a reference to the iColumn of table iCur and <op> is one of 563 ** the WO_xx operator codes specified by the op parameter. 564 ** Return a pointer to the term. Return 0 if not found. 565 */ 566 static WhereTerm *findTerm( 567 WhereClause *pWC, /* The WHERE clause to be searched */ 568 int iCur, /* Cursor number of LHS */ 569 int iColumn, /* Column number of LHS */ 570 Bitmask notReady, /* RHS must not overlap with this mask */ 571 u32 op, /* Mask of WO_xx values describing operator */ 572 Index *pIdx /* Must be compatible with this index, if not NULL */ 573 ){ 574 WhereTerm *pTerm; 575 int k; 576 assert( iCur>=0 ); 577 op &= WO_ALL; 578 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 579 if( pTerm->leftCursor==iCur 580 && (pTerm->prereqRight & notReady)==0 581 && pTerm->u.leftColumn==iColumn 582 && (pTerm->eOperator & op)!=0 583 ){ 584 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 585 Expr *pX = pTerm->pExpr; 586 CollSeq *pColl; 587 char idxaff; 588 int j; 589 Parse *pParse = pWC->pParse; 590 591 idxaff = pIdx->pTable->aCol[iColumn].affinity; 592 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 593 594 /* Figure out the collation sequence required from an index for 595 ** it to be useful for optimising expression pX. Store this 596 ** value in variable pColl. 597 */ 598 assert(pX->pLeft); 599 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 600 assert(pColl || pParse->nErr); 601 602 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 603 if( NEVER(j>=pIdx->nColumn) ) return 0; 604 } 605 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 606 } 607 return pTerm; 608 } 609 } 610 return 0; 611 } 612 613 /* Forward reference */ 614 static void exprAnalyze(SrcList*, WhereClause*, int); 615 616 /* 617 ** Call exprAnalyze on all terms in a WHERE clause. 618 ** 619 ** 620 */ 621 static void exprAnalyzeAll( 622 SrcList *pTabList, /* the FROM clause */ 623 WhereClause *pWC /* the WHERE clause to be analyzed */ 624 ){ 625 int i; 626 for(i=pWC->nTerm-1; i>=0; i--){ 627 exprAnalyze(pTabList, pWC, i); 628 } 629 } 630 631 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 632 /* 633 ** Check to see if the given expression is a LIKE or GLOB operator that 634 ** can be optimized using inequality constraints. Return TRUE if it is 635 ** so and false if not. 636 ** 637 ** In order for the operator to be optimizible, the RHS must be a string 638 ** literal that does not begin with a wildcard. 639 */ 640 static int isLikeOrGlob( 641 Parse *pParse, /* Parsing and code generating context */ 642 Expr *pExpr, /* Test this expression */ 643 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 644 int *pisComplete, /* True if the only wildcard is % in the last character */ 645 int *pnoCase /* True if uppercase is equivalent to lowercase */ 646 ){ 647 const char *z = 0; /* String on RHS of LIKE operator */ 648 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 649 ExprList *pList; /* List of operands to the LIKE operator */ 650 int c; /* One character in z[] */ 651 int cnt; /* Number of non-wildcard prefix characters */ 652 char wc[3]; /* Wildcard characters */ 653 sqlite3 *db = pParse->db; /* Database connection */ 654 sqlite3_value *pVal = 0; 655 int op; /* Opcode of pRight */ 656 657 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 658 return 0; 659 } 660 #ifdef SQLITE_EBCDIC 661 if( *pnoCase ) return 0; 662 #endif 663 pList = pExpr->x.pList; 664 pLeft = pList->a[1].pExpr; 665 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){ 666 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 667 ** be the name of an indexed column with TEXT affinity. */ 668 return 0; 669 } 670 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 671 672 pRight = pList->a[0].pExpr; 673 op = pRight->op; 674 if( op==TK_REGISTER ){ 675 op = pRight->op2; 676 } 677 if( op==TK_VARIABLE ){ 678 Vdbe *pReprepare = pParse->pReprepare; 679 int iCol = pRight->iColumn; 680 pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE); 681 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 682 z = (char *)sqlite3_value_text(pVal); 683 } 684 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */ 685 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 686 }else if( op==TK_STRING ){ 687 z = pRight->u.zToken; 688 } 689 if( z ){ 690 cnt = 0; 691 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 692 cnt++; 693 } 694 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 695 Expr *pPrefix; 696 *pisComplete = c==wc[0] && z[cnt+1]==0; 697 pPrefix = sqlite3Expr(db, TK_STRING, z); 698 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 699 *ppPrefix = pPrefix; 700 if( op==TK_VARIABLE ){ 701 Vdbe *v = pParse->pVdbe; 702 sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */ 703 if( *pisComplete && pRight->u.zToken[1] ){ 704 /* If the rhs of the LIKE expression is a variable, and the current 705 ** value of the variable means there is no need to invoke the LIKE 706 ** function, then no OP_Variable will be added to the program. 707 ** This causes problems for the sqlite3_bind_parameter_name() 708 ** API. To workaround them, add a dummy OP_Variable here. 709 */ 710 int r1 = sqlite3GetTempReg(pParse); 711 sqlite3ExprCodeTarget(pParse, pRight, r1); 712 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 713 sqlite3ReleaseTempReg(pParse, r1); 714 } 715 } 716 }else{ 717 z = 0; 718 } 719 } 720 721 sqlite3ValueFree(pVal); 722 return (z!=0); 723 } 724 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 725 726 727 #ifndef SQLITE_OMIT_VIRTUALTABLE 728 /* 729 ** Check to see if the given expression is of the form 730 ** 731 ** column MATCH expr 732 ** 733 ** If it is then return TRUE. If not, return FALSE. 734 */ 735 static int isMatchOfColumn( 736 Expr *pExpr /* Test this expression */ 737 ){ 738 ExprList *pList; 739 740 if( pExpr->op!=TK_FUNCTION ){ 741 return 0; 742 } 743 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ 744 return 0; 745 } 746 pList = pExpr->x.pList; 747 if( pList->nExpr!=2 ){ 748 return 0; 749 } 750 if( pList->a[1].pExpr->op != TK_COLUMN ){ 751 return 0; 752 } 753 return 1; 754 } 755 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 756 757 /* 758 ** If the pBase expression originated in the ON or USING clause of 759 ** a join, then transfer the appropriate markings over to derived. 760 */ 761 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 762 pDerived->flags |= pBase->flags & EP_FromJoin; 763 pDerived->iRightJoinTable = pBase->iRightJoinTable; 764 } 765 766 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 767 /* 768 ** Analyze a term that consists of two or more OR-connected 769 ** subterms. So in: 770 ** 771 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 772 ** ^^^^^^^^^^^^^^^^^^^^ 773 ** 774 ** This routine analyzes terms such as the middle term in the above example. 775 ** A WhereOrTerm object is computed and attached to the term under 776 ** analysis, regardless of the outcome of the analysis. Hence: 777 ** 778 ** WhereTerm.wtFlags |= TERM_ORINFO 779 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 780 ** 781 ** The term being analyzed must have two or more of OR-connected subterms. 782 ** A single subterm might be a set of AND-connected sub-subterms. 783 ** Examples of terms under analysis: 784 ** 785 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 786 ** (B) x=expr1 OR expr2=x OR x=expr3 787 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 788 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 789 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 790 ** 791 ** CASE 1: 792 ** 793 ** If all subterms are of the form T.C=expr for some single column of C 794 ** a single table T (as shown in example B above) then create a new virtual 795 ** term that is an equivalent IN expression. In other words, if the term 796 ** being analyzed is: 797 ** 798 ** x = expr1 OR expr2 = x OR x = expr3 799 ** 800 ** then create a new virtual term like this: 801 ** 802 ** x IN (expr1,expr2,expr3) 803 ** 804 ** CASE 2: 805 ** 806 ** If all subterms are indexable by a single table T, then set 807 ** 808 ** WhereTerm.eOperator = WO_OR 809 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 810 ** 811 ** A subterm is "indexable" if it is of the form 812 ** "T.C <op> <expr>" where C is any column of table T and 813 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 814 ** A subterm is also indexable if it is an AND of two or more 815 ** subsubterms at least one of which is indexable. Indexable AND 816 ** subterms have their eOperator set to WO_AND and they have 817 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 818 ** 819 ** From another point of view, "indexable" means that the subterm could 820 ** potentially be used with an index if an appropriate index exists. 821 ** This analysis does not consider whether or not the index exists; that 822 ** is something the bestIndex() routine will determine. This analysis 823 ** only looks at whether subterms appropriate for indexing exist. 824 ** 825 ** All examples A through E above all satisfy case 2. But if a term 826 ** also statisfies case 1 (such as B) we know that the optimizer will 827 ** always prefer case 1, so in that case we pretend that case 2 is not 828 ** satisfied. 829 ** 830 ** It might be the case that multiple tables are indexable. For example, 831 ** (E) above is indexable on tables P, Q, and R. 832 ** 833 ** Terms that satisfy case 2 are candidates for lookup by using 834 ** separate indices to find rowids for each subterm and composing 835 ** the union of all rowids using a RowSet object. This is similar 836 ** to "bitmap indices" in other database engines. 837 ** 838 ** OTHERWISE: 839 ** 840 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 841 ** zero. This term is not useful for search. 842 */ 843 static void exprAnalyzeOrTerm( 844 SrcList *pSrc, /* the FROM clause */ 845 WhereClause *pWC, /* the complete WHERE clause */ 846 int idxTerm /* Index of the OR-term to be analyzed */ 847 ){ 848 Parse *pParse = pWC->pParse; /* Parser context */ 849 sqlite3 *db = pParse->db; /* Database connection */ 850 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 851 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 852 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ 853 int i; /* Loop counters */ 854 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 855 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 856 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 857 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 858 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 859 860 /* 861 ** Break the OR clause into its separate subterms. The subterms are 862 ** stored in a WhereClause structure containing within the WhereOrInfo 863 ** object that is attached to the original OR clause term. 864 */ 865 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 866 assert( pExpr->op==TK_OR ); 867 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 868 if( pOrInfo==0 ) return; 869 pTerm->wtFlags |= TERM_ORINFO; 870 pOrWc = &pOrInfo->wc; 871 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); 872 whereSplit(pOrWc, pExpr, TK_OR); 873 exprAnalyzeAll(pSrc, pOrWc); 874 if( db->mallocFailed ) return; 875 assert( pOrWc->nTerm>=2 ); 876 877 /* 878 ** Compute the set of tables that might satisfy cases 1 or 2. 879 */ 880 indexable = ~(Bitmask)0; 881 chngToIN = ~(pWC->vmask); 882 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 883 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 884 WhereAndInfo *pAndInfo; 885 assert( pOrTerm->eOperator==0 ); 886 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 887 chngToIN = 0; 888 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 889 if( pAndInfo ){ 890 WhereClause *pAndWC; 891 WhereTerm *pAndTerm; 892 int j; 893 Bitmask b = 0; 894 pOrTerm->u.pAndInfo = pAndInfo; 895 pOrTerm->wtFlags |= TERM_ANDINFO; 896 pOrTerm->eOperator = WO_AND; 897 pAndWC = &pAndInfo->wc; 898 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); 899 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 900 exprAnalyzeAll(pSrc, pAndWC); 901 testcase( db->mallocFailed ); 902 if( !db->mallocFailed ){ 903 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 904 assert( pAndTerm->pExpr ); 905 if( allowedOp(pAndTerm->pExpr->op) ){ 906 b |= getMask(pMaskSet, pAndTerm->leftCursor); 907 } 908 } 909 } 910 indexable &= b; 911 } 912 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 913 /* Skip this term for now. We revisit it when we process the 914 ** corresponding TERM_VIRTUAL term */ 915 }else{ 916 Bitmask b; 917 b = getMask(pMaskSet, pOrTerm->leftCursor); 918 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 919 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 920 b |= getMask(pMaskSet, pOther->leftCursor); 921 } 922 indexable &= b; 923 if( pOrTerm->eOperator!=WO_EQ ){ 924 chngToIN = 0; 925 }else{ 926 chngToIN &= b; 927 } 928 } 929 } 930 931 /* 932 ** Record the set of tables that satisfy case 2. The set might be 933 ** empty. 934 */ 935 pOrInfo->indexable = indexable; 936 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 937 938 /* 939 ** chngToIN holds a set of tables that *might* satisfy case 1. But 940 ** we have to do some additional checking to see if case 1 really 941 ** is satisfied. 942 ** 943 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 944 ** that there is no possibility of transforming the OR clause into an 945 ** IN operator because one or more terms in the OR clause contain 946 ** something other than == on a column in the single table. The 1-bit 947 ** case means that every term of the OR clause is of the form 948 ** "table.column=expr" for some single table. The one bit that is set 949 ** will correspond to the common table. We still need to check to make 950 ** sure the same column is used on all terms. The 2-bit case is when 951 ** the all terms are of the form "table1.column=table2.column". It 952 ** might be possible to form an IN operator with either table1.column 953 ** or table2.column as the LHS if either is common to every term of 954 ** the OR clause. 955 ** 956 ** Note that terms of the form "table.column1=table.column2" (the 957 ** same table on both sizes of the ==) cannot be optimized. 958 */ 959 if( chngToIN ){ 960 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 961 int iColumn = -1; /* Column index on lhs of IN operator */ 962 int iCursor = -1; /* Table cursor common to all terms */ 963 int j = 0; /* Loop counter */ 964 965 /* Search for a table and column that appears on one side or the 966 ** other of the == operator in every subterm. That table and column 967 ** will be recorded in iCursor and iColumn. There might not be any 968 ** such table and column. Set okToChngToIN if an appropriate table 969 ** and column is found but leave okToChngToIN false if not found. 970 */ 971 for(j=0; j<2 && !okToChngToIN; j++){ 972 pOrTerm = pOrWc->a; 973 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 974 assert( pOrTerm->eOperator==WO_EQ ); 975 pOrTerm->wtFlags &= ~TERM_OR_OK; 976 if( pOrTerm->leftCursor==iCursor ){ 977 /* This is the 2-bit case and we are on the second iteration and 978 ** current term is from the first iteration. So skip this term. */ 979 assert( j==1 ); 980 continue; 981 } 982 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ 983 /* This term must be of the form t1.a==t2.b where t2 is in the 984 ** chngToIN set but t1 is not. This term will be either preceeded 985 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 986 ** and use its inversion. */ 987 testcase( pOrTerm->wtFlags & TERM_COPIED ); 988 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 989 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 990 continue; 991 } 992 iColumn = pOrTerm->u.leftColumn; 993 iCursor = pOrTerm->leftCursor; 994 break; 995 } 996 if( i<0 ){ 997 /* No candidate table+column was found. This can only occur 998 ** on the second iteration */ 999 assert( j==1 ); 1000 assert( (chngToIN&(chngToIN-1))==0 ); 1001 assert( chngToIN==getMask(pMaskSet, iCursor) ); 1002 break; 1003 } 1004 testcase( j==1 ); 1005 1006 /* We have found a candidate table and column. Check to see if that 1007 ** table and column is common to every term in the OR clause */ 1008 okToChngToIN = 1; 1009 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 1010 assert( pOrTerm->eOperator==WO_EQ ); 1011 if( pOrTerm->leftCursor!=iCursor ){ 1012 pOrTerm->wtFlags &= ~TERM_OR_OK; 1013 }else if( pOrTerm->u.leftColumn!=iColumn ){ 1014 okToChngToIN = 0; 1015 }else{ 1016 int affLeft, affRight; 1017 /* If the right-hand side is also a column, then the affinities 1018 ** of both right and left sides must be such that no type 1019 ** conversions are required on the right. (Ticket #2249) 1020 */ 1021 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 1022 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 1023 if( affRight!=0 && affRight!=affLeft ){ 1024 okToChngToIN = 0; 1025 }else{ 1026 pOrTerm->wtFlags |= TERM_OR_OK; 1027 } 1028 } 1029 } 1030 } 1031 1032 /* At this point, okToChngToIN is true if original pTerm satisfies 1033 ** case 1. In that case, construct a new virtual term that is 1034 ** pTerm converted into an IN operator. 1035 ** 1036 ** EV: R-00211-15100 1037 */ 1038 if( okToChngToIN ){ 1039 Expr *pDup; /* A transient duplicate expression */ 1040 ExprList *pList = 0; /* The RHS of the IN operator */ 1041 Expr *pLeft = 0; /* The LHS of the IN operator */ 1042 Expr *pNew; /* The complete IN operator */ 1043 1044 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 1045 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 1046 assert( pOrTerm->eOperator==WO_EQ ); 1047 assert( pOrTerm->leftCursor==iCursor ); 1048 assert( pOrTerm->u.leftColumn==iColumn ); 1049 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 1050 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); 1051 pLeft = pOrTerm->pExpr->pLeft; 1052 } 1053 assert( pLeft!=0 ); 1054 pDup = sqlite3ExprDup(db, pLeft, 0); 1055 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 1056 if( pNew ){ 1057 int idxNew; 1058 transferJoinMarkings(pNew, pExpr); 1059 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1060 pNew->x.pList = pList; 1061 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 1062 testcase( idxNew==0 ); 1063 exprAnalyze(pSrc, pWC, idxNew); 1064 pTerm = &pWC->a[idxTerm]; 1065 pWC->a[idxNew].iParent = idxTerm; 1066 pTerm->nChild = 1; 1067 }else{ 1068 sqlite3ExprListDelete(db, pList); 1069 } 1070 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ 1071 } 1072 } 1073 } 1074 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 1075 1076 1077 /* 1078 ** The input to this routine is an WhereTerm structure with only the 1079 ** "pExpr" field filled in. The job of this routine is to analyze the 1080 ** subexpression and populate all the other fields of the WhereTerm 1081 ** structure. 1082 ** 1083 ** If the expression is of the form "<expr> <op> X" it gets commuted 1084 ** to the standard form of "X <op> <expr>". 1085 ** 1086 ** If the expression is of the form "X <op> Y" where both X and Y are 1087 ** columns, then the original expression is unchanged and a new virtual 1088 ** term of the form "Y <op> X" is added to the WHERE clause and 1089 ** analyzed separately. The original term is marked with TERM_COPIED 1090 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1091 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1092 ** is a commuted copy of a prior term.) The original term has nChild=1 1093 ** and the copy has idxParent set to the index of the original term. 1094 */ 1095 static void exprAnalyze( 1096 SrcList *pSrc, /* the FROM clause */ 1097 WhereClause *pWC, /* the WHERE clause */ 1098 int idxTerm /* Index of the term to be analyzed */ 1099 ){ 1100 WhereTerm *pTerm; /* The term to be analyzed */ 1101 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1102 Expr *pExpr; /* The expression to be analyzed */ 1103 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1104 Bitmask prereqAll; /* Prerequesites of pExpr */ 1105 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1106 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1107 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1108 int noCase = 0; /* LIKE/GLOB distinguishes case */ 1109 int op; /* Top-level operator. pExpr->op */ 1110 Parse *pParse = pWC->pParse; /* Parsing context */ 1111 sqlite3 *db = pParse->db; /* Database connection */ 1112 1113 if( db->mallocFailed ){ 1114 return; 1115 } 1116 pTerm = &pWC->a[idxTerm]; 1117 pMaskSet = pWC->pMaskSet; 1118 pExpr = pTerm->pExpr; 1119 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1120 op = pExpr->op; 1121 if( op==TK_IN ){ 1122 assert( pExpr->pRight==0 ); 1123 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1124 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); 1125 }else{ 1126 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); 1127 } 1128 }else if( op==TK_ISNULL ){ 1129 pTerm->prereqRight = 0; 1130 }else{ 1131 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1132 } 1133 prereqAll = exprTableUsage(pMaskSet, pExpr); 1134 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1135 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1136 prereqAll |= x; 1137 extraRight = x-1; /* ON clause terms may not be used with an index 1138 ** on left table of a LEFT JOIN. Ticket #3015 */ 1139 } 1140 pTerm->prereqAll = prereqAll; 1141 pTerm->leftCursor = -1; 1142 pTerm->iParent = -1; 1143 pTerm->eOperator = 0; 1144 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 1145 Expr *pLeft = pExpr->pLeft; 1146 Expr *pRight = pExpr->pRight; 1147 if( pLeft->op==TK_COLUMN ){ 1148 pTerm->leftCursor = pLeft->iTable; 1149 pTerm->u.leftColumn = pLeft->iColumn; 1150 pTerm->eOperator = operatorMask(op); 1151 } 1152 if( pRight && pRight->op==TK_COLUMN ){ 1153 WhereTerm *pNew; 1154 Expr *pDup; 1155 if( pTerm->leftCursor>=0 ){ 1156 int idxNew; 1157 pDup = sqlite3ExprDup(db, pExpr, 0); 1158 if( db->mallocFailed ){ 1159 sqlite3ExprDelete(db, pDup); 1160 return; 1161 } 1162 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1163 if( idxNew==0 ) return; 1164 pNew = &pWC->a[idxNew]; 1165 pNew->iParent = idxTerm; 1166 pTerm = &pWC->a[idxTerm]; 1167 pTerm->nChild = 1; 1168 pTerm->wtFlags |= TERM_COPIED; 1169 }else{ 1170 pDup = pExpr; 1171 pNew = pTerm; 1172 } 1173 exprCommute(pParse, pDup); 1174 pLeft = pDup->pLeft; 1175 pNew->leftCursor = pLeft->iTable; 1176 pNew->u.leftColumn = pLeft->iColumn; 1177 testcase( (prereqLeft | extraRight) != prereqLeft ); 1178 pNew->prereqRight = prereqLeft | extraRight; 1179 pNew->prereqAll = prereqAll; 1180 pNew->eOperator = operatorMask(pDup->op); 1181 } 1182 } 1183 1184 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1185 /* If a term is the BETWEEN operator, create two new virtual terms 1186 ** that define the range that the BETWEEN implements. For example: 1187 ** 1188 ** a BETWEEN b AND c 1189 ** 1190 ** is converted into: 1191 ** 1192 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1193 ** 1194 ** The two new terms are added onto the end of the WhereClause object. 1195 ** The new terms are "dynamic" and are children of the original BETWEEN 1196 ** term. That means that if the BETWEEN term is coded, the children are 1197 ** skipped. Or, if the children are satisfied by an index, the original 1198 ** BETWEEN term is skipped. 1199 */ 1200 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1201 ExprList *pList = pExpr->x.pList; 1202 int i; 1203 static const u8 ops[] = {TK_GE, TK_LE}; 1204 assert( pList!=0 ); 1205 assert( pList->nExpr==2 ); 1206 for(i=0; i<2; i++){ 1207 Expr *pNewExpr; 1208 int idxNew; 1209 pNewExpr = sqlite3PExpr(pParse, ops[i], 1210 sqlite3ExprDup(db, pExpr->pLeft, 0), 1211 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1212 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1213 testcase( idxNew==0 ); 1214 exprAnalyze(pSrc, pWC, idxNew); 1215 pTerm = &pWC->a[idxTerm]; 1216 pWC->a[idxNew].iParent = idxTerm; 1217 } 1218 pTerm->nChild = 2; 1219 } 1220 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1221 1222 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1223 /* Analyze a term that is composed of two or more subterms connected by 1224 ** an OR operator. 1225 */ 1226 else if( pExpr->op==TK_OR ){ 1227 assert( pWC->op==TK_AND ); 1228 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1229 pTerm = &pWC->a[idxTerm]; 1230 } 1231 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1232 1233 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1234 /* Add constraints to reduce the search space on a LIKE or GLOB 1235 ** operator. 1236 ** 1237 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 1238 ** 1239 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 1240 ** 1241 ** The last character of the prefix "abc" is incremented to form the 1242 ** termination condition "abd". 1243 */ 1244 if( pWC->op==TK_AND 1245 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1246 ){ 1247 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1248 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1249 Expr *pNewExpr1; 1250 Expr *pNewExpr2; 1251 int idxNew1; 1252 int idxNew2; 1253 CollSeq *pColl; /* Collating sequence to use */ 1254 1255 pLeft = pExpr->x.pList->a[1].pExpr; 1256 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1257 if( !db->mallocFailed ){ 1258 u8 c, *pC; /* Last character before the first wildcard */ 1259 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1260 c = *pC; 1261 if( noCase ){ 1262 /* The point is to increment the last character before the first 1263 ** wildcard. But if we increment '@', that will push it into the 1264 ** alphabetic range where case conversions will mess up the 1265 ** inequality. To avoid this, make sure to also run the full 1266 ** LIKE on all candidate expressions by clearing the isComplete flag 1267 */ 1268 if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ 1269 1270 1271 c = sqlite3UpperToLower[c]; 1272 } 1273 *pC = c + 1; 1274 } 1275 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0); 1276 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1277 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), 1278 pStr1, 0); 1279 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 1280 testcase( idxNew1==0 ); 1281 exprAnalyze(pSrc, pWC, idxNew1); 1282 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1283 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), 1284 pStr2, 0); 1285 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 1286 testcase( idxNew2==0 ); 1287 exprAnalyze(pSrc, pWC, idxNew2); 1288 pTerm = &pWC->a[idxTerm]; 1289 if( isComplete ){ 1290 pWC->a[idxNew1].iParent = idxTerm; 1291 pWC->a[idxNew2].iParent = idxTerm; 1292 pTerm->nChild = 2; 1293 } 1294 } 1295 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1296 1297 #ifndef SQLITE_OMIT_VIRTUALTABLE 1298 /* Add a WO_MATCH auxiliary term to the constraint set if the 1299 ** current expression is of the form: column MATCH expr. 1300 ** This information is used by the xBestIndex methods of 1301 ** virtual tables. The native query optimizer does not attempt 1302 ** to do anything with MATCH functions. 1303 */ 1304 if( isMatchOfColumn(pExpr) ){ 1305 int idxNew; 1306 Expr *pRight, *pLeft; 1307 WhereTerm *pNewTerm; 1308 Bitmask prereqColumn, prereqExpr; 1309 1310 pRight = pExpr->x.pList->a[0].pExpr; 1311 pLeft = pExpr->x.pList->a[1].pExpr; 1312 prereqExpr = exprTableUsage(pMaskSet, pRight); 1313 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1314 if( (prereqExpr & prereqColumn)==0 ){ 1315 Expr *pNewExpr; 1316 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1317 0, sqlite3ExprDup(db, pRight, 0), 0); 1318 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1319 testcase( idxNew==0 ); 1320 pNewTerm = &pWC->a[idxNew]; 1321 pNewTerm->prereqRight = prereqExpr; 1322 pNewTerm->leftCursor = pLeft->iTable; 1323 pNewTerm->u.leftColumn = pLeft->iColumn; 1324 pNewTerm->eOperator = WO_MATCH; 1325 pNewTerm->iParent = idxTerm; 1326 pTerm = &pWC->a[idxTerm]; 1327 pTerm->nChild = 1; 1328 pTerm->wtFlags |= TERM_COPIED; 1329 pNewTerm->prereqAll = pTerm->prereqAll; 1330 } 1331 } 1332 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1333 1334 #ifdef SQLITE_ENABLE_STAT2 1335 /* When sqlite_stat2 histogram data is available an operator of the 1336 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1337 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1338 ** virtual term of that form. 1339 ** 1340 ** Note that the virtual term must be tagged with TERM_VNULL. This 1341 ** TERM_VNULL tag will suppress the not-null check at the beginning 1342 ** of the loop. Without the TERM_VNULL flag, the not-null check at 1343 ** the start of the loop will prevent any results from being returned. 1344 */ 1345 if( pExpr->op==TK_NOTNULL 1346 && pExpr->pLeft->op==TK_COLUMN 1347 && pExpr->pLeft->iColumn>=0 1348 ){ 1349 Expr *pNewExpr; 1350 Expr *pLeft = pExpr->pLeft; 1351 int idxNew; 1352 WhereTerm *pNewTerm; 1353 1354 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1355 sqlite3ExprDup(db, pLeft, 0), 1356 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); 1357 1358 idxNew = whereClauseInsert(pWC, pNewExpr, 1359 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1360 if( idxNew ){ 1361 pNewTerm = &pWC->a[idxNew]; 1362 pNewTerm->prereqRight = 0; 1363 pNewTerm->leftCursor = pLeft->iTable; 1364 pNewTerm->u.leftColumn = pLeft->iColumn; 1365 pNewTerm->eOperator = WO_GT; 1366 pNewTerm->iParent = idxTerm; 1367 pTerm = &pWC->a[idxTerm]; 1368 pTerm->nChild = 1; 1369 pTerm->wtFlags |= TERM_COPIED; 1370 pNewTerm->prereqAll = pTerm->prereqAll; 1371 } 1372 } 1373 #endif /* SQLITE_ENABLE_STAT2 */ 1374 1375 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1376 ** an index for tables to the left of the join. 1377 */ 1378 pTerm->prereqRight |= extraRight; 1379 } 1380 1381 /* 1382 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 1383 ** a reference to any table other than the iBase table. 1384 */ 1385 static int referencesOtherTables( 1386 ExprList *pList, /* Search expressions in ths list */ 1387 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1388 int iFirst, /* Be searching with the iFirst-th expression */ 1389 int iBase /* Ignore references to this table */ 1390 ){ 1391 Bitmask allowed = ~getMask(pMaskSet, iBase); 1392 while( iFirst<pList->nExpr ){ 1393 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1394 return 1; 1395 } 1396 } 1397 return 0; 1398 } 1399 1400 1401 /* 1402 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1403 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1404 ** ORDER BY clause, this routine returns 0. 1405 ** 1406 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1407 ** left-most table in the FROM clause of that same SELECT statement and 1408 ** the table has a cursor number of "base". pIdx is an index on pTab. 1409 ** 1410 ** nEqCol is the number of columns of pIdx that are used as equality 1411 ** constraints. Any of these columns may be missing from the ORDER BY 1412 ** clause and the match can still be a success. 1413 ** 1414 ** All terms of the ORDER BY that match against the index must be either 1415 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1416 ** index do not need to satisfy this constraint.) The *pbRev value is 1417 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1418 ** the ORDER BY clause is all ASC. 1419 */ 1420 static int isSortingIndex( 1421 Parse *pParse, /* Parsing context */ 1422 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ 1423 Index *pIdx, /* The index we are testing */ 1424 int base, /* Cursor number for the table to be sorted */ 1425 ExprList *pOrderBy, /* The ORDER BY clause */ 1426 int nEqCol, /* Number of index columns with == constraints */ 1427 int wsFlags, /* Index usages flags */ 1428 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1429 ){ 1430 int i, j; /* Loop counters */ 1431 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1432 int nTerm; /* Number of ORDER BY terms */ 1433 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1434 sqlite3 *db = pParse->db; 1435 1436 assert( pOrderBy!=0 ); 1437 nTerm = pOrderBy->nExpr; 1438 assert( nTerm>0 ); 1439 1440 /* Argument pIdx must either point to a 'real' named index structure, 1441 ** or an index structure allocated on the stack by bestBtreeIndex() to 1442 ** represent the rowid index that is part of every table. */ 1443 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); 1444 1445 /* Match terms of the ORDER BY clause against columns of 1446 ** the index. 1447 ** 1448 ** Note that indices have pIdx->nColumn regular columns plus 1449 ** one additional column containing the rowid. The rowid column 1450 ** of the index is also allowed to match against the ORDER BY 1451 ** clause. 1452 */ 1453 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1454 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1455 CollSeq *pColl; /* The collating sequence of pExpr */ 1456 int termSortOrder; /* Sort order for this term */ 1457 int iColumn; /* The i-th column of the index. -1 for rowid */ 1458 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1459 const char *zColl; /* Name of the collating sequence for i-th index term */ 1460 1461 pExpr = pTerm->pExpr; 1462 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1463 /* Can not use an index sort on anything that is not a column in the 1464 ** left-most table of the FROM clause */ 1465 break; 1466 } 1467 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1468 if( !pColl ){ 1469 pColl = db->pDfltColl; 1470 } 1471 if( pIdx->zName && i<pIdx->nColumn ){ 1472 iColumn = pIdx->aiColumn[i]; 1473 if( iColumn==pIdx->pTable->iPKey ){ 1474 iColumn = -1; 1475 } 1476 iSortOrder = pIdx->aSortOrder[i]; 1477 zColl = pIdx->azColl[i]; 1478 }else{ 1479 iColumn = -1; 1480 iSortOrder = 0; 1481 zColl = pColl->zName; 1482 } 1483 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1484 /* Term j of the ORDER BY clause does not match column i of the index */ 1485 if( i<nEqCol ){ 1486 /* If an index column that is constrained by == fails to match an 1487 ** ORDER BY term, that is OK. Just ignore that column of the index 1488 */ 1489 continue; 1490 }else if( i==pIdx->nColumn ){ 1491 /* Index column i is the rowid. All other terms match. */ 1492 break; 1493 }else{ 1494 /* If an index column fails to match and is not constrained by == 1495 ** then the index cannot satisfy the ORDER BY constraint. 1496 */ 1497 return 0; 1498 } 1499 } 1500 assert( pIdx->aSortOrder!=0 || iColumn==-1 ); 1501 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1502 assert( iSortOrder==0 || iSortOrder==1 ); 1503 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1504 if( i>nEqCol ){ 1505 if( termSortOrder!=sortOrder ){ 1506 /* Indices can only be used if all ORDER BY terms past the 1507 ** equality constraints are all either DESC or ASC. */ 1508 return 0; 1509 } 1510 }else{ 1511 sortOrder = termSortOrder; 1512 } 1513 j++; 1514 pTerm++; 1515 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1516 /* If the indexed column is the primary key and everything matches 1517 ** so far and none of the ORDER BY terms to the right reference other 1518 ** tables in the join, then we are assured that the index can be used 1519 ** to sort because the primary key is unique and so none of the other 1520 ** columns will make any difference 1521 */ 1522 j = nTerm; 1523 } 1524 } 1525 1526 *pbRev = sortOrder!=0; 1527 if( j>=nTerm ){ 1528 /* All terms of the ORDER BY clause are covered by this index so 1529 ** this index can be used for sorting. */ 1530 return 1; 1531 } 1532 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1533 && (wsFlags & WHERE_COLUMN_NULL)==0 1534 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1535 /* All terms of this index match some prefix of the ORDER BY clause 1536 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1537 ** clause reference other tables in a join. If this is all true then 1538 ** the order by clause is superfluous. Not that if the matching 1539 ** condition is IS NULL then the result is not necessarily unique 1540 ** even on a UNIQUE index, so disallow those cases. */ 1541 return 1; 1542 } 1543 return 0; 1544 } 1545 1546 /* 1547 ** Prepare a crude estimate of the logarithm of the input value. 1548 ** The results need not be exact. This is only used for estimating 1549 ** the total cost of performing operations with O(logN) or O(NlogN) 1550 ** complexity. Because N is just a guess, it is no great tragedy if 1551 ** logN is a little off. 1552 */ 1553 static double estLog(double N){ 1554 double logN = 1; 1555 double x = 10; 1556 while( N>x ){ 1557 logN += 1; 1558 x *= 10; 1559 } 1560 return logN; 1561 } 1562 1563 /* 1564 ** Two routines for printing the content of an sqlite3_index_info 1565 ** structure. Used for testing and debugging only. If neither 1566 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1567 ** are no-ops. 1568 */ 1569 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1570 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1571 int i; 1572 if( !sqlite3WhereTrace ) return; 1573 for(i=0; i<p->nConstraint; i++){ 1574 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1575 i, 1576 p->aConstraint[i].iColumn, 1577 p->aConstraint[i].iTermOffset, 1578 p->aConstraint[i].op, 1579 p->aConstraint[i].usable); 1580 } 1581 for(i=0; i<p->nOrderBy; i++){ 1582 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1583 i, 1584 p->aOrderBy[i].iColumn, 1585 p->aOrderBy[i].desc); 1586 } 1587 } 1588 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1589 int i; 1590 if( !sqlite3WhereTrace ) return; 1591 for(i=0; i<p->nConstraint; i++){ 1592 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1593 i, 1594 p->aConstraintUsage[i].argvIndex, 1595 p->aConstraintUsage[i].omit); 1596 } 1597 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1598 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1599 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1600 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1601 } 1602 #else 1603 #define TRACE_IDX_INPUTS(A) 1604 #define TRACE_IDX_OUTPUTS(A) 1605 #endif 1606 1607 /* 1608 ** Required because bestIndex() is called by bestOrClauseIndex() 1609 */ 1610 static void bestIndex( 1611 Parse*, WhereClause*, struct SrcList_item*, 1612 Bitmask, Bitmask, ExprList*, WhereCost*); 1613 1614 /* 1615 ** This routine attempts to find an scanning strategy that can be used 1616 ** to optimize an 'OR' expression that is part of a WHERE clause. 1617 ** 1618 ** The table associated with FROM clause term pSrc may be either a 1619 ** regular B-Tree table or a virtual table. 1620 */ 1621 static void bestOrClauseIndex( 1622 Parse *pParse, /* The parsing context */ 1623 WhereClause *pWC, /* The WHERE clause */ 1624 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1625 Bitmask notReady, /* Mask of cursors not available for indexing */ 1626 Bitmask notValid, /* Cursors not available for any purpose */ 1627 ExprList *pOrderBy, /* The ORDER BY clause */ 1628 WhereCost *pCost /* Lowest cost query plan */ 1629 ){ 1630 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1631 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1632 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ 1633 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ 1634 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1635 1636 /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses 1637 ** are used */ 1638 if( pSrc->notIndexed || pSrc->pIndex!=0 ){ 1639 return; 1640 } 1641 1642 /* Search the WHERE clause terms for a usable WO_OR term. */ 1643 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1644 if( pTerm->eOperator==WO_OR 1645 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 1646 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 1647 ){ 1648 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 1649 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 1650 WhereTerm *pOrTerm; 1651 int flags = WHERE_MULTI_OR; 1652 double rTotal = 0; 1653 double nRow = 0; 1654 Bitmask used = 0; 1655 1656 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 1657 WhereCost sTermCost; 1658 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 1659 (pOrTerm - pOrWC->a), (pTerm - pWC->a) 1660 )); 1661 if( pOrTerm->eOperator==WO_AND ){ 1662 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; 1663 bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost); 1664 }else if( pOrTerm->leftCursor==iCur ){ 1665 WhereClause tempWC; 1666 tempWC.pParse = pWC->pParse; 1667 tempWC.pMaskSet = pWC->pMaskSet; 1668 tempWC.op = TK_AND; 1669 tempWC.a = pOrTerm; 1670 tempWC.nTerm = 1; 1671 bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost); 1672 }else{ 1673 continue; 1674 } 1675 rTotal += sTermCost.rCost; 1676 nRow += sTermCost.plan.nRow; 1677 used |= sTermCost.used; 1678 if( rTotal>=pCost->rCost ) break; 1679 } 1680 1681 /* If there is an ORDER BY clause, increase the scan cost to account 1682 ** for the cost of the sort. */ 1683 if( pOrderBy!=0 ){ 1684 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", 1685 rTotal, rTotal+nRow*estLog(nRow))); 1686 rTotal += nRow*estLog(nRow); 1687 } 1688 1689 /* If the cost of scanning using this OR term for optimization is 1690 ** less than the current cost stored in pCost, replace the contents 1691 ** of pCost. */ 1692 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); 1693 if( rTotal<pCost->rCost ){ 1694 pCost->rCost = rTotal; 1695 pCost->used = used; 1696 pCost->plan.nRow = nRow; 1697 pCost->plan.wsFlags = flags; 1698 pCost->plan.u.pTerm = pTerm; 1699 } 1700 } 1701 } 1702 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1703 } 1704 1705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1706 /* 1707 ** Return TRUE if the WHERE clause term pTerm is of a form where it 1708 ** could be used with an index to access pSrc, assuming an appropriate 1709 ** index existed. 1710 */ 1711 static int termCanDriveIndex( 1712 WhereTerm *pTerm, /* WHERE clause term to check */ 1713 struct SrcList_item *pSrc, /* Table we are trying to access */ 1714 Bitmask notReady /* Tables in outer loops of the join */ 1715 ){ 1716 char aff; 1717 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 1718 if( pTerm->eOperator!=WO_EQ ) return 0; 1719 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 1720 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 1721 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 1722 return 1; 1723 } 1724 #endif 1725 1726 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1727 /* 1728 ** If the query plan for pSrc specified in pCost is a full table scan 1729 ** and indexing is allows (if there is no NOT INDEXED clause) and it 1730 ** possible to construct a transient index that would perform better 1731 ** than a full table scan even when the cost of constructing the index 1732 ** is taken into account, then alter the query plan to use the 1733 ** transient index. 1734 */ 1735 static void bestAutomaticIndex( 1736 Parse *pParse, /* The parsing context */ 1737 WhereClause *pWC, /* The WHERE clause */ 1738 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1739 Bitmask notReady, /* Mask of cursors that are not available */ 1740 WhereCost *pCost /* Lowest cost query plan */ 1741 ){ 1742 double nTableRow; /* Rows in the input table */ 1743 double logN; /* log(nTableRow) */ 1744 double costTempIdx; /* per-query cost of the transient index */ 1745 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1746 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1747 Table *pTable; /* Table tht might be indexed */ 1748 1749 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ 1750 /* Automatic indices are disabled at run-time */ 1751 return; 1752 } 1753 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ 1754 /* We already have some kind of index in use for this query. */ 1755 return; 1756 } 1757 if( pSrc->notIndexed ){ 1758 /* The NOT INDEXED clause appears in the SQL. */ 1759 return; 1760 } 1761 1762 assert( pParse->nQueryLoop >= (double)1 ); 1763 pTable = pSrc->pTab; 1764 nTableRow = pTable->nRowEst; 1765 logN = estLog(nTableRow); 1766 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); 1767 if( costTempIdx>=pCost->rCost ){ 1768 /* The cost of creating the transient table would be greater than 1769 ** doing the full table scan */ 1770 return; 1771 } 1772 1773 /* Search for any equality comparison term */ 1774 pWCEnd = &pWC->a[pWC->nTerm]; 1775 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1776 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1777 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", 1778 pCost->rCost, costTempIdx)); 1779 pCost->rCost = costTempIdx; 1780 pCost->plan.nRow = logN + 1; 1781 pCost->plan.wsFlags = WHERE_TEMP_INDEX; 1782 pCost->used = pTerm->prereqRight; 1783 break; 1784 } 1785 } 1786 } 1787 #else 1788 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */ 1789 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1790 1791 1792 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1793 /* 1794 ** Generate code to construct the Index object for an automatic index 1795 ** and to set up the WhereLevel object pLevel so that the code generator 1796 ** makes use of the automatic index. 1797 */ 1798 static void constructAutomaticIndex( 1799 Parse *pParse, /* The parsing context */ 1800 WhereClause *pWC, /* The WHERE clause */ 1801 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 1802 Bitmask notReady, /* Mask of cursors that are not available */ 1803 WhereLevel *pLevel /* Write new index here */ 1804 ){ 1805 int nColumn; /* Number of columns in the constructed index */ 1806 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1807 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1808 int nByte; /* Byte of memory needed for pIdx */ 1809 Index *pIdx; /* Object describing the transient index */ 1810 Vdbe *v; /* Prepared statement under construction */ 1811 int regIsInit; /* Register set by initialization */ 1812 int addrInit; /* Address of the initialization bypass jump */ 1813 Table *pTable; /* The table being indexed */ 1814 KeyInfo *pKeyinfo; /* Key information for the index */ 1815 int addrTop; /* Top of the index fill loop */ 1816 int regRecord; /* Register holding an index record */ 1817 int n; /* Column counter */ 1818 int i; /* Loop counter */ 1819 int mxBitCol; /* Maximum column in pSrc->colUsed */ 1820 CollSeq *pColl; /* Collating sequence to on a column */ 1821 Bitmask idxCols; /* Bitmap of columns used for indexing */ 1822 Bitmask extraCols; /* Bitmap of additional columns */ 1823 1824 /* Generate code to skip over the creation and initialization of the 1825 ** transient index on 2nd and subsequent iterations of the loop. */ 1826 v = pParse->pVdbe; 1827 assert( v!=0 ); 1828 regIsInit = ++pParse->nMem; 1829 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit); 1830 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit); 1831 1832 /* Count the number of columns that will be added to the index 1833 ** and used to match WHERE clause constraints */ 1834 nColumn = 0; 1835 pTable = pSrc->pTab; 1836 pWCEnd = &pWC->a[pWC->nTerm]; 1837 idxCols = 0; 1838 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1839 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1840 int iCol = pTerm->u.leftColumn; 1841 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; 1842 testcase( iCol==BMS ); 1843 testcase( iCol==BMS-1 ); 1844 if( (idxCols & cMask)==0 ){ 1845 nColumn++; 1846 idxCols |= cMask; 1847 } 1848 } 1849 } 1850 assert( nColumn>0 ); 1851 pLevel->plan.nEq = nColumn; 1852 1853 /* Count the number of additional columns needed to create a 1854 ** covering index. A "covering index" is an index that contains all 1855 ** columns that are needed by the query. With a covering index, the 1856 ** original table never needs to be accessed. Automatic indices must 1857 ** be a covering index because the index will not be updated if the 1858 ** original table changes and the index and table cannot both be used 1859 ** if they go out of sync. 1860 */ 1861 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); 1862 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; 1863 testcase( pTable->nCol==BMS-1 ); 1864 testcase( pTable->nCol==BMS-2 ); 1865 for(i=0; i<mxBitCol; i++){ 1866 if( extraCols & (((Bitmask)1)<<i) ) nColumn++; 1867 } 1868 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ 1869 nColumn += pTable->nCol - BMS + 1; 1870 } 1871 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; 1872 1873 /* Construct the Index object to describe this index */ 1874 nByte = sizeof(Index); 1875 nByte += nColumn*sizeof(int); /* Index.aiColumn */ 1876 nByte += nColumn*sizeof(char*); /* Index.azColl */ 1877 nByte += nColumn; /* Index.aSortOrder */ 1878 pIdx = sqlite3DbMallocZero(pParse->db, nByte); 1879 if( pIdx==0 ) return; 1880 pLevel->plan.u.pIdx = pIdx; 1881 pIdx->azColl = (char**)&pIdx[1]; 1882 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; 1883 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; 1884 pIdx->zName = "auto-index"; 1885 pIdx->nColumn = nColumn; 1886 pIdx->pTable = pTable; 1887 n = 0; 1888 idxCols = 0; 1889 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1890 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1891 int iCol = pTerm->u.leftColumn; 1892 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; 1893 if( (idxCols & cMask)==0 ){ 1894 Expr *pX = pTerm->pExpr; 1895 idxCols |= cMask; 1896 pIdx->aiColumn[n] = pTerm->u.leftColumn; 1897 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 1898 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; 1899 n++; 1900 } 1901 } 1902 } 1903 assert( (u32)n==pLevel->plan.nEq ); 1904 1905 /* Add additional columns needed to make the automatic index into 1906 ** a covering index */ 1907 for(i=0; i<mxBitCol; i++){ 1908 if( extraCols & (((Bitmask)1)<<i) ){ 1909 pIdx->aiColumn[n] = i; 1910 pIdx->azColl[n] = "BINARY"; 1911 n++; 1912 } 1913 } 1914 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ 1915 for(i=BMS-1; i<pTable->nCol; i++){ 1916 pIdx->aiColumn[n] = i; 1917 pIdx->azColl[n] = "BINARY"; 1918 n++; 1919 } 1920 } 1921 assert( n==nColumn ); 1922 1923 /* Create the automatic index */ 1924 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); 1925 assert( pLevel->iIdxCur>=0 ); 1926 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, 1927 (char*)pKeyinfo, P4_KEYINFO_HANDOFF); 1928 VdbeComment((v, "for %s", pTable->zName)); 1929 1930 /* Fill the automatic index with content */ 1931 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); 1932 regRecord = sqlite3GetTempReg(pParse); 1933 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); 1934 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 1935 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1936 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1937 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 1938 sqlite3VdbeJumpHere(v, addrTop); 1939 sqlite3ReleaseTempReg(pParse, regRecord); 1940 1941 /* Jump here when skipping the initialization */ 1942 sqlite3VdbeJumpHere(v, addrInit); 1943 } 1944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1945 1946 #ifndef SQLITE_OMIT_VIRTUALTABLE 1947 /* 1948 ** Allocate and populate an sqlite3_index_info structure. It is the 1949 ** responsibility of the caller to eventually release the structure 1950 ** by passing the pointer returned by this function to sqlite3_free(). 1951 */ 1952 static sqlite3_index_info *allocateIndexInfo( 1953 Parse *pParse, 1954 WhereClause *pWC, 1955 struct SrcList_item *pSrc, 1956 ExprList *pOrderBy 1957 ){ 1958 int i, j; 1959 int nTerm; 1960 struct sqlite3_index_constraint *pIdxCons; 1961 struct sqlite3_index_orderby *pIdxOrderBy; 1962 struct sqlite3_index_constraint_usage *pUsage; 1963 WhereTerm *pTerm; 1964 int nOrderBy; 1965 sqlite3_index_info *pIdxInfo; 1966 1967 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); 1968 1969 /* Count the number of possible WHERE clause constraints referring 1970 ** to this virtual table */ 1971 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1972 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1973 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1974 testcase( pTerm->eOperator==WO_IN ); 1975 testcase( pTerm->eOperator==WO_ISNULL ); 1976 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1977 nTerm++; 1978 } 1979 1980 /* If the ORDER BY clause contains only columns in the current 1981 ** virtual table then allocate space for the aOrderBy part of 1982 ** the sqlite3_index_info structure. 1983 */ 1984 nOrderBy = 0; 1985 if( pOrderBy ){ 1986 for(i=0; i<pOrderBy->nExpr; i++){ 1987 Expr *pExpr = pOrderBy->a[i].pExpr; 1988 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1989 } 1990 if( i==pOrderBy->nExpr ){ 1991 nOrderBy = pOrderBy->nExpr; 1992 } 1993 } 1994 1995 /* Allocate the sqlite3_index_info structure 1996 */ 1997 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1998 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1999 + sizeof(*pIdxOrderBy)*nOrderBy ); 2000 if( pIdxInfo==0 ){ 2001 sqlite3ErrorMsg(pParse, "out of memory"); 2002 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 2003 return 0; 2004 } 2005 2006 /* Initialize the structure. The sqlite3_index_info structure contains 2007 ** many fields that are declared "const" to prevent xBestIndex from 2008 ** changing them. We have to do some funky casting in order to 2009 ** initialize those fields. 2010 */ 2011 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 2012 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 2013 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 2014 *(int*)&pIdxInfo->nConstraint = nTerm; 2015 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 2016 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 2017 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 2018 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 2019 pUsage; 2020 2021 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2022 if( pTerm->leftCursor != pSrc->iCursor ) continue; 2023 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 2024 testcase( pTerm->eOperator==WO_IN ); 2025 testcase( pTerm->eOperator==WO_ISNULL ); 2026 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 2027 pIdxCons[j].iColumn = pTerm->u.leftColumn; 2028 pIdxCons[j].iTermOffset = i; 2029 pIdxCons[j].op = (u8)pTerm->eOperator; 2030 /* The direct assignment in the previous line is possible only because 2031 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 2032 ** following asserts verify this fact. */ 2033 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 2034 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 2035 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 2036 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 2037 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 2038 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 2039 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 2040 j++; 2041 } 2042 for(i=0; i<nOrderBy; i++){ 2043 Expr *pExpr = pOrderBy->a[i].pExpr; 2044 pIdxOrderBy[i].iColumn = pExpr->iColumn; 2045 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 2046 } 2047 2048 return pIdxInfo; 2049 } 2050 2051 /* 2052 ** The table object reference passed as the second argument to this function 2053 ** must represent a virtual table. This function invokes the xBestIndex() 2054 ** method of the virtual table with the sqlite3_index_info pointer passed 2055 ** as the argument. 2056 ** 2057 ** If an error occurs, pParse is populated with an error message and a 2058 ** non-zero value is returned. Otherwise, 0 is returned and the output 2059 ** part of the sqlite3_index_info structure is left populated. 2060 ** 2061 ** Whether or not an error is returned, it is the responsibility of the 2062 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 2063 ** that this is required. 2064 */ 2065 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 2066 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 2067 int i; 2068 int rc; 2069 2070 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 2071 TRACE_IDX_INPUTS(p); 2072 rc = pVtab->pModule->xBestIndex(pVtab, p); 2073 TRACE_IDX_OUTPUTS(p); 2074 2075 if( rc!=SQLITE_OK ){ 2076 if( rc==SQLITE_NOMEM ){ 2077 pParse->db->mallocFailed = 1; 2078 }else if( !pVtab->zErrMsg ){ 2079 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 2080 }else{ 2081 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 2082 } 2083 } 2084 sqlite3_free(pVtab->zErrMsg); 2085 pVtab->zErrMsg = 0; 2086 2087 for(i=0; i<p->nConstraint; i++){ 2088 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 2089 sqlite3ErrorMsg(pParse, 2090 "table %s: xBestIndex returned an invalid plan", pTab->zName); 2091 } 2092 } 2093 2094 return pParse->nErr; 2095 } 2096 2097 2098 /* 2099 ** Compute the best index for a virtual table. 2100 ** 2101 ** The best index is computed by the xBestIndex method of the virtual 2102 ** table module. This routine is really just a wrapper that sets up 2103 ** the sqlite3_index_info structure that is used to communicate with 2104 ** xBestIndex. 2105 ** 2106 ** In a join, this routine might be called multiple times for the 2107 ** same virtual table. The sqlite3_index_info structure is created 2108 ** and initialized on the first invocation and reused on all subsequent 2109 ** invocations. The sqlite3_index_info structure is also used when 2110 ** code is generated to access the virtual table. The whereInfoDelete() 2111 ** routine takes care of freeing the sqlite3_index_info structure after 2112 ** everybody has finished with it. 2113 */ 2114 static void bestVirtualIndex( 2115 Parse *pParse, /* The parsing context */ 2116 WhereClause *pWC, /* The WHERE clause */ 2117 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2118 Bitmask notReady, /* Mask of cursors not available for index */ 2119 Bitmask notValid, /* Cursors not valid for any purpose */ 2120 ExprList *pOrderBy, /* The order by clause */ 2121 WhereCost *pCost, /* Lowest cost query plan */ 2122 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 2123 ){ 2124 Table *pTab = pSrc->pTab; 2125 sqlite3_index_info *pIdxInfo; 2126 struct sqlite3_index_constraint *pIdxCons; 2127 struct sqlite3_index_constraint_usage *pUsage; 2128 WhereTerm *pTerm; 2129 int i, j; 2130 int nOrderBy; 2131 double rCost; 2132 2133 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 2134 ** malloc in allocateIndexInfo() fails and this function returns leaving 2135 ** wsFlags in an uninitialized state, the caller may behave unpredictably. 2136 */ 2137 memset(pCost, 0, sizeof(*pCost)); 2138 pCost->plan.wsFlags = WHERE_VIRTUALTABLE; 2139 2140 /* If the sqlite3_index_info structure has not been previously 2141 ** allocated and initialized, then allocate and initialize it now. 2142 */ 2143 pIdxInfo = *ppIdxInfo; 2144 if( pIdxInfo==0 ){ 2145 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); 2146 } 2147 if( pIdxInfo==0 ){ 2148 return; 2149 } 2150 2151 /* At this point, the sqlite3_index_info structure that pIdxInfo points 2152 ** to will have been initialized, either during the current invocation or 2153 ** during some prior invocation. Now we just have to customize the 2154 ** details of pIdxInfo for the current invocation and pass it to 2155 ** xBestIndex. 2156 */ 2157 2158 /* The module name must be defined. Also, by this point there must 2159 ** be a pointer to an sqlite3_vtab structure. Otherwise 2160 ** sqlite3ViewGetColumnNames() would have picked up the error. 2161 */ 2162 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 2163 assert( sqlite3GetVTable(pParse->db, pTab) ); 2164 2165 /* Set the aConstraint[].usable fields and initialize all 2166 ** output variables to zero. 2167 ** 2168 ** aConstraint[].usable is true for constraints where the right-hand 2169 ** side contains only references to tables to the left of the current 2170 ** table. In other words, if the constraint is of the form: 2171 ** 2172 ** column = expr 2173 ** 2174 ** and we are evaluating a join, then the constraint on column is 2175 ** only valid if all tables referenced in expr occur to the left 2176 ** of the table containing column. 2177 ** 2178 ** The aConstraints[] array contains entries for all constraints 2179 ** on the current table. That way we only have to compute it once 2180 ** even though we might try to pick the best index multiple times. 2181 ** For each attempt at picking an index, the order of tables in the 2182 ** join might be different so we have to recompute the usable flag 2183 ** each time. 2184 */ 2185 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2186 pUsage = pIdxInfo->aConstraintUsage; 2187 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 2188 j = pIdxCons->iTermOffset; 2189 pTerm = &pWC->a[j]; 2190 pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; 2191 } 2192 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 2193 if( pIdxInfo->needToFreeIdxStr ){ 2194 sqlite3_free(pIdxInfo->idxStr); 2195 } 2196 pIdxInfo->idxStr = 0; 2197 pIdxInfo->idxNum = 0; 2198 pIdxInfo->needToFreeIdxStr = 0; 2199 pIdxInfo->orderByConsumed = 0; 2200 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ 2201 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); 2202 nOrderBy = pIdxInfo->nOrderBy; 2203 if( !pOrderBy ){ 2204 pIdxInfo->nOrderBy = 0; 2205 } 2206 2207 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ 2208 return; 2209 } 2210 2211 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2212 for(i=0; i<pIdxInfo->nConstraint; i++){ 2213 if( pUsage[i].argvIndex>0 ){ 2214 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; 2215 } 2216 } 2217 2218 /* If there is an ORDER BY clause, and the selected virtual table index 2219 ** does not satisfy it, increase the cost of the scan accordingly. This 2220 ** matches the processing for non-virtual tables in bestBtreeIndex(). 2221 */ 2222 rCost = pIdxInfo->estimatedCost; 2223 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){ 2224 rCost += estLog(rCost)*rCost; 2225 } 2226 2227 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2228 ** inital value of lowestCost in this loop. If it is, then the 2229 ** (cost<lowestCost) test below will never be true. 2230 ** 2231 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 2232 ** is defined. 2233 */ 2234 if( (SQLITE_BIG_DBL/((double)2))<rCost ){ 2235 pCost->rCost = (SQLITE_BIG_DBL/((double)2)); 2236 }else{ 2237 pCost->rCost = rCost; 2238 } 2239 pCost->plan.u.pVtabIdx = pIdxInfo; 2240 if( pIdxInfo->orderByConsumed ){ 2241 pCost->plan.wsFlags |= WHERE_ORDERBY; 2242 } 2243 pCost->plan.nEq = 0; 2244 pIdxInfo->nOrderBy = nOrderBy; 2245 2246 /* Try to find a more efficient access pattern by using multiple indexes 2247 ** to optimize an OR expression within the WHERE clause. 2248 */ 2249 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); 2250 } 2251 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2252 2253 /* 2254 ** Argument pIdx is a pointer to an index structure that has an array of 2255 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column 2256 ** stored in Index.aSample. These samples divide the domain of values stored 2257 ** the index into (SQLITE_INDEX_SAMPLES+1) regions. 2258 ** Region 0 contains all values less than the first sample value. Region 2259 ** 1 contains values between the first and second samples. Region 2 contains 2260 ** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES 2261 ** contains values larger than the last sample. 2262 ** 2263 ** If the index contains many duplicates of a single value, then it is 2264 ** possible that two or more adjacent samples can hold the same value. 2265 ** When that is the case, the smallest possible region code is returned 2266 ** when roundUp is false and the largest possible region code is returned 2267 ** when roundUp is true. 2268 ** 2269 ** If successful, this function determines which of the regions value 2270 ** pVal lies in, sets *piRegion to the region index (a value between 0 2271 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. 2272 ** Or, if an OOM occurs while converting text values between encodings, 2273 ** SQLITE_NOMEM is returned and *piRegion is undefined. 2274 */ 2275 #ifdef SQLITE_ENABLE_STAT2 2276 static int whereRangeRegion( 2277 Parse *pParse, /* Database connection */ 2278 Index *pIdx, /* Index to consider domain of */ 2279 sqlite3_value *pVal, /* Value to consider */ 2280 int roundUp, /* Return largest valid region if true */ 2281 int *piRegion /* OUT: Region of domain in which value lies */ 2282 ){ 2283 assert( roundUp==0 || roundUp==1 ); 2284 if( ALWAYS(pVal) ){ 2285 IndexSample *aSample = pIdx->aSample; 2286 int i = 0; 2287 int eType = sqlite3_value_type(pVal); 2288 2289 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2290 double r = sqlite3_value_double(pVal); 2291 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ 2292 if( aSample[i].eType==SQLITE_NULL ) continue; 2293 if( aSample[i].eType>=SQLITE_TEXT ) break; 2294 if( roundUp ){ 2295 if( aSample[i].u.r>r ) break; 2296 }else{ 2297 if( aSample[i].u.r>=r ) break; 2298 } 2299 } 2300 }else if( eType==SQLITE_NULL ){ 2301 i = 0; 2302 if( roundUp ){ 2303 while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++; 2304 } 2305 }else{ 2306 sqlite3 *db = pParse->db; 2307 CollSeq *pColl; 2308 const u8 *z; 2309 int n; 2310 2311 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ 2312 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 2313 2314 if( eType==SQLITE_BLOB ){ 2315 z = (const u8 *)sqlite3_value_blob(pVal); 2316 pColl = db->pDfltColl; 2317 assert( pColl->enc==SQLITE_UTF8 ); 2318 }else{ 2319 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); 2320 if( pColl==0 ){ 2321 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", 2322 *pIdx->azColl); 2323 return SQLITE_ERROR; 2324 } 2325 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); 2326 if( !z ){ 2327 return SQLITE_NOMEM; 2328 } 2329 assert( z && pColl && pColl->xCmp ); 2330 } 2331 n = sqlite3ValueBytes(pVal, pColl->enc); 2332 2333 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ 2334 int c; 2335 int eSampletype = aSample[i].eType; 2336 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; 2337 if( (eSampletype!=eType) ) break; 2338 #ifndef SQLITE_OMIT_UTF16 2339 if( pColl->enc!=SQLITE_UTF8 ){ 2340 int nSample; 2341 char *zSample = sqlite3Utf8to16( 2342 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample 2343 ); 2344 if( !zSample ){ 2345 assert( db->mallocFailed ); 2346 return SQLITE_NOMEM; 2347 } 2348 c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); 2349 sqlite3DbFree(db, zSample); 2350 }else 2351 #endif 2352 { 2353 c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); 2354 } 2355 if( c-roundUp>=0 ) break; 2356 } 2357 } 2358 2359 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); 2360 *piRegion = i; 2361 } 2362 return SQLITE_OK; 2363 } 2364 #endif /* #ifdef SQLITE_ENABLE_STAT2 */ 2365 2366 /* 2367 ** If expression pExpr represents a literal value, set *pp to point to 2368 ** an sqlite3_value structure containing the same value, with affinity 2369 ** aff applied to it, before returning. It is the responsibility of the 2370 ** caller to eventually release this structure by passing it to 2371 ** sqlite3ValueFree(). 2372 ** 2373 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr 2374 ** is an SQL variable that currently has a non-NULL value bound to it, 2375 ** create an sqlite3_value structure containing this value, again with 2376 ** affinity aff applied to it, instead. 2377 ** 2378 ** If neither of the above apply, set *pp to NULL. 2379 ** 2380 ** If an error occurs, return an error code. Otherwise, SQLITE_OK. 2381 */ 2382 #ifdef SQLITE_ENABLE_STAT2 2383 static int valueFromExpr( 2384 Parse *pParse, 2385 Expr *pExpr, 2386 u8 aff, 2387 sqlite3_value **pp 2388 ){ 2389 if( pExpr->op==TK_VARIABLE 2390 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) 2391 ){ 2392 int iVar = pExpr->iColumn; 2393 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */ 2394 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); 2395 return SQLITE_OK; 2396 } 2397 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); 2398 } 2399 #endif 2400 2401 /* 2402 ** This function is used to estimate the number of rows that will be visited 2403 ** by scanning an index for a range of values. The range may have an upper 2404 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 2405 ** and lower bounds are represented by pLower and pUpper respectively. For 2406 ** example, assuming that index p is on t1(a): 2407 ** 2408 ** ... FROM t1 WHERE a > ? AND a < ? ... 2409 ** |_____| |_____| 2410 ** | | 2411 ** pLower pUpper 2412 ** 2413 ** If either of the upper or lower bound is not present, then NULL is passed in 2414 ** place of the corresponding WhereTerm. 2415 ** 2416 ** The nEq parameter is passed the index of the index column subject to the 2417 ** range constraint. Or, equivalently, the number of equality constraints 2418 ** optimized by the proposed index scan. For example, assuming index p is 2419 ** on t1(a, b), and the SQL query is: 2420 ** 2421 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 2422 ** 2423 ** then nEq should be passed the value 1 (as the range restricted column, 2424 ** b, is the second left-most column of the index). Or, if the query is: 2425 ** 2426 ** ... FROM t1 WHERE a > ? AND a < ? ... 2427 ** 2428 ** then nEq should be passed 0. 2429 ** 2430 ** The returned value is an integer between 1 and 100, inclusive. A return 2431 ** value of 1 indicates that the proposed range scan is expected to visit 2432 ** approximately 1/100th (1%) of the rows selected by the nEq equality 2433 ** constraints (if any). A return value of 100 indicates that it is expected 2434 ** that the range scan will visit every row (100%) selected by the equality 2435 ** constraints. 2436 ** 2437 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality 2438 ** reduces the search space by 3/4ths. Hence a single constraint (x>?) 2439 ** results in a return of 25 and a range constraint (x>? AND x<?) results 2440 ** in a return of 6. 2441 */ 2442 static int whereRangeScanEst( 2443 Parse *pParse, /* Parsing & code generating context */ 2444 Index *p, /* The index containing the range-compared column; "x" */ 2445 int nEq, /* index into p->aCol[] of the range-compared column */ 2446 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 2447 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 2448 int *piEst /* OUT: Return value */ 2449 ){ 2450 int rc = SQLITE_OK; 2451 2452 #ifdef SQLITE_ENABLE_STAT2 2453 2454 if( nEq==0 && p->aSample ){ 2455 sqlite3_value *pLowerVal = 0; 2456 sqlite3_value *pUpperVal = 0; 2457 int iEst; 2458 int iLower = 0; 2459 int iUpper = SQLITE_INDEX_SAMPLES; 2460 int roundUpUpper = 0; 2461 int roundUpLower = 0; 2462 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2463 2464 if( pLower ){ 2465 Expr *pExpr = pLower->pExpr->pRight; 2466 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); 2467 assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE ); 2468 roundUpLower = (pLower->eOperator==WO_GT) ?1:0; 2469 } 2470 if( rc==SQLITE_OK && pUpper ){ 2471 Expr *pExpr = pUpper->pExpr->pRight; 2472 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); 2473 assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE ); 2474 roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0; 2475 } 2476 2477 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ 2478 sqlite3ValueFree(pLowerVal); 2479 sqlite3ValueFree(pUpperVal); 2480 goto range_est_fallback; 2481 }else if( pLowerVal==0 ){ 2482 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); 2483 if( pLower ) iLower = iUpper/2; 2484 }else if( pUpperVal==0 ){ 2485 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); 2486 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; 2487 }else{ 2488 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); 2489 if( rc==SQLITE_OK ){ 2490 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); 2491 } 2492 } 2493 WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper)); 2494 2495 iEst = iUpper - iLower; 2496 testcase( iEst==SQLITE_INDEX_SAMPLES ); 2497 assert( iEst<=SQLITE_INDEX_SAMPLES ); 2498 if( iEst<1 ){ 2499 *piEst = 50/SQLITE_INDEX_SAMPLES; 2500 }else{ 2501 *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES; 2502 } 2503 sqlite3ValueFree(pLowerVal); 2504 sqlite3ValueFree(pUpperVal); 2505 return rc; 2506 } 2507 range_est_fallback: 2508 #else 2509 UNUSED_PARAMETER(pParse); 2510 UNUSED_PARAMETER(p); 2511 UNUSED_PARAMETER(nEq); 2512 #endif 2513 assert( pLower || pUpper ); 2514 *piEst = 100; 2515 if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4; 2516 if( pUpper ) *piEst /= 4; 2517 return rc; 2518 } 2519 2520 #ifdef SQLITE_ENABLE_STAT2 2521 /* 2522 ** Estimate the number of rows that will be returned based on 2523 ** an equality constraint x=VALUE and where that VALUE occurs in 2524 ** the histogram data. This only works when x is the left-most 2525 ** column of an index and sqlite_stat2 histogram data is available 2526 ** for that index. When pExpr==NULL that means the constraint is 2527 ** "x IS NULL" instead of "x=VALUE". 2528 ** 2529 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2530 ** If unable to make an estimate, leave *pnRow unchanged and return 2531 ** non-zero. 2532 ** 2533 ** This routine can fail if it is unable to load a collating sequence 2534 ** required for string comparison, or if unable to allocate memory 2535 ** for a UTF conversion required for comparison. The error is stored 2536 ** in the pParse structure. 2537 */ 2538 static int whereEqualScanEst( 2539 Parse *pParse, /* Parsing & code generating context */ 2540 Index *p, /* The index whose left-most column is pTerm */ 2541 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 2542 double *pnRow /* Write the revised row estimate here */ 2543 ){ 2544 sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */ 2545 int iLower, iUpper; /* Range of histogram regions containing pRhs */ 2546 u8 aff; /* Column affinity */ 2547 int rc; /* Subfunction return code */ 2548 double nRowEst; /* New estimate of the number of rows */ 2549 2550 assert( p->aSample!=0 ); 2551 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2552 if( pExpr ){ 2553 rc = valueFromExpr(pParse, pExpr, aff, &pRhs); 2554 if( rc ) goto whereEqualScanEst_cancel; 2555 }else{ 2556 pRhs = sqlite3ValueNew(pParse->db); 2557 } 2558 if( pRhs==0 ) return SQLITE_NOTFOUND; 2559 rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower); 2560 if( rc ) goto whereEqualScanEst_cancel; 2561 rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper); 2562 if( rc ) goto whereEqualScanEst_cancel; 2563 WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper)); 2564 if( iLower>=iUpper ){ 2565 nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2); 2566 if( nRowEst<*pnRow ) *pnRow = nRowEst; 2567 }else{ 2568 nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES; 2569 *pnRow = nRowEst; 2570 } 2571 2572 whereEqualScanEst_cancel: 2573 sqlite3ValueFree(pRhs); 2574 return rc; 2575 } 2576 #endif /* defined(SQLITE_ENABLE_STAT2) */ 2577 2578 #ifdef SQLITE_ENABLE_STAT2 2579 /* 2580 ** Estimate the number of rows that will be returned based on 2581 ** an IN constraint where the right-hand side of the IN operator 2582 ** is a list of values. Example: 2583 ** 2584 ** WHERE x IN (1,2,3,4) 2585 ** 2586 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2587 ** If unable to make an estimate, leave *pnRow unchanged and return 2588 ** non-zero. 2589 ** 2590 ** This routine can fail if it is unable to load a collating sequence 2591 ** required for string comparison, or if unable to allocate memory 2592 ** for a UTF conversion required for comparison. The error is stored 2593 ** in the pParse structure. 2594 */ 2595 static int whereInScanEst( 2596 Parse *pParse, /* Parsing & code generating context */ 2597 Index *p, /* The index whose left-most column is pTerm */ 2598 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2599 double *pnRow /* Write the revised row estimate here */ 2600 ){ 2601 sqlite3_value *pVal = 0; /* One value from list */ 2602 int iLower, iUpper; /* Range of histogram regions containing pRhs */ 2603 u8 aff; /* Column affinity */ 2604 int rc = SQLITE_OK; /* Subfunction return code */ 2605 double nRowEst; /* New estimate of the number of rows */ 2606 int nSpan = 0; /* Number of histogram regions spanned */ 2607 int nSingle = 0; /* Histogram regions hit by a single value */ 2608 int nNotFound = 0; /* Count of values that are not constants */ 2609 int i; /* Loop counter */ 2610 u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */ 2611 u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */ 2612 2613 assert( p->aSample!=0 ); 2614 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2615 memset(aSpan, 0, sizeof(aSpan)); 2616 memset(aSingle, 0, sizeof(aSingle)); 2617 for(i=0; i<pList->nExpr; i++){ 2618 sqlite3ValueFree(pVal); 2619 rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal); 2620 if( rc ) break; 2621 if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){ 2622 nNotFound++; 2623 continue; 2624 } 2625 rc = whereRangeRegion(pParse, p, pVal, 0, &iLower); 2626 if( rc ) break; 2627 rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper); 2628 if( rc ) break; 2629 if( iLower>=iUpper ){ 2630 aSingle[iLower] = 1; 2631 }else{ 2632 assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES ); 2633 while( iLower<iUpper ) aSpan[iLower++] = 1; 2634 } 2635 } 2636 if( rc==SQLITE_OK ){ 2637 for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){ 2638 if( aSpan[i] ){ 2639 nSpan++; 2640 }else if( aSingle[i] ){ 2641 nSingle++; 2642 } 2643 } 2644 nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES) 2645 + nNotFound*p->aiRowEst[1]; 2646 if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; 2647 *pnRow = nRowEst; 2648 WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n", 2649 nSpan, nSingle, nNotFound, nRowEst)); 2650 } 2651 sqlite3ValueFree(pVal); 2652 return rc; 2653 } 2654 #endif /* defined(SQLITE_ENABLE_STAT2) */ 2655 2656 2657 /* 2658 ** Find the best query plan for accessing a particular table. Write the 2659 ** best query plan and its cost into the WhereCost object supplied as the 2660 ** last parameter. 2661 ** 2662 ** The lowest cost plan wins. The cost is an estimate of the amount of 2663 ** CPU and disk I/O needed to process the requested result. 2664 ** Factors that influence cost include: 2665 ** 2666 ** * The estimated number of rows that will be retrieved. (The 2667 ** fewer the better.) 2668 ** 2669 ** * Whether or not sorting must occur. 2670 ** 2671 ** * Whether or not there must be separate lookups in the 2672 ** index and in the main table. 2673 ** 2674 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in 2675 ** the SQL statement, then this function only considers plans using the 2676 ** named index. If no such plan is found, then the returned cost is 2677 ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 2678 ** then the cost is calculated in the usual way. 2679 ** 2680 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 2681 ** in the SELECT statement, then no indexes are considered. However, the 2682 ** selected plan may still take advantage of the built-in rowid primary key 2683 ** index. 2684 */ 2685 static void bestBtreeIndex( 2686 Parse *pParse, /* The parsing context */ 2687 WhereClause *pWC, /* The WHERE clause */ 2688 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2689 Bitmask notReady, /* Mask of cursors not available for indexing */ 2690 Bitmask notValid, /* Cursors not available for any purpose */ 2691 ExprList *pOrderBy, /* The ORDER BY clause */ 2692 WhereCost *pCost /* Lowest cost query plan */ 2693 ){ 2694 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 2695 Index *pProbe; /* An index we are evaluating */ 2696 Index *pIdx; /* Copy of pProbe, or zero for IPK index */ 2697 int eqTermMask; /* Current mask of valid equality operators */ 2698 int idxEqTermMask; /* Index mask of valid equality operators */ 2699 Index sPk; /* A fake index object for the primary key */ 2700 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ 2701 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2702 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */ 2703 2704 /* Initialize the cost to a worst-case value */ 2705 memset(pCost, 0, sizeof(*pCost)); 2706 pCost->rCost = SQLITE_BIG_DBL; 2707 2708 /* If the pSrc table is the right table of a LEFT JOIN then we may not 2709 ** use an index to satisfy IS NULL constraints on that table. This is 2710 ** because columns might end up being NULL if the table does not match - 2711 ** a circumstance which the index cannot help us discover. Ticket #2177. 2712 */ 2713 if( pSrc->jointype & JT_LEFT ){ 2714 idxEqTermMask = WO_EQ|WO_IN; 2715 }else{ 2716 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; 2717 } 2718 2719 if( pSrc->pIndex ){ 2720 /* An INDEXED BY clause specifies a particular index to use */ 2721 pIdx = pProbe = pSrc->pIndex; 2722 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); 2723 eqTermMask = idxEqTermMask; 2724 }else{ 2725 /* There is no INDEXED BY clause. Create a fake Index object in local 2726 ** variable sPk to represent the rowid primary key index. Make this 2727 ** fake index the first in a chain of Index objects with all of the real 2728 ** indices to follow */ 2729 Index *pFirst; /* First of real indices on the table */ 2730 memset(&sPk, 0, sizeof(Index)); 2731 sPk.nColumn = 1; 2732 sPk.aiColumn = &aiColumnPk; 2733 sPk.aiRowEst = aiRowEstPk; 2734 sPk.onError = OE_Replace; 2735 sPk.pTable = pSrc->pTab; 2736 aiRowEstPk[0] = pSrc->pTab->nRowEst; 2737 aiRowEstPk[1] = 1; 2738 pFirst = pSrc->pTab->pIndex; 2739 if( pSrc->notIndexed==0 ){ 2740 /* The real indices of the table are only considered if the 2741 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2742 sPk.pNext = pFirst; 2743 } 2744 pProbe = &sPk; 2745 wsFlagMask = ~( 2746 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE 2747 ); 2748 eqTermMask = WO_EQ|WO_IN; 2749 pIdx = 0; 2750 } 2751 2752 /* Loop over all indices looking for the best one to use 2753 */ 2754 for(; pProbe; pIdx=pProbe=pProbe->pNext){ 2755 const unsigned int * const aiRowEst = pProbe->aiRowEst; 2756 double cost; /* Cost of using pProbe */ 2757 double nRow; /* Estimated number of rows in result set */ 2758 double log10N; /* base-10 logarithm of nRow (inexact) */ 2759 int rev; /* True to scan in reverse order */ 2760 int wsFlags = 0; 2761 Bitmask used = 0; 2762 2763 /* The following variables are populated based on the properties of 2764 ** index being evaluated. They are then used to determine the expected 2765 ** cost and number of rows returned. 2766 ** 2767 ** nEq: 2768 ** Number of equality terms that can be implemented using the index. 2769 ** In other words, the number of initial fields in the index that 2770 ** are used in == or IN or NOT NULL constraints of the WHERE clause. 2771 ** 2772 ** nInMul: 2773 ** The "in-multiplier". This is an estimate of how many seek operations 2774 ** SQLite must perform on the index in question. For example, if the 2775 ** WHERE clause is: 2776 ** 2777 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) 2778 ** 2779 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is 2780 ** set to 9. Given the same schema and either of the following WHERE 2781 ** clauses: 2782 ** 2783 ** WHERE a = 1 2784 ** WHERE a >= 2 2785 ** 2786 ** nInMul is set to 1. 2787 ** 2788 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then 2789 ** the sub-select is assumed to return 25 rows for the purposes of 2790 ** determining nInMul. 2791 ** 2792 ** bInEst: 2793 ** Set to true if there was at least one "x IN (SELECT ...)" term used 2794 ** in determining the value of nInMul. Note that the RHS of the 2795 ** IN operator must be a SELECT, not a value list, for this variable 2796 ** to be true. 2797 ** 2798 ** estBound: 2799 ** An estimate on the amount of the table that must be searched. A 2800 ** value of 100 means the entire table is searched. Range constraints 2801 ** might reduce this to a value less than 100 to indicate that only 2802 ** a fraction of the table needs searching. In the absence of 2803 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search 2804 ** space to 1/4rd its original size. So an x>? constraint reduces 2805 ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6. 2806 ** 2807 ** bSort: 2808 ** Boolean. True if there is an ORDER BY clause that will require an 2809 ** external sort (i.e. scanning the index being evaluated will not 2810 ** correctly order records). 2811 ** 2812 ** bLookup: 2813 ** Boolean. True if a table lookup is required for each index entry 2814 ** visited. In other words, true if this is not a covering index. 2815 ** This is always false for the rowid primary key index of a table. 2816 ** For other indexes, it is true unless all the columns of the table 2817 ** used by the SELECT statement are present in the index (such an 2818 ** index is sometimes described as a covering index). 2819 ** For example, given the index on (a, b), the second of the following 2820 ** two queries requires table b-tree lookups in order to find the value 2821 ** of column c, but the first does not because columns a and b are 2822 ** both available in the index. 2823 ** 2824 ** SELECT a, b FROM tbl WHERE a = 1; 2825 ** SELECT a, b, c FROM tbl WHERE a = 1; 2826 */ 2827 int nEq; /* Number of == or IN terms matching index */ 2828 int bInEst = 0; /* True if "x IN (SELECT...)" seen */ 2829 int nInMul = 1; /* Number of distinct equalities to lookup */ 2830 int estBound = 100; /* Estimated reduction in search space */ 2831 int nBound = 0; /* Number of range constraints seen */ 2832 int bSort = 0; /* True if external sort required */ 2833 int bLookup = 0; /* True if not a covering index */ 2834 WhereTerm *pTerm; /* A single term of the WHERE clause */ 2835 #ifdef SQLITE_ENABLE_STAT2 2836 WhereTerm *pFirstTerm = 0; /* First term matching the index */ 2837 #endif 2838 2839 /* Determine the values of nEq and nInMul */ 2840 for(nEq=0; nEq<pProbe->nColumn; nEq++){ 2841 int j = pProbe->aiColumn[nEq]; 2842 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); 2843 if( pTerm==0 ) break; 2844 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); 2845 if( pTerm->eOperator & WO_IN ){ 2846 Expr *pExpr = pTerm->pExpr; 2847 wsFlags |= WHERE_COLUMN_IN; 2848 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2849 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ 2850 nInMul *= 25; 2851 bInEst = 1; 2852 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2853 /* "x IN (value, value, ...)" */ 2854 nInMul *= pExpr->x.pList->nExpr; 2855 } 2856 }else if( pTerm->eOperator & WO_ISNULL ){ 2857 wsFlags |= WHERE_COLUMN_NULL; 2858 } 2859 #ifdef SQLITE_ENABLE_STAT2 2860 if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; 2861 #endif 2862 used |= pTerm->prereqRight; 2863 } 2864 2865 /* Determine the value of estBound. */ 2866 if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){ 2867 int j = pProbe->aiColumn[nEq]; 2868 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ 2869 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); 2870 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); 2871 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); 2872 if( pTop ){ 2873 nBound = 1; 2874 wsFlags |= WHERE_TOP_LIMIT; 2875 used |= pTop->prereqRight; 2876 } 2877 if( pBtm ){ 2878 nBound++; 2879 wsFlags |= WHERE_BTM_LIMIT; 2880 used |= pBtm->prereqRight; 2881 } 2882 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); 2883 } 2884 }else if( pProbe->onError!=OE_None ){ 2885 testcase( wsFlags & WHERE_COLUMN_IN ); 2886 testcase( wsFlags & WHERE_COLUMN_NULL ); 2887 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ 2888 wsFlags |= WHERE_UNIQUE; 2889 } 2890 } 2891 2892 /* If there is an ORDER BY clause and the index being considered will 2893 ** naturally scan rows in the required order, set the appropriate flags 2894 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index 2895 ** will scan rows in a different order, set the bSort variable. */ 2896 if( pOrderBy ){ 2897 if( (wsFlags & WHERE_COLUMN_IN)==0 2898 && pProbe->bUnordered==0 2899 && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, 2900 nEq, wsFlags, &rev) 2901 ){ 2902 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; 2903 wsFlags |= (rev ? WHERE_REVERSE : 0); 2904 }else{ 2905 bSort = 1; 2906 } 2907 } 2908 2909 /* If currently calculating the cost of using an index (not the IPK 2910 ** index), determine if all required column data may be obtained without 2911 ** using the main table (i.e. if the index is a covering 2912 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in 2913 ** wsFlags. Otherwise, set the bLookup variable to true. */ 2914 if( pIdx && wsFlags ){ 2915 Bitmask m = pSrc->colUsed; 2916 int j; 2917 for(j=0; j<pIdx->nColumn; j++){ 2918 int x = pIdx->aiColumn[j]; 2919 if( x<BMS-1 ){ 2920 m &= ~(((Bitmask)1)<<x); 2921 } 2922 } 2923 if( m==0 ){ 2924 wsFlags |= WHERE_IDX_ONLY; 2925 }else{ 2926 bLookup = 1; 2927 } 2928 } 2929 2930 /* 2931 ** Estimate the number of rows of output. For an "x IN (SELECT...)" 2932 ** constraint, do not let the estimate exceed half the rows in the table. 2933 */ 2934 nRow = (double)(aiRowEst[nEq] * nInMul); 2935 if( bInEst && nRow*2>aiRowEst[0] ){ 2936 nRow = aiRowEst[0]/2; 2937 nInMul = (int)(nRow / aiRowEst[nEq]); 2938 } 2939 2940 #ifdef SQLITE_ENABLE_STAT2 2941 /* If the constraint is of the form x=VALUE and histogram 2942 ** data is available for column x, then it might be possible 2943 ** to get a better estimate on the number of rows based on 2944 ** VALUE and how common that value is according to the histogram. 2945 */ 2946 if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){ 2947 if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ 2948 testcase( pFirstTerm->eOperator==WO_EQ ); 2949 testcase( pFirstTerm->eOperator==WO_ISNULL ); 2950 whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow); 2951 }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){ 2952 whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow); 2953 } 2954 } 2955 #endif /* SQLITE_ENABLE_STAT2 */ 2956 2957 /* Adjust the number of output rows and downward to reflect rows 2958 ** that are excluded by range constraints. 2959 */ 2960 nRow = (nRow * (double)estBound) / (double)100; 2961 if( nRow<1 ) nRow = 1; 2962 2963 /* Experiments run on real SQLite databases show that the time needed 2964 ** to do a binary search to locate a row in a table or index is roughly 2965 ** log10(N) times the time to move from one row to the next row within 2966 ** a table or index. The actual times can vary, with the size of 2967 ** records being an important factor. Both moves and searches are 2968 ** slower with larger records, presumably because fewer records fit 2969 ** on one page and hence more pages have to be fetched. 2970 ** 2971 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do 2972 ** not give us data on the relative sizes of table and index records. 2973 ** So this computation assumes table records are about twice as big 2974 ** as index records 2975 */ 2976 if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){ 2977 /* The cost of a full table scan is a number of move operations equal 2978 ** to the number of rows in the table. 2979 ** 2980 ** We add an additional 4x penalty to full table scans. This causes 2981 ** the cost function to err on the side of choosing an index over 2982 ** choosing a full scan. This 4x full-scan penalty is an arguable 2983 ** decision and one which we expect to revisit in the future. But 2984 ** it seems to be working well enough at the moment. 2985 */ 2986 cost = aiRowEst[0]*4; 2987 }else{ 2988 log10N = estLog(aiRowEst[0]); 2989 cost = nRow; 2990 if( pIdx ){ 2991 if( bLookup ){ 2992 /* For an index lookup followed by a table lookup: 2993 ** nInMul index searches to find the start of each index range 2994 ** + nRow steps through the index 2995 ** + nRow table searches to lookup the table entry using the rowid 2996 */ 2997 cost += (nInMul + nRow)*log10N; 2998 }else{ 2999 /* For a covering index: 3000 ** nInMul index searches to find the initial entry 3001 ** + nRow steps through the index 3002 */ 3003 cost += nInMul*log10N; 3004 } 3005 }else{ 3006 /* For a rowid primary key lookup: 3007 ** nInMult table searches to find the initial entry for each range 3008 ** + nRow steps through the table 3009 */ 3010 cost += nInMul*log10N; 3011 } 3012 } 3013 3014 /* Add in the estimated cost of sorting the result. Actual experimental 3015 ** measurements of sorting performance in SQLite show that sorting time 3016 ** adds C*N*log10(N) to the cost, where N is the number of rows to be 3017 ** sorted and C is a factor between 1.95 and 4.3. We will split the 3018 ** difference and select C of 3.0. 3019 */ 3020 if( bSort ){ 3021 cost += nRow*estLog(nRow)*3; 3022 } 3023 3024 /**** Cost of using this index has now been computed ****/ 3025 3026 /* If there are additional constraints on this table that cannot 3027 ** be used with the current index, but which might lower the number 3028 ** of output rows, adjust the nRow value accordingly. This only 3029 ** matters if the current index is the least costly, so do not bother 3030 ** with this step if we already know this index will not be chosen. 3031 ** Also, never reduce the output row count below 2 using this step. 3032 ** 3033 ** It is critical that the notValid mask be used here instead of 3034 ** the notReady mask. When computing an "optimal" index, the notReady 3035 ** mask will only have one bit set - the bit for the current table. 3036 ** The notValid mask, on the other hand, always has all bits set for 3037 ** tables that are not in outer loops. If notReady is used here instead 3038 ** of notValid, then a optimal index that depends on inner joins loops 3039 ** might be selected even when there exists an optimal index that has 3040 ** no such dependency. 3041 */ 3042 if( nRow>2 && cost<=pCost->rCost ){ 3043 int k; /* Loop counter */ 3044 int nSkipEq = nEq; /* Number of == constraints to skip */ 3045 int nSkipRange = nBound; /* Number of < constraints to skip */ 3046 Bitmask thisTab; /* Bitmap for pSrc */ 3047 3048 thisTab = getMask(pWC->pMaskSet, iCur); 3049 for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){ 3050 if( pTerm->wtFlags & TERM_VIRTUAL ) continue; 3051 if( (pTerm->prereqAll & notValid)!=thisTab ) continue; 3052 if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ 3053 if( nSkipEq ){ 3054 /* Ignore the first nEq equality matches since the index 3055 ** has already accounted for these */ 3056 nSkipEq--; 3057 }else{ 3058 /* Assume each additional equality match reduces the result 3059 ** set size by a factor of 10 */ 3060 nRow /= 10; 3061 } 3062 }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ 3063 if( nSkipRange ){ 3064 /* Ignore the first nSkipRange range constraints since the index 3065 ** has already accounted for these */ 3066 nSkipRange--; 3067 }else{ 3068 /* Assume each additional range constraint reduces the result 3069 ** set size by a factor of 3. Indexed range constraints reduce 3070 ** the search space by a larger factor: 4. We make indexed range 3071 ** more selective intentionally because of the subjective 3072 ** observation that indexed range constraints really are more 3073 ** selective in practice, on average. */ 3074 nRow /= 3; 3075 } 3076 }else if( pTerm->eOperator!=WO_NOOP ){ 3077 /* Any other expression lowers the output row count by half */ 3078 nRow /= 2; 3079 } 3080 } 3081 if( nRow<2 ) nRow = 2; 3082 } 3083 3084 3085 WHERETRACE(( 3086 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" 3087 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n", 3088 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 3089 nEq, nInMul, estBound, bSort, bLookup, wsFlags, 3090 notReady, log10N, nRow, cost, used 3091 )); 3092 3093 /* If this index is the best we have seen so far, then record this 3094 ** index and its cost in the pCost structure. 3095 */ 3096 if( (!pIdx || wsFlags) 3097 && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow)) 3098 ){ 3099 pCost->rCost = cost; 3100 pCost->used = used; 3101 pCost->plan.nRow = nRow; 3102 pCost->plan.wsFlags = (wsFlags&wsFlagMask); 3103 pCost->plan.nEq = nEq; 3104 pCost->plan.u.pIdx = pIdx; 3105 } 3106 3107 /* If there was an INDEXED BY clause, then only that one index is 3108 ** considered. */ 3109 if( pSrc->pIndex ) break; 3110 3111 /* Reset masks for the next index in the loop */ 3112 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); 3113 eqTermMask = idxEqTermMask; 3114 } 3115 3116 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag 3117 ** is set, then reverse the order that the index will be scanned 3118 ** in. This is used for application testing, to help find cases 3119 ** where application behaviour depends on the (undefined) order that 3120 ** SQLite outputs rows in in the absence of an ORDER BY clause. */ 3121 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ 3122 pCost->plan.wsFlags |= WHERE_REVERSE; 3123 } 3124 3125 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); 3126 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); 3127 assert( pSrc->pIndex==0 3128 || pCost->plan.u.pIdx==0 3129 || pCost->plan.u.pIdx==pSrc->pIndex 3130 ); 3131 3132 WHERETRACE(("best index is: %s\n", 3133 ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : 3134 pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") 3135 )); 3136 3137 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); 3138 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost); 3139 pCost->plan.wsFlags |= eqTermMask; 3140 } 3141 3142 /* 3143 ** Find the query plan for accessing table pSrc->pTab. Write the 3144 ** best query plan and its cost into the WhereCost object supplied 3145 ** as the last parameter. This function may calculate the cost of 3146 ** both real and virtual table scans. 3147 */ 3148 static void bestIndex( 3149 Parse *pParse, /* The parsing context */ 3150 WhereClause *pWC, /* The WHERE clause */ 3151 struct SrcList_item *pSrc, /* The FROM clause term to search */ 3152 Bitmask notReady, /* Mask of cursors not available for indexing */ 3153 Bitmask notValid, /* Cursors not available for any purpose */ 3154 ExprList *pOrderBy, /* The ORDER BY clause */ 3155 WhereCost *pCost /* Lowest cost query plan */ 3156 ){ 3157 #ifndef SQLITE_OMIT_VIRTUALTABLE 3158 if( IsVirtual(pSrc->pTab) ){ 3159 sqlite3_index_info *p = 0; 3160 bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p); 3161 if( p->needToFreeIdxStr ){ 3162 sqlite3_free(p->idxStr); 3163 } 3164 sqlite3DbFree(pParse->db, p); 3165 }else 3166 #endif 3167 { 3168 bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); 3169 } 3170 } 3171 3172 /* 3173 ** Disable a term in the WHERE clause. Except, do not disable the term 3174 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 3175 ** or USING clause of that join. 3176 ** 3177 ** Consider the term t2.z='ok' in the following queries: 3178 ** 3179 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 3180 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 3181 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 3182 ** 3183 ** The t2.z='ok' is disabled in the in (2) because it originates 3184 ** in the ON clause. The term is disabled in (3) because it is not part 3185 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 3186 ** 3187 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are 3188 ** completely satisfied by indices. 3189 ** 3190 ** Disabling a term causes that term to not be tested in the inner loop 3191 ** of the join. Disabling is an optimization. When terms are satisfied 3192 ** by indices, we disable them to prevent redundant tests in the inner 3193 ** loop. We would get the correct results if nothing were ever disabled, 3194 ** but joins might run a little slower. The trick is to disable as much 3195 ** as we can without disabling too much. If we disabled in (1), we'd get 3196 ** the wrong answer. See ticket #813. 3197 */ 3198 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 3199 if( pTerm 3200 && (pTerm->wtFlags & TERM_CODED)==0 3201 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 3202 ){ 3203 pTerm->wtFlags |= TERM_CODED; 3204 if( pTerm->iParent>=0 ){ 3205 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 3206 if( (--pOther->nChild)==0 ){ 3207 disableTerm(pLevel, pOther); 3208 } 3209 } 3210 } 3211 } 3212 3213 /* 3214 ** Code an OP_Affinity opcode to apply the column affinity string zAff 3215 ** to the n registers starting at base. 3216 ** 3217 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the 3218 ** beginning and end of zAff are ignored. If all entries in zAff are 3219 ** SQLITE_AFF_NONE, then no code gets generated. 3220 ** 3221 ** This routine makes its own copy of zAff so that the caller is free 3222 ** to modify zAff after this routine returns. 3223 */ 3224 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 3225 Vdbe *v = pParse->pVdbe; 3226 if( zAff==0 ){ 3227 assert( pParse->db->mallocFailed ); 3228 return; 3229 } 3230 assert( v!=0 ); 3231 3232 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning 3233 ** and end of the affinity string. 3234 */ 3235 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ 3236 n--; 3237 base++; 3238 zAff++; 3239 } 3240 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ 3241 n--; 3242 } 3243 3244 /* Code the OP_Affinity opcode if there is anything left to do. */ 3245 if( n>0 ){ 3246 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 3247 sqlite3VdbeChangeP4(v, -1, zAff, n); 3248 sqlite3ExprCacheAffinityChange(pParse, base, n); 3249 } 3250 } 3251 3252 3253 /* 3254 ** Generate code for a single equality term of the WHERE clause. An equality 3255 ** term can be either X=expr or X IN (...). pTerm is the term to be 3256 ** coded. 3257 ** 3258 ** The current value for the constraint is left in register iReg. 3259 ** 3260 ** For a constraint of the form X=expr, the expression is evaluated and its 3261 ** result is left on the stack. For constraints of the form X IN (...) 3262 ** this routine sets up a loop that will iterate over all values of X. 3263 */ 3264 static int codeEqualityTerm( 3265 Parse *pParse, /* The parsing context */ 3266 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 3267 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 3268 int iTarget /* Attempt to leave results in this register */ 3269 ){ 3270 Expr *pX = pTerm->pExpr; 3271 Vdbe *v = pParse->pVdbe; 3272 int iReg; /* Register holding results */ 3273 3274 assert( iTarget>0 ); 3275 if( pX->op==TK_EQ ){ 3276 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 3277 }else if( pX->op==TK_ISNULL ){ 3278 iReg = iTarget; 3279 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 3280 #ifndef SQLITE_OMIT_SUBQUERY 3281 }else{ 3282 int eType; 3283 int iTab; 3284 struct InLoop *pIn; 3285 3286 assert( pX->op==TK_IN ); 3287 iReg = iTarget; 3288 eType = sqlite3FindInIndex(pParse, pX, 0); 3289 iTab = pX->iTable; 3290 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 3291 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); 3292 if( pLevel->u.in.nIn==0 ){ 3293 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3294 } 3295 pLevel->u.in.nIn++; 3296 pLevel->u.in.aInLoop = 3297 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 3298 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 3299 pIn = pLevel->u.in.aInLoop; 3300 if( pIn ){ 3301 pIn += pLevel->u.in.nIn - 1; 3302 pIn->iCur = iTab; 3303 if( eType==IN_INDEX_ROWID ){ 3304 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 3305 }else{ 3306 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 3307 } 3308 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 3309 }else{ 3310 pLevel->u.in.nIn = 0; 3311 } 3312 #endif 3313 } 3314 disableTerm(pLevel, pTerm); 3315 return iReg; 3316 } 3317 3318 /* 3319 ** Generate code that will evaluate all == and IN constraints for an 3320 ** index. 3321 ** 3322 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 3323 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 3324 ** The index has as many as three equality constraints, but in this 3325 ** example, the third "c" value is an inequality. So only two 3326 ** constraints are coded. This routine will generate code to evaluate 3327 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 3328 ** in consecutive registers and the index of the first register is returned. 3329 ** 3330 ** In the example above nEq==2. But this subroutine works for any value 3331 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 3332 ** The only thing it does is allocate the pLevel->iMem memory cell and 3333 ** compute the affinity string. 3334 ** 3335 ** This routine always allocates at least one memory cell and returns 3336 ** the index of that memory cell. The code that 3337 ** calls this routine will use that memory cell to store the termination 3338 ** key value of the loop. If one or more IN operators appear, then 3339 ** this routine allocates an additional nEq memory cells for internal 3340 ** use. 3341 ** 3342 ** Before returning, *pzAff is set to point to a buffer containing a 3343 ** copy of the column affinity string of the index allocated using 3344 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 3345 ** with equality constraints that use NONE affinity are set to 3346 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: 3347 ** 3348 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 3349 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 3350 ** 3351 ** In the example above, the index on t1(a) has TEXT affinity. But since 3352 ** the right hand side of the equality constraint (t2.b) has NONE affinity, 3353 ** no conversion should be attempted before using a t2.b value as part of 3354 ** a key to search the index. Hence the first byte in the returned affinity 3355 ** string in this example would be set to SQLITE_AFF_NONE. 3356 */ 3357 static int codeAllEqualityTerms( 3358 Parse *pParse, /* Parsing context */ 3359 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 3360 WhereClause *pWC, /* The WHERE clause */ 3361 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 3362 int nExtraReg, /* Number of extra registers to allocate */ 3363 char **pzAff /* OUT: Set to point to affinity string */ 3364 ){ 3365 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ 3366 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 3367 Index *pIdx; /* The index being used for this loop */ 3368 int iCur = pLevel->iTabCur; /* The cursor of the table */ 3369 WhereTerm *pTerm; /* A single constraint term */ 3370 int j; /* Loop counter */ 3371 int regBase; /* Base register */ 3372 int nReg; /* Number of registers to allocate */ 3373 char *zAff; /* Affinity string to return */ 3374 3375 /* This module is only called on query plans that use an index. */ 3376 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); 3377 pIdx = pLevel->plan.u.pIdx; 3378 3379 /* Figure out how many memory cells we will need then allocate them. 3380 */ 3381 regBase = pParse->nMem + 1; 3382 nReg = pLevel->plan.nEq + nExtraReg; 3383 pParse->nMem += nReg; 3384 3385 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); 3386 if( !zAff ){ 3387 pParse->db->mallocFailed = 1; 3388 } 3389 3390 /* Evaluate the equality constraints 3391 */ 3392 assert( pIdx->nColumn>=nEq ); 3393 for(j=0; j<nEq; j++){ 3394 int r1; 3395 int k = pIdx->aiColumn[j]; 3396 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); 3397 if( NEVER(pTerm==0) ) break; 3398 /* The following true for indices with redundant columns. 3399 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 3400 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 3401 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3402 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 3403 if( r1!=regBase+j ){ 3404 if( nReg==1 ){ 3405 sqlite3ReleaseTempReg(pParse, regBase); 3406 regBase = r1; 3407 }else{ 3408 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 3409 } 3410 } 3411 testcase( pTerm->eOperator & WO_ISNULL ); 3412 testcase( pTerm->eOperator & WO_IN ); 3413 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 3414 Expr *pRight = pTerm->pExpr->pRight; 3415 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk); 3416 if( zAff ){ 3417 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ 3418 zAff[j] = SQLITE_AFF_NONE; 3419 } 3420 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 3421 zAff[j] = SQLITE_AFF_NONE; 3422 } 3423 } 3424 } 3425 } 3426 *pzAff = zAff; 3427 return regBase; 3428 } 3429 3430 #ifndef SQLITE_OMIT_EXPLAIN 3431 /* 3432 ** This routine is a helper for explainIndexRange() below 3433 ** 3434 ** pStr holds the text of an expression that we are building up one term 3435 ** at a time. This routine adds a new term to the end of the expression. 3436 ** Terms are separated by AND so add the "AND" text for second and subsequent 3437 ** terms only. 3438 */ 3439 static void explainAppendTerm( 3440 StrAccum *pStr, /* The text expression being built */ 3441 int iTerm, /* Index of this term. First is zero */ 3442 const char *zColumn, /* Name of the column */ 3443 const char *zOp /* Name of the operator */ 3444 ){ 3445 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 3446 sqlite3StrAccumAppend(pStr, zColumn, -1); 3447 sqlite3StrAccumAppend(pStr, zOp, 1); 3448 sqlite3StrAccumAppend(pStr, "?", 1); 3449 } 3450 3451 /* 3452 ** Argument pLevel describes a strategy for scanning table pTab. This 3453 ** function returns a pointer to a string buffer containing a description 3454 ** of the subset of table rows scanned by the strategy in the form of an 3455 ** SQL expression. Or, if all rows are scanned, NULL is returned. 3456 ** 3457 ** For example, if the query: 3458 ** 3459 ** SELECT * FROM t1 WHERE a=1 AND b>2; 3460 ** 3461 ** is run and there is an index on (a, b), then this function returns a 3462 ** string similar to: 3463 ** 3464 ** "a=? AND b>?" 3465 ** 3466 ** The returned pointer points to memory obtained from sqlite3DbMalloc(). 3467 ** It is the responsibility of the caller to free the buffer when it is 3468 ** no longer required. 3469 */ 3470 static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){ 3471 WherePlan *pPlan = &pLevel->plan; 3472 Index *pIndex = pPlan->u.pIdx; 3473 int nEq = pPlan->nEq; 3474 int i, j; 3475 Column *aCol = pTab->aCol; 3476 int *aiColumn = pIndex->aiColumn; 3477 StrAccum txt; 3478 3479 if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ 3480 return 0; 3481 } 3482 sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); 3483 txt.db = db; 3484 sqlite3StrAccumAppend(&txt, " (", 2); 3485 for(i=0; i<nEq; i++){ 3486 explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "="); 3487 } 3488 3489 j = i; 3490 if( pPlan->wsFlags&WHERE_BTM_LIMIT ){ 3491 explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">"); 3492 } 3493 if( pPlan->wsFlags&WHERE_TOP_LIMIT ){ 3494 explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<"); 3495 } 3496 sqlite3StrAccumAppend(&txt, ")", 1); 3497 return sqlite3StrAccumFinish(&txt); 3498 } 3499 3500 /* 3501 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 3502 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single 3503 ** record is added to the output to describe the table scan strategy in 3504 ** pLevel. 3505 */ 3506 static void explainOneScan( 3507 Parse *pParse, /* Parse context */ 3508 SrcList *pTabList, /* Table list this loop refers to */ 3509 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 3510 int iLevel, /* Value for "level" column of output */ 3511 int iFrom, /* Value for "from" column of output */ 3512 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 3513 ){ 3514 if( pParse->explain==2 ){ 3515 u32 flags = pLevel->plan.wsFlags; 3516 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 3517 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 3518 sqlite3 *db = pParse->db; /* Database handle */ 3519 char *zMsg; /* Text to add to EQP output */ 3520 sqlite3_int64 nRow; /* Expected number of rows visited by scan */ 3521 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 3522 int isSearch; /* True for a SEARCH. False for SCAN. */ 3523 3524 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; 3525 3526 isSearch = (pLevel->plan.nEq>0) 3527 || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 3528 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 3529 3530 zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN"); 3531 if( pItem->pSelect ){ 3532 zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId); 3533 }else{ 3534 zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName); 3535 } 3536 3537 if( pItem->zAlias ){ 3538 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 3539 } 3540 if( (flags & WHERE_INDEXED)!=0 ){ 3541 char *zWhere = explainIndexRange(db, pLevel, pItem->pTab); 3542 zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 3543 ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""), 3544 ((flags & WHERE_IDX_ONLY)?"COVERING ":""), 3545 ((flags & WHERE_TEMP_INDEX)?"":" "), 3546 ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName), 3547 zWhere 3548 ); 3549 sqlite3DbFree(db, zWhere); 3550 }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3551 zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg); 3552 3553 if( flags&WHERE_ROWID_EQ ){ 3554 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg); 3555 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 3556 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg); 3557 }else if( flags&WHERE_BTM_LIMIT ){ 3558 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg); 3559 }else if( flags&WHERE_TOP_LIMIT ){ 3560 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg); 3561 } 3562 } 3563 #ifndef SQLITE_OMIT_VIRTUALTABLE 3564 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 3565 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3566 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 3567 pVtabIdx->idxNum, pVtabIdx->idxStr); 3568 } 3569 #endif 3570 if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){ 3571 testcase( wctrlFlags & WHERE_ORDERBY_MIN ); 3572 nRow = 1; 3573 }else{ 3574 nRow = (sqlite3_int64)pLevel->plan.nRow; 3575 } 3576 zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow); 3577 sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); 3578 } 3579 } 3580 #else 3581 # define explainOneScan(u,v,w,x,y,z) 3582 #endif /* SQLITE_OMIT_EXPLAIN */ 3583 3584 3585 /* 3586 ** Generate code for the start of the iLevel-th loop in the WHERE clause 3587 ** implementation described by pWInfo. 3588 */ 3589 static Bitmask codeOneLoopStart( 3590 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 3591 int iLevel, /* Which level of pWInfo->a[] should be coded */ 3592 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 3593 Bitmask notReady /* Which tables are currently available */ 3594 ){ 3595 int j, k; /* Loop counters */ 3596 int iCur; /* The VDBE cursor for the table */ 3597 int addrNxt; /* Where to jump to continue with the next IN case */ 3598 int omitTable; /* True if we use the index only */ 3599 int bRev; /* True if we need to scan in reverse order */ 3600 WhereLevel *pLevel; /* The where level to be coded */ 3601 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 3602 WhereTerm *pTerm; /* A WHERE clause term */ 3603 Parse *pParse; /* Parsing context */ 3604 Vdbe *v; /* The prepared stmt under constructions */ 3605 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 3606 int addrBrk; /* Jump here to break out of the loop */ 3607 int addrCont; /* Jump here to continue with next cycle */ 3608 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 3609 int iReleaseReg = 0; /* Temp register to free before returning */ 3610 3611 pParse = pWInfo->pParse; 3612 v = pParse->pVdbe; 3613 pWC = pWInfo->pWC; 3614 pLevel = &pWInfo->a[iLevel]; 3615 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 3616 iCur = pTabItem->iCursor; 3617 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; 3618 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 3619 && (wctrlFlags & WHERE_FORCE_TABLE)==0; 3620 3621 /* Create labels for the "break" and "continue" instructions 3622 ** for the current loop. Jump to addrBrk to break out of a loop. 3623 ** Jump to cont to go immediately to the next iteration of the 3624 ** loop. 3625 ** 3626 ** When there is an IN operator, we also have a "addrNxt" label that 3627 ** means to continue with the next IN value combination. When 3628 ** there are no IN operators in the constraints, the "addrNxt" label 3629 ** is the same as "addrBrk". 3630 */ 3631 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3632 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 3633 3634 /* If this is the right table of a LEFT OUTER JOIN, allocate and 3635 ** initialize a memory cell that records if this table matches any 3636 ** row of the left table of the join. 3637 */ 3638 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 3639 pLevel->iLeftJoin = ++pParse->nMem; 3640 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 3641 VdbeComment((v, "init LEFT JOIN no-match flag")); 3642 } 3643 3644 #ifndef SQLITE_OMIT_VIRTUALTABLE 3645 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3646 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 3647 ** to access the data. 3648 */ 3649 int iReg; /* P3 Value for OP_VFilter */ 3650 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3651 int nConstraint = pVtabIdx->nConstraint; 3652 struct sqlite3_index_constraint_usage *aUsage = 3653 pVtabIdx->aConstraintUsage; 3654 const struct sqlite3_index_constraint *aConstraint = 3655 pVtabIdx->aConstraint; 3656 3657 sqlite3ExprCachePush(pParse); 3658 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 3659 for(j=1; j<=nConstraint; j++){ 3660 for(k=0; k<nConstraint; k++){ 3661 if( aUsage[k].argvIndex==j ){ 3662 int iTerm = aConstraint[k].iTermOffset; 3663 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); 3664 break; 3665 } 3666 } 3667 if( k==nConstraint ) break; 3668 } 3669 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); 3670 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 3671 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, 3672 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 3673 pVtabIdx->needToFreeIdxStr = 0; 3674 for(j=0; j<nConstraint; j++){ 3675 if( aUsage[j].omit ){ 3676 int iTerm = aConstraint[j].iTermOffset; 3677 disableTerm(pLevel, &pWC->a[iTerm]); 3678 } 3679 } 3680 pLevel->op = OP_VNext; 3681 pLevel->p1 = iCur; 3682 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3683 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 3684 sqlite3ExprCachePop(pParse, 1); 3685 }else 3686 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3687 3688 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ 3689 /* Case 1: We can directly reference a single row using an 3690 ** equality comparison against the ROWID field. Or 3691 ** we reference multiple rows using a "rowid IN (...)" 3692 ** construct. 3693 */ 3694 iReleaseReg = sqlite3GetTempReg(pParse); 3695 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 3696 assert( pTerm!=0 ); 3697 assert( pTerm->pExpr!=0 ); 3698 assert( pTerm->leftCursor==iCur ); 3699 assert( omitTable==0 ); 3700 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3701 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); 3702 addrNxt = pLevel->addrNxt; 3703 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 3704 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 3705 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3706 VdbeComment((v, "pk")); 3707 pLevel->op = OP_Noop; 3708 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ 3709 /* Case 2: We have an inequality comparison against the ROWID field. 3710 */ 3711 int testOp = OP_Noop; 3712 int start; 3713 int memEndValue = 0; 3714 WhereTerm *pStart, *pEnd; 3715 3716 assert( omitTable==0 ); 3717 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); 3718 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); 3719 if( bRev ){ 3720 pTerm = pStart; 3721 pStart = pEnd; 3722 pEnd = pTerm; 3723 } 3724 if( pStart ){ 3725 Expr *pX; /* The expression that defines the start bound */ 3726 int r1, rTemp; /* Registers for holding the start boundary */ 3727 3728 /* The following constant maps TK_xx codes into corresponding 3729 ** seek opcodes. It depends on a particular ordering of TK_xx 3730 */ 3731 const u8 aMoveOp[] = { 3732 /* TK_GT */ OP_SeekGt, 3733 /* TK_LE */ OP_SeekLe, 3734 /* TK_LT */ OP_SeekLt, 3735 /* TK_GE */ OP_SeekGe 3736 }; 3737 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 3738 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 3739 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 3740 3741 testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3742 pX = pStart->pExpr; 3743 assert( pX!=0 ); 3744 assert( pStart->leftCursor==iCur ); 3745 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 3746 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 3747 VdbeComment((v, "pk")); 3748 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 3749 sqlite3ReleaseTempReg(pParse, rTemp); 3750 disableTerm(pLevel, pStart); 3751 }else{ 3752 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 3753 } 3754 if( pEnd ){ 3755 Expr *pX; 3756 pX = pEnd->pExpr; 3757 assert( pX!=0 ); 3758 assert( pEnd->leftCursor==iCur ); 3759 testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3760 memEndValue = ++pParse->nMem; 3761 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 3762 if( pX->op==TK_LT || pX->op==TK_GT ){ 3763 testOp = bRev ? OP_Le : OP_Ge; 3764 }else{ 3765 testOp = bRev ? OP_Lt : OP_Gt; 3766 } 3767 disableTerm(pLevel, pEnd); 3768 } 3769 start = sqlite3VdbeCurrentAddr(v); 3770 pLevel->op = bRev ? OP_Prev : OP_Next; 3771 pLevel->p1 = iCur; 3772 pLevel->p2 = start; 3773 if( pStart==0 && pEnd==0 ){ 3774 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 3775 }else{ 3776 assert( pLevel->p5==0 ); 3777 } 3778 if( testOp!=OP_Noop ){ 3779 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 3780 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 3781 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3782 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 3783 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 3784 } 3785 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 3786 /* Case 3: A scan using an index. 3787 ** 3788 ** The WHERE clause may contain zero or more equality 3789 ** terms ("==" or "IN" operators) that refer to the N 3790 ** left-most columns of the index. It may also contain 3791 ** inequality constraints (>, <, >= or <=) on the indexed 3792 ** column that immediately follows the N equalities. Only 3793 ** the right-most column can be an inequality - the rest must 3794 ** use the "==" and "IN" operators. For example, if the 3795 ** index is on (x,y,z), then the following clauses are all 3796 ** optimized: 3797 ** 3798 ** x=5 3799 ** x=5 AND y=10 3800 ** x=5 AND y<10 3801 ** x=5 AND y>5 AND y<10 3802 ** x=5 AND y=5 AND z<=10 3803 ** 3804 ** The z<10 term of the following cannot be used, only 3805 ** the x=5 term: 3806 ** 3807 ** x=5 AND z<10 3808 ** 3809 ** N may be zero if there are inequality constraints. 3810 ** If there are no inequality constraints, then N is at 3811 ** least one. 3812 ** 3813 ** This case is also used when there are no WHERE clause 3814 ** constraints but an index is selected anyway, in order 3815 ** to force the output order to conform to an ORDER BY. 3816 */ 3817 static const u8 aStartOp[] = { 3818 0, 3819 0, 3820 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 3821 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 3822 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ 3823 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ 3824 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ 3825 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ 3826 }; 3827 static const u8 aEndOp[] = { 3828 OP_Noop, /* 0: (!end_constraints) */ 3829 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 3830 OP_IdxLT /* 2: (end_constraints && bRev) */ 3831 }; 3832 int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ 3833 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 3834 int regBase; /* Base register holding constraint values */ 3835 int r1; /* Temp register */ 3836 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 3837 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 3838 int startEq; /* True if range start uses ==, >= or <= */ 3839 int endEq; /* True if range end uses ==, >= or <= */ 3840 int start_constraints; /* Start of range is constrained */ 3841 int nConstraint; /* Number of constraint terms */ 3842 Index *pIdx; /* The index we will be using */ 3843 int iIdxCur; /* The VDBE cursor for the index */ 3844 int nExtraReg = 0; /* Number of extra registers needed */ 3845 int op; /* Instruction opcode */ 3846 char *zStartAff; /* Affinity for start of range constraint */ 3847 char *zEndAff; /* Affinity for end of range constraint */ 3848 3849 pIdx = pLevel->plan.u.pIdx; 3850 iIdxCur = pLevel->iIdxCur; 3851 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 3852 3853 /* If this loop satisfies a sort order (pOrderBy) request that 3854 ** was passed to this function to implement a "SELECT min(x) ..." 3855 ** query, then the caller will only allow the loop to run for 3856 ** a single iteration. This means that the first row returned 3857 ** should not have a NULL value stored in 'x'. If column 'x' is 3858 ** the first one after the nEq equality constraints in the index, 3859 ** this requires some special handling. 3860 */ 3861 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 3862 && (pLevel->plan.wsFlags&WHERE_ORDERBY) 3863 && (pIdx->nColumn>nEq) 3864 ){ 3865 /* assert( pOrderBy->nExpr==1 ); */ 3866 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ 3867 isMinQuery = 1; 3868 nExtraReg = 1; 3869 } 3870 3871 /* Find any inequality constraint terms for the start and end 3872 ** of the range. 3873 */ 3874 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ 3875 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 3876 nExtraReg = 1; 3877 } 3878 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ 3879 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 3880 nExtraReg = 1; 3881 } 3882 3883 /* Generate code to evaluate all constraint terms using == or IN 3884 ** and store the values of those terms in an array of registers 3885 ** starting at regBase. 3886 */ 3887 regBase = codeAllEqualityTerms( 3888 pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff 3889 ); 3890 zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); 3891 addrNxt = pLevel->addrNxt; 3892 3893 /* If we are doing a reverse order scan on an ascending index, or 3894 ** a forward order scan on a descending index, interchange the 3895 ** start and end terms (pRangeStart and pRangeEnd). 3896 */ 3897 if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 3898 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 3899 } 3900 3901 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 3902 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 3903 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 3904 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 3905 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 3906 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 3907 start_constraints = pRangeStart || nEq>0; 3908 3909 /* Seek the index cursor to the start of the range. */ 3910 nConstraint = nEq; 3911 if( pRangeStart ){ 3912 Expr *pRight = pRangeStart->pExpr->pRight; 3913 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3914 if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){ 3915 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); 3916 } 3917 if( zStartAff ){ 3918 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ 3919 /* Since the comparison is to be performed with no conversions 3920 ** applied to the operands, set the affinity to apply to pRight to 3921 ** SQLITE_AFF_NONE. */ 3922 zStartAff[nEq] = SQLITE_AFF_NONE; 3923 } 3924 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 3925 zStartAff[nEq] = SQLITE_AFF_NONE; 3926 } 3927 } 3928 nConstraint++; 3929 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3930 }else if( isMinQuery ){ 3931 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 3932 nConstraint++; 3933 startEq = 0; 3934 start_constraints = 1; 3935 } 3936 codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); 3937 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 3938 assert( op!=0 ); 3939 testcase( op==OP_Rewind ); 3940 testcase( op==OP_Last ); 3941 testcase( op==OP_SeekGt ); 3942 testcase( op==OP_SeekGe ); 3943 testcase( op==OP_SeekLe ); 3944 testcase( op==OP_SeekLt ); 3945 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3946 3947 /* Load the value for the inequality constraint at the end of the 3948 ** range (if any). 3949 */ 3950 nConstraint = nEq; 3951 if( pRangeEnd ){ 3952 Expr *pRight = pRangeEnd->pExpr->pRight; 3953 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 3954 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3955 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ 3956 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); 3957 } 3958 if( zEndAff ){ 3959 if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ 3960 /* Since the comparison is to be performed with no conversions 3961 ** applied to the operands, set the affinity to apply to pRight to 3962 ** SQLITE_AFF_NONE. */ 3963 zEndAff[nEq] = SQLITE_AFF_NONE; 3964 } 3965 if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ 3966 zEndAff[nEq] = SQLITE_AFF_NONE; 3967 } 3968 } 3969 codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); 3970 nConstraint++; 3971 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3972 } 3973 sqlite3DbFree(pParse->db, zStartAff); 3974 sqlite3DbFree(pParse->db, zEndAff); 3975 3976 /* Top of the loop body */ 3977 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3978 3979 /* Check if the index cursor is past the end of the range. */ 3980 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 3981 testcase( op==OP_Noop ); 3982 testcase( op==OP_IdxGE ); 3983 testcase( op==OP_IdxLT ); 3984 if( op!=OP_Noop ){ 3985 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3986 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); 3987 } 3988 3989 /* If there are inequality constraints, check that the value 3990 ** of the table column that the inequality contrains is not NULL. 3991 ** If it is, jump to the next iteration of the loop. 3992 */ 3993 r1 = sqlite3GetTempReg(pParse); 3994 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); 3995 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); 3996 if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ 3997 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 3998 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); 3999 } 4000 sqlite3ReleaseTempReg(pParse, r1); 4001 4002 /* Seek the table cursor, if required */ 4003 disableTerm(pLevel, pRangeStart); 4004 disableTerm(pLevel, pRangeEnd); 4005 if( !omitTable ){ 4006 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 4007 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 4008 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 4009 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 4010 } 4011 4012 /* Record the instruction used to terminate the loop. Disable 4013 ** WHERE clause terms made redundant by the index range scan. 4014 */ 4015 if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ 4016 pLevel->op = OP_Noop; 4017 }else if( bRev ){ 4018 pLevel->op = OP_Prev; 4019 }else{ 4020 pLevel->op = OP_Next; 4021 } 4022 pLevel->p1 = iIdxCur; 4023 }else 4024 4025 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 4026 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 4027 /* Case 4: Two or more separately indexed terms connected by OR 4028 ** 4029 ** Example: 4030 ** 4031 ** CREATE TABLE t1(a,b,c,d); 4032 ** CREATE INDEX i1 ON t1(a); 4033 ** CREATE INDEX i2 ON t1(b); 4034 ** CREATE INDEX i3 ON t1(c); 4035 ** 4036 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 4037 ** 4038 ** In the example, there are three indexed terms connected by OR. 4039 ** The top of the loop looks like this: 4040 ** 4041 ** Null 1 # Zero the rowset in reg 1 4042 ** 4043 ** Then, for each indexed term, the following. The arguments to 4044 ** RowSetTest are such that the rowid of the current row is inserted 4045 ** into the RowSet. If it is already present, control skips the 4046 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 4047 ** 4048 ** sqlite3WhereBegin(<term>) 4049 ** RowSetTest # Insert rowid into rowset 4050 ** Gosub 2 A 4051 ** sqlite3WhereEnd() 4052 ** 4053 ** Following the above, code to terminate the loop. Label A, the target 4054 ** of the Gosub above, jumps to the instruction right after the Goto. 4055 ** 4056 ** Null 1 # Zero the rowset in reg 1 4057 ** Goto B # The loop is finished. 4058 ** 4059 ** A: <loop body> # Return data, whatever. 4060 ** 4061 ** Return 2 # Jump back to the Gosub 4062 ** 4063 ** B: <after the loop> 4064 ** 4065 */ 4066 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 4067 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 4068 4069 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 4070 int regRowset = 0; /* Register for RowSet object */ 4071 int regRowid = 0; /* Register holding rowid */ 4072 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 4073 int iRetInit; /* Address of regReturn init */ 4074 int untestedTerms = 0; /* Some terms not completely tested */ 4075 int ii; 4076 4077 pTerm = pLevel->plan.u.pTerm; 4078 assert( pTerm!=0 ); 4079 assert( pTerm->eOperator==WO_OR ); 4080 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 4081 pOrWc = &pTerm->u.pOrInfo->wc; 4082 pLevel->op = OP_Return; 4083 pLevel->p1 = regReturn; 4084 4085 /* Set up a new SrcList ni pOrTab containing the table being scanned 4086 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 4087 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 4088 */ 4089 if( pWInfo->nLevel>1 ){ 4090 int nNotReady; /* The number of notReady tables */ 4091 struct SrcList_item *origSrc; /* Original list of tables */ 4092 nNotReady = pWInfo->nLevel - iLevel - 1; 4093 pOrTab = sqlite3StackAllocRaw(pParse->db, 4094 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 4095 if( pOrTab==0 ) return notReady; 4096 pOrTab->nAlloc = (i16)(nNotReady + 1); 4097 pOrTab->nSrc = pOrTab->nAlloc; 4098 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 4099 origSrc = pWInfo->pTabList->a; 4100 for(k=1; k<=nNotReady; k++){ 4101 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 4102 } 4103 }else{ 4104 pOrTab = pWInfo->pTabList; 4105 } 4106 4107 /* Initialize the rowset register to contain NULL. An SQL NULL is 4108 ** equivalent to an empty rowset. 4109 ** 4110 ** Also initialize regReturn to contain the address of the instruction 4111 ** immediately following the OP_Return at the bottom of the loop. This 4112 ** is required in a few obscure LEFT JOIN cases where control jumps 4113 ** over the top of the loop into the body of it. In this case the 4114 ** correct response for the end-of-loop code (the OP_Return) is to 4115 ** fall through to the next instruction, just as an OP_Next does if 4116 ** called on an uninitialized cursor. 4117 */ 4118 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 4119 regRowset = ++pParse->nMem; 4120 regRowid = ++pParse->nMem; 4121 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 4122 } 4123 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 4124 4125 for(ii=0; ii<pOrWc->nTerm; ii++){ 4126 WhereTerm *pOrTerm = &pOrWc->a[ii]; 4127 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ 4128 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 4129 /* Loop through table entries that match term pOrTerm. */ 4130 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, 4131 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | 4132 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); 4133 if( pSubWInfo ){ 4134 explainOneScan( 4135 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 4136 ); 4137 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 4138 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 4139 int r; 4140 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 4141 regRowid); 4142 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 4143 sqlite3VdbeCurrentAddr(v)+2, r, iSet); 4144 } 4145 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 4146 4147 /* The pSubWInfo->untestedTerms flag means that this OR term 4148 ** contained one or more AND term from a notReady table. The 4149 ** terms from the notReady table could not be tested and will 4150 ** need to be tested later. 4151 */ 4152 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 4153 4154 /* Finish the loop through table entries that match term pOrTerm. */ 4155 sqlite3WhereEnd(pSubWInfo); 4156 } 4157 } 4158 } 4159 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 4160 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 4161 sqlite3VdbeResolveLabel(v, iLoopBody); 4162 4163 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); 4164 if( !untestedTerms ) disableTerm(pLevel, pTerm); 4165 }else 4166 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 4167 4168 { 4169 /* Case 5: There is no usable index. We must do a complete 4170 ** scan of the entire table. 4171 */ 4172 static const u8 aStep[] = { OP_Next, OP_Prev }; 4173 static const u8 aStart[] = { OP_Rewind, OP_Last }; 4174 assert( bRev==0 || bRev==1 ); 4175 assert( omitTable==0 ); 4176 pLevel->op = aStep[bRev]; 4177 pLevel->p1 = iCur; 4178 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 4179 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 4180 } 4181 notReady &= ~getMask(pWC->pMaskSet, iCur); 4182 4183 /* Insert code to test every subexpression that can be completely 4184 ** computed using the current set of tables. 4185 ** 4186 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through 4187 ** the use of indices become tests that are evaluated against each row of 4188 ** the relevant input tables. 4189 */ 4190 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 4191 Expr *pE; 4192 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ 4193 testcase( pTerm->wtFlags & TERM_CODED ); 4194 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 4195 if( (pTerm->prereqAll & notReady)!=0 ){ 4196 testcase( pWInfo->untestedTerms==0 4197 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 4198 pWInfo->untestedTerms = 1; 4199 continue; 4200 } 4201 pE = pTerm->pExpr; 4202 assert( pE!=0 ); 4203 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 4204 continue; 4205 } 4206 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 4207 pTerm->wtFlags |= TERM_CODED; 4208 } 4209 4210 /* For a LEFT OUTER JOIN, generate code that will record the fact that 4211 ** at least one row of the right table has matched the left table. 4212 */ 4213 if( pLevel->iLeftJoin ){ 4214 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 4215 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 4216 VdbeComment((v, "record LEFT JOIN hit")); 4217 sqlite3ExprCacheClear(pParse); 4218 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 4219 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ 4220 testcase( pTerm->wtFlags & TERM_CODED ); 4221 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 4222 if( (pTerm->prereqAll & notReady)!=0 ){ 4223 assert( pWInfo->untestedTerms ); 4224 continue; 4225 } 4226 assert( pTerm->pExpr ); 4227 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 4228 pTerm->wtFlags |= TERM_CODED; 4229 } 4230 } 4231 sqlite3ReleaseTempReg(pParse, iReleaseReg); 4232 4233 return notReady; 4234 } 4235 4236 #if defined(SQLITE_TEST) 4237 /* 4238 ** The following variable holds a text description of query plan generated 4239 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 4240 ** overwrites the previous. This information is used for testing and 4241 ** analysis only. 4242 */ 4243 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 4244 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 4245 4246 #endif /* SQLITE_TEST */ 4247 4248 4249 /* 4250 ** Free a WhereInfo structure 4251 */ 4252 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 4253 if( ALWAYS(pWInfo) ){ 4254 int i; 4255 for(i=0; i<pWInfo->nLevel; i++){ 4256 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 4257 if( pInfo ){ 4258 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ 4259 if( pInfo->needToFreeIdxStr ){ 4260 sqlite3_free(pInfo->idxStr); 4261 } 4262 sqlite3DbFree(db, pInfo); 4263 } 4264 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ 4265 Index *pIdx = pWInfo->a[i].plan.u.pIdx; 4266 if( pIdx ){ 4267 sqlite3DbFree(db, pIdx->zColAff); 4268 sqlite3DbFree(db, pIdx); 4269 } 4270 } 4271 } 4272 whereClauseClear(pWInfo->pWC); 4273 sqlite3DbFree(db, pWInfo); 4274 } 4275 } 4276 4277 4278 /* 4279 ** Generate the beginning of the loop used for WHERE clause processing. 4280 ** The return value is a pointer to an opaque structure that contains 4281 ** information needed to terminate the loop. Later, the calling routine 4282 ** should invoke sqlite3WhereEnd() with the return value of this function 4283 ** in order to complete the WHERE clause processing. 4284 ** 4285 ** If an error occurs, this routine returns NULL. 4286 ** 4287 ** The basic idea is to do a nested loop, one loop for each table in 4288 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4289 ** same as a SELECT with only a single table in the FROM clause.) For 4290 ** example, if the SQL is this: 4291 ** 4292 ** SELECT * FROM t1, t2, t3 WHERE ...; 4293 ** 4294 ** Then the code generated is conceptually like the following: 4295 ** 4296 ** foreach row1 in t1 do \ Code generated 4297 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4298 ** foreach row3 in t3 do / 4299 ** ... 4300 ** end \ Code generated 4301 ** end |-- by sqlite3WhereEnd() 4302 ** end / 4303 ** 4304 ** Note that the loops might not be nested in the order in which they 4305 ** appear in the FROM clause if a different order is better able to make 4306 ** use of indices. Note also that when the IN operator appears in 4307 ** the WHERE clause, it might result in additional nested loops for 4308 ** scanning through all values on the right-hand side of the IN. 4309 ** 4310 ** There are Btree cursors associated with each table. t1 uses cursor 4311 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4312 ** And so forth. This routine generates code to open those VDBE cursors 4313 ** and sqlite3WhereEnd() generates the code to close them. 4314 ** 4315 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4316 ** in pTabList pointing at their appropriate entries. The [...] code 4317 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4318 ** data from the various tables of the loop. 4319 ** 4320 ** If the WHERE clause is empty, the foreach loops must each scan their 4321 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4322 ** the tables have indices and there are terms in the WHERE clause that 4323 ** refer to those indices, a complete table scan can be avoided and the 4324 ** code will run much faster. Most of the work of this routine is checking 4325 ** to see if there are indices that can be used to speed up the loop. 4326 ** 4327 ** Terms of the WHERE clause are also used to limit which rows actually 4328 ** make it to the "..." in the middle of the loop. After each "foreach", 4329 ** terms of the WHERE clause that use only terms in that loop and outer 4330 ** loops are evaluated and if false a jump is made around all subsequent 4331 ** inner loops (or around the "..." if the test occurs within the inner- 4332 ** most loop) 4333 ** 4334 ** OUTER JOINS 4335 ** 4336 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4337 ** 4338 ** foreach row1 in t1 do 4339 ** flag = 0 4340 ** foreach row2 in t2 do 4341 ** start: 4342 ** ... 4343 ** flag = 1 4344 ** end 4345 ** if flag==0 then 4346 ** move the row2 cursor to a null row 4347 ** goto start 4348 ** fi 4349 ** end 4350 ** 4351 ** ORDER BY CLAUSE PROCESSING 4352 ** 4353 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 4354 ** if there is one. If there is no ORDER BY clause or if this routine 4355 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 4356 ** 4357 ** If an index can be used so that the natural output order of the table 4358 ** scan is correct for the ORDER BY clause, then that index is used and 4359 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 4360 ** unnecessary sort of the result set if an index appropriate for the 4361 ** ORDER BY clause already exists. 4362 ** 4363 ** If the where clause loops cannot be arranged to provide the correct 4364 ** output order, then the *ppOrderBy is unchanged. 4365 */ 4366 WhereInfo *sqlite3WhereBegin( 4367 Parse *pParse, /* The parser context */ 4368 SrcList *pTabList, /* A list of all tables to be scanned */ 4369 Expr *pWhere, /* The WHERE clause */ 4370 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 4371 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ 4372 ){ 4373 int i; /* Loop counter */ 4374 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4375 int nTabList; /* Number of elements in pTabList */ 4376 WhereInfo *pWInfo; /* Will become the return value of this function */ 4377 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4378 Bitmask notReady; /* Cursors that are not yet positioned */ 4379 WhereMaskSet *pMaskSet; /* The expression mask set */ 4380 WhereClause *pWC; /* Decomposition of the WHERE clause */ 4381 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 4382 WhereLevel *pLevel; /* A single level in the pWInfo list */ 4383 int iFrom; /* First unused FROM clause element */ 4384 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ 4385 sqlite3 *db; /* Database connection */ 4386 4387 /* The number of tables in the FROM clause is limited by the number of 4388 ** bits in a Bitmask 4389 */ 4390 testcase( pTabList->nSrc==BMS ); 4391 if( pTabList->nSrc>BMS ){ 4392 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4393 return 0; 4394 } 4395 4396 /* This function normally generates a nested loop for all tables in 4397 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 4398 ** only generate code for the first table in pTabList and assume that 4399 ** any cursors associated with subsequent tables are uninitialized. 4400 */ 4401 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 4402 4403 /* Allocate and initialize the WhereInfo structure that will become the 4404 ** return value. A single allocation is used to store the WhereInfo 4405 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4406 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4407 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4408 ** some architectures. Hence the ROUND8() below. 4409 */ 4410 db = pParse->db; 4411 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4412 pWInfo = sqlite3DbMallocZero(db, 4413 nByteWInfo + 4414 sizeof(WhereClause) + 4415 sizeof(WhereMaskSet) 4416 ); 4417 if( db->mallocFailed ){ 4418 sqlite3DbFree(db, pWInfo); 4419 pWInfo = 0; 4420 goto whereBeginError; 4421 } 4422 pWInfo->nLevel = nTabList; 4423 pWInfo->pParse = pParse; 4424 pWInfo->pTabList = pTabList; 4425 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 4426 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; 4427 pWInfo->wctrlFlags = wctrlFlags; 4428 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4429 pMaskSet = (WhereMaskSet*)&pWC[1]; 4430 4431 /* Split the WHERE clause into separate subexpressions where each 4432 ** subexpression is separated by an AND operator. 4433 */ 4434 initMaskSet(pMaskSet); 4435 whereClauseInit(pWC, pParse, pMaskSet); 4436 sqlite3ExprCodeConstants(pParse, pWhere); 4437 whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ 4438 4439 /* Special case: a WHERE clause that is constant. Evaluate the 4440 ** expression and either jump over all of the code or fall thru. 4441 */ 4442 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 4443 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4444 pWhere = 0; 4445 } 4446 4447 /* Assign a bit from the bitmask to every term in the FROM clause. 4448 ** 4449 ** When assigning bitmask values to FROM clause cursors, it must be 4450 ** the case that if X is the bitmask for the N-th FROM clause term then 4451 ** the bitmask for all FROM clause terms to the left of the N-th term 4452 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 4453 ** its Expr.iRightJoinTable value to find the bitmask of the right table 4454 ** of the join. Subtracting one from the right table bitmask gives a 4455 ** bitmask for all tables to the left of the join. Knowing the bitmask 4456 ** for all tables to the left of a left join is important. Ticket #3015. 4457 ** 4458 ** Configure the WhereClause.vmask variable so that bits that correspond 4459 ** to virtual table cursors are set. This is used to selectively disable 4460 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 4461 ** with virtual tables. 4462 ** 4463 ** Note that bitmasks are created for all pTabList->nSrc tables in 4464 ** pTabList, not just the first nTabList tables. nTabList is normally 4465 ** equal to pTabList->nSrc but might be shortened to 1 if the 4466 ** WHERE_ONETABLE_ONLY flag is set. 4467 */ 4468 assert( pWC->vmask==0 && pMaskSet->n==0 ); 4469 for(i=0; i<pTabList->nSrc; i++){ 4470 createMask(pMaskSet, pTabList->a[i].iCursor); 4471 #ifndef SQLITE_OMIT_VIRTUALTABLE 4472 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ 4473 pWC->vmask |= ((Bitmask)1 << i); 4474 } 4475 #endif 4476 } 4477 #ifndef NDEBUG 4478 { 4479 Bitmask toTheLeft = 0; 4480 for(i=0; i<pTabList->nSrc; i++){ 4481 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); 4482 assert( (m-1)==toTheLeft ); 4483 toTheLeft |= m; 4484 } 4485 } 4486 #endif 4487 4488 /* Analyze all of the subexpressions. Note that exprAnalyze() might 4489 ** add new virtual terms onto the end of the WHERE clause. We do not 4490 ** want to analyze these virtual terms, so start analyzing at the end 4491 ** and work forward so that the added virtual terms are never processed. 4492 */ 4493 exprAnalyzeAll(pTabList, pWC); 4494 if( db->mallocFailed ){ 4495 goto whereBeginError; 4496 } 4497 4498 /* Chose the best index to use for each table in the FROM clause. 4499 ** 4500 ** This loop fills in the following fields: 4501 ** 4502 ** pWInfo->a[].pIdx The index to use for this level of the loop. 4503 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx 4504 ** pWInfo->a[].nEq The number of == and IN constraints 4505 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded 4506 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 4507 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 4508 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term 4509 ** 4510 ** This loop also figures out the nesting order of tables in the FROM 4511 ** clause. 4512 */ 4513 notReady = ~(Bitmask)0; 4514 andFlags = ~0; 4515 WHERETRACE(("*** Optimizer Start ***\n")); 4516 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ 4517 WhereCost bestPlan; /* Most efficient plan seen so far */ 4518 Index *pIdx; /* Index for FROM table at pTabItem */ 4519 int j; /* For looping over FROM tables */ 4520 int bestJ = -1; /* The value of j */ 4521 Bitmask m; /* Bitmask value for j or bestJ */ 4522 int isOptimal; /* Iterator for optimal/non-optimal search */ 4523 int nUnconstrained; /* Number tables without INDEXED BY */ 4524 Bitmask notIndexed; /* Mask of tables that cannot use an index */ 4525 4526 memset(&bestPlan, 0, sizeof(bestPlan)); 4527 bestPlan.rCost = SQLITE_BIG_DBL; 4528 WHERETRACE(("*** Begin search for loop %d ***\n", i)); 4529 4530 /* Loop through the remaining entries in the FROM clause to find the 4531 ** next nested loop. The loop tests all FROM clause entries 4532 ** either once or twice. 4533 ** 4534 ** The first test is always performed if there are two or more entries 4535 ** remaining and never performed if there is only one FROM clause entry 4536 ** to choose from. The first test looks for an "optimal" scan. In 4537 ** this context an optimal scan is one that uses the same strategy 4538 ** for the given FROM clause entry as would be selected if the entry 4539 ** were used as the innermost nested loop. In other words, a table 4540 ** is chosen such that the cost of running that table cannot be reduced 4541 ** by waiting for other tables to run first. This "optimal" test works 4542 ** by first assuming that the FROM clause is on the inner loop and finding 4543 ** its query plan, then checking to see if that query plan uses any 4544 ** other FROM clause terms that are notReady. If no notReady terms are 4545 ** used then the "optimal" query plan works. 4546 ** 4547 ** Note that the WhereCost.nRow parameter for an optimal scan might 4548 ** not be as small as it would be if the table really were the innermost 4549 ** join. The nRow value can be reduced by WHERE clause constraints 4550 ** that do not use indices. But this nRow reduction only happens if the 4551 ** table really is the innermost join. 4552 ** 4553 ** The second loop iteration is only performed if no optimal scan 4554 ** strategies were found by the first iteration. This second iteration 4555 ** is used to search for the lowest cost scan overall. 4556 ** 4557 ** Previous versions of SQLite performed only the second iteration - 4558 ** the next outermost loop was always that with the lowest overall 4559 ** cost. However, this meant that SQLite could select the wrong plan 4560 ** for scripts such as the following: 4561 ** 4562 ** CREATE TABLE t1(a, b); 4563 ** CREATE TABLE t2(c, d); 4564 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; 4565 ** 4566 ** The best strategy is to iterate through table t1 first. However it 4567 ** is not possible to determine this with a simple greedy algorithm. 4568 ** Since the cost of a linear scan through table t2 is the same 4569 ** as the cost of a linear scan through table t1, a simple greedy 4570 ** algorithm may choose to use t2 for the outer loop, which is a much 4571 ** costlier approach. 4572 */ 4573 nUnconstrained = 0; 4574 notIndexed = 0; 4575 for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){ 4576 Bitmask mask; /* Mask of tables not yet ready */ 4577 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ 4578 int doNotReorder; /* True if this table should not be reordered */ 4579 WhereCost sCost; /* Cost information from best[Virtual]Index() */ 4580 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ 4581 4582 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 4583 if( j!=iFrom && doNotReorder ) break; 4584 m = getMask(pMaskSet, pTabItem->iCursor); 4585 if( (m & notReady)==0 ){ 4586 if( j==iFrom ) iFrom++; 4587 continue; 4588 } 4589 mask = (isOptimal ? m : notReady); 4590 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); 4591 if( pTabItem->pIndex==0 ) nUnconstrained++; 4592 4593 WHERETRACE(("=== trying table %d with isOptimal=%d ===\n", 4594 j, isOptimal)); 4595 assert( pTabItem->pTab ); 4596 #ifndef SQLITE_OMIT_VIRTUALTABLE 4597 if( IsVirtual(pTabItem->pTab) ){ 4598 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; 4599 bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, 4600 &sCost, pp); 4601 }else 4602 #endif 4603 { 4604 bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, 4605 &sCost); 4606 } 4607 assert( isOptimal || (sCost.used¬Ready)==0 ); 4608 4609 /* If an INDEXED BY clause is present, then the plan must use that 4610 ** index if it uses any index at all */ 4611 assert( pTabItem->pIndex==0 4612 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 4613 || sCost.plan.u.pIdx==pTabItem->pIndex ); 4614 4615 if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ 4616 notIndexed |= m; 4617 } 4618 4619 /* Conditions under which this table becomes the best so far: 4620 ** 4621 ** (1) The table must not depend on other tables that have not 4622 ** yet run. 4623 ** 4624 ** (2) A full-table-scan plan cannot supercede indexed plan unless 4625 ** the full-table-scan is an "optimal" plan as defined above. 4626 ** 4627 ** (3) All tables have an INDEXED BY clause or this table lacks an 4628 ** INDEXED BY clause or this table uses the specific 4629 ** index specified by its INDEXED BY clause. This rule ensures 4630 ** that a best-so-far is always selected even if an impossible 4631 ** combination of INDEXED BY clauses are given. The error 4632 ** will be detected and relayed back to the application later. 4633 ** The NEVER() comes about because rule (2) above prevents 4634 ** An indexable full-table-scan from reaching rule (3). 4635 ** 4636 ** (4) The plan cost must be lower than prior plans or else the 4637 ** cost must be the same and the number of rows must be lower. 4638 */ 4639 if( (sCost.used¬Ready)==0 /* (1) */ 4640 && (bestJ<0 || (notIndexed&m)!=0 /* (2) */ 4641 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 4642 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0) 4643 && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */ 4644 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) 4645 && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */ 4646 || (sCost.rCost<=bestPlan.rCost 4647 && sCost.plan.nRow<bestPlan.plan.nRow)) 4648 ){ 4649 WHERETRACE(("=== table %d is best so far" 4650 " with cost=%g and nRow=%g\n", 4651 j, sCost.rCost, sCost.plan.nRow)); 4652 bestPlan = sCost; 4653 bestJ = j; 4654 } 4655 if( doNotReorder ) break; 4656 } 4657 } 4658 assert( bestJ>=0 ); 4659 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); 4660 WHERETRACE(("*** Optimizer selects table %d for loop %d" 4661 " with cost=%g and nRow=%g\n", 4662 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow)); 4663 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ 4664 *ppOrderBy = 0; 4665 } 4666 andFlags &= bestPlan.plan.wsFlags; 4667 pLevel->plan = bestPlan.plan; 4668 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); 4669 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); 4670 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ 4671 pLevel->iIdxCur = pParse->nTab++; 4672 }else{ 4673 pLevel->iIdxCur = -1; 4674 } 4675 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); 4676 pLevel->iFrom = (u8)bestJ; 4677 if( bestPlan.plan.nRow>=(double)1 ){ 4678 pParse->nQueryLoop *= bestPlan.plan.nRow; 4679 } 4680 4681 /* Check that if the table scanned by this loop iteration had an 4682 ** INDEXED BY clause attached to it, that the named index is being 4683 ** used for the scan. If not, then query compilation has failed. 4684 ** Return an error. 4685 */ 4686 pIdx = pTabList->a[bestJ].pIndex; 4687 if( pIdx ){ 4688 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ 4689 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); 4690 goto whereBeginError; 4691 }else{ 4692 /* If an INDEXED BY clause is used, the bestIndex() function is 4693 ** guaranteed to find the index specified in the INDEXED BY clause 4694 ** if it find an index at all. */ 4695 assert( bestPlan.plan.u.pIdx==pIdx ); 4696 } 4697 } 4698 } 4699 WHERETRACE(("*** Optimizer Finished ***\n")); 4700 if( pParse->nErr || db->mallocFailed ){ 4701 goto whereBeginError; 4702 } 4703 4704 /* If the total query only selects a single row, then the ORDER BY 4705 ** clause is irrelevant. 4706 */ 4707 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 4708 *ppOrderBy = 0; 4709 } 4710 4711 /* If the caller is an UPDATE or DELETE statement that is requesting 4712 ** to use a one-pass algorithm, determine if this is appropriate. 4713 ** The one-pass algorithm only works if the WHERE clause constraints 4714 ** the statement to update a single row. 4715 */ 4716 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4717 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 4718 pWInfo->okOnePass = 1; 4719 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; 4720 } 4721 4722 /* Open all tables in the pTabList and any indices selected for 4723 ** searching those tables. 4724 */ 4725 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 4726 notReady = ~(Bitmask)0; 4727 pWInfo->nRowOut = (double)1; 4728 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ 4729 Table *pTab; /* Table to open */ 4730 int iDb; /* Index of database containing table/index */ 4731 4732 pTabItem = &pTabList->a[pLevel->iFrom]; 4733 pTab = pTabItem->pTab; 4734 pLevel->iTabCur = pTabItem->iCursor; 4735 pWInfo->nRowOut *= pLevel->plan.nRow; 4736 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4737 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4738 /* Do nothing */ 4739 }else 4740 #ifndef SQLITE_OMIT_VIRTUALTABLE 4741 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4742 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4743 int iCur = pTabItem->iCursor; 4744 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4745 }else 4746 #endif 4747 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4748 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ 4749 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 4750 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4751 testcase( pTab->nCol==BMS-1 ); 4752 testcase( pTab->nCol==BMS ); 4753 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ 4754 Bitmask b = pTabItem->colUsed; 4755 int n = 0; 4756 for(; b; b=b>>1, n++){} 4757 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 4758 SQLITE_INT_TO_PTR(n), P4_INT32); 4759 assert( n<=pTab->nCol ); 4760 } 4761 }else{ 4762 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4763 } 4764 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4765 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ 4766 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel); 4767 }else 4768 #endif 4769 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4770 Index *pIx = pLevel->plan.u.pIdx; 4771 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 4772 int iIdxCur = pLevel->iIdxCur; 4773 assert( pIx->pSchema==pTab->pSchema ); 4774 assert( iIdxCur>=0 ); 4775 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 4776 (char*)pKey, P4_KEYINFO_HANDOFF); 4777 VdbeComment((v, "%s", pIx->zName)); 4778 } 4779 sqlite3CodeVerifySchema(pParse, iDb); 4780 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor); 4781 } 4782 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4783 if( db->mallocFailed ) goto whereBeginError; 4784 4785 /* Generate the code to do the search. Each iteration of the for 4786 ** loop below generates code for a single nested loop of the VM 4787 ** program. 4788 */ 4789 notReady = ~(Bitmask)0; 4790 for(i=0; i<nTabList; i++){ 4791 pLevel = &pWInfo->a[i]; 4792 explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags); 4793 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); 4794 pWInfo->iContinue = pLevel->addrCont; 4795 } 4796 4797 #ifdef SQLITE_TEST /* For testing and debugging use only */ 4798 /* Record in the query plan information about the current table 4799 ** and the index used to access it (if any). If the table itself 4800 ** is not used, its name is just '{}'. If no index is used 4801 ** the index is listed as "{}". If the primary key is used the 4802 ** index name is '*'. 4803 */ 4804 for(i=0; i<nTabList; i++){ 4805 char *z; 4806 int n; 4807 pLevel = &pWInfo->a[i]; 4808 pTabItem = &pTabList->a[pLevel->iFrom]; 4809 z = pTabItem->zAlias; 4810 if( z==0 ) z = pTabItem->pTab->zName; 4811 n = sqlite3Strlen30(z); 4812 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 4813 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ 4814 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 4815 nQPlan += 2; 4816 }else{ 4817 memcpy(&sqlite3_query_plan[nQPlan], z, n); 4818 nQPlan += n; 4819 } 4820 sqlite3_query_plan[nQPlan++] = ' '; 4821 } 4822 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); 4823 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); 4824 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 4825 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 4826 nQPlan += 2; 4827 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4828 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); 4829 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 4830 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); 4831 nQPlan += n; 4832 sqlite3_query_plan[nQPlan++] = ' '; 4833 } 4834 }else{ 4835 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 4836 nQPlan += 3; 4837 } 4838 } 4839 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 4840 sqlite3_query_plan[--nQPlan] = 0; 4841 } 4842 sqlite3_query_plan[nQPlan] = 0; 4843 nQPlan = 0; 4844 #endif /* SQLITE_TEST // Testing and debugging use only */ 4845 4846 /* Record the continuation address in the WhereInfo structure. Then 4847 ** clean up and return. 4848 */ 4849 return pWInfo; 4850 4851 /* Jump here if malloc fails */ 4852 whereBeginError: 4853 if( pWInfo ){ 4854 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4855 whereInfoFree(db, pWInfo); 4856 } 4857 return 0; 4858 } 4859 4860 /* 4861 ** Generate the end of the WHERE loop. See comments on 4862 ** sqlite3WhereBegin() for additional information. 4863 */ 4864 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4865 Parse *pParse = pWInfo->pParse; 4866 Vdbe *v = pParse->pVdbe; 4867 int i; 4868 WhereLevel *pLevel; 4869 SrcList *pTabList = pWInfo->pTabList; 4870 sqlite3 *db = pParse->db; 4871 4872 /* Generate loop termination code. 4873 */ 4874 sqlite3ExprCacheClear(pParse); 4875 for(i=pWInfo->nLevel-1; i>=0; i--){ 4876 pLevel = &pWInfo->a[i]; 4877 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4878 if( pLevel->op!=OP_Noop ){ 4879 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 4880 sqlite3VdbeChangeP5(v, pLevel->p5); 4881 } 4882 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4883 struct InLoop *pIn; 4884 int j; 4885 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4886 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4887 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4888 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); 4889 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4890 } 4891 sqlite3DbFree(db, pLevel->u.in.aInLoop); 4892 } 4893 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4894 if( pLevel->iLeftJoin ){ 4895 int addr; 4896 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 4897 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4898 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); 4899 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ 4900 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4901 } 4902 if( pLevel->iIdxCur>=0 ){ 4903 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4904 } 4905 if( pLevel->op==OP_Return ){ 4906 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4907 }else{ 4908 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 4909 } 4910 sqlite3VdbeJumpHere(v, addr); 4911 } 4912 } 4913 4914 /* The "break" point is here, just past the end of the outer loop. 4915 ** Set it. 4916 */ 4917 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4918 4919 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4920 */ 4921 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); 4922 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4923 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4924 Table *pTab = pTabItem->pTab; 4925 assert( pTab!=0 ); 4926 if( (pTab->tabFlags & TF_Ephemeral)==0 4927 && pTab->pSelect==0 4928 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 4929 ){ 4930 int ws = pLevel->plan.wsFlags; 4931 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ 4932 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4933 } 4934 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ 4935 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4936 } 4937 } 4938 4939 /* If this scan uses an index, make code substitutions to read data 4940 ** from the index in preference to the table. Sometimes, this means 4941 ** the table need never be read from. This is a performance boost, 4942 ** as the vdbe level waits until the table is read before actually 4943 ** seeking the table cursor to the record corresponding to the current 4944 ** position in the index. 4945 ** 4946 ** Calls to the code generator in between sqlite3WhereBegin and 4947 ** sqlite3WhereEnd will have created code that references the table 4948 ** directly. This loop scans all that code looking for opcodes 4949 ** that reference the table and converts them into opcodes that 4950 ** reference the index. 4951 */ 4952 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ 4953 int k, j, last; 4954 VdbeOp *pOp; 4955 Index *pIdx = pLevel->plan.u.pIdx; 4956 4957 assert( pIdx!=0 ); 4958 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 4959 last = sqlite3VdbeCurrentAddr(v); 4960 for(k=pWInfo->iTop; k<last; k++, pOp++){ 4961 if( pOp->p1!=pLevel->iTabCur ) continue; 4962 if( pOp->opcode==OP_Column ){ 4963 for(j=0; j<pIdx->nColumn; j++){ 4964 if( pOp->p2==pIdx->aiColumn[j] ){ 4965 pOp->p2 = j; 4966 pOp->p1 = pLevel->iIdxCur; 4967 break; 4968 } 4969 } 4970 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4971 || j<pIdx->nColumn ); 4972 }else if( pOp->opcode==OP_Rowid ){ 4973 pOp->p1 = pLevel->iIdxCur; 4974 pOp->opcode = OP_IdxRowid; 4975 } 4976 } 4977 } 4978 } 4979 4980 /* Final cleanup 4981 */ 4982 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4983 whereInfoFree(db, pWInfo); 4984 return; 4985 } 4986